summaryrefslogtreecommitdiff
path: root/compiler/GHC/Core/Rules.hs
blob: 67f47e9d9cd4ee66eaaa83028e40e49e4c917b3c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
{-
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998

\section[CoreRules]{Rewrite rules}
-}


-- | Functions for collecting together and applying rewrite rules to a module.
-- The 'CoreRule' datatype itself is declared elsewhere.
module GHC.Core.Rules (
        -- ** Looking up rules
        lookupRule,

        -- ** RuleBase, RuleEnv
        RuleBase, RuleEnv(..), mkRuleEnv, emptyRuleEnv,
        updExternalPackageRules, addLocalRules, updLocalRules,
        emptyRuleBase, mkRuleBase, extendRuleBaseList,
        pprRuleBase,

        -- ** Checking rule applications
        ruleCheckProgram,

        -- ** Manipulating 'RuleInfo' rules
        extendRuleInfo, addRuleInfo,
        addIdSpecialisations, addRulesToId,

        -- ** RuleBase and RuleEnv

        -- * Misc. CoreRule helpers
        rulesOfBinds, getRules, pprRulesForUser,

        -- * Making rules
        mkRule, mkSpecRule, roughTopNames

    ) where

import GHC.Prelude

import GHC.Unit.Module   ( Module )
import GHC.Unit.Module.Env
import GHC.Unit.Module.ModGuts( ModGuts(..) )
import GHC.Unit.Module.Deps( Dependencies(..) )

import GHC.Driver.Session( DynFlags )
import GHC.Driver.Ppr( showSDoc )

import GHC.Core         -- All of it
import GHC.Core.Subst
import GHC.Core.SimpleOpt ( exprIsLambda_maybe )
import GHC.Core.FVs       ( exprFreeVars, exprsFreeVars, bindFreeVars
                          , rulesFreeVarsDSet, exprsOrphNames )
import GHC.Core.Utils     ( exprType, mkTick, mkTicks
                          , stripTicksTopT, stripTicksTopE
                          , isJoinBind, mkCastMCo )
import GHC.Core.Ppr       ( pprRules )
import GHC.Core.Unify as Unify ( ruleMatchTyKiX )
import GHC.Core.Type as Type
   ( Type, extendTvSubst, extendCvSubst
   , substTy, getTyVar_maybe )
import GHC.Core.TyCo.Ppr( pprParendType )
import GHC.Core.Coercion as Coercion
import GHC.Core.Tidy     ( tidyRules )
import GHC.Core.Map.Expr ( eqCoreExpr )
import GHC.Core.Opt.Arity( etaExpandToJoinPointRule )
import GHC.Core.Make     ( mkCoreLams )
import GHC.Core.Opt.OccurAnal( occurAnalyseExpr )

import GHC.Tc.Utils.TcType  ( tcSplitTyConApp_maybe )
import GHC.Builtin.Types    ( anyTypeOfKind )

import GHC.Types.Id
import GHC.Types.Id.Info ( RuleInfo( RuleInfo ) )
import GHC.Types.Var
import GHC.Types.Var.Env
import GHC.Types.Var.Set
import GHC.Types.Name    ( Name, NamedThing(..), nameIsLocalOrFrom )
import GHC.Types.Name.Set
import GHC.Types.Name.Env
import GHC.Types.Name.Occurrence( occNameFS )
import GHC.Types.Unique.FM
import GHC.Types.Tickish
import GHC.Types.Basic

import GHC.Data.FastString
import GHC.Data.Maybe
import GHC.Data.Bag
import GHC.Data.List.SetOps( hasNoDups )

import GHC.Utils.Misc as Utils
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Utils.Constants (debugIsOn)

import Data.List (sortBy, mapAccumL, isPrefixOf)
import Data.Function    ( on )
import Control.Monad    ( guard )

{-
Note [Overall plumbing for rules]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* After the desugarer:
   - The ModGuts initially contains mg_rules :: [CoreRule] of
     locally-declared rules for imported Ids.
   - Locally-declared rules for locally-declared Ids are attached to
     the IdInfo for that Id.  See Note [Attach rules to local ids] in
     GHC.HsToCore.Binds

* GHC.Iface.Tidy strips off all the rules from local Ids and adds them to
  mg_rules, so that the ModGuts has *all* the locally-declared rules.

* The HomePackageTable contains a ModDetails for each home package
  module.  Each contains md_rules :: [CoreRule] of rules declared in
  that module.  The HomePackageTable grows as ghc --make does its
  up-sweep.  In batch mode (ghc -c), the HPT is empty; all imported modules
  are treated by the "external" route, discussed next, regardless of
  which package they come from.

* The ExternalPackageState has a single eps_rule_base :: RuleBase for
  Ids in other packages.  This RuleBase simply grow monotonically, as
  ghc --make compiles one module after another.

  During simplification, interface files may get demand-loaded,
  as the simplifier explores the unfoldings for Ids it has in
  its hand.  (Via an unsafePerformIO; the EPS is really a cache.)
  That in turn may make the EPS rule-base grow.  In contrast, the
  HPT never grows in this way.

* The result of all this is that during Core-to-Core optimisation
  there are four sources of rules:

    (a) Rules in the IdInfo of the Id they are a rule for.  These are
        easy: fast to look up, and if you apply a substitution then
        it'll be applied to the IdInfo as a matter of course.

    (b) Rules declared in this module for imported Ids, kept in the
        ModGuts. If you do a substitution, you'd better apply the
        substitution to these.  There are seldom many of these.

    (c) Rules declared in the HomePackageTable.  These never change.

    (d) Rules in the ExternalPackageTable. These can grow in response
        to lazy demand-loading of interfaces.

* At the moment (c) is carried in a reader-monad way by the GHC.Core.Opt.Monad.
  The HomePackageTable doesn't have a single RuleBase because technically
  we should only be able to "see" rules "below" this module; so we
  generate a RuleBase for (c) by combining rules from all the modules
  "below" us.  That's why we can't just select the home-package RuleBase
  from HscEnv.

  [NB: we are inconsistent here.  We should do the same for external
  packages, but we don't.  Same for type-class instances.]

* So in the outer simplifier loop (simplifyPgmIO), we combine (b & c) into a single
  RuleBase, reading
     (b) from the ModGuts,
     (c) from the GHC.Core.Opt.Monad, and
  just before doing rule matching we read
     (d) from its mutable variable
  and combine it with the results from (b & c).

  In a single simplifier run new rules can be added into the EPS so it matters
  to keep an up-to-date view of which rules have been loaded. For examples of
  where this went wrong and caused cryptic performance regressions
  see T19790 and !6735.


************************************************************************
*                                                                      *
\subsection[specialisation-IdInfo]{Specialisation info about an @Id@}
*                                                                      *
************************************************************************

A CoreRule holds details of one rule for an Id, which
includes its specialisations.

For example, if a rule for f is
   RULE "f" forall @a @b d. f @(List a) @b d = f' a b

then when we find an application of f to matching types, we simply replace
it by the matching RHS:
        f (List Int) Bool dict ===>  f' Int Bool
All the stuff about how many dictionaries to discard, and what types
to apply the specialised function to, are handled by the fact that the
Rule contains a template for the result of the specialisation.
-}

mkRule :: Module -> Bool -> Bool -> RuleName -> Activation
       -> Name -> [CoreBndr] -> [CoreExpr] -> CoreExpr -> CoreRule
-- ^ Used to make 'CoreRule' for an 'Id' defined in the module being
-- compiled. See also 'GHC.Core.CoreRule'
mkRule this_mod is_auto is_local name act fn bndrs args rhs
  = Rule { ru_name   = name
         , ru_act    = act
         , ru_fn     = fn
         , ru_bndrs  = bndrs
         , ru_args   = args
         , ru_rhs    = occurAnalyseExpr rhs
                       -- See Note [OccInfo in unfoldings and rules]
         , ru_rough  = roughTopNames args
         , ru_origin = this_mod
         , ru_orphan = orph
         , ru_auto   = is_auto
         , ru_local  = is_local }
  where
        -- Compute orphanhood.  See Note [Orphans] in GHC.Core.InstEnv
        -- A rule is an orphan only if none of the variables
        -- mentioned on its left-hand side are locally defined
    lhs_names = extendNameSet (exprsOrphNames args) fn

        -- Since rules get eventually attached to one of the free names
        -- from the definition when compiling the ABI hash, we should make
        -- it deterministic. This chooses the one with minimal OccName
        -- as opposed to uniq value.
    local_lhs_names = filterNameSet (nameIsLocalOrFrom this_mod) lhs_names
    orph = chooseOrphanAnchor local_lhs_names

--------------
mkSpecRule :: DynFlags -> Module -> Bool -> Activation -> SDoc
           -> Id -> [CoreBndr] -> [CoreExpr] -> CoreExpr -> CoreRule
-- Make a specialisation rule, for Specialise or SpecConstr
mkSpecRule dflags this_mod is_auto inl_act herald fn bndrs args rhs
  = case isJoinId_maybe fn of
      Just join_arity -> etaExpandToJoinPointRule join_arity rule
      Nothing         -> rule
  where
    rule = mkRule this_mod is_auto is_local
                  rule_name
                  inl_act       -- Note [Auto-specialisation and RULES]
                  (idName fn)
                  bndrs args rhs

    is_local = isLocalId fn
    rule_name = mkSpecRuleName dflags herald fn args

mkSpecRuleName :: DynFlags -> SDoc -> Id -> [CoreExpr] -> FastString
mkSpecRuleName dflags herald fn args
  = mkFastString $ showSDoc dflags $
    herald <+> ftext (occNameFS (getOccName fn))
                     -- This name ends up in interface files, so use occNameFS.
                     -- Otherwise uniques end up there, making builds
                     -- less deterministic (See #4012 comment:61 ff)
           <+> hsep (mapMaybe ppr_call_key_ty args)
  where
    ppr_call_key_ty :: CoreExpr -> Maybe SDoc
    ppr_call_key_ty (Type ty) = case getTyVar_maybe ty of
                                  Just {} -> Just (text "@_")
                                  Nothing -> Just $ char '@' <> pprParendType ty
    ppr_call_key_ty _ = Nothing


