1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
|
-- (c) The University of Glasgow 2006
{-# LANGUAGE CPP #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE ViewPatterns #-}
module GHC.Data.Graph.Directed (
Graph, graphFromEdgedVerticesOrd, graphFromEdgedVerticesUniq,
SCC(..), Node(..), flattenSCC, flattenSCCs,
stronglyConnCompG,
topologicalSortG,
verticesG, edgesG, hasVertexG,
reachableG, reachablesG, transposeG,
emptyG,
findCycle,
-- For backwards compatibility with the simpler version of Digraph
stronglyConnCompFromEdgedVerticesOrd,
stronglyConnCompFromEdgedVerticesOrdR,
stronglyConnCompFromEdgedVerticesUniq,
stronglyConnCompFromEdgedVerticesUniqR,
-- Simple way to classify edges
EdgeType(..), classifyEdges
) where
#include "HsVersions.h"
------------------------------------------------------------------------------
-- A version of the graph algorithms described in:
--
-- ``Lazy Depth-First Search and Linear IntGraph Algorithms in Haskell''
-- by David King and John Launchbury
--
-- Also included is some additional code for printing tree structures ...
--
-- If you ever find yourself in need of algorithms for classifying edges,
-- or finding connected/biconnected components, consult the history; Sigbjorn
-- Finne contributed some implementations in 1997, although we've since
-- removed them since they were not used anywhere in GHC.
------------------------------------------------------------------------------
import GHC.Prelude
import GHC.Utils.Misc ( minWith, count )
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Data.Maybe ( expectJust )
-- std interfaces
import Data.Maybe
import Data.Array
import Data.List ( sort )
import qualified Data.Map as Map
import qualified Data.Set as Set
import qualified Data.Graph as G
import Data.Graph hiding (Graph, Edge, transposeG, reachable)
import Data.Tree
import GHC.Types.Unique
import GHC.Types.Unique.FM
{-
************************************************************************
* *
* Graphs and Graph Construction
* *
************************************************************************
Note [Nodes, keys, vertices]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* A 'node' is a big blob of client-stuff
* Each 'node' has a unique (client) 'key', but the latter
is in Ord and has fast comparison
* Digraph then maps each 'key' to a Vertex (Int) which is
arranged densely in 0.n
-}
data Graph node = Graph {
gr_int_graph :: IntGraph,
gr_vertex_to_node :: Vertex -> node,
gr_node_to_vertex :: node -> Maybe Vertex
}
data Edge node = Edge node node
{-| Representation for nodes of the Graph.
* The @payload@ is user data, just carried around in this module
* The @key@ is the node identifier.
Key has an Ord instance for performance reasons.
* The @[key]@ are the dependencies of the node;
it's ok to have extra keys in the dependencies that
are not the key of any Node in the graph
-}
data Node key payload = DigraphNode {
node_payload :: payload, -- ^ User data
node_key :: key, -- ^ User defined node id
node_dependencies :: [key] -- ^ Dependencies/successors of the node
}
instance (Outputable a, Outputable b) => Outputable (Node a b) where
ppr (DigraphNode a b c) = ppr (a, b, c)
emptyGraph :: Graph a
emptyGraph = Graph (array (1, 0) []) (error "emptyGraph") (const Nothing)
-- See Note [Deterministic SCC]
graphFromEdgedVertices
:: ReduceFn key payload
-> [Node key payload] -- The graph; its ok for the
-- out-list to contain keys which aren't
-- a vertex key, they are ignored
-> Graph (Node key payload)
graphFromEdgedVertices _reduceFn [] = emptyGraph
graphFromEdgedVertices reduceFn edged_vertices =
Graph graph vertex_fn (key_vertex . key_extractor)
where key_extractor = node_key
(bounds, vertex_fn, key_vertex, numbered_nodes) =
reduceFn edged_vertices key_extractor
graph = array bounds [ (v, sort $ mapMaybe key_vertex ks)
| (v, (node_dependencies -> ks)) <- numbered_nodes]
-- We normalize outgoing edges by sorting on node order, so
-- that the result doesn't depend on the order of the edges
-- See Note [Deterministic SCC]
-- See Note [reduceNodesIntoVertices implementations]
graphFromEdgedVerticesOrd
:: Ord key
=> [Node key payload] -- The graph; its ok for the
-- out-list to contain keys which aren't
-- a vertex key, they are ignored
-> Graph (Node key payload)
graphFromEdgedVerticesOrd = graphFromEdgedVertices reduceNodesIntoVerticesOrd
-- See Note [Deterministic SCC]
-- See Note [reduceNodesIntoVertices implementations]
graphFromEdgedVerticesUniq
:: Uniquable key
=> [Node key payload] -- The graph; its ok for the
-- out-list to contain keys which aren't
-- a vertex key, they are ignored
-> Graph (Node key payload)
graphFromEdgedVerticesUniq = graphFromEdgedVertices reduceNodesIntoVerticesUniq
type ReduceFn key payload =
[Node key payload] -> (Node key payload -> key) ->
(Bounds, Vertex -> Node key payload
, key -> Maybe Vertex, [(Vertex, Node key payload)])
{-
Note [reduceNodesIntoVertices implementations]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
reduceNodesIntoVertices is parameterized by the container type.
