1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
|
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE DeriveTraversable #-}
{-# LANGUAGE NamedFieldPuns #-}
{-# LANGUAGE NondecreasingIndentation #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE DerivingStrategies #-}
{-# LANGUAGE GeneralisedNewtypeDeriving #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE ApplicativeDo #-}
{-# LANGUAGE MultiWayIf #-}
{-# LANGUAGE RecordWildCards #-}
-- -----------------------------------------------------------------------------
--
-- (c) The University of Glasgow, 2011
--
-- This module implements multi-module compilation, and is used
-- by --make and GHCi.
--
-- -----------------------------------------------------------------------------
module GHC.Driver.Make (
depanal, depanalE, depanalPartial, checkHomeUnitsClosed,
load, loadWithCache, load', LoadHowMuch(..), ModIfaceCache(..), noIfaceCache, newIfaceCache,
instantiationNodes,
downsweep,
topSortModuleGraph,
ms_home_srcimps, ms_home_imps,
summariseModule,
SummariseResult(..),
summariseFile,
hscSourceToIsBoot,
findExtraSigImports,
implicitRequirementsShallow,
noModError, cyclicModuleErr,
SummaryNode,
IsBootInterface(..), mkNodeKey,
ModNodeKey, ModNodeKeyWithUid(..),
ModNodeMap(..), emptyModNodeMap, modNodeMapElems, modNodeMapLookup, modNodeMapInsert, modNodeMapSingleton, modNodeMapUnionWith
) where
import GHC.Prelude
import GHC.Platform
import GHC.Tc.Utils.Backpack
import GHC.Tc.Utils.Monad ( initIfaceCheck, concatMapM )
import GHC.Runtime.Interpreter
import qualified GHC.Linker.Loader as Linker
import GHC.Linker.Types
import GHC.Platform.Ways
import GHC.Driver.Config.Finder (initFinderOpts)
import GHC.Driver.Config.Parser (initParserOpts)
import GHC.Driver.Config.Diagnostic
import GHC.Driver.Phases
import GHC.Driver.Pipeline
import GHC.Driver.Session
import GHC.Driver.Backend
import GHC.Driver.Monad
import GHC.Driver.Env
import GHC.Driver.Errors
import GHC.Driver.Errors.Types
import GHC.Driver.Main
import GHC.Parser.Header
import GHC.Iface.Load ( cannotFindModule )
import GHC.IfaceToCore ( typecheckIface )
import GHC.Iface.Recomp ( RecompileRequired(..), CompileReason(..) )
import GHC.Data.Bag ( listToBag )
import GHC.Data.Graph.Directed
import GHC.Data.FastString
import GHC.Data.Maybe ( expectJust )
import GHC.Data.StringBuffer
import qualified GHC.LanguageExtensions as LangExt
import GHC.Utils.Exception ( throwIO, SomeAsyncException )
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Utils.Panic.Plain
import GHC.Utils.Misc
import GHC.Utils.Error
import GHC.Utils.Logger
import GHC.Utils.Fingerprint
import GHC.Utils.TmpFs
import GHC.Types.Basic
import GHC.Types.Error
import GHC.Types.Target
import GHC.Types.SourceFile
import GHC.Types.SourceError
import GHC.Types.SrcLoc
import GHC.Types.Unique.FM
import GHC.Types.PkgQual
import GHC.Unit
import GHC.Unit.Env
import GHC.Unit.Finder
import GHC.Unit.Module.ModSummary
import GHC.Unit.Module.ModIface
import GHC.Unit.Module.Graph
import GHC.Unit.Home.ModInfo
import GHC.Unit.Module.ModDetails
import Data.Either ( rights, partitionEithers, lefts )
import qualified Data.Map as Map
import qualified Data.Set as Set
import Control.Concurrent ( newQSem, waitQSem, signalQSem, ThreadId, killThread, forkIOWithUnmask )
import qualified GHC.Conc as CC
import Control.Concurrent.MVar
import Control.Monad
import Control.Monad.Trans.Except ( ExceptT(..), runExceptT, throwE )
import qualified Control.Monad.Catch as MC
import Data.IORef
import Data.Maybe
import Data.Time
import Data.Bifunctor (first)
import System.Directory
import System.FilePath
import System.IO ( fixIO )
import GHC.Conc ( getNumProcessors, getNumCapabilities, setNumCapabilities )
import Control.Monad.IO.Class
import Control.Monad.Trans.Reader
import GHC.Driver.Pipeline.LogQueue
import qualified Data.Map.Strict as M
import GHC.Types.TypeEnv
import Control.Monad.Trans.State.Lazy
import Control.Monad.Trans.Class
import GHC.Driver.Env.KnotVars
import Control.Concurrent.STM
import Control.Monad.Trans.Maybe
import GHC.Runtime.Loader
import GHC.Rename.Names
import GHC.Utils.Constants
import GHC.Types.Unique.DFM (udfmRestrictKeysSet)
import qualified Data.IntSet as I
import GHC.Types.Unique
-- -----------------------------------------------------------------------------
-- Loading the program
-- | Perform a dependency analysis starting from the current targets
-- and update the session with the new module graph.
--
-- Dependency analysis entails parsing the @import@ directives and may
-- therefore require running certain preprocessors.
--
-- Note that each 'ModSummary' in the module graph caches its 'DynFlags'.
-- These 'DynFlags' are determined by the /current/ session 'DynFlags' and the
-- @OPTIONS@ and @LANGUAGE@ pragmas of the parsed module. Thus if you want
-- changes to the 'DynFlags' to take effect you need to call this function
-- again.
-- In case of errors, just throw them.
--
depanal :: GhcMonad m =>
[ModuleName] -- ^ excluded modules
-> Bool -- ^ allow duplicate roots
-> m ModuleGraph
depanal excluded_mods allow_dup_roots = do
(errs, mod_graph) <- depanalE excluded_mods allow_dup_roots
if isEmptyMessages errs
then pure mod_graph
else throwErrors (fmap GhcDriverMessage errs)
-- | Perform dependency analysis like in 'depanal'.
-- In case of errors, the errors and an empty module graph are returned.
depanalE :: GhcMonad m => -- New for #17459
[ModuleName] -- ^ excluded modules
-> Bool -- ^ allow duplicate roots
-> m (DriverMessages, ModuleGraph)
depanalE excluded_mods allow_dup_roots = do
hsc_env <- getSession
(errs, mod_graph) <- depanalPartial excluded_mods allow_dup_roots
if isEmptyMessages errs
then do
hsc_env <- getSession
let one_unit_messages get_mod_errs k hue = do
errs <- get_mod_errs
unknown_module_err <- warnUnknownModules (hscSetActiveUnitId k hsc_env) (homeUnitEnv_dflags hue) mod_graph
let unused_home_mod_err = warnMissingHomeModules (homeUnitEnv_dflags hue) (hsc_targets hsc_env) mod_graph
unused_pkg_err = warnUnusedPackages (homeUnitEnv_units hue) (homeUnitEnv_dflags hue) mod_graph
return $ errs `unionMessages` unused_home_mod_err
`unionMessages` unused_pkg_err
`unionMessages` unknown_module_err
all_errs <- liftIO $ unitEnv_foldWithKey one_unit_messages (return emptyMessages) (hsc_HUG hsc_env)
logDiagnostics (GhcDriverMessage <$> all_errs)
setSession hsc_env { hsc_mod_graph = mod_graph }
pure (emptyMessages, mod_graph)
else do
-- We don't have a complete module dependency graph,
-- The graph may be disconnected and is unusable.
setSession hsc_env { hsc_mod_graph = emptyMG }
pure (errs, emptyMG)
-- | Perform dependency analysis like 'depanal' but return a partial module
-- graph even in the face of problems with some modules.
--
-- Modules which have parse errors in the module header, failing
-- preprocessors or other issues preventing them from being summarised will
-- simply be absent from the returned module graph.
--
-- Unlike 'depanal' this function will not update 'hsc_mod_graph' with the
-- new module graph.
depanalPartial
:: GhcMonad m
=> [ModuleName] -- ^ excluded modules
-> Bool -- ^ allow duplicate roots
-> m (DriverMessages, ModuleGraph)
-- ^ possibly empty 'Bag' of errors and a module graph.
depanalPartial excluded_mods allow_dup_roots = do
hsc_env <- getSession
let
targets = hsc_targets hsc_env
old_graph = hsc_mod_graph hsc_env
logger = hsc_logger hsc_env
withTiming logger (text "Chasing dependencies") (const ()) $ do
liftIO $ debugTraceMsg logger 2 (hcat [
text "Chasing modules from: ",
hcat (punctuate comma (map pprTarget targets))])
-- Home package modules may have been moved or deleted, and new
-- source files may have appeared in the home package that shadow
-- external package modules, so we have to discard the existing
-- cached finder data.
liftIO $ flushFinderCaches (hsc_FC hsc_env) (hsc_unit_env hsc_env)
(errs, graph_nodes) <- liftIO $ downsweep
hsc_env (mgModSummaries old_graph)
excluded_mods allow_dup_roots
let
mod_graph = mkModuleGraph graph_nodes
return (unionManyMessages errs, mod_graph)
-- | Collect the instantiations of dependencies to create 'InstantiationNode' work graph nodes.