--------------
roughTopNames :: [CoreExpr] -> [Maybe Name]
-- ^ Find the \"top\" free names of several expressions.
-- Such names are either:
--
-- 1. The function finally being applied to in an application chain
--    (if that name is a GlobalId: see "GHC.Types.Var#globalvslocal"), or
--
-- 2. The 'TyCon' if the expression is a 'Type'
--
-- This is used for the fast-match-check for rules;
--      if the top names don't match, the rest can't
roughTopNames args = map roughTopName args

roughTopName :: CoreExpr -> Maybe Name
roughTopName (Type ty) = case tcSplitTyConApp_maybe ty of
                               Just (tc,_) -> Just (getName tc)
                               Nothing     -> Nothing
roughTopName (Coercion _) = Nothing
roughTopName (App f _) = roughTopName f
roughTopName (Var f)   | isGlobalId f   -- Note [Care with roughTopName]
                       , isDataConWorkId f || idArity f > 0
                       = Just (idName f)
roughTopName (Tick t e) | tickishFloatable t
                        = roughTopName e
roughTopName _ = Nothing

ruleCantMatch :: [Maybe Name] -> [Maybe Name] -> Bool
-- ^ @ruleCantMatch tpl actual@ returns True only if @actual@
-- definitely can't match @tpl@ by instantiating @tpl@.
-- It's only a one-way match; unlike instance matching we
-- don't consider unification.
--
-- Notice that [_$_]
--      @ruleCantMatch [Nothing] [Just n2] = False@
--      Reason: a template variable can be instantiated by a constant
-- Also:
--      @ruleCantMatch [Just n1] [Nothing] = False@
--      Reason: a local variable @v@ in the actuals might [_$_]

ruleCantMatch (Just n1 : ts) (Just n2 : as) = n1 /= n2 || ruleCantMatch ts as
ruleCantMatch (_       : ts) (_       : as) = ruleCantMatch ts as
ruleCantMatch _              _              = False

{-
Note [Care with roughTopName]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this
    module M where { x = a:b }
    module N where { ...f x...
                     RULE f (p:q) = ... }
You'd expect the rule to match, because the matcher can
look through the unfolding of 'x'.  So we must avoid roughTopName
returning 'M.x' for the call (f x), or else it'll say "can't match"
and we won't even try!!

However, suppose we have
         RULE g (M.h x) = ...
         foo = ...(g (M.k v))....
where k is a *function* exported by M.  We never really match
functions (lambdas) except by name, so in this case it seems like
a good idea to treat 'M.k' as a roughTopName of the call.
-}

pprRulesForUser :: [CoreRule] -> SDoc
-- (a) tidy the rules
-- (b) sort them into order based on the rule name
-- (c) suppress uniques (unless -dppr-debug is on)
-- This combination makes the output stable so we can use in testing
-- It's here rather than in GHC.Core.Ppr because it calls tidyRules
pprRulesForUser rules
  = withPprStyle defaultUserStyle $
    pprRules $
    sortBy (lexicalCompareFS `on` ruleName) $
    tidyRules emptyTidyEnv rules

{-
************************************************************************
*                                                                      *
                RuleInfo: the rules in an IdInfo
*                                                                      *
************************************************************************
-}

extendRuleInfo :: RuleInfo -> [CoreRule] -> RuleInfo
extendRuleInfo (RuleInfo rs1 fvs1) rs2
  = RuleInfo (rs2 ++ rs1) (rulesFreeVarsDSet rs2 `unionDVarSet` fvs1)

addRuleInfo :: RuleInfo -> RuleInfo -> RuleInfo
addRuleInfo (RuleInfo rs1 fvs1) (RuleInfo rs2 fvs2)
  = RuleInfo (rs1 ++ rs2) (fvs1 `unionDVarSet` fvs2)

addIdSpecialisations :: Id -> [CoreRule] -> Id
addIdSpecialisations id rules
  | null rules
  = id
  | otherwise
  = setIdSpecialisation id $
    extendRuleInfo (idSpecialisation id) rules

addRulesToId :: RuleBase -> Id -> Id
-- Add rules in the RuleBase to the rules in the Id
addRulesToId rule_base bndr
  | Just rules <- lookupNameEnv rule_base (idName bndr)
  = bndr `addIdSpecialisations` rules
  | otherwise
  = bndr

-- | Gather all the rules for locally bound identifiers from the supplied bindings
rulesOfBinds :: [CoreBind] -> [CoreRule]
rulesOfBinds binds = concatMap (concatMap idCoreRules . bindersOf) binds


{-
************************************************************************
*                                                                      *
                RuleBase
*                                                                      *
************************************************************************
-}

-- | Gathers a collection of 'CoreRule's. Maps (the name of) an 'Id' to its rules
type RuleBase = NameEnv [CoreRule]
        -- The rules are unordered;
        -- we sort out any overlaps on lookup

emptyRuleBase :: RuleBase
emptyRuleBase = emptyNameEnv

mkRuleBase :: [CoreRule] -> RuleBase
mkRuleBase rules = extendRuleBaseList emptyRuleBase rules

extendRuleBaseList :: RuleBase -> [CoreRule] -> RuleBase
extendRuleBaseList rule_base new_guys
  = foldl' extendRuleBase rule_base new_guys

extendRuleBase :: RuleBase -> CoreRule -> RuleBase
extendRuleBase rule_base rule
  = extendNameEnv_Acc (:) Utils.singleton rule_base (ruleIdName rule) rule

pprRuleBase :: RuleBase -> SDoc
pprRuleBase rules = pprUFM rules $ \rss ->
  vcat [ pprRules (tidyRules emptyTidyEnv rs)
       | rs <- rss ]

-- | A full rule environment which we can apply rules from.  Like a 'RuleBase',
-- but it also includes the set of visible orphans we use to filter out orphan
-- rules which are not visible (even though we can see them...)
-- See Note [Orphans] in GHC.Core
data RuleEnv
    = RuleEnv { re_local_rules   :: !RuleBase -- Rules from this module
              , re_home_rules    :: !RuleBase -- Rule from the home package
                                              --   (excl this module)
              , re_eps_rules     :: !RuleBase -- Rules from other packages
                                              --   see Note [External package rules]
              , re_visible_orphs :: !ModuleSet
              }

mkRuleEnv :: ModGuts -> RuleBase -> RuleBase -> RuleEnv
mkRuleEnv (ModGuts { mg_module = this_mod
                   , mg_deps   = deps
                   , mg_rules  = local_rules })
          eps_rules hpt_rules
  = RuleEnv { re_local_rules   = mkRuleBase local_rules
            , re_home_rules    = hpt_rules
            , re_eps_rules     = eps_rules
            , re_visible_orphs = mkModuleSet vis_orphs }
  where
    vis_orphs = this_mod : dep_orphs deps

updExternalPackageRules :: RuleEnv -> RuleBase -> RuleEnv
-- Completely over-ride the external rules in RuleEnv
updExternalPackageRules rule_env eps_rules
  = rule_env { re_eps_rules = eps_rules }

updLocalRules :: RuleEnv -> [CoreRule] -> RuleEnv
-- Completely over-ride the local rules in RuleEnv
updLocalRules rule_env local_rules
  = rule_env { re_local_rules = mkRuleBase local_rules }

addLocalRules :: RuleEnv -> [CoreRule] -> RuleEnv
-- Add new local rules
addLocalRules rule_env rules
  = rule_env { re_local_rules = extendRuleBaseList (re_local_rules rule_env) rules }

emptyRuleEnv :: RuleEnv
emptyRuleEnv = RuleEnv { re_local_rules   = emptyNameEnv
                       , re_home_rules    = emptyNameEnv
                       , re_eps_rules     = emptyNameEnv
                       , re_visible_orphs = emptyModuleSet }

getRules :: RuleEnv -> Id -> [CoreRule]
-- Given a RuleEnv and an Id, find the visible rules for that Id
-- See Note [Where rules are found]
getRules (RuleEnv { re_local_rules   = local_rules
                  , re_home_rules    = home_rules
                  , re_eps_rules     = eps_rules
                  , re_visible_orphs = orphs }) fn

  | Just {} <- isDataConId_maybe fn   -- Short cut for data constructor workers
  = []                                -- and wrappers, which never have any rules

  | otherwise
  = idCoreRules fn          ++
    get local_rules         ++
    find_visible home_rules ++
    find_visible eps_rules

  where
    fn_name = idName fn
    find_visible rb = filter (ruleIsVisible orphs) (get rb)
    get rb = lookupNameEnv rb fn_name `orElse` []

ruleIsVisible :: ModuleSet -> CoreRule -> Bool
ruleIsVisible _ BuiltinRule{} = True
ruleIsVisible vis_orphs Rule { ru_orphan = orph, ru_origin = origin }
    = notOrphan orph || origin `elemModuleSet` vis_orphs

{- Note [Where rules are found]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The rules for an Id come from two places:
  (a) the ones it is born with, stored inside the Id itself (idCoreRules fn),
  (b) rules added in other modules, stored in the global RuleBase (imp_rules)

It's tempting to think that
     - LocalIds have only (a)
     - non-LocalIds have only (b)

but that isn't quite right:

     - PrimOps and ClassOps are born with a bunch of rules inside the Id,
       even when they are imported

     - The rules in GHC.Core.Opt.ConstantFold.builtinRules should be active even
       in the module defining the Id (when it's a LocalId), but
       the rules are kept in the global RuleBase

 Note [External package rules]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In Note [Overall plumbing for rules], it is explained that the final
RuleBase which we must consider is combined from 4 different sources.