This is to accommodate key types that don't have an Ord instance
and hence preclude the use of Data.Map. An example of such type
would be Unique, there's no way to implement Ord Unique
deterministically.
For such types, there's a version with a Uniquable constraint.
This leaves us with two versions of every function that depends on
reduceNodesIntoVertices, one with Ord constraint and the other with
Uniquable constraint.
For example: graphFromEdgedVerticesOrd and graphFromEdgedVerticesUniq.
The Uniq version should be a tiny bit more efficient since it uses
Data.IntMap internally.
-}
reduceNodesIntoVertices
:: ([(key, Vertex)] -> m)
-> (key -> m -> Maybe Vertex)
-> ReduceFn key payload
reduceNodesIntoVertices fromList lookup nodes key_extractor =
(bounds, (!) vertex_map, key_vertex, numbered_nodes)
where
max_v = length nodes - 1
bounds = (0, max_v) :: (Vertex, Vertex)
-- Keep the order intact to make the result depend on input order
-- instead of key order
numbered_nodes = zip [0..] nodes
vertex_map = array bounds numbered_nodes
key_map = fromList
[ (key_extractor node, v) | (v, node) <- numbered_nodes ]
key_vertex k = lookup k key_map
-- See Note [reduceNodesIntoVertices implementations]
reduceNodesIntoVerticesOrd :: Ord key => ReduceFn key payload
reduceNodesIntoVerticesOrd = reduceNodesIntoVertices Map.fromList Map.lookup
-- See Note [reduceNodesIntoVertices implementations]
reduceNodesIntoVerticesUniq :: Uniquable key => ReduceFn key payload
reduceNodesIntoVerticesUniq = reduceNodesIntoVertices listToUFM (flip lookupUFM)
{-
************************************************************************
* *
* SCC
* *
************************************************************************
-}
type WorkItem key payload
= (Node key payload, -- Tip of the path
[payload]) -- Rest of the path;
-- [a,b,c] means c depends on b, b depends on a
-- | Find a reasonably short cycle a->b->c->a, in a strongly
-- connected component. The input nodes are presumed to be
-- a SCC, so you can start anywhere.
findCycle :: forall payload key. Ord key
=> [Node key payload] -- The nodes. The dependencies can
-- contain extra keys, which are ignored
-> Maybe [payload] -- A cycle, starting with node
-- so each depends on the next
findCycle graph
= go Set.empty (new_work root_deps []) []
where
env :: Map.Map key (Node key payload)
env = Map.fromList [ (node_key node, node) | node <- graph ]
-- Find the node with fewest dependencies among the SCC modules
-- This is just a heuristic to find some plausible root module
root :: Node key payload
root = fst (minWith snd [ (node, count (`Map.member` env)
(node_dependencies node))
| node <- graph ])
DigraphNode root_payload root_key root_deps = root
-- 'go' implements Dijkstra's algorithm, more or less
go :: Set.Set key -- Visited
-> [WorkItem key payload] -- Work list, items length n
-> [WorkItem key payload] -- Work list, items length n+1
-> Maybe [payload] -- Returned cycle
-- Invariant: in a call (go visited ps qs),
-- visited = union (map tail (ps ++ qs))
go _ [] [] = Nothing -- No cycles
go visited [] qs = go visited qs []
go visited (((DigraphNode payload key deps), path) : ps) qs
| key == root_key = Just (root_payload : reverse path)
| key `Set.member` visited = go visited ps qs
| key `Map.notMember` env = go visited ps qs
| otherwise = go (Set.insert key visited)
ps (new_qs ++ qs)
where
new_qs = new_work deps (payload : path)
new_work :: [key] -> [payload] -> [WorkItem key payload]
new_work deps path = [ (n, path) | Just n <- map (`Map.lookup` env) deps ]
{-
************************************************************************
* *
* Strongly Connected Component wrappers for Graph
* *
************************************************************************
Note: the components are returned topologically sorted: later components
depend on earlier ones, but not vice versa i.e. later components only have
edges going from them to earlier ones.