-- These are used to represent the type checking that is done after
-- all the free holes (sigs in current package) relevant to that instantiation
-- are compiled. This is necessary to catch some instantiation errors.
--
-- In the future, perhaps more of the work of instantiation could be moved here,
-- instead of shoved in with the module compilation nodes. That could simplify
-- backpack, and maybe hs-boot too.
instantiationNodes :: UnitId -> UnitState -> [ModuleGraphNode]
instantiationNodes uid unit_state = InstantiationNode uid <$> iuids_to_check
where
iuids_to_check :: [InstantiatedUnit]
iuids_to_check =
nubSort $ concatMap (goUnitId . fst) (explicitUnits unit_state)
where
goUnitId uid =
[ recur
| VirtUnit indef <- [uid]
, inst <- instUnitInsts indef
, recur <- (indef :) $ goUnitId $ moduleUnit $ snd inst
]
-- The linking plan for each module. If we need to do linking for a home unit
-- then this function returns a graph node which depends on all the modules in the home unit.
-- At the moment nothing can depend on these LinkNodes.
linkNodes :: [ModuleGraphNode] -> UnitId -> HomeUnitEnv -> Maybe (Either (Messages DriverMessage) ModuleGraphNode)
linkNodes summaries uid hue =
let dflags = homeUnitEnv_dflags hue
ofile = outputFile_ dflags
unit_nodes :: [NodeKey]
unit_nodes = map mkNodeKey (filter ((== uid) . moduleGraphNodeUnitId) summaries)
-- Issue a warning for the confusing case where the user
-- said '-o foo' but we're not going to do any linking.
-- We attempt linking if either (a) one of the modules is
-- called Main, or (b) the user said -no-hs-main, indicating
-- that main() is going to come from somewhere else.
--
no_hs_main = gopt Opt_NoHsMain dflags
main_sum = any (== NodeKey_Module (ModNodeKeyWithUid (GWIB (mainModuleNameIs dflags) NotBoot) uid)) unit_nodes
do_linking = main_sum || no_hs_main || ghcLink dflags == LinkDynLib || ghcLink dflags == LinkStaticLib
in if | ghcLink dflags == LinkBinary && isJust ofile && not do_linking ->
Just (Left $ singleMessage $ mkPlainErrorMsgEnvelope noSrcSpan (DriverRedirectedNoMain $ mainModuleNameIs dflags))
-- This should be an error, not a warning (#10895).
| ghcLink dflags /= NoLink, do_linking -> Just (Right (LinkNode unit_nodes uid))
| otherwise -> Nothing
-- Note [Missing home modules]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- Sometimes user doesn't want GHC to pick up modules, not explicitly listed
-- in a command line. For example, cabal may want to enable this warning
-- when building a library, so that GHC warns user about modules, not listed
-- neither in `exposed-modules`, nor in `other-modules`.
--
-- Here "home module" means a module, that doesn't come from an other package.
--
-- For example, if GHC is invoked with modules "A" and "B" as targets,
-- but "A" imports some other module "C", then GHC will issue a warning
-- about module "C" not being listed in a command line.
--
-- The warning in enabled by `-Wmissing-home-modules`. See #13129
warnMissingHomeModules :: DynFlags -> [Target] -> ModuleGraph -> DriverMessages
warnMissingHomeModules dflags targets mod_graph =
if null missing
then emptyMessages
else warn
where
diag_opts = initDiagOpts dflags
is_known_module mod = any (is_my_target mod) targets
-- We need to be careful to handle the case where (possibly
-- path-qualified) filenames (aka 'TargetFile') rather than module
-- names are being passed on the GHC command-line.
--
-- For instance, `ghc --make src-exe/Main.hs` and
-- `ghc --make -isrc-exe Main` are supposed to be equivalent.
-- Note also that we can't always infer the associated module name
-- directly from the filename argument. See #13727.
is_my_target mod target =
let tuid = targetUnitId target
in case targetId target of
TargetModule name
-> moduleName (ms_mod mod) == name
&& tuid == ms_unitid mod
TargetFile target_file _
| Just mod_file <- ml_hs_file (ms_location mod)
->
target_file == mod_file ||
-- Don't warn on B.hs-boot if B.hs is specified (#16551)
addBootSuffix target_file == mod_file ||
-- We can get a file target even if a module name was
-- originally specified in a command line because it can
-- be converted in guessTarget (by appending .hs/.lhs).
-- So let's convert it back and compare with module name
mkModuleName (fst $ splitExtension target_file)
== moduleName (ms_mod mod)
_ -> False
missing = map (moduleName . ms_mod) $
filter (not . is_known_module) $
(filter (\ms -> ms_unitid ms == homeUnitId_ dflags)
(mgModSummaries mod_graph))
warn = singleMessage $ mkPlainMsgEnvelope diag_opts noSrcSpan
$ DriverMissingHomeModules missing (checkBuildingCabalPackage dflags)
-- Check that any modules we want to reexport or hide are actually in the package.
warnUnknownModules :: HscEnv -> DynFlags -> ModuleGraph -> IO DriverMessages
warnUnknownModules hsc_env dflags mod_graph = do
reexported_warns <- filterM check_reexport (Set.toList reexported_mods)
return $ final_msgs hidden_warns reexported_warns
where
diag_opts = initDiagOpts dflags
unit_mods = Set.fromList (map ms_mod_name
(filter (\ms -> ms_unitid ms == homeUnitId_ dflags)
(mgModSummaries mod_graph)))
reexported_mods = reexportedModules dflags
hidden_mods = hiddenModules dflags
hidden_warns = hidden_mods `Set.difference` unit_mods
lookupModule mn = findImportedModule hsc_env mn NoPkgQual
check_reexport mn = do
fr <- lookupModule mn
case fr of
Found _ m -> return (moduleUnitId m == homeUnitId_ dflags)
_ -> return True
warn flag mod = singleMessage $ mkPlainMsgEnvelope diag_opts noSrcSpan
$ flag mod
final_msgs hidden_warns reexported_warns
=
unionManyMessages $
[warn DriverUnknownHiddenModules (Set.toList hidden_warns) | not (Set.null hidden_warns)]
++ [warn DriverUnknownReexportedModules reexported_warns | not (null reexported_warns)]
-- | Describes which modules of the module graph need to be loaded.
data LoadHowMuch
= LoadAllTargets
-- ^ Load all targets and its dependencies.
| LoadUpTo HomeUnitModule
-- ^ Load only the given module and its dependencies.
| LoadDependenciesOf HomeUnitModule
-- ^ Load only the dependencies of the given module, but not the module
-- itself.
{-
Note [Caching HomeModInfo]
~~~~~~~~~~~~~~~~~~~~~~~~~~
API clients who call `load` like to cache the HomeModInfo in memory between
calls to this function. In the old days, this cache was a simple MVar which stored
a HomePackageTable. This was insufficient, as the interface files for boot modules
were not recorded in the cache. In the less old days, the cache was returned at the
end of load, and supplied at the start of load, however, this was not sufficient
because it didn't account for the possibility of exceptions such as SIGINT (#20780).
So now, in the current day, we have this ModIfaceCache abstraction which
can incrementally be updated during the process of upsweep. This allows us
to store interface files for boot modules in an exception-safe way.
When the final version of an interface file is completed then it is placed into
the cache. The contents of the cache is retrieved, and the cache cleared, by iface_clearCache.
Note that because we only store the ModIface and Linkable in the ModIfaceCache,
hydration and rehydration is totally irrelevant, and we just store the CachedIface as
soon as it is completed.
-}
-- Abstract interface to a cache of HomeModInfo
-- See Note [Caching HomeModInfo]
data ModIfaceCache = ModIfaceCache { iface_clearCache :: IO [CachedIface]
, iface_addToCache :: CachedIface -> IO () }
addHmiToCache :: ModIfaceCache -> HomeModInfo -> IO ()
addHmiToCache c (HomeModInfo i _ l) = iface_addToCache c (CachedIface i l)
data CachedIface = CachedIface { cached_modiface :: !ModIface
, cached_linkable :: !(Maybe Linkable) }
noIfaceCache :: Maybe ModIfaceCache
noIfaceCache = Nothing
newIfaceCache :: IO ModIfaceCache
newIfaceCache = do
ioref <- newIORef []
return $
ModIfaceCache
{ iface_clearCache = atomicModifyIORef' ioref (\c -> ([], c))
, iface_addToCache = \hmi -> atomicModifyIORef' ioref (\c -> (hmi:c, ()))
}
-- | Try to load the program. See 'LoadHowMuch' for the different modes.