During simplifier runs, the fourth source of rules is constantly being updated
as new interfaces are loaded into the EPS. Therefore just before we check to see
if any rules match we get the EPS RuleBase and combine it with the existing RuleBase
and then perform exactly 1 lookup into the new map.

It is more efficient to avoid combining the environments and store the uncombined
environments as we can instead perform 1 lookup into each environment and then combine
the results.

Essentially we use the identity:

> lookupNameEnv n (plusNameEnv_C (++) rb1 rb2)
>   = lookupNameEnv n rb1 ++ lookupNameEnv n rb2

The latter being more efficient as we don't construct an intermediate
map.
-}

{-
************************************************************************
*                                                                      *
                        Matching
*                                                                      *
************************************************************************
-}

-- | The main rule matching function. Attempts to apply all (active)
-- supplied rules to this instance of an application in a given
-- context, returning the rule applied and the resulting expression if
-- successful.
lookupRule :: RuleOpts -> InScopeEnv
           -> (Activation -> Bool)      -- When rule is active
           -> Id -- Function head
           -> [CoreExpr] -- Args
           -> [CoreRule] -- Rules
           -> Maybe (CoreRule, CoreExpr)

-- See Note [Extra args in the target]
-- See comments on matchRule
lookupRule opts rule_env@(ISE in_scope _) is_active fn args rules
  = -- pprTrace "lookupRule" (ppr fn <+> ppr args $$ ppr rules $$ ppr in_scope) $
    case go [] rules of
        []     -> Nothing
        (m:ms) -> Just (findBest in_scope (fn,args') m ms)
  where
    rough_args = map roughTopName args

    -- Strip ticks from arguments, see Note [Tick annotations in RULE
    -- matching]. We only collect ticks if a rule actually matches -
    -- this matters for performance tests.
    args' = map (stripTicksTopE tickishFloatable) args
    ticks = concatMap (stripTicksTopT tickishFloatable) args

    go :: [(CoreRule,CoreExpr)] -> [CoreRule] -> [(CoreRule,CoreExpr)]
    go ms [] = ms
    go ms (r:rs)
      | Just e <- matchRule opts rule_env is_active fn args' rough_args r
      = go ((r,mkTicks ticks e):ms) rs
      | otherwise
      = -- pprTrace "match failed" (ppr r $$ ppr args $$
        --   ppr [ (arg_id, unfoldingTemplate unf)
        --       | Var arg_id <- args
        --       , let unf = idUnfolding arg_id
        --       , isCheapUnfolding unf] )
        go ms rs

findBest :: InScopeSet -> (Id, [CoreExpr])
         -> (CoreRule,CoreExpr) -> [(CoreRule,CoreExpr)] -> (CoreRule,CoreExpr)
-- All these pairs matched the expression
-- Return the pair the most specific rule
-- The (fn,args) is just for overlap reporting

findBest _        _      (rule,ans)   [] = (rule,ans)
findBest in_scope target (rule1,ans1) ((rule2,ans2):prs)
  | isMoreSpecific in_scope rule1 rule2 = findBest in_scope target (rule1,ans1) prs
  | isMoreSpecific in_scope rule2 rule1 = findBest in_scope target (rule2,ans2) prs
  | debugIsOn = let pp_rule rule
                      = ifPprDebug (ppr rule)
                                   (doubleQuotes (ftext (ruleName rule)))
                in pprTrace "Rules.findBest: rule overlap (Rule 1 wins)"
                         (vcat [ whenPprDebug $
                                 text "Expression to match:" <+> ppr fn
                                 <+> sep (map ppr args)
                               , text "Rule 1:" <+> pp_rule rule1
                               , text "Rule 2:" <+> pp_rule rule2]) $
                findBest in_scope target (rule1,ans1) prs
  | otherwise = findBest in_scope target (rule1,ans1) prs
  where
    (fn,args) = target

isMoreSpecific :: InScopeSet -> CoreRule -> CoreRule -> Bool
-- The call (rule1 `isMoreSpecific` rule2)
-- sees if rule2 can be instantiated to look like rule1
-- See Note [isMoreSpecific]
isMoreSpecific _        (BuiltinRule {}) _                = False
isMoreSpecific _        (Rule {})        (BuiltinRule {}) = True
isMoreSpecific in_scope (Rule { ru_bndrs = bndrs1, ru_args = args1 })
                        (Rule { ru_bndrs = bndrs2, ru_args = args2
                              , ru_name = rule_name2, ru_rhs = rhs2 })
  = isJust (matchN in_scope_env
                   rule_name2 bndrs2 args2 args1 rhs2)
  where
   full_in_scope = in_scope `extendInScopeSetList` bndrs1
   in_scope_env  = ISE full_in_scope noUnfoldingFun
                   -- noUnfoldingFun: don't expand in templates

noBlackList :: Activation -> Bool
noBlackList _ = False           -- Nothing is black listed