-}
{-
Note [Deterministic SCC]
~~~~~~~~~~~~~~~~~~~~~~~~
stronglyConnCompFromEdgedVerticesUniq,
stronglyConnCompFromEdgedVerticesUniqR,
stronglyConnCompFromEdgedVerticesOrd and
stronglyConnCompFromEdgedVerticesOrdR
provide a following guarantee:
Given a deterministically ordered list of nodes it returns a deterministically
ordered list of strongly connected components, where the list of vertices
in an SCC is also deterministically ordered.
Note that the order of edges doesn't need to be deterministic for this to work.
We use the order of nodes to normalize the order of edges.
-}
stronglyConnCompG :: Graph node -> [SCC node]
stronglyConnCompG graph = decodeSccs graph forest
where forest = {-# SCC "Digraph.scc" #-} scc (gr_int_graph graph)
decodeSccs :: Graph node -> Forest Vertex -> [SCC node]
decodeSccs Graph { gr_int_graph = graph, gr_vertex_to_node = vertex_fn } forest
= map decode forest
where
decode (Node v []) | mentions_itself v = CyclicSCC [vertex_fn v]
| otherwise = AcyclicSCC (vertex_fn v)
decode other = CyclicSCC (dec other [])
where dec (Node v ts) vs = vertex_fn v : foldr dec vs ts
mentions_itself v = v `elem` (graph ! v)
-- The following two versions are provided for backwards compatibility:
-- See Note [Deterministic SCC]
-- See Note [reduceNodesIntoVertices implementations]
stronglyConnCompFromEdgedVerticesOrd
:: Ord key
=> [Node key payload]
-> [SCC payload]
stronglyConnCompFromEdgedVerticesOrd
= map (fmap node_payload) . stronglyConnCompFromEdgedVerticesOrdR
-- The following two versions are provided for backwards compatibility:
-- See Note [Deterministic SCC]
-- See Note [reduceNodesIntoVertices implementations]
stronglyConnCompFromEdgedVerticesUniq
:: Uniquable key
=> [Node key payload]
-> [SCC payload]
stronglyConnCompFromEdgedVerticesUniq
= map (fmap node_payload) . stronglyConnCompFromEdgedVerticesUniqR
-- The "R" interface is used when you expect to apply SCC to
-- (some of) the result of SCC, so you don't want to lose the dependency info
-- See Note [Deterministic SCC]
-- See Note [reduceNodesIntoVertices implementations]
stronglyConnCompFromEdgedVerticesOrdR
:: Ord key
=> [Node key payload]
-> [SCC (Node key payload)]
stronglyConnCompFromEdgedVerticesOrdR =
stronglyConnCompG . graphFromEdgedVertices reduceNodesIntoVerticesOrd
-- The "R" interface is used when you expect to apply SCC to
-- (some of) the result of SCC, so you don't want to lose the dependency info
-- See Note [Deterministic SCC]
-- See Note [reduceNodesIntoVertices implementations]
stronglyConnCompFromEdgedVerticesUniqR
:: Uniquable key
=> [Node key payload]
-> [SCC (Node key payload)]
stronglyConnCompFromEdgedVerticesUniqR =
stronglyConnCompG . graphFromEdgedVertices reduceNodesIntoVerticesUniq
{-
************************************************************************
* *
* Misc wrappers for Graph
* *
************************************************************************
-}
topologicalSortG :: Graph node -> [node]
topologicalSortG graph = map (gr_vertex_to_node graph) result
where result = {-# SCC "Digraph.topSort" #-} topSort (gr_int_graph graph)
reachableG :: Graph node -> node -> [node]
reachableG graph from = map (gr_vertex_to_node graph) result
where from_vertex = expectJust "reachableG" (gr_node_to_vertex graph from)
result = {-# SCC "Digraph.reachable" #-} reachable (gr_int_graph graph) [from_vertex]
-- | Given a list of roots return all reachable nodes.