--
-- This function implements the core of GHC's @--make@ mode. It preprocesses,
-- compiles and loads the specified modules, avoiding re-compilation wherever
-- possible. Depending on the backend (see 'DynFlags.backend' field) compiling
-- and loading may result in files being created on disk.
--
-- Calls the 'defaultWarnErrLogger' after each compiling each module, whether
-- successful or not.
--
-- If errors are encountered during dependency analysis, the module `depanalE`
-- returns together with the errors an empty ModuleGraph.
-- After processing this empty ModuleGraph, the errors of depanalE are thrown.
-- All other errors are reported using the 'defaultWarnErrLogger'.
load :: GhcMonad f => LoadHowMuch -> f SuccessFlag
load how_much = loadWithCache noIfaceCache how_much
mkBatchMsg :: HscEnv -> Messager
mkBatchMsg hsc_env =
if length (hsc_all_home_unit_ids hsc_env) > 1
-- This also displays what unit each module is from.
then batchMultiMsg
else batchMsg
loadWithCache :: GhcMonad m => Maybe ModIfaceCache -> LoadHowMuch -> m SuccessFlag
loadWithCache cache how_much = do
(errs, mod_graph) <- depanalE [] False -- #17459
msg <- mkBatchMsg <$> getSession
success <- load' cache how_much (Just msg) mod_graph
if isEmptyMessages errs
then pure success
else throwErrors (fmap GhcDriverMessage errs)
-- Note [Unused packages]
-- ~~~~~~~~~~~~~~~~~~~~~~
-- Cabal passes `--package-id` flag for each direct dependency. But GHC
-- loads them lazily, so when compilation is done, we have a list of all
-- actually loaded packages. All the packages, specified on command line,
-- but never loaded, are probably unused dependencies.
warnUnusedPackages :: UnitState -> DynFlags -> ModuleGraph -> DriverMessages
warnUnusedPackages us dflags mod_graph =
let diag_opts = initDiagOpts dflags
-- Only need non-source imports here because SOURCE imports are always HPT
loadedPackages = concat $
mapMaybe (\(fs, mn) -> lookupModulePackage us (unLoc mn) fs)
$ concatMap ms_imps (
filter (\ms -> homeUnitId_ dflags == ms_unitid ms) (mgModSummaries mod_graph))
used_args = Set.fromList $ map unitId loadedPackages
resolve (u,mflag) = do
-- The units which we depend on via the command line explicitly
flag <- mflag
-- Which we can find the UnitInfo for (should be all of them)
ui <- lookupUnit us u
-- Which are not explicitly used
guard (Set.notMember (unitId ui) used_args)
return (unitId ui, unitPackageName ui, unitPackageVersion ui, flag)
unusedArgs = mapMaybe resolve (explicitUnits us)
warn = singleMessage $ mkPlainMsgEnvelope diag_opts noSrcSpan (DriverUnusedPackages unusedArgs)
in if null unusedArgs
then emptyMessages
else warn
-- | A ModuleGraphNode which also has a hs-boot file, and the list of nodes on any
-- path from module to its boot file.
data ModuleGraphNodeWithBootFile
= ModuleGraphNodeWithBootFile
ModuleGraphNode
-- ^ The module itself (not the hs-boot module)
[NodeKey]
-- ^ The modules in between the module and its hs-boot file,
-- not including the hs-boot file itself.
instance Outputable ModuleGraphNodeWithBootFile where
ppr (ModuleGraphNodeWithBootFile mgn deps) = text "ModeGraphNodeWithBootFile: " <+> ppr mgn $$ ppr deps
-- | A 'BuildPlan' is the result of attempting to linearise a single strongly-connected
-- component of the module graph.
data BuildPlan
-- | A simple, single module all alone (which *might* have an hs-boot file, if it isn't part of a cycle)
= SingleModule ModuleGraphNode
-- | A resolved cycle, linearised by hs-boot files
| ResolvedCycle [Either ModuleGraphNode ModuleGraphNodeWithBootFile]
-- | An actual cycle, which wasn't resolved by hs-boot files
| UnresolvedCycle [ModuleGraphNode]
instance Outputable BuildPlan where
ppr (SingleModule mgn) = text "SingleModule" <> parens (ppr mgn)
ppr (ResolvedCycle mgn) = text "ResolvedCycle:" <+> ppr mgn
ppr (UnresolvedCycle mgn) = text "UnresolvedCycle:" <+> ppr mgn
-- Just used for an assertion
countMods :: BuildPlan -> Int
countMods (SingleModule _) = 1
countMods (ResolvedCycle ns) = length ns
countMods (UnresolvedCycle ns) = length ns
-- See Note [Upsweep] for a high-level description.
createBuildPlan :: ModuleGraph -> Maybe HomeUnitModule -> [BuildPlan]
createBuildPlan mod_graph maybe_top_mod =
let -- Step 1: Compute SCCs without .hi-boot files, to find the cycles
cycle_mod_graph = topSortModuleGraph True mod_graph maybe_top_mod
-- Step 2: Reanalyse loops, with relevant boot modules, to solve the cycles.
build_plan :: [BuildPlan]
build_plan
-- Fast path, if there are no boot modules just do a normal toposort
| isEmptyModuleEnv boot_modules = collapseAcyclic $ topSortModuleGraph False mod_graph maybe_top_mod
| otherwise = toBuildPlan cycle_mod_graph []
toBuildPlan :: [SCC ModuleGraphNode] -> [ModuleGraphNode] -> [BuildPlan]
toBuildPlan [] mgn = collapseAcyclic (topSortWithBoot mgn)
toBuildPlan ((AcyclicSCC node):sccs) mgn = toBuildPlan sccs (node:mgn)
-- Interesting case
toBuildPlan ((CyclicSCC nodes):sccs) mgn =
let acyclic = collapseAcyclic (topSortWithBoot mgn)
-- Now perform another toposort but just with these nodes and relevant hs-boot files.
-- The result should be acyclic, if it's not, then there's an unresolved cycle in the graph.
mresolved_cycle = collapseSCC (topSortWithBoot nodes)
in acyclic ++ [maybe (UnresolvedCycle nodes) ResolvedCycle mresolved_cycle] ++ toBuildPlan sccs []
(mg, lookup_node) = moduleGraphNodes False (mgModSummaries' mod_graph)
trans_deps_map = allReachable mg (mkNodeKey . node_payload)
-- Compute the intermediate modules between a file and its hs-boot file.
-- See Step 2a in Note [Upsweep]
boot_path mn uid =
map (summaryNodeSummary . expectJust "toNode" . lookup_node) $ Set.toList $
-- Don't include the boot module itself
Set.delete (NodeKey_Module (key IsBoot)) $
-- Keep intermediate dependencies: as per Step 2a in Note [Upsweep], these are
-- the transitive dependencies of the non-boot file which transitively depend
-- on the boot file.
Set.filter (\nk -> nodeKeyUnitId nk == uid -- Cheap test
&& (NodeKey_Module (key IsBoot)) `Set.member` expectJust "dep_on_boot" (M.lookup nk trans_deps_map)) $
expectJust "not_boot_dep" (M.lookup (NodeKey_Module (key NotBoot)) trans_deps_map)
where
key ib = ModNodeKeyWithUid (GWIB mn ib) uid
-- An environment mapping a module to its hs-boot file and all nodes on the path between the two, if one exists
boot_modules = mkModuleEnv
[ (ms_mod ms, (m, boot_path (ms_mod_name ms) (ms_unitid ms))) | m@(ModuleNode _ ms) <- (mgModSummaries' mod_graph), isBootSummary ms == IsBoot]
select_boot_modules :: [ModuleGraphNode] -> [ModuleGraphNode]
select_boot_modules = mapMaybe (fmap fst . get_boot_module)
get_boot_module :: ModuleGraphNode -> Maybe (ModuleGraphNode, [ModuleGraphNode])
get_boot_module m = case m of ModuleNode _ ms | HsSrcFile <- ms_hsc_src ms -> lookupModuleEnv boot_modules (ms_mod ms); _ -> Nothing
-- Any cycles should be resolved now
collapseSCC :: [SCC ModuleGraphNode] -> Maybe [(Either ModuleGraphNode ModuleGraphNodeWithBootFile)]
-- Must be at least two nodes, as we were in a cycle
collapseSCC [AcyclicSCC node1, AcyclicSCC node2] = Just [toNodeWithBoot node1, toNodeWithBoot node2]
collapseSCC (AcyclicSCC node : nodes) = (toNodeWithBoot node :) <$> collapseSCC nodes
-- Cyclic
collapseSCC _ = Nothing
toNodeWithBoot :: ModuleGraphNode -> Either ModuleGraphNode ModuleGraphNodeWithBootFile
toNodeWithBoot mn =
case get_boot_module mn of
-- The node doesn't have a boot file
Nothing -> Left mn
-- The node does have a boot file
Just path -> Right (ModuleGraphNodeWithBootFile mn (map mkNodeKey (snd path)))
-- The toposort and accumulation of acyclic modules is solely to pick-up
-- hs-boot files which are **not** part of cycles.