{- Note [isMoreSpecific]
~~~~~~~~~~~~~~~~~~~~~~~~
The call (rule1 `isMoreSpecific` rule2)
sees if rule2 can be instantiated to look like rule1.

Wrinkle:

* We take the view that a BuiltinRule is less specific than
  anything else, because we want user-defined rules to "win"
  In particular, class ops have a built-in rule, but we
  prefer any user-specific rules to win:
    eg (#4397)
       truncate :: (RealFrac a, Integral b) => a -> b
       {-# RULES "truncate/Double->Int" truncate = double2Int #-}
       double2Int :: Double -> Int
  We want the specific RULE to beat the built-in class-op rule

Note [Extra args in the target]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we find a matching rule, we return (Just (rule, rhs)),
/but/ the rule firing has only consumed as many of the input args
as the ruleArity says.  The unused arguments are handled by the code in
GHC.Core.Opt.Simplify.tryRules, using the arity of the returned rule.

E.g. Rule "foo":  forall a b.  f p1 p2 = rhs
     Target:      f e1 e2 e3

Then lookupRule returns Just (Rule "foo", rhs), where Rule "foo"
has ruleArity 2.  The real rewrite is
        f e1 e2 e3 ==> rhs e3

You might think it'd be cleaner for lookupRule to deal with the
leftover arguments, by applying 'rhs' to them, but the main call
in the Simplifier works better as it is.  Reason: the 'args' passed
to lookupRule are the result of a lazy substitution

Historical note:

At one stage I tried to match even if there are more args in the
/template/ than the target.  I now think this is probably a bad idea.
Should the template (map f xs) match (map g)?  I think not.  For a
start, in general eta expansion wastes work.  SLPJ July 99
-}

------------------------------------
matchRule :: RuleOpts -> InScopeEnv -> (Activation -> Bool)
          -> Id -> [CoreExpr] -> [Maybe Name]
          -> CoreRule -> Maybe CoreExpr

-- If (matchRule rule args) returns Just (name,rhs)
-- then (f args) matches the rule, and the corresponding
-- rewritten RHS is rhs
--
-- The returned expression is occurrence-analysed
--
--      Example
--
-- The rule
--      forall f g x. map f (map g x) ==> map (f . g) x
-- is stored
--      CoreRule "map/map"
--               [f,g,x]                -- tpl_vars
--               [f,map g x]            -- tpl_args
--               map (f.g) x)           -- rhs
--
-- Then the expression
--      map e1 (map e2 e3) e4
-- results in a call to
--      matchRule the_rule [e1,map e2 e3,e4]
--        = Just ("map/map", (\f,g,x -> rhs) e1 e2 e3)
--
-- NB: The 'surplus' argument e4 in the input is simply dropped.
-- See Note [Extra args in the target]

matchRule opts rule_env _is_active fn args _rough_args
          (BuiltinRule { ru_try = match_fn })
-- Built-in rules can't be switched off, it seems
  = case match_fn opts rule_env fn args of
        Nothing   -> Nothing
        Just expr -> Just expr

matchRule _ rule_env is_active _ args rough_args
          (Rule { ru_name = rule_name, ru_act = act, ru_rough = tpl_tops
                , ru_bndrs = tpl_vars, ru_args = tpl_args, ru_rhs = rhs })
  | not (is_active act)               = Nothing
  | ruleCantMatch tpl_tops rough_args = Nothing
  | otherwise = matchN rule_env rule_name tpl_vars tpl_args args rhs


---------------------------------------
matchN  :: InScopeEnv
        -> RuleName -> [Var] -> [CoreExpr]
        -> [CoreExpr] -> CoreExpr           -- ^ Target; can have more elements than the template
        -> Maybe CoreExpr
-- For a given match template and context, find bindings to wrap around
-- the entire result and what should be substituted for each template variable.
--
-- Fail if there are too few actual arguments from the target to match the template
--
-- See Note [Extra args in the target]
-- If there are too /many/ actual arguments, we simply ignore the
-- trailing ones, returning the result of applying the rule to a prefix
-- of the actual arguments.

matchN (ISE in_scope id_unf) rule_name tmpl_vars tmpl_es target_es rhs
  = do  { rule_subst <- match_exprs init_menv emptyRuleSubst tmpl_es target_es
        ; let (_, matched_es) = mapAccumL (lookup_tmpl rule_subst)
                                          (mkEmptySubst in_scope) $
                                tmpl_vars `zip` tmpl_vars1
              bind_wrapper = rs_binds rule_subst
                             -- Floated bindings; see Note [Matching lets]
       ; return (bind_wrapper $
                 mkLams tmpl_vars rhs `mkApps` matched_es) }
  where
    (init_rn_env, tmpl_vars1) = mapAccumL rnBndrL (mkRnEnv2 in_scope) tmpl_vars
                  -- See Note [Cloning the template binders]

    init_menv = RV { rv_tmpls = mkVarSet tmpl_vars1
                   , rv_lcl   = init_rn_env
                   , rv_fltR  = mkEmptySubst (rnInScopeSet init_rn_env)
                   , rv_unf   = id_unf }

    lookup_tmpl :: RuleSubst -> Subst -> (InVar,OutVar) -> (Subst, CoreExpr)
                   -- Need to return a RuleSubst solely for the benefit of mk_fake_ty
    lookup_tmpl (RS { rs_tv_subst = tv_subst, rs_id_subst = id_subst })
                tcv_subst (tmpl_var, tmpl_var1)
        | isId tmpl_var1
        = case lookupVarEnv id_subst tmpl_var1 of
            Just e | Coercion co <- e
                   -> (Type.extendCvSubst tcv_subst tmpl_var1 co, Coercion co)
                   | otherwise
                   -> (tcv_subst, e)
            Nothing | Just refl_co <- isReflCoVar_maybe tmpl_var1
                    , let co = Coercion.substCo tcv_subst refl_co
                    -> -- See Note [Unbound RULE binders]
                       (Type.extendCvSubst tcv_subst tmpl_var1 co, Coercion co)
                    | otherwise
                    -> unbound tmpl_var

        | otherwise
        = (Type.extendTvSubst tcv_subst tmpl_var1 ty', Type ty')
        where
          ty' = case lookupVarEnv tv_subst tmpl_var1 of
                  Just ty -> ty
                  Nothing -> fake_ty   -- See Note [Unbound RULE binders]
          fake_ty = anyTypeOfKind (Type.substTy tcv_subst (tyVarKind tmpl_var1))
                    -- This substitution is the sole reason we accumulate
                    -- TCvSubst in lookup_tmpl

    unbound tmpl_var
       = pprPanic "Template variable unbound in rewrite rule" $
         vcat [ text "Variable:" <+> ppr tmpl_var <+> dcolon <+> ppr (varType tmpl_var)
              , text "Rule" <+> pprRuleName rule_name
              , text "Rule bndrs:" <+> ppr tmpl_vars
              , text "LHS args:" <+> ppr tmpl_es
              , text "Actual args:" <+> ppr target_es ]

----------------------
match_exprs :: RuleMatchEnv -> RuleSubst
            -> [CoreExpr]       -- Templates
            -> [CoreExpr]       -- Targets
            -> Maybe RuleSubst
-- If the targets are longer than templates, succeed, simply ignoring
-- the leftover targets. This matters in the call in matchN.
--
-- Precondition: corresponding elements of es1 and es2 have the same
--               type, assuming earlier elements match.
-- Example:  f :: forall v. v -> blah
--   match_exprs [Type a, y::a] [Type Int, 3]
-- Then, after matching Type a against Type Int,
-- the type of (y::a) matches that of (3::Int)
match_exprs _ subst [] _
  = Just subst
match_exprs renv subst (e1:es1) (e2:es2)
  = do { subst' <- match renv subst e1 e2 MRefl
       ; match_exprs renv subst' es1 es2 }
match_exprs _ _ _ _ = Nothing


{- Note [Unbound RULE binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It can be the case that the binder in a rule is not actually
bound on the LHS:

* Type variables.  Type synonyms with phantom args can give rise to
  unbound template type variables.  Consider this (#10689,
  simplCore/should_compile/T10689):

    type Foo a b = b

    f :: Eq a => a -> Bool
    f x = x==x

    {-# RULES "foo" forall (x :: Foo a Char). f x = True #-}
    finkle = f 'c'

  The rule looks like
    forall (a::*) (d::Eq Char) (x :: Foo a Char).
         f (Foo a Char) d x = True

  Matching the rule won't bind 'a', and legitimately so.  We fudge by
  pretending that 'a' is bound to (Any :: *).

* Coercion variables.  On the LHS of a RULE for a local binder
  we might have
    RULE forall (c :: a~b). f (x |> c) = e
  Now, if that binding is inlined, so that a=b=Int, we'd get
    RULE forall (c :: Int~Int). f (x |> c) = e
  and now when we simplify the LHS (Simplify.simplRule) we
  optCoercion (look at the CoVarCo case) will turn that 'c' into Refl:
    RULE forall (c :: Int~Int). f (x |> <Int>) = e
  and then perhaps drop it altogether.  Now 'c' is unbound.

  It's tricky to be sure this never happens, so instead I
  say it's OK to have an unbound coercion binder in a RULE
  provided its type is (c :: t~t).  Then, when the RULE
  fires we can substitute <t> for c.

  This actually happened (in a RULE for a local function)
  in #13410, and also in test T10602.

Note [Cloning the template binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the following match (example 1):
        Template:  forall x.  f x
        Target:               f (x+1)
This should succeed, because the template variable 'x' has nothing to
do with the 'x' in the target.

Likewise this one (example 2):
        Template:  forall x. f (\x.x)
        Target:              f (\y.y)

We achieve this simply by using rnBndrL to clone the template
binders if they are already in scope.

------ Historical note -------
At one point I tried simply adding the template binders to the
in-scope set /without/ cloning them, but that failed in a horribly
obscure way in #14777.  Problem was that during matching we look
up target-term variables in the in-scope set (see Note [Lookup
in-scope]).  If a target-term variable happens to name-clash with a
template variable, that lookup will find the template variable, which
is /utterly/ bogus.  In #14777, this transformed a term variable
into a type variable, and then crashed when we wanted its idInfo.
------ End of historical note -------


************************************************************************
*                                                                      *
                   The main matcher
*                                                                      *
********************************************************************* -}

data RuleMatchEnv
  = RV { rv_lcl   :: RnEnv2          -- Renamings for *local bindings*
                                     --   (lambda/case)
       , rv_tmpls :: VarSet          -- Template variables
                                     --   (after applying envL of rv_lcl)
       , rv_fltR  :: Subst           -- Renamings for floated let-bindings
                                     --   (domain disjoint from envR of rv_lcl)
                                     -- See Note [Matching lets]
                                     -- N.B. The InScopeSet of rv_fltR is always ignored;
                                     -- see (4) in Note [Matching lets].
       , rv_unf :: IdUnfoldingFun
       }

{- Note [rv_lcl in RuleMatchEnv]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider matching
  Template: \x->f
  Target:   \f->f

where 'f' is free in the template. When we meet the lambdas we must
remember to rename f :-> f' in the target, as well as x :-> f
in the template.  The rv_lcl::RnEnv2 does that.

Similarly, consider matching
     Template: {a}  \b->b
     Target:        \a->3
We must rename the \a.  Otherwise when we meet the lambdas we might
substitute [b :-> a] in the template, and then erroneously succeed in
matching what looks like the template variable 'a' against 3.

So we must add the template vars to the in-scope set before starting;
see `init_menv` in `matchN`.
-}

rvInScopeEnv :: RuleMatchEnv -> InScopeEnv
rvInScopeEnv renv = ISE (rnInScopeSet (rv_lcl renv)) (rv_unf renv)

-- * The domain of the TvSubstEnv and IdSubstEnv are the template
--   variables passed into the match.
--
-- * The BindWrapper in a RuleSubst are the bindings floated out
--   from nested matches; see the Let case of match, below
--
data RuleSubst = RS { -- Substitution; applied only to the template, not the target
                      -- Domain is the template variables
                      -- Range never includes template variables
                      rs_tv_subst :: TvSubstEnv
                    , rs_id_subst :: IdSubstEnv

                      -- Floated bindings
                    , rs_binds    :: BindWrapper  -- Floated bindings
                    , rs_bndrs    :: [Var]        -- Variables bound by floated lets
                    }

type BindWrapper = CoreExpr -> CoreExpr
  -- See Notes [Matching lets] and [Matching cases]
  -- we represent the floated bindings as a core-to-core function

emptyRuleSubst :: RuleSubst
emptyRuleSubst = RS { rs_tv_subst = emptyVarEnv, rs_id_subst = emptyVarEnv
                    , rs_binds = \e -> e, rs_bndrs = [] }


{- Note [Casts in the target]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
As far as possible we don't want casts in the target to get in the way of
matching.  E.g.
* (let bind in e)  |> co
* (case e of alts) |> co
* (\ a b. f a b)   |> co

In the first two cases we want to float the cast inwards so we can match on
the let/case.  This is not important in practice because the Simplifier does
this anyway.

But the third case /is/ important: we don't want the cast to get in the way
of eta-reduction.  See Note [Cancel reflexive casts] for a real life example.

The most convenient thing is to make 'match' take an MCoercion argument, thus:

* The main matching function
      match env subst template target mco
  matches   template ~ (target |> mco)

* Invariant: typeof( subst(template) ) = typeof( target |> mco )

Note that for applications
     (e1 e2) ~ (d1 d2) |> co
where 'co' is non-reflexive, we simply fail.  You might wonder about
     (e1 e2) ~ ((d1 |> co1) d2) |> co2
but the Simplifer pushes the casts in an application to to the
right, if it can, so this doesn't really arise.

Note [Coercion arguments]
~~~~~~~~~~~~~~~~~~~~~~~~~
What if we have (f co) in the template, where the 'co' is a coercion
argument to f?  Right now we have nothing in place to ensure that a
coercion /argument/ in the template is a variable.  We really should,
perhaps by abstracting over that variable.

C.f. the treatment of dictionaries in GHC.HsToCore.Binds.decompseRuleLhs.

For now, though, we simply behave badly, by failing in match_co.
We really should never rely on matching the structure of a coercion
(which is just a proof).