reachablesG :: Graph node -> [node] -> [node]
reachablesG graph froms = map (gr_vertex_to_node graph) result
where result = {-# SCC "Digraph.reachable" #-}
reachable (gr_int_graph graph) vs
vs = [ v | Just v <- map (gr_node_to_vertex graph) froms ]
hasVertexG :: Graph node -> node -> Bool
hasVertexG graph node = isJust $ gr_node_to_vertex graph node
verticesG :: Graph node -> [node]
verticesG graph = map (gr_vertex_to_node graph) $ vertices (gr_int_graph graph)
edgesG :: Graph node -> [Edge node]
edgesG graph = map (\(v1, v2) -> Edge (v2n v1) (v2n v2)) $ edges (gr_int_graph graph)
where v2n = gr_vertex_to_node graph
transposeG :: Graph node -> Graph node
transposeG graph = Graph (G.transposeG (gr_int_graph graph))
(gr_vertex_to_node graph)
(gr_node_to_vertex graph)
emptyG :: Graph node -> Bool
emptyG g = graphEmpty (gr_int_graph g)
{-
************************************************************************
* *
* Showing Graphs
* *
************************************************************************
-}
instance Outputable node => Outputable (Graph node) where
ppr graph = vcat [
hang (text "Vertices:") 2 (vcat (map ppr $ verticesG graph)),
hang (text "Edges:") 2 (vcat (map ppr $ edgesG graph))
]
instance Outputable node => Outputable (Edge node) where
ppr (Edge from to) = ppr from <+> text "->" <+> ppr to
graphEmpty :: G.Graph -> Bool
graphEmpty g = lo > hi
where (lo, hi) = bounds g
{-
************************************************************************
* *
* IntGraphs
* *
************************************************************************
-}
type IntGraph = G.Graph
{-
------------------------------------------------------------
-- Depth first search numbering
------------------------------------------------------------
-}
-- Data.Tree has flatten for Tree, but nothing for Forest
preorderF :: Forest a -> [a]
preorderF ts = concatMap flatten ts
{-
------------------------------------------------------------
-- Finding reachable vertices
------------------------------------------------------------
-}
-- This generalizes reachable which was found in Data.Graph
reachable :: IntGraph -> [Vertex] -> [Vertex]
reachable g vs = preorderF (dfs g vs)
{-
************************************************************************
* *
* Classify Edge Types
* *
************************************************************************
-}
-- Remark: While we could generalize this algorithm this comes at a runtime
-- cost and with no advantages. If you find yourself using this with graphs
-- not easily represented using Int nodes please consider rewriting this
-- using the more general Graph type.
-- | Edge direction based on DFS Classification
data EdgeType
= Forward
| Cross
| Backward -- ^ Loop back towards the root node.
-- Eg backjumps in loops
| SelfLoop -- ^ v -> v
deriving (Eq,Ord)
instance Outputable EdgeType where
ppr Forward = text "Forward"
ppr Cross = text "Cross"
ppr Backward = text "Backward"
ppr SelfLoop = text "SelfLoop"
newtype Time = Time Int deriving (Eq,Ord,Num,Outputable)
--Allow for specialization
{-# INLINEABLE classifyEdges #-}
-- | Given a start vertex, a way to get successors from a node
-- and a list of (directed) edges classify the types of edges.
classifyEdges :: forall key. Uniquable key => key -> (key -> [key])
-> [(key,key)] -> [((key, key), EdgeType)]
classifyEdges root getSucc edges =
--let uqe (from,to) = (getUnique from, getUnique to)
--in pprTrace "Edges:" (ppr $ map uqe edges) $
zip edges $ map classify edges
where
(_time, starts, ends) = addTimes (0,emptyUFM,emptyUFM) root
classify :: (key,key) -> EdgeType
classify (from,to)
| startFrom < startTo
, endFrom > endTo
= Forward
| startFrom > startTo
, endFrom < endTo
= Backward
| startFrom > startTo
, endFrom > endTo
= Cross
| getUnique from == getUnique to
= SelfLoop
| otherwise
= pprPanic "Failed to classify edge of Graph"
(ppr (getUnique from, getUnique to))
where
getTime event node
| Just time <- lookupUFM event node
= time
| otherwise
= pprPanic "Failed to classify edge of CFG - not not timed"
(text "edges" <> ppr (getUnique from, getUnique to)
<+> ppr starts <+> ppr ends )
startFrom = getTime starts from
startTo = getTime starts to
endFrom = getTime ends from
endTo = getTime ends to
addTimes :: (Time, UniqFM key Time, UniqFM key Time) -> key
-> (Time, UniqFM key Time, UniqFM key Time)
addTimes (time,starts,ends) n
--Dont reenter nodes
| elemUFM n starts
= (time,starts,ends)
| otherwise =
let
starts' = addToUFM starts n time
time' = time + 1
succs = getSucc n :: [key]
(time'',starts'',ends') = foldl' addTimes (time',starts',ends) succs
ends'' = addToUFM ends' n time''
in
(time'' + 1, starts'', ends'')
|