collapseAcyclic :: [SCC ModuleGraphNode] -> [BuildPlan]
collapseAcyclic (AcyclicSCC node : nodes) = SingleModule node : collapseAcyclic nodes
collapseAcyclic (CyclicSCC cy_nodes : nodes) = (UnresolvedCycle cy_nodes) : collapseAcyclic nodes
collapseAcyclic [] = []
topSortWithBoot nodes = topSortModules False (select_boot_modules nodes ++ nodes) Nothing
in
assertPpr (sum (map countMods build_plan) == length (mgModSummaries' mod_graph))
(vcat [text "Build plan missing nodes:", (text "PLAN:" <+> ppr (sum (map countMods build_plan))), (text "GRAPH:" <+> ppr (length (mgModSummaries' mod_graph )))])
build_plan
-- | Generalized version of 'load' which also supports a custom
-- 'Messager' (for reporting progress) and 'ModuleGraph' (generally
-- produced by calling 'depanal'.
load' :: GhcMonad m => Maybe ModIfaceCache -> LoadHowMuch -> Maybe Messager -> ModuleGraph -> m SuccessFlag
load' mhmi_cache how_much mHscMessage mod_graph = do
modifySession $ \hsc_env -> hsc_env { hsc_mod_graph = mod_graph }
guessOutputFile
hsc_env <- getSession
let dflags = hsc_dflags hsc_env
let logger = hsc_logger hsc_env
let interp = hscInterp hsc_env
-- The "bad" boot modules are the ones for which we have
-- B.hs-boot in the module graph, but no B.hs
-- The downsweep should have ensured this does not happen
-- (see msDeps)
let all_home_mods =
Set.fromList [ Module (ms_unitid s) (ms_mod_name s)
| s <- mgModSummaries mod_graph, isBootSummary s == NotBoot]
-- TODO: Figure out what the correct form of this assert is. It's violated
-- when you have HsBootMerge nodes in the graph: then you'll have hs-boot
-- files without corresponding hs files.
-- bad_boot_mods = [s | s <- mod_graph, isBootSummary s,
-- not (ms_mod_name s `elem` all_home_mods)]
-- assert (null bad_boot_mods ) return ()
-- check that the module given in HowMuch actually exists, otherwise
-- topSortModuleGraph will bomb later.
let checkHowMuch (LoadUpTo m) = checkMod m
checkHowMuch (LoadDependenciesOf m) = checkMod m
checkHowMuch _ = id
checkMod m and_then
| m `Set.member` all_home_mods = and_then
| otherwise = do
liftIO $ errorMsg logger
(text "no such module:" <+> quotes (ppr (moduleUnit m) <> colon <> ppr (moduleName m)))
return Failed
checkHowMuch how_much $ do
-- mg2_with_srcimps drops the hi-boot nodes, returning a
-- graph with cycles. It is just used for warning about unecessary source imports.
let mg2_with_srcimps :: [SCC ModuleGraphNode]
mg2_with_srcimps = topSortModuleGraph True mod_graph Nothing
-- If we can determine that any of the {-# SOURCE #-} imports
-- are definitely unnecessary, then emit a warning.
warnUnnecessarySourceImports (filterToposortToModules mg2_with_srcimps)
let maybe_top_mod = case how_much of
LoadUpTo m -> Just m
LoadDependenciesOf m -> Just m
_ -> Nothing
build_plan = createBuildPlan mod_graph maybe_top_mod
cache <- liftIO $ maybe (return []) iface_clearCache mhmi_cache
let
-- prune the HPT so everything is not retained when doing an
-- upsweep.
!pruned_cache = pruneCache cache
(flattenSCCs (filterToposortToModules mg2_with_srcimps))
-- before we unload anything, make sure we don't leave an old
-- interactive context around pointing to dead bindings. Also,
-- write an empty HPT to allow the old HPT to be GC'd.
let pruneHomeUnitEnv hme = hme { homeUnitEnv_hpt = emptyHomePackageTable }
setSession $ discardIC $ hscUpdateHUG (unitEnv_map pruneHomeUnitEnv) hsc_env
-- Unload everything
liftIO $ unload interp hsc_env
liftIO $ debugTraceMsg logger 2 (hang (text "Ready for upsweep")
2 (ppr build_plan))
n_jobs <- case parMakeCount (hsc_dflags hsc_env) of
Nothing -> liftIO getNumProcessors
Just n -> return n
setSession $ hscUpdateHUG (unitEnv_map pruneHomeUnitEnv) hsc_env
hsc_env <- getSession
(upsweep_ok, hsc_env1) <- withDeferredDiagnostics $
liftIO $ upsweep n_jobs hsc_env mhmi_cache mHscMessage (toCache pruned_cache) build_plan
setSession hsc_env1
case upsweep_ok of
Failed -> loadFinish upsweep_ok
Succeeded -> do
liftIO $ debugTraceMsg logger 2 (text "Upsweep completely successful.")
-- Clean up after ourselves
liftIO $ cleanCurrentModuleTempFilesMaybe logger (hsc_tmpfs hsc_env1) dflags
loadFinish upsweep_ok
-- | Finish up after a load.
loadFinish :: GhcMonad m => SuccessFlag -> m SuccessFlag
-- Empty the interactive context and set the module context to the topmost
-- newly loaded module, or the Prelude if none were loaded.
loadFinish all_ok
= do modifySession discardIC
return all_ok
-- | If there is no -o option, guess the name of target executable
-- by using top-level source file name as a base.
guessOutputFile :: GhcMonad m => m ()
guessOutputFile = modifySession $ \env ->
-- Force mod_graph to avoid leaking env
let !mod_graph = hsc_mod_graph env
new_home_graph =
flip unitEnv_map (hsc_HUG env) $ \hue ->
let dflags = homeUnitEnv_dflags hue
platform = targetPlatform dflags
mainModuleSrcPath :: Maybe String
mainModuleSrcPath = do
ms <- mgLookupModule mod_graph (mainModIs hue)
ml_hs_file (ms_location ms)
name = fmap dropExtension mainModuleSrcPath
-- MP: This exception is quite sensitive to being forced, if you
-- force it here then the error message is different because it gets
-- caught by a different error handler than the test (T9930fail) expects.
-- Putting an exception into DynFlags is probably not a great design but
-- I'll write this comment rather than more eagerly force the exception.
name_exe = do
-- we must add the .exe extension unconditionally here, otherwise
-- when name has an extension of its own, the .exe extension will
-- not be added by GHC.Driver.Pipeline.exeFileName. See #2248
!name' <- if platformOS platform == OSMinGW32
then fmap (<.> "exe") name
else name
mainModuleSrcPath' <- mainModuleSrcPath
-- #9930: don't clobber input files (unless they ask for it)
if name' == mainModuleSrcPath'
then throwGhcException . UsageError $
"default output name would overwrite the input file; " ++
"must specify -o explicitly"
else Just name'
in
case outputFile_ dflags of
Just _ -> hue
Nothing -> hue {homeUnitEnv_dflags = dflags { outputFile_ = name_exe } }
in env { hsc_unit_env = (hsc_unit_env env) { ue_home_unit_graph = new_home_graph } }
-- -----------------------------------------------------------------------------
--
-- | Prune the HomePackageTable
--
-- Before doing an upsweep, we can throw away:
--
-- - all ModDetails, all linked code
-- - all unlinked code that is out of date with respect to
-- the source file
--
-- This is VERY IMPORTANT otherwise we'll end up requiring 2x the
-- space at the end of the upsweep, because the topmost ModDetails of the
-- old HPT holds on to the entire type environment from the previous
-- compilation.