Note [Casts in the template]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the definition
  f x = e,
and SpecConstr on call pattern
  f ((e1,e2) |> co)

We'll make a RULE
   RULE forall a,b,g.  f ((a,b)|> g) = $sf a b g
   $sf a b g = e[ ((a,b)|> g) / x ]

So here is the invariant:

  In the template, in a cast (e |> co),
  the cast `co` is always a /variable/.

Matching should bind that variable to an actual coercion, so that we
can use it in $sf.  So a Cast on the LHS (the template) calls
match_co, which succeeds when the template cast is a variable -- which
it always is.  That is why match_co has so few cases.

See also
* Note [Coercion arguments]
* Note [Matching coercion variables] in GHC.Core.Unify.
* Note [Cast swizzling on rule LHSs] in GHC.Core.Opt.Simplify.Utils:
  sm_cast_swizzle is switched off in the template of a RULE
-}

----------------------
match :: RuleMatchEnv
      -> RuleSubst              -- Substitution applies to template only
      -> CoreExpr               -- Template
      -> CoreExpr               -- Target
      -> MCoercion
      -> Maybe RuleSubst

-- Postcondition (TypeInv): if matching succeeds, then
--                          typeof( subst(template) ) = typeof( target |> mco )
--     But this is /not/ a pre-condition! The types of template and target
--     may differ, see the (App e1 e2) case
--
-- Invariant (CoInv):   if mco :: ty ~ ty, then it is MRefl, not MCo co
--                      See Note [Cancel reflexive casts]
--
-- See the notes with Unify.match, which matches types
-- Everything is very similar for terms


------------------------ Ticks ---------------------
-- We look through certain ticks. See Note [Tick annotations in RULE matching]
match renv subst e1 (Tick t e2) mco
  | tickishFloatable t
  = match renv subst' e1 e2 mco
  | otherwise
  = Nothing
  where
    subst' = subst { rs_binds = rs_binds subst . mkTick t }

match renv subst e@(Tick t e1) e2 mco
  | tickishFloatable t  -- Ignore floatable ticks in rule template.
  =  match renv subst e1 e2 mco
  | otherwise
  = pprPanic "Tick in rule" (ppr e)

------------------------ Types ---------------------
match renv subst (Type ty1) (Type ty2) _mco
  = match_ty renv subst ty1 ty2

------------------------ Coercions ---------------------
-- See Note [Coercion arguments] for why this isn't really right
match renv subst (Coercion co1) (Coercion co2) MRefl
  = match_co renv subst co1 co2
  -- The MCo case corresponds to matching  co ~ (co2 |> co3)
  -- and I have no idea what to do there -- or even if it can occur
  -- Failing seems the simplest thing to do; it's certainly safe.

------------------------ Casts ---------------------
-- See Note [Casts in the template]
--     Note [Casts in the target]
--     Note [Cancel reflexive casts]

match renv subst e1 (Cast e2 co2) mco
  = match renv subst e1 e2 (checkReflexiveMCo (mkTransMCoR co2 mco))
    -- checkReflexiveMCo: cancel casts if possible
    -- This is important: see Note [Cancel reflexive casts]

match renv subst (Cast e1 co1) e2 mco
  = -- See Note [Casts in the template]
    do { let co2 = case mco of
                     MRefl   -> mkRepReflCo (exprType e2)
                     MCo co2 -> co2
       ; subst1 <- match_co renv subst co1 co2
         -- If match_co succeeds, then (exprType e1) = (exprType e2)
         -- Hence the MRefl in the next line
       ; match renv subst1 e1 e2 MRefl }

------------------------ Literals ---------------------
match _ subst (Lit lit1) (Lit lit2) mco
  | lit1 == lit2
  = assertPpr (isReflMCo mco) (ppr mco) $
    Just subst

------------------------ Variables ---------------------
-- The Var case follows closely what happens in GHC.Core.Unify.match
match renv subst (Var v1) e2 mco
  = match_var renv subst v1 (mkCastMCo e2 mco)

match renv subst e1 (Var v2) mco  -- Note [Expanding variables]
  | not (inRnEnvR rn_env v2)      -- Note [Do not expand locally-bound variables]
  , Just e2' <- expandUnfolding_maybe (rv_unf renv v2')
  = match (renv { rv_lcl = nukeRnEnvR rn_env }) subst e1 e2' mco
  where
    v2'    = lookupRnInScope rn_env v2
    rn_env = rv_lcl renv
        -- Notice that we look up v2 in the in-scope set
        -- See Note [Lookup in-scope]
        -- No need to apply any renaming first (hence no rnOccR)
        -- because of the not-inRnEnvR

------------------------ Applications ---------------------
-- See Note [Matching higher order patterns]
match renv@(RV { rv_tmpls = tmpls, rv_lcl = rn_env })
      subst  e1@App{} e2
      MRefl               -- Like the App case we insist on Refl here
                          -- See Note [Casts in the target]
  | (Var f, args) <- collectArgs e1
  , let f' = rnOccL rn_env f   -- See similar rnOccL in match_var
  , f' `elemVarSet` tmpls                     -- (HOP1)
  , Just vs2 <- traverse arg_as_lcl_var args  -- (HOP2), (HOP3)
  , hasNoDups vs2                             -- (HOP4)
  , not can_decompose_app_instead
  = match_tmpl_var renv subst f' (mkCoreLams vs2 e2)
    -- match_tmpl_var checks (HOP5) and (HOP6)
  where
    arg_as_lcl_var :: CoreExpr -> Maybe Var
    arg_as_lcl_var (Var v)
      | Just v' <- rnOccL_maybe rn_env v
      , not (v' `elemVarSet` tmpls)  -- rnEnvL contains the template variables
      = Just (to_target v')          -- to_target: see (W1)
                                     --   in Note [Matching higher order patterns]
    arg_as_lcl_var _ = Nothing

    can_decompose_app_instead -- Template (e1 v), target (e2 v), and v # fvs(e2)
      = case (e1, e2) of      -- See (W2) in Note [Matching higher order patterns]
           (App _ (Var v1), App f2 (Var v2))
             -> rnOccL rn_env v1 == rnOccR rn_env v2
                && not (v2 `elemVarSet` exprFreeVars f2)
           _ -> False

    ----------------
    -- to_target: see (W1) in Note [Matching higher order patterns]
    to_target :: Var -> Var   -- From canonical variable back to target-expr variable
    to_target v = lookupVarEnv rev_envR v `orElse` v

    rev_envR :: VarEnv Var   -- Inverts rnEnvR: from canonical variable
                             -- back to target-expr variable
    rev_envR = nonDetStrictFoldVarEnv_Directly add_one emptyVarEnv (rnEnvR rn_env)
    add_one uniq var env = extendVarEnv env var (var `setVarUnique` uniq)

{- Note [Matching higher order patterns]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Higher order patterns provide a limited form of higher order matching.
See GHC Proposal #555
  https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0555-template-patterns.rst
and #22465 for more details and related work.

Consider the potential match:

   Template: forall f. foo (\x -> f x)
   Target:             foo (\x -> x*2 + x)

The expression `x*2 + x` in the target is not literally an application of a
function to the variable `x`, so the simple application rule does not apply.
However, we can match them modulo beta equivalence with the substitution:

   [f :-> \x -> x*2 + x]

The general problem of higher order matching is tricky to implement, but
the subproblem which we call /higher order pattern matching/ is sufficient
for the given example and much easier to implement.

Design:

We start with terminology.

* /Template variables/. The forall'd variables are called the template
  variables. In the example match above, `f` is a template variable.

* /Local binders/. The local binders of a rule are the variables bound
  inside the template. In the example match above, `x` is a local binder.
  Note that local binders can be term variables and type variables.

A /higher order pattern/ (HOP) is a sub-expression of the template,
of form (f x y z) where:

* (HOP1) f is a template variable
* (HOP2) x, y, z are local binders (like y in rule "wombat" above; see definitions).
* (HOP3) The arguments x, y, z are term variables
* (HOP4) The arguments x, y, z are distinct (no duplicates)

Matching of higher order patterns (HOP-matching). A higher order pattern (f x y z)
(in the template) matches any target expression e provided:

* (HOP5) The target has the same type as the template
* (HOP6) No local binder is free in e, other than x, y, z.

If these two condition hold, the higher order pattern (f x y z) matches
the target expression e, yielding the substitution [f :-> \x y z. e].
Notice that this substitution is type preserving, and the RHS
of the substitution has no free local binders.

HOP matching is small enough to be done in-line in the `match` function.
Two wrinkles:

(W1) Consider the potential match:
        Template:    forall f. foo (\x -> f x)
        Target:                foo (\y -> (y, y))
     During matching we make `x` the canonical variable for the lambdas
     and then we see:
        Template:    f x       rnEnvL = []
        Target:      (y, y)    rnEnvR = [y :-> x]
     We could bind [f :-> \x. (x,x)], by applying rnEnvR substitution to the target
     expression.  But that is tiresome (a) because it involves a traversal, and
     (b) because rnEnvR is a VarEnv Var, and we don't have a substitution function
     for that.

     So instead, we invert rnEnvR, and apply it to the binders, to get
     [f :-> \y. (y,y)].  This is done by `to_target` in the HOP-matching case.
     It takes a little bit of thinking to be sure this will work right in the case
     of shadowing.  E.g.  Template (\x y. f x y)   Target  (\p p. p*p)
     Here rnEnvR will be just [p :-> y], so after inversion we'll get
          [f :-> \x p. p*p]
     but that is fine.

(W2) This wrinkle concerns the overlp between the new HOP rule and the existing
     decompose-application rule.  See 3.1 of GHC Proposal #555 for a discussion.