-- Note [GHC Heap Invariants]
pruneCache :: [CachedIface]
-> [ModSummary]
-> [HomeModInfo]
pruneCache hpt summ
= strictMap prune hpt
where prune (CachedIface { cached_modiface = iface
, cached_linkable = linkable
}) = HomeModInfo iface emptyModDetails linkable'
where
modl = moduleName (mi_module iface)
linkable'
| Just ms <- lookupUFM ms_map modl
, mi_src_hash iface /= ms_hs_hash ms
= Nothing
| otherwise
= linkable
ms_map = listToUFM [(ms_mod_name ms, ms) | ms <- summ]
-- ---------------------------------------------------------------------------
--
-- | Unloading
unload :: Interp -> HscEnv -> IO ()
unload interp hsc_env
= case ghcLink (hsc_dflags hsc_env) of
LinkInMemory -> Linker.unload interp hsc_env []
_other -> return ()
{- Parallel Upsweep
The parallel upsweep attempts to concurrently compile the modules in the
compilation graph using multiple Haskell threads.
The Algorithm
* The list of `MakeAction`s are created by `interpretBuildPlan`. A `MakeAction` is
a pair of an `IO a` action and a `MVar a`, where to place the result.
The list is sorted topologically, so can be executed in order without fear of
blocking.
* runPipelines takes this list and eventually passes it to runLoop which executes
each action and places the result into the right MVar.
* The amount of parallelism is controlled by a semaphore. This is just used around the
module compilation step, so that only the right number of modules are compiled at
the same time which reduces overall memory usage and allocations.
* Each proper node has a LogQueue, which dictates where to send it's output.
* The LogQueue is placed into the LogQueueQueue when the action starts and a worker
thread processes the LogQueueQueue printing logs for each module in a stable order.
* The result variable for an action producing `a` is of type `Maybe a`, therefore
it is still filled on a failure. If a module fails to compile, the
failure is propagated through the whole module graph and any modules which didn't
depend on the failure can still be compiled. This behaviour also makes the code
quite a bit cleaner.
-}
{-
Note [--make mode]
~~~~~~~~~~~~~~~~~
There are two main parts to `--make` mode.
1. `downsweep`: Starts from the top of the module graph and computes dependencies.
2. `upsweep`: Starts from the bottom of the module graph and compiles modules.
The result of the downsweep is a 'ModuleGraph', which is then passed to 'upsweep' which
computers how to build this ModuleGraph.
Note [Upsweep]
~~~~~~~~~~~~~~
Upsweep takes a 'ModuleGraph' as input, computes a build plan and then executes
the plan in order to compile the project.
The first step is computing the build plan from a 'ModuleGraph'.
The output of this step is a `[BuildPlan]`, which is a topologically sorted plan for
how to build all the modules.
```
data BuildPlan = SingleModule ModuleGraphNode -- A simple, single module all alone but *might* have an hs-boot file which isn't part of a cycle
| ResolvedCycle [Either ModuleGraphNode ModuleGraphNodeWithBoot] -- A resolved cycle, linearised by hs-boot files
| UnresolvedCycle [ModuleGraphNode] -- An actual cycle, which wasn't resolved by hs-boot files
```
The plan is computed in two steps:
Step 1: Topologically sort the module graph without hs-boot files. This returns a [SCC ModuleGraphNode] which contains
cycles.
Step 2: For each cycle, topologically sort the modules in the cycle *with* the relevant hs-boot files. This should
result in an acyclic build plan if the hs-boot files are sufficient to resolve the cycle.
Step 2a: For each module in the cycle, if the module has a boot file then compute the
modules on the path between it and the hs-boot file.
These are the intermediate modules which:
(1) are (transitive) dependencies of the non-boot module, and
(2) have the boot module as a (transitive) dependency.
In particular, all such intermediate modules must appear in the same unit as
the module under consideration, as module cycles cannot cross unit boundaries.
This information is stored in ModuleGraphNodeWithBoot.
The `[BuildPlan]` is then interpreted by the `interpretBuildPlan` function.
* SingleModule nodes are compiled normally by either the upsweep_inst or upsweep_mod functions.
* ResolvedCycles need to compiled "together" so that modules outside the cycle are presented
with a consistent knot-tied version of modules at the end.
- When the ModuleGraphNodeWithBoot nodes are compiled then suitable rehydration
is performed both before and after the module in question is compiled.
See Note [Hydrating Modules] for more information.
* UnresolvedCycles are indicative of a proper cycle, unresolved by hs-boot files
and are reported as an error to the user.
The main trickiness of `interpretBuildPlan` is deciding which version of a dependency
is visible from each module. For modules which are not in a cycle, there is just
one version of a module, so that is always used. For modules in a cycle, there are two versions of
'HomeModInfo'.
1. Internal to loop: The version created whilst compiling the loop by upsweep_mod.
2. External to loop: The knot-tied version created by typecheckLoop.
Whilst compiling a module inside the loop, we need to use the (1). For a module which
is outside of the loop which depends on something from in the loop, the (2) version
is used.
As the plan is interpreted, which version of a HomeModInfo is visible is updated
by updating a map held in a state monad. So after a loop has finished being compiled,
the visible module is the one created by typecheckLoop and the internal version is not
used again.
This plan also ensures the most important invariant to do with module loops:
> If you depend on anything within a module loop, before you can use the dependency,
the whole loop has to finish compiling.
The end result of `interpretBuildPlan` is a `[MakeAction]`, which are pairs
of `IO a` actions and a `MVar (Maybe a)`, somewhere to put the result of running
the action. This list is topologically sorted, so can be run in order to compute
the whole graph.
As well as this `interpretBuildPlan` also outputs an `IO [Maybe (Maybe HomeModInfo)]` which
can be queried at the end to get the result of all modules at the end, with their proper
visibility. For example, if any module in a loop fails then all modules in that loop will
report as failed because the visible node at the end will be the result of checking
these modules together.
-}
-- | Simple wrapper around MVar which allows a functor instance.
data ResultVar b = forall a . ResultVar (a -> b) (MVar (Maybe a))
instance Functor ResultVar where
fmap f (ResultVar g var) = ResultVar (f . g) var
mkResultVar :: MVar (Maybe a) -> ResultVar a
mkResultVar = ResultVar id
-- | Block until the result is ready.
waitResult :: ResultVar a -> MaybeT IO a
waitResult (ResultVar f var) = MaybeT (fmap f <$> readMVar var)
data BuildResult = BuildResult { _resultOrigin :: ResultOrigin
, resultVar :: ResultVar (Maybe HomeModInfo, ModuleNameSet)
}
-- The origin of this result var, useful for debugging
data ResultOrigin = NoLoop | Loop ResultLoopOrigin deriving (Show)
data ResultLoopOrigin = Initialise | Rehydrated | Finalised deriving (Show)
mkBuildResult :: ResultOrigin -> ResultVar (Maybe HomeModInfo, ModuleNameSet) -> BuildResult
mkBuildResult = BuildResult
data BuildLoopState = BuildLoopState { buildDep :: M.Map NodeKey BuildResult
-- The current way to build a specific TNodeKey, without cycles this just points to
-- the appropriate result of compiling a module but with
-- cycles there can be additional indirection and can point to the result of typechecking a loop
, nNODE :: Int
, hug_var :: MVar HomeUnitGraph
-- A global variable which is incrementally updated with the result
-- of compiling modules.
}
nodeId :: BuildM Int
nodeId = do
n <- gets nNODE
modify (\m -> m { nNODE = n + 1 })
return n
setModulePipeline :: NodeKey -> BuildResult -> BuildM ()
setModulePipeline mgn build_result = do
modify (\m -> m { buildDep = M.insert mgn build_result (buildDep m) })
type BuildMap = M.Map NodeKey BuildResult
getBuildMap :: BuildM BuildMap
getBuildMap = gets buildDep
getDependencies :: [NodeKey] -> BuildMap -> [BuildResult]
getDependencies direct_deps build_map =
strictMap (expectJust "dep_map" . flip M.lookup build_map) direct_deps
type BuildM a = StateT BuildLoopState IO a
-- | Abstraction over the operations of a semaphore which allows usage with the
-- -j1 case
data AbstractSem = AbstractSem { acquireSem :: IO ()
, releaseSem :: IO () }
withAbstractSem :: AbstractSem -> IO b -> IO b
withAbstractSem sem = MC.bracket_ (acquireSem sem) (releaseSem sem)
-- | Environment used when compiling a module
data MakeEnv = MakeEnv { hsc_env :: !HscEnv -- The basic HscEnv which will be augmented for each module
, compile_sem :: !AbstractSem
-- Modify the environment for module k, with the supplied logger modification function.
-- For -j1, this wrapper doesn't do anything
-- For -jn, the wrapper initialised a log queue and then modifies the logger to pipe its output
-- into the log queue.
, withLogger :: forall a . Int -> ((Logger -> Logger) -> IO a) -> IO a
, env_messager :: !(Maybe Messager)
}
type RunMakeM a = ReaderT MakeEnv (MaybeT IO) a
-- | Given the build plan, creates a graph which indicates where each NodeKey should
-- get its direct dependencies from. This might not be the corresponding build action
-- if the module participates in a loop. This step also labels each node with a number for the output.
-- See Note [Upsweep] for a high-level description.
interpretBuildPlan :: HomeUnitGraph
-> Maybe ModIfaceCache
-> M.Map ModNodeKeyWithUid HomeModInfo
-> [BuildPlan]
-> IO ( Maybe [ModuleGraphNode] -- Is there an unresolved cycle
, [MakeAction] -- Actions we need to run in order to build everything
, IO [Maybe (Maybe HomeModInfo)]) -- An action to query to get all the built modules at the end.
interpretBuildPlan hug mhmi_cache old_hpt plan = do
hug_var <- newMVar hug
((mcycle, plans), build_map) <- runStateT (buildLoop plan) (BuildLoopState M.empty 1 hug_var)
let wait = collect_results (buildDep build_map)
return (mcycle, plans, wait)
where
collect_results build_map =
sequence (map (\br -> collect_result (fst <$> resultVar br)) (M.elems build_map))
where
collect_result res_var = runMaybeT (waitResult res_var)
n_mods = sum (map countMods plan)
buildLoop :: [BuildPlan]
-> BuildM (Maybe [ModuleGraphNode], [MakeAction])
-- Build the abstract pipeline which we can execute
-- Building finished
buildLoop [] = return (Nothing, [])
buildLoop (plan:plans) =
case plan of
-- If there was no cycle, then typecheckLoop is not necessary
SingleModule m -> do
one_plan <- buildSingleModule Nothing NoLoop m
(cycle, all_plans) <- buildLoop plans
return (cycle, one_plan : all_plans)
-- For a resolved cycle, depend on everything in the loop, then update
-- the cache to point to this node rather than directly to the module build
-- nodes
ResolvedCycle ms -> do
pipes <- buildModuleLoop ms
(cycle, graph) <- buildLoop plans
return (cycle, pipes ++ graph)
-- Can't continue past this point as the cycle is unresolved.
UnresolvedCycle ns -> return (Just ns, [])
buildSingleModule :: Maybe [NodeKey] -- Modules we need to rehydrate before compiling this module
-> ResultOrigin
-> ModuleGraphNode -- The node we are compiling
-> BuildM MakeAction
buildSingleModule rehydrate_nodes origin mod = do
mod_idx <- nodeId
!build_map <- getBuildMap
hug_var <- gets hug_var
-- 1. Get the direct dependencies of this module
let direct_deps = nodeDependencies False mod
-- It's really important to force build_deps, or the whole buildMap is retained,
-- which would retain all the result variables, preventing us from collecting them
-- after they are no longer used.
!build_deps = getDependencies direct_deps build_map
let build_action =
withCurrentUnit (moduleGraphNodeUnitId mod) $ do
(hug, deps) <- wait_deps_hug hug_var build_deps
case mod of
InstantiationNode uid iu -> do
executeInstantiationNode mod_idx n_mods hug uid iu
return (Nothing, deps)
ModuleNode _build_deps ms -> do
let !old_hmi = M.lookup (msKey ms) old_hpt
rehydrate_mods = mapMaybe nodeKeyModName <$> rehydrate_nodes
hmi <- executeCompileNode mod_idx n_mods old_hmi hug rehydrate_mods ms
-- Write the HMI to an external cache (if one exists)
-- See Note [Caching HomeModInfo]
liftIO $ forM mhmi_cache $ \hmi_cache -> addHmiToCache hmi_cache hmi
-- This global MVar is incrementally modified in order to avoid having to
-- recreate the HPT before compiling each module which leads to a quadratic amount of work.
liftIO $ modifyMVar_ hug_var (return . addHomeModInfoToHug hmi)
return (Just hmi, addToModuleNameSet (moduleGraphNodeUnitId mod) (ms_mod_name ms) deps )
LinkNode _nks uid -> do
executeLinkNode hug (mod_idx, n_mods) uid direct_deps
return (Nothing, deps)
res_var <- liftIO newEmptyMVar
let result_var = mkResultVar res_var
setModulePipeline (mkNodeKey mod) (mkBuildResult origin result_var)
return $ (MakeAction build_action res_var)
buildOneLoopyModule :: ModuleGraphNodeWithBootFile -> BuildM [MakeAction]
buildOneLoopyModule (ModuleGraphNodeWithBootFile mn deps) = do
ma <- buildSingleModule (Just deps) (Loop Initialise) mn
-- Rehydration (1) from Note [Hydrating Modules], "Loops with multiple boot files"
rehydrate_action <- rehydrateAction Rehydrated ((GWIB (mkNodeKey mn) IsBoot) : (map (\d -> GWIB d NotBoot) deps))
return $ [ma, rehydrate_action]
buildModuleLoop :: [Either ModuleGraphNode ModuleGraphNodeWithBootFile] -> BuildM [MakeAction]
buildModuleLoop ms = do
build_modules <- concatMapM (either (fmap (:[]) <$> buildSingleModule Nothing (Loop Initialise)) buildOneLoopyModule) ms
let extract (Left mn) = GWIB (mkNodeKey mn) NotBoot
extract (Right (ModuleGraphNodeWithBootFile mn _)) = GWIB (mkNodeKey mn) IsBoot
let loop_mods = map extract ms
-- Rehydration (2) from Note [Hydrating Modules], "Loops with multiple boot files"
-- Fixes the space leak described in that note.
rehydrate_action <- rehydrateAction Finalised loop_mods
return $ build_modules ++ [rehydrate_action]
-- An action which rehydrates the given keys
rehydrateAction :: ResultLoopOrigin -> [GenWithIsBoot NodeKey] -> BuildM MakeAction
rehydrateAction origin deps = do
hug_var <- gets hug_var
!build_map <- getBuildMap
res_var <- liftIO newEmptyMVar
let
!build_deps = getDependencies (map gwib_mod deps) build_map
let loop_action = do
(hug, tdeps) <- wait_deps_hug hug_var build_deps
hsc_env <- asks hsc_env
let new_hsc = setHUG hug hsc_env
mns :: [ModuleName]
mns = mapMaybe (nodeKeyModName . gwib_mod) deps
hmis' <- liftIO $ rehydrateAfter new_hsc mns
checkRehydrationInvariant hmis' deps
-- Add hydrated interfaces to global variable
liftIO $ modifyMVar_ hug_var (\hug -> return $ foldr addHomeModInfoToHug hug hmis')
return (hmis', tdeps)
let fanout i = first (Just . (!! i)) <$> mkResultVar res_var
-- From outside the module loop, anyone must wait for the loop to finish and then
-- use the result of the rehydrated iface. This makes sure that things not in the
-- module loop will see the updated interfaces for all the identifiers in the loop.
boot_key :: NodeKey -> NodeKey
boot_key (NodeKey_Module m) = NodeKey_Module (m { mnkModuleName = (mnkModuleName m) { gwib_isBoot = IsBoot } } )
boot_key k = pprPanic "boot_key" (ppr k)
update_module_pipeline (m, i) =
case gwib_isBoot m of
NotBoot -> setModulePipeline (gwib_mod m) (mkBuildResult (Loop origin) (fanout i))
IsBoot -> do
setModulePipeline (gwib_mod m) (mkBuildResult (Loop origin) (fanout i))
-- SPECIAL: Anything outside the loop needs to see A rather than A.hs-boot
setModulePipeline (boot_key (gwib_mod m)) (mkBuildResult (Loop origin) (fanout i))
let deps_i = zip deps [0..]
mapM update_module_pipeline deps_i
return $ MakeAction loop_action res_var
-- Checks that the interfaces returned from hydration match-up with the names of the
-- modules which were fed into the function.