     Consider potential match:
        Template: forall f.   foo (\x y. Just (f y x))
        Target:               foo (\p q. Just (h (1+q) p)))
     During matching we will encounter:
        Template:    f x y
        Target:      h (1+q) p    rnEnvR = [p:->x, q:->y]
     The rnEnvR renaming `[p:->x, q:->y]` is done by the matcher (today) on the fly,
     to make the bound variables of the template and target "line up".
     But now we can:
     * Either use the new HOP rule to succeed with
          [f :-> \x y. h (1+x) y]
     * Or use the existing decompose-application rule to match
          (f x) against (h (1+q)) and `y` against `p`.
       This will succeed with
          [f :-> \y. h (1+y)]

     Note that the result of the HOP rule will always be eta-equivalent to
     the result of the decompose-application rule.  But the proposal specifies
     that we should use the decompose-application rule because it involves
     less eta-expansion.

     But take care:
        Template: forall f.   foo (\x y. Just (f y x))
        Target:               foo (\p q. Just (h (p+q) p)))
     Then during matching we will encounter:
        Template:    f x y
        Target:      h (p+q) p      rnEnvR = [p:->x, q:->y]
     Now, we cannot use the decompose-application rule, because p is free in
     (h (p+q)). So, we can only use the new HOP rule.

(W3) You might wonder if a HOP can have /type/ arguments, thus (in Core)
        RULE forall h.
             f (\(MkT @b (d::Num b) (x::b)) -> h @b d x) = ...
     where the HOP is (h @b d x). In principle this might be possible, but
     it seems fragile; e.g. we would still need to insist that the (invisible)
     @b was a type variable.  And since `h` gets a polymoprhic type, that
     type would have to be declared by the programmer.

     Maybe one day.  But for now, we insist (in `arg_as_lcl_var`)that a HOP
     has only term-variable arguments.
-}

-- Note the match on MRefl!  We fail if there is a cast in the target
--     (e1 e2) ~ (d1 d2) |> co
-- See Note [Cancel reflexive casts]: in the Cast equations for 'match'
-- we aggressively ensure that if MCo is reflective, it really is MRefl.
match renv subst (App f1 a1) (App f2 a2) MRefl
  = do  { subst' <- match renv subst f1 f2 MRefl
        ; match renv subst' a1 a2 MRefl }

------------------------ Float lets ---------------------
match renv subst e1 (Let bind e2) mco
  | -- pprTrace "match:Let" (vcat [ppr bind, ppr $ okToFloat (rv_lcl renv) (bindFreeVars bind)]) $
    not (isJoinBind bind) -- can't float join point out of argument position
  , okToFloat (rv_lcl renv) (bindFreeVars bind) -- See Note [Matching lets]
  = match (renv { rv_fltR = flt_subst'
                , rv_lcl  = rv_lcl renv `extendRnInScopeSetList` new_bndrs })
                -- We are floating the let-binding out, as if it had enclosed
                -- the entire target from Day 1.  So we must add its binders to
                -- the in-scope set (#20200)
          (subst { rs_binds = rs_binds subst . Let bind'
                 , rs_bndrs = new_bndrs ++ rs_bndrs subst })
          e1 e2 mco
  | otherwise
  = Nothing
  where
    in_scope  = rnInScopeSet (rv_lcl renv) `extendInScopeSetList` rs_bndrs subst
                -- in_scope: see (4) in Note [Matching lets]
    flt_subst = rv_fltR renv `setInScope` in_scope
    (flt_subst', bind') = substBind flt_subst bind
    new_bndrs           = bindersOf bind'

------------------------  Lambdas ---------------------
match renv subst (Lam x1 e1) e2 mco
  | Just (x2, e2', ts) <- exprIsLambda_maybe (rvInScopeEnv renv) (mkCastMCo e2 mco)
    -- See Note [Lambdas in the template]
  = let renv'  = rnMatchBndr2 renv x1 x2
        subst' = subst { rs_binds = rs_binds subst . flip (foldr mkTick) ts }
    in  match renv' subst' e1 e2' MRefl

match renv subst e1 e2@(Lam {}) mco
  | Just (renv', e2') <- eta_reduce renv e2  -- See Note [Eta reduction in the target]
  = match renv' subst e1 e2' mco

{- Note [Lambdas in the template]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we match
   Template:   (\x. blah_template)
   Target:     (\y. blah_target)
then we want to match inside the lambdas, using rv_lcl to match up
x and y.

But what about this?
   Template   (\x. (blah1 |> cv))
   Target     (\y. blah2) |> co

This happens quite readily, because the Simplifier generally moves
casts outside lambdas: see Note [Casts and lambdas] in
GHC.Core.Opt.Simplify.Utils. So, tiresomely, we want to push `co`
back inside, which is what `exprIsLambda_maybe` does.  But we've
stripped off that cast, so now we need to put it back, hence mkCastMCo.

Unlike the target, where we attempt eta-reduction, we do not attempt
to eta-reduce the template, and may therefore fail on
  Template:   \x. f True x
  Target      f True

It's not especially easy to deal with eta reducing the template,
and never happens, because no one write eta-expanded left-hand-sides.
-}

------------------------ Case expression ---------------------
{- Disabled: see Note [Matching cases] below
match renv (tv_subst, id_subst, binds) e1
      (Case scrut case_bndr ty [(con, alt_bndrs, rhs)])
  | exprOkForSpeculation scrut  -- See Note [Matching cases]
  , okToFloat rn_env bndrs (exprFreeVars scrut)
  = match (renv { me_env = rn_env' })
          (tv_subst, id_subst, binds . case_wrap)
          e1 rhs
  where
    rn_env   = me_env renv
    rn_env'  = extendRnInScopeList rn_env bndrs
    bndrs    = case_bndr : alt_bndrs
    case_wrap rhs' = Case scrut case_bndr ty [(con, alt_bndrs, rhs')]
-}

match renv subst (Case e1 x1 ty1 alts1) (Case e2 x2 ty2 alts2) mco
  = do  { subst1 <- match_ty renv subst ty1 ty2
        ; subst2 <- match renv subst1 e1 e2 MRefl
        ; let renv' = rnMatchBndr2 renv x1 x2
        ; match_alts renv' subst2 alts1 alts2 mco   -- Alts are both sorted
        }

-- Everything else fails
match _ _ _e1 _e2 _mco = -- pprTrace "Failing at" ((text "e1:" <+> ppr _e1) $$ (text "e2:" <+> ppr _e2)) $
                         Nothing

-------------
eta_reduce :: RuleMatchEnv -> CoreExpr -> Maybe (RuleMatchEnv, CoreExpr)
-- See Note [Eta reduction in the target]
eta_reduce renv e@(Lam {})
  = go renv id [] e
  where
    go :: RuleMatchEnv -> BindWrapper -> [Var] -> CoreExpr
       -> Maybe (RuleMatchEnv, CoreExpr)
    go renv bw vs (Let b e) = go renv (bw . Let b) vs e

    go renv bw vs (Lam v e) = go renv' bw (v':vs) e
      where
         (rn_env', v') = rnBndrR (rv_lcl renv) v
         renv' = renv { rv_lcl = rn_env' }

    go renv bw (v:vs) (App f arg)
      | Var a <- arg, v == rnOccR (rv_lcl renv) a
      = go renv bw vs f

      | Type ty <- arg, Just tv <- getTyVar_maybe ty
      , v == rnOccR (rv_lcl renv) tv
      = go renv bw vs f

    go renv bw []    e = Just (renv, bw e)
    go _    _  (_:_) _ = Nothing

eta_reduce _ _ = Nothing

{- Note [Eta reduction in the target]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we are faced with this (#19790)
   Template {x}  f x
   Target        (\a b c. let blah in f x a b c)

You might wonder why we have an eta-expanded target (see first subtle
point below), but regardless of how it came about, we'd like
eta-expansion not to impede matching.

So eta_reduce does on-the-fly eta-reduction of the target expression.
Given (\a b c. let blah in e a b c), it returns (let blah in e).

Subtle points:
* Consider a target:  \x. f <expensive> x
  In the main eta-reducer we do not eta-reduce this, because doing so
  might reduce the arity of the expression (from 1 to zero, because of
  <expensive>).  But for rule-matching we /do/ want to match template
  (f a) against target (\x. f <expensive> x), with a := <expensive>

  This is a compelling reason for not relying on the Simplifier's
  eta-reducer.

* The Lam case of eta_reduce renames as it goes. Consider
  (\x. \x. f x x).  We should not eta-reduce this.  As we go we rename
  the first x to x1, and the second to x2; then both argument x's are x2.

* eta_reduce does /not/ need to check that the bindings 'blah'
  and expression 'e' don't mention a b c; but it /does/ extend the
  rv_lcl RnEnv2 (see rn_bndr in eta_reduce).
  * If 'blah' mentions the binders, the let-float rule won't
    fire; and
  * if 'e' mentions the binders we we'll also fail to match
    e.g. because of the exprFreeVars test in match_tmpl_var.

  Example: Template: {x}  f a         -- Some top-level 'a'
           Target:   (\a b. f a a b)  -- The \a shadows top level 'a'
  Then eta_reduce will /succeed/, with
      (rnEnvR = [a :-> a'], f a)
  The returned RnEnv will map [a :-> a'], where a' is fresh. (There is
  no need to rename 'b' because (in this example) it is not in scope.
  So it's as if we'd returned (f a') from eta_reduce; the renaming applied
  to the target is simply deferred.