checkRehydrationInvariant hmis deps =
let hmi_names = map (moduleName . mi_module . hm_iface) hmis
start = mapMaybe (nodeKeyModName . gwib_mod) deps
in massertPpr (hmi_names == start) $ (ppr hmi_names $$ ppr start)
withCurrentUnit :: UnitId -> RunMakeM a -> RunMakeM a
withCurrentUnit uid = do
local (\env -> env { hsc_env = hscSetActiveUnitId uid (hsc_env env)})
upsweep
:: Int -- ^ The number of workers we wish to run in parallel
-> HscEnv -- ^ The base HscEnv, which is augmented for each module
-> Maybe ModIfaceCache -- ^ A cache to incrementally write final interface files to
-> Maybe Messager
-> M.Map ModNodeKeyWithUid HomeModInfo
-> [BuildPlan]
-> IO (SuccessFlag, HscEnv)
upsweep n_jobs hsc_env hmi_cache mHscMessage old_hpt build_plan = do
(cycle, pipelines, collect_result) <- interpretBuildPlan (hsc_HUG hsc_env) hmi_cache old_hpt build_plan
runPipelines n_jobs hsc_env mHscMessage pipelines
res <- collect_result
let completed = [m | Just (Just m) <- res]
let hsc_env' = addDepsToHscEnv completed hsc_env
-- Handle any cycle in the original compilation graph and return the result
-- of the upsweep.
case cycle of
Just mss -> do
let logger = hsc_logger hsc_env
liftIO $ fatalErrorMsg logger (cyclicModuleErr mss)
return (Failed, hsc_env)
Nothing -> do
let success_flag = successIf (all isJust res)
return (success_flag, hsc_env')
toCache :: [HomeModInfo] -> M.Map (ModNodeKeyWithUid) HomeModInfo
toCache hmis = M.fromList ([(miKey $ hm_iface hmi, hmi) | hmi <- hmis])
miKey :: ModIface -> ModNodeKeyWithUid
miKey hmi = ModNodeKeyWithUid (mi_mnwib hmi) ((toUnitId $ moduleUnit (mi_module hmi)))
upsweep_inst :: HscEnv
-> Maybe Messager
-> Int -- index of module
-> Int -- total number of modules
-> UnitId
-> InstantiatedUnit
-> IO ()
upsweep_inst hsc_env mHscMessage mod_index nmods uid iuid = do
case mHscMessage of
Just hscMessage -> hscMessage hsc_env (mod_index, nmods) (NeedsRecompile MustCompile) (InstantiationNode uid iuid)
Nothing -> return ()
runHsc hsc_env $ ioMsgMaybe $ hoistTcRnMessage $ tcRnCheckUnit hsc_env $ VirtUnit iuid
pure ()
-- | Compile a single module. Always produce a Linkable for it if
-- successful. If no compilation happened, return the old Linkable.
upsweep_mod :: HscEnv
-> Maybe Messager
-> Maybe HomeModInfo
-> ModSummary
-> Int -- index of module
-> Int -- total number of modules
-> IO HomeModInfo
upsweep_mod hsc_env mHscMessage old_hmi summary mod_index nmods = do
hmi <- compileOne' mHscMessage hsc_env summary
mod_index nmods (hm_iface <$> old_hmi) (old_hmi >>= hm_linkable)
-- MP: This is a bit janky, because before you add the entries you have to extend the HPT with the module
-- you just compiled. Another option, would be delay adding anything until after upsweep has finished, but I
-- am unsure if this is sound (wrt running TH splices for example).
-- This function only does anything if the linkable produced is a BCO, which only happens with the
-- bytecode backend, no need to guard against the backend type additionally.
addSptEntries (hscUpdateHPT (\hpt -> addToHpt hpt (ms_mod_name summary) hmi) hsc_env)
(hm_linkable hmi)
return hmi
-- | Add the entries from a BCO linkable to the SPT table, see
-- See Note [Grand plan for static forms] in GHC.Iface.Tidy.StaticPtrTable.
addSptEntries :: HscEnv -> Maybe Linkable -> IO ()
addSptEntries hsc_env mlinkable =
hscAddSptEntries hsc_env
[ spt
| Just linkable <- [mlinkable]
, unlinked <- linkableUnlinked linkable
, BCOs _ spts <- pure unlinked
, spt <- spts
]
{- Note [-fno-code mode]
~~~~~~~~~~~~~~~~~~~~~~~~
GHC offers the flag -fno-code for the purpose of parsing and typechecking a
program without generating object files. This is intended to be used by tooling
and IDEs to provide quick feedback on any parser or type errors as cheaply as
possible.
When GHC is invoked with -fno-code no object files or linked output will be
generated. As many errors and warnings as possible will be generated, as if
-fno-code had not been passed. The session DynFlags will have
backend == NoBackend.
-fwrite-interface
~~~~~~~~~~~~~~~~
Whether interface files are generated in -fno-code mode is controlled by the
-fwrite-interface flag. The -fwrite-interface flag is a no-op if -fno-code is
not also passed. Recompilation avoidance requires interface files, so passing
-fno-code without -fwrite-interface should be avoided. If -fno-code were
re-implemented today, -fwrite-interface would be discarded and it would be
considered always on; this behaviour is as it is for backwards compatibility.
================================================================
IN SUMMARY: ALWAYS PASS -fno-code AND -fwrite-interface TOGETHER
================================================================
Template Haskell
~~~~~~~~~~~~~~~~
A module using template haskell may invoke an imported function from inside a
splice. This will cause the type-checker to attempt to execute that code, which
would fail if no object files had been generated. See #8025. To rectify this,
during the downsweep we patch the DynFlags in the ModSummary of any home module
that is imported by a module that uses template haskell, to generate object
code.
The flavour of generated object code is chosen by defaultObjectTarget for the
target platform. It would likely be faster to generate bytecode, but this is not
supported on all platforms(?Please Confirm?), and does not support the entirety
of GHC haskell. See #1257.
The object files (and interface files if -fwrite-interface is disabled) produced
for template haskell are written to temporary files.
Note that since template haskell can run arbitrary IO actions, -fno-code mode
is no more secure than running without it.
Potential TODOS:
~~~~~
* Remove -fwrite-interface and have interface files always written in -fno-code
mode
* Both .o and .dyn_o files are generated for template haskell, but we only need
.dyn_o. Fix it.
* In make mode, a message like
Compiling A (A.hs, /tmp/ghc_123.o)
is shown if downsweep enabled object code generation for A. Perhaps we should
show "nothing" or "temporary object file" instead. Note that one
can currently use -keep-tmp-files and inspect the generated file with the
current behaviour.
* Offer a -no-codedir command line option, and write what were temporary
object files there. This would speed up recompilation.
* Use existing object files (if they are up to date) instead of always
generating temporary ones.
-}
-- Note [When source is considered modified]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- A number of functions in GHC.Driver accept a SourceModified argument, which
-- is part of how GHC determines whether recompilation may be avoided (see the
-- definition of the SourceModified data type for details).
--
-- Determining whether or not a source file is considered modified depends not
-- only on the source file itself, but also on the output files which compiling
-- that module would produce. This is done because GHC supports a number of
-- flags which control which output files should be produced, e.g. -fno-code
-- -fwrite-interface and -fwrite-ide-file; we must check not only whether the
-- source file has been modified since the last compile, but also whether the
-- source file has been modified since the last compile which produced all of
-- the output files which have been requested.
--
-- Specifically, a source file is considered unmodified if it is up-to-date
-- relative to all of the output files which have been requested. Whether or
-- not an output file is up-to-date depends on what kind of file it is:
--
-- * iface (.hi) files are considered up-to-date if (and only if) their
-- mi_src_hash field matches the hash of the source file,
--
-- * all other output files (.o, .dyn_o, .hie, etc) are considered up-to-date
-- if (and only if) their modification times on the filesystem are greater
-- than or equal to the modification time of the corresponding .hi file.
--
-- Why do we use '>=' rather than '>' for output files other than the .hi file?
-- If the filesystem has poor resolution for timestamps (e.g. FAT32 has a
-- resolution of 2 seconds), we may often find that the .hi and .o files have
-- the same modification time. Using >= is slightly unsafe, but it matches
-- make's behaviour.
--
-- This strategy allows us to do the minimum work necessary in order to ensure
-- that all the files the user cares about are up-to-date; e.g. we should not
-- worry about .o files if the user has indicated that they are not interested
-- in them via -fno-code. See also #9243.
--
-- Note that recompilation avoidance is dependent on .hi files being produced,
-- which does not happen if -fno-write-interface -fno-code is passed. That is,
-- passing -fno-write-interface -fno-code means that you cannot benefit from
-- recompilation avoidance. See also Note [-fno-code mode].
--
-- The correctness of this strategy depends on an assumption that whenever we
-- are producing multiple output files, the .hi file is always written first.
-- If this assumption is violated, we risk recompiling unnecessarily by
-- incorrectly regarding non-.hi files as outdated.
--
-- ---------------------------------------------------------------------------
--
-- | Topological sort of the module graph
topSortModuleGraph
:: Bool
-- ^ Drop hi-boot nodes? (see below)
-> ModuleGraph
-> Maybe HomeUnitModule
-- ^ Root module name. If @Nothing@, use the full graph.
-> [SCC ModuleGraphNode]
-- ^ Calculate SCCs of the module graph, possibly dropping the hi-boot nodes
-- The resulting list of strongly-connected-components is in topologically
-- sorted order, starting with the module(s) at the bottom of the
-- dependency graph (ie compile them first) and ending with the ones at
-- the top.
--
-- Drop hi-boot nodes (first boolean arg)?
--
-- - @False@: treat the hi-boot summaries as nodes of the graph,
-- so the graph must be acyclic
--
-- - @True@: eliminate the hi-boot nodes, and instead pretend
-- the a source-import of Foo is an import of Foo
-- The resulting graph has no hi-boot nodes, but can be cyclic
topSortModuleGraph drop_hs_boot_nodes module_graph mb_root_mod =
-- stronglyConnCompG flips the original order, so if we reverse
-- the summaries we get a stable topological sort.
topSortModules drop_hs_boot_nodes (reverse $ mgModSummaries' module_graph) mb_root_mod
topSortModules :: Bool -> [ModuleGraphNode] -> Maybe HomeUnitModule -> [SCC ModuleGraphNode]
topSortModules drop_hs_boot_nodes summaries mb_root_mod
= map (fmap summaryNodeSummary) $ stronglyConnCompG initial_graph
where
(graph, lookup_node) =
moduleGraphNodes drop_hs_boot_nodes summaries
initial_graph = case mb_root_mod of
Nothing -> graph
Just (Module uid root_mod) ->
-- restrict the graph to just those modules reachable from
-- the specified module. We do this by building a graph with
-- the full set of nodes, and determining the reachable set from
-- the specified node.
let root | Just node <- lookup_node $ NodeKey_Module $ ModNodeKeyWithUid (GWIB root_mod NotBoot) uid
, graph `hasVertexG` node
= node
| otherwise
= throwGhcException (ProgramError "module does not exist")
in graphFromEdgedVerticesUniq (seq root (reachableG graph root))
newtype ModNodeMap a = ModNodeMap { unModNodeMap :: Map.Map ModNodeKey a }
deriving (Functor, Traversable, Foldable)
emptyModNodeMap :: ModNodeMap a
emptyModNodeMap = ModNodeMap Map.empty
modNodeMapInsert :: ModNodeKey -> a -> ModNodeMap a -> ModNodeMap a
modNodeMapInsert k v (ModNodeMap m) = ModNodeMap (Map.insert k v m)
modNodeMapElems :: ModNodeMap a -> [a]
modNodeMapElems (ModNodeMap m) = Map.elems m
modNodeMapLookup :: ModNodeKey -> ModNodeMap a -> Maybe a
modNodeMapLookup k (ModNodeMap m) = Map.lookup k m
modNodeMapSingleton :: ModNodeKey -> a -> ModNodeMap a
modNodeMapSingleton k v = ModNodeMap (M.singleton k v)
modNodeMapUnionWith :: (a -> a -> a) -> ModNodeMap a -> ModNodeMap a -> ModNodeMap a
modNodeMapUnionWith f (ModNodeMap m) (ModNodeMap n) = ModNodeMap (M.unionWith f m n)
-- | If there are {-# SOURCE #-} imports between strongly connected
-- components in the topological sort, then those imports can
-- definitely be replaced by ordinary non-SOURCE imports: if SOURCE
-- were necessary, then the edge would be part of a cycle.
warnUnnecessarySourceImports :: GhcMonad m => [SCC ModSummary] -> m ()
warnUnnecessarySourceImports sccs = do
diag_opts <- initDiagOpts <$> getDynFlags
when (diag_wopt Opt_WarnUnusedImports diag_opts) $ do
let check ms =
let mods_in_this_cycle = map ms_mod_name ms in
[ warn i | m <- ms, i <- ms_home_srcimps m,
unLoc i `notElem` mods_in_this_cycle ]
warn :: Located ModuleName -> MsgEnvelope GhcMessage
warn (L loc mod) = GhcDriverMessage <$> mkPlainMsgEnvelope diag_opts
loc (DriverUnnecessarySourceImports mod)
logDiagnostics (mkMessages $ listToBag (concatMap (check . flattenSCC) sccs))
-- This caches the answer to the question, if we are in this unit, what does
-- an import of this module mean.
type DownsweepCache = M.Map (UnitId, PkgQual, ModuleNameWithIsBoot) [Either DriverMessages ModSummary]
-----------------------------------------------------------------------------
--
-- | Downsweep (dependency analysis)
--
-- Chase downwards from the specified root set, returning summaries
-- for all home modules encountered. Only follow source-import
-- links.
--
-- We pass in the previous collection of summaries, which is used as a
-- cache to avoid recalculating a module summary if the source is
-- unchanged.
--
-- The returned list of [ModSummary] nodes has one node for each home-package
-- module, plus one for any hs-boot files. The imports of these nodes
-- are all there, including the imports of non-home-package modules.
downsweep :: HscEnv
-> [ModSummary]
-- ^ Old summaries
-> [ModuleName] -- Ignore dependencies on these; treat
-- them as if they were package modules
-> Bool -- True <=> allow multiple targets to have
-- the same module name; this is
-- very useful for ghc -M
-> IO ([DriverMessages], [ModuleGraphNode])
-- The non-error elements of the returned list all have distinct
-- (Modules, IsBoot) identifiers, unless the Bool is true in
-- which case there can be repeats
downsweep hsc_env old_summaries excl_mods allow_dup_roots
= do
rootSummaries <- mapM getRootSummary roots
let (root_errs, rootSummariesOk) = partitionEithers rootSummaries -- #17549
root_map = mkRootMap rootSummariesOk
checkDuplicates root_map
(deps, pkg_deps, map0) <- loopSummaries rootSummariesOk (M.empty, Set.empty, root_map)
let closure_errs = checkHomeUnitsClosed (hsc_unit_env hsc_env) (hsc_all_home_unit_ids hsc_env) (Set.toList pkg_deps)
let unit_env = hsc_unit_env hsc_env
let tmpfs = hsc_tmpfs hsc_env
let downsweep_errs = lefts $ concat $ M.elems map0
downsweep_nodes = M.elems deps
(other_errs, unit_nodes) = partitionEithers $ unitEnv_foldWithKey (\nodes uid hue -> nodes ++ unitModuleNodes downsweep_nodes uid hue) [] (hsc_HUG hsc_env)
all_nodes = downsweep_nodes ++ unit_nodes
all_errs = all_root_errs ++ downsweep_errs ++ other_errs
all_root_errs = closure_errs ++ map snd root_errs
-- if we have been passed -fno-code, we enable code generation
-- for dependencies of modules that have -XTemplateHaskell,
-- otherwise those modules will fail to compile.
-- See Note [-fno-code mode] #8025
th_enabled_nodes <- enableCodeGenForTH logger tmpfs unit_env all_nodes
if null all_root_errs
then return (all_errs, th_enabled_nodes)
else pure $ (all_root_errs, [])
where
-- Dependencies arising on a unit (backpack and module linking deps)
unitModuleNodes :: [ModuleGraphNode] -> UnitId -> HomeUnitEnv -> [Either (Messages DriverMessage) ModuleGraphNode]
unitModuleNodes summaries uid hue =
let instantiation_nodes = instantiationNodes uid (homeUnitEnv_units hue)
in map Right instantiation_nodes
++ maybeToList (linkNodes (instantiation_nodes ++ summaries) uid hue)
calcDeps ms =
-- Add a dependency on the HsBoot file if it exists
-- This gets passed to the loopImports function which just ignores it if it
-- can't be found.
[(ms_unitid ms, NoPkgQual, GWIB (noLoc $ ms_mod_name ms) IsBoot) | NotBoot <- [isBootSummary ms] ] ++
[(ms_unitid ms, b, c) | (b, c) <- msDeps ms ]
logger = hsc_logger hsc_env
roots = hsc_targets hsc_env
-- A cache from file paths to the already summarised modules.
-- Reuse these if we can because the most expensive part of downsweep is
-- reading the headers.
old_summary_map :: M.Map FilePath ModSummary
old_summary_map = M.fromList [(msHsFilePath ms, ms) | ms <- old_summaries]
getRootSummary :: Target -> IO (Either (UnitId, DriverMessages) ModSummary)
getRootSummary Target { targetId = TargetFile file mb_phase
, targetContents = maybe_buf
, targetUnitId = uid
}
= do let offset_file = augmentByWorkingDirectory dflags file
exists <- liftIO $ doesFileExist offset_file
if exists || isJust maybe_buf
then first (uid,) <$>
summariseFile hsc_env home_unit old_summary_map offset_file mb_phase
maybe_buf
else return $ Left $ (uid,) $ singleMessage