Note [Cancel reflexive casts]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Here is an example (from #19790) which we want to catch
   (f x) ~ (\a b. (f x |> co) a b) |> sym co
where
   f :: Int -> Stream
   co :: Stream ~ T1 -> T2 -> T3

when we eta-reduce (\a b. blah a b) to 'blah', we'll get
  (f x) ~ (f x) |> co |> sym co

and we really want to spot that the co/sym-co cancels out.
Hence
  * We keep an invariant that the MCoercion is always MRefl
    if the MCoercion is reflexive
  * We maintain this invariant via the call to checkReflexiveMCo
    in the Cast case of 'match'.
-}

-------------
match_co :: RuleMatchEnv
         -> RuleSubst
         -> Coercion
         -> Coercion
         -> Maybe RuleSubst
-- We only match if the template is a coercion variable or Refl:
--   see Note [Casts in the template]
-- Like 'match' it is /not/ guaranteed that
--     coercionKind template  =  coercionKind target
-- But if match_co succeeds, it /is/ guaranteed that
--     coercionKind (subst template) = coercionKind target

match_co renv subst co1 co2
  | Just cv <- getCoVar_maybe co1
  = match_var renv subst cv (Coercion co2)

  | Just (ty1, r1) <- isReflCo_maybe co1
  = do { (ty2, r2) <- isReflCo_maybe co2
       ; guard (r1 == r2)
       ; match_ty renv subst ty1 ty2 }

  | debugIsOn
  = pprTrace "match_co: needs more cases" (ppr co1 $$ ppr co2) Nothing
    -- Currently just deals with CoVarCo and Refl

  | otherwise
  = Nothing

-------------
rnMatchBndr2 :: RuleMatchEnv -> Var -> Var -> RuleMatchEnv
rnMatchBndr2 renv x1 x2
  = renv { rv_lcl  = rnBndr2 (rv_lcl renv) x1 x2
         , rv_fltR = delBndr (rv_fltR renv) x2 }


------------------------------------------
match_alts :: RuleMatchEnv
           -> RuleSubst
           -> [CoreAlt]                 -- Template
           -> [CoreAlt] -> MCoercion    -- Target
           -> Maybe RuleSubst
match_alts _ subst [] [] _
  = return subst
match_alts renv subst (Alt c1 vs1 r1:alts1) (Alt c2 vs2 r2:alts2) mco
  | c1 == c2
  = do  { subst1 <- match renv' subst r1 r2 mco
        ; match_alts renv subst1 alts1 alts2 mco }
  where
    renv' = foldl' mb renv (vs1 `zip` vs2)
    mb renv (v1,v2) = rnMatchBndr2 renv v1 v2

match_alts _ _ _ _ _
  = Nothing

------------------------------------------
okToFloat :: RnEnv2 -> VarSet -> Bool
okToFloat rn_env bind_fvs
  = allVarSet not_captured bind_fvs
  where
    not_captured fv = not (inRnEnvR rn_env fv)

------------------------------------------
match_var :: RuleMatchEnv
          -> RuleSubst
          -> Var        -- Template
          -> CoreExpr   -- Target
          -> Maybe RuleSubst
match_var renv@(RV { rv_tmpls = tmpls, rv_lcl = rn_env, rv_fltR = flt_env })
          subst v1 e2
  | v1' `elemVarSet` tmpls
  = match_tmpl_var renv subst v1' e2

  | otherwise   -- v1' is not a template variable; check for an exact match with e2
  = case e2 of  -- Remember, envR of rn_env is disjoint from rv_fltR
       Var v2 | Just v2' <- rnOccR_maybe rn_env v2
              -> -- v2 was bound by a nested lambda or case
                 if v1' == v2' then Just subst
                               else Nothing

              -- v2 is not bound nestedly; it is free
              -- in the whole expression being matched
              -- So it will be in the InScopeSet for flt_env (#20200)
              | Var v2' <- lookupIdSubst flt_env v2
              , v1' == v2'
              -> Just subst
              | otherwise
              -> Nothing

       _ -> Nothing

  where
    v1' = rnOccL rn_env v1
        -- If the template is
        --      forall x. f x (\x -> x) = ...
        -- Then the x inside the lambda isn't the
        -- template x, so we must rename first!

------------------------------------------
match_tmpl_var :: RuleMatchEnv
               -> RuleSubst
               -> Var                -- Template
               -> CoreExpr           -- Target
               -> Maybe RuleSubst

match_tmpl_var renv@(RV { rv_lcl = rn_env, rv_fltR = flt_env })
               subst@(RS { rs_id_subst = id_subst, rs_bndrs = let_bndrs })
               v1' e2
  -- anyInRnEnvR is lazy in the 2nd arg which allows us to avoid computing fvs
  -- if the right side of the env is empty.
  | anyInRnEnvR rn_env (exprFreeVars e2)
  = Nothing     -- Skolem-escape failure
                -- e.g. match forall a. (\x -> a) against (\y -> y)

  | Just e1' <- lookupVarEnv id_subst v1'
  = if eqCoreExpr e1' e2'
    then Just subst
    else Nothing

  | otherwise   -- See Note [Matching variable types]
  = do { subst' <- match_ty renv subst (idType v1') (exprType e2)
       ; return (subst' { rs_id_subst = id_subst' }) }
  where
    -- e2' is the result of applying flt_env to e2
    e2' | null let_bndrs = e2
        | otherwise = substExpr flt_env e2

    id_subst' = extendVarEnv (rs_id_subst subst) v1' e2'
         -- No further renaming to do on e2',
         -- because no free var of e2' is in the rnEnvR of the envt

------------------------------------------

match_ty :: RuleMatchEnv
         -> RuleSubst
         -> Type                -- Template
         -> Type                -- Target
         -> Maybe RuleSubst
-- Matching Core types: use the matcher in GHC.Tc.Utils.TcType.
-- Notice that we treat newtypes as opaque.  For example, suppose
-- we have a specialised version of a function at a newtype, say
--      newtype T = MkT Int
-- We only want to replace (f T) with f', not (f Int).

match_ty (RV { rv_tmpls = tmpls, rv_lcl = rn_env })
         subst@(RS { rs_tv_subst = tv_subst })
         ty1 ty2
  = do  { tv_subst' <- Unify.ruleMatchTyKiX tmpls rn_env tv_subst ty1 ty2
               -- NB: ruleMatchTyKiX applis tv_subst to ty1 only
               --     and of course only binds 'tmpls'
        ; return (subst { rs_tv_subst = tv_subst' }) }

{- Note [Matching variable types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When matching x ~ e, where 'x' is a template variable, we must check that
x's type matches e's type, to establish (TypeInv).  For example
  forall (c::Char->Int) (x::Char).
     f (c x) = "RULE FIRED"
We must not match on, say (f (pred (3::Int))).

It's actually quite difficult to come up with an example that shows
you need type matching, esp since matching is left-to-right, so type
args get matched first.  But it's possible (e.g. simplrun008) and this
is the Right Thing to do.

An alternative would be to make (TypeInf) into a /pre-condition/.  It
is threatened only by the App rule.  So when matching an application
(e1 e2) ~ (d1 d2) would be to collect args of the application chain,
match the types of the head, then match arg-by-arg.

However that alternative seems a bit more complicated.  And by
matching types at variables we do one match_ty for each template
variable, rather than one for each application chain.  Usually there are
fewer template variables, although for simple rules it could be the other
way around.

Note [Expanding variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Here is another Very Important rule: if the term being matched is a
variable, we expand it so long as its unfolding is "expandable". (Its
occurrence information is not necessarily up to date, so we don't use
it.)  By "expandable" we mean a WHNF or a "constructor-like" application.
This is the key reason for "constructor-like" Ids.  If we have
     {-# NOINLINE [1] CONLIKE g #-}
     {-# RULE f (g x) = h x #-}
then in the term
   let v = g 3 in ....(f v)....
we want to make the rule fire, to replace (f v) with (h 3).

Note [Do not expand locally-bound variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Do *not* expand locally-bound variables, else there's a worry that the
unfolding might mention variables that are themselves renamed.
Example
          case x of y { (p,q) -> ...y... }
Don't expand 'y' to (p,q) because p,q might themselves have been
renamed.  Essentially we only expand unfoldings that are "outside"
the entire match.

Hence, (a) the guard (not (isLocallyBoundR v2))
       (b) when we expand we nuke the renaming envt (nukeRnEnvR).

Note [Tick annotations in RULE matching]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We used to unconditionally look through ticks in both template and
expression being matched. This is actually illegal for counting or
cost-centre-scoped ticks, because we have no place to put them without
changing entry counts and/or costs. So now we just fail the match in
these cases.

On the other hand, where we are allowed to insert new cost into the
tick scope, we can float them upwards to the rule application site.

Moreover, we may encounter ticks in the template of a rule. There are a few
ways in which these may be introduced (e.g. #18162, #17619). Such ticks are
ignored by the matcher. See Note [Simplifying rules] in
GHC.Core.Opt.Simplify.Utils for details.

cf Note [Tick annotations in call patterns] in GHC.Core.Opt.SpecConstr


Note [Matching lets]
~~~~~~~~~~~~~~~~~~~~
Matching a let-expression.  Consider
        RULE forall x.  f (g x) = <rhs>
and target expression
        f (let { w=R } in g E))
Then we'd like the rule to match, to generate
        let { w=R } in (\x. <rhs>) E
In effect, we want to float the let-binding outward, to enable
the match to happen.  This is the WHOLE REASON for accumulating
bindings in the RuleSubst

We can only do this if the free variables of R are not bound by the
part of the target expression outside the let binding; e.g.
        f (\v. let w = v+1 in g E)
Here we obviously cannot float the let-binding for w.  Hence the
use of okToFloat.

There are a couple of tricky points:
  (a) What if floating the binding captures a variable that is
      free in the entire expression?
        f (let v = x+1 in v) v
      --> NOT!
        let v = x+1 in f (x+1) v

  (b) What if the let shadows a local binding?
        f (\v -> (v, let v = x+1 in (v,v))
      --> NOT!
        let v = x+1 in f (\v -> (v, (v,v)))

  (c) What if two non-nested let bindings bind the same variable?
        f (let v = e1 in b1) (let v = e2 in b2)
      --> NOT!
        let v = e1 in let v = e2 in (f b2 b2)
      See testsuite test `T4814`.

Our cunning plan is this:
  (1) Along with the growing substitution for template variables
      we maintain a growing set of floated let-bindings (rs_binds)
      plus the set of variables thus bound (rs_bndrs).

  (2) The RnEnv2 in the MatchEnv binds only the local binders
      in the term (lambdas, case), not the floated let-bndrs.

  (3) When we encounter a `let` in the term to be matched, in the Let
      case of `match`, we use `okToFloat` to check that it does not mention any
      locally bound (lambda, case) variables.  If so we fail.

  (4) In the Let case of `match`, we use GHC.Core.Subst.substBind to
      freshen the binding (which, remember (3), mentions no locally
      bound variables), in a lexically-scoped way (via rv_fltR in
      MatchEnv).

      The subtle point is that we want an in-scope set for this
      substitution that includes /two/ sets:
      * The in-scope variables at this point, so that we avoid using
        those local names for the floated binding; points (a) and (b) above.
      * All "earlier" floated bindings, so that we avoid using the
        same name for two different floated bindings; point (c) above.

      Because we have to compute the in-scope set here, the in-scope set
      stored in `rv_fltR` is always ignored; we leave it only because it's
      convenient to have `rv_fltR :: Subst` (with an always-ignored `InScopeSet`)
      rather than storing three separate substitutions.

  (5) We apply that freshening substitution, in a lexically-scoped
      way to the term, although lazily; this is the rv_fltR field.

See #4814, which is an issue resulting from getting this wrong.

Note [Matching cases]
~~~~~~~~~~~~~~~~~~~~~
{- NOTE: This idea is currently disabled.  It really only works if
         the primops involved are OkForSpeculation, and, since
         they have side effects readIntOfAddr and touch are not.
         Maybe we'll get back to this later .  -}

Consider
   f (case readIntOffAddr# p# i# realWorld# of { (# s#, n# #) ->
      case touch# fp s# of { _ ->
      I# n# } } )
This happened in a tight loop generated by stream fusion that
Roman encountered.  We'd like to treat this just like the let
case, because the primops concerned are ok-for-speculation.
That is, we'd like to behave as if it had been
   case readIntOffAddr# p# i# realWorld# of { (# s#, n# #) ->
   case touch# fp s# of { _ ->
   f (I# n# } } )

Note [Lookup in-scope]
~~~~~~~~~~~~~~~~~~~~~~
Consider this example
        foo :: Int -> Maybe Int -> Int
        foo 0 (Just n) = n
        foo m (Just n) = foo (m-n) (Just n)

SpecConstr sees this fragment:

        case w_smT of wild_Xf [Just A] {
          Data.Maybe.Nothing -> lvl_smf;
          Data.Maybe.Just n_acT [Just S(L)] ->
            case n_acT of wild1_ams [Just A] { GHC.Base.I# y_amr [Just L] ->
              $wfoo_smW (GHC.Prim.-# ds_Xmb y_amr) wild_Xf
            }};

and correctly generates the rule

        RULES: "SC:$wfoo1" [0] __forall {y_amr [Just L] :: GHC.Prim.Int#
                                          sc_snn :: GHC.Prim.Int#}
          $wfoo_smW sc_snn (Data.Maybe.Just @ GHC.Base.Int (GHC.Base.I# y_amr))
          = $s$wfoo_sno y_amr sc_snn ;]

BUT we must ensure that this rule matches in the original function!
Note that the call to $wfoo is
            $wfoo_smW (GHC.Prim.-# ds_Xmb y_amr) wild_Xf

During matching we expand wild_Xf to (Just n_acT).  But then we must also
expand n_acT to (I# y_amr).  And we can only do that if we look up n_acT
in the in-scope set, because in wild_Xf's unfolding it won't have an unfolding
at all.

That is why the 'lookupRnInScope' call in the (Var v2) case of 'match'
is so important.


************************************************************************
*                                                                      *
                   Rule-check the program
*                                                                      *
************************************************************************

   We want to know what sites have rules that could have fired but didn't.
   This pass runs over the tree (without changing it) and reports such.
-}

-- | Report partial matches for rules beginning with the specified
-- string for the purposes of error reporting
ruleCheckProgram :: RuleOpts                    -- ^ Rule options
                 -> CompilerPhase               -- ^ Rule activation test
                 -> String                      -- ^ Rule pattern
                 -> (Id -> [CoreRule])          -- ^ Rules for an Id
                 -> CoreProgram                 -- ^ Bindings to check in
                 -> SDoc                        -- ^ Resulting check message
ruleCheckProgram ropts phase rule_pat rules binds
  | isEmptyBag results
  = text "Rule check results: no rule application sites"
  | otherwise
  = vcat [text "Rule check results:",
          line,
          vcat [ p $$ line | p <- bagToList results ]
         ]
  where
    env = RuleCheckEnv { rc_is_active = isActive phase
                       , rc_id_unf    = idUnfolding     -- Not quite right
                                                        -- Should use activeUnfolding
                       , rc_pattern   = rule_pat
                       , rc_rules     = rules
                       , rc_ropts     = ropts
                       }
    results = unionManyBags (map (ruleCheckBind env) binds)
    line = text (replicate 20 '-')

data RuleCheckEnv = RuleCheckEnv {
    rc_is_active :: Activation -> Bool,
    rc_id_unf  :: IdUnfoldingFun,
    rc_pattern :: String,
    rc_rules :: Id -> [CoreRule],
    rc_ropts :: RuleOpts
}

ruleCheckBind :: RuleCheckEnv -> CoreBind -> Bag SDoc
   -- The Bag returned has one SDoc for each call site found
ruleCheckBind env (NonRec _ r) = ruleCheck env r
ruleCheckBind env (Rec prs)    = unionManyBags [ruleCheck env r | (_,r) <- prs]

ruleCheck :: RuleCheckEnv -> CoreExpr -> Bag SDoc
ruleCheck _   (Var _)       = emptyBag
ruleCheck _   (Lit _)       = emptyBag
ruleCheck _   (Type _)      = emptyBag
ruleCheck _   (Coercion _)  = emptyBag
ruleCheck env (App f a)     = ruleCheckApp env (App f a) []
ruleCheck env (Tick _ e)  = ruleCheck env e
ruleCheck env (Cast e _)    = ruleCheck env e
ruleCheck env (Let bd e)    = ruleCheckBind env bd `unionBags` ruleCheck env e
ruleCheck env (Lam _ e)     = ruleCheck env e
ruleCheck env (Case e _ _ as) = ruleCheck env e `unionBags`
                                unionManyBags [ruleCheck env r | Alt _ _ r <- as]

ruleCheckApp :: RuleCheckEnv -> Expr CoreBndr -> [Arg CoreBndr] -> Bag SDoc
ruleCheckApp env (App f a) as = ruleCheck env a `unionBags` ruleCheckApp env f (a:as)
ruleCheckApp env (Var f) as   = ruleCheckFun env f as
ruleCheckApp env other _      = ruleCheck env other

ruleCheckFun :: RuleCheckEnv -> Id -> [CoreExpr] -> Bag SDoc
-- Produce a report for all rules matching the predicate
-- saying why it doesn't match the specified application

ruleCheckFun env fn args
  | null name_match_rules = emptyBag
  | otherwise             = unitBag (ruleAppCheck_help env fn args name_match_rules)
  where
    name_match_rules = filter match (rc_rules env fn)
    match rule = rc_pattern env `isPrefixOf` unpackFS (ruleName rule)

ruleAppCheck_help :: RuleCheckEnv -> Id -> [CoreExpr] -> [CoreRule] -> SDoc
ruleAppCheck_help env fn args rules
  =     -- The rules match the pattern, so we want to print something
    vcat [text "Expression:" <+> ppr (mkApps (Var fn) args),
          vcat (map check_rule rules)]
  where
    n_args = length args
    i_args = args `zip` [1::Int ..]
    rough_args = map roughTopName args

    check_rule rule = rule_herald rule <> colon <+> rule_info (rc_ropts env) rule

    rule_herald (BuiltinRule { ru_name = name })
        = text "Builtin rule" <+> doubleQuotes (ftext name)
    rule_herald (Rule { ru_name = name })
        = text "Rule" <+> doubleQuotes (ftext name)

    rule_info opts rule
        | Just _ <- matchRule opts (ISE emptyInScopeSet (rc_id_unf env))
                              noBlackList fn args rough_args rule
        = text "matches (which is very peculiar!)"

    rule_info _ (BuiltinRule {}) = text "does not match"

    rule_info _ (Rule { ru_act = act,
                        ru_bndrs = rule_bndrs, ru_args = rule_args})
        | not (rc_is_active env act)  = text "active only in later phase"
        | n_args < n_rule_args        = text "too few arguments"
        | n_mismatches == n_rule_args = text "no arguments match"
        | n_mismatches == 0           = text "all arguments match (considered individually), but rule as a whole does not"
        | otherwise                   = text "arguments" <+> ppr mismatches <+> text "do not match (1-indexing)"
        where
          n_rule_args  = length rule_args
          n_mismatches = length mismatches
          mismatches   = [i | (rule_arg, (arg,i)) <- rule_args `zip` i_args,
                              not (isJust (match_fn rule_arg arg))]

          lhs_fvs = exprsFreeVars rule_args     -- Includes template tyvars
          match_fn rule_arg arg = match renv emptyRuleSubst rule_arg arg MRefl
                where
                  in_scope = mkInScopeSet (lhs_fvs `unionVarSet` exprFreeVars arg)
                  renv = RV { rv_lcl   = mkRnEnv2 in_scope
                            , rv_tmpls = mkVarSet rule_bndrs
                            , rv_fltR  = mkEmptySubst in_scope
                            , rv_unf   = rc_id_unf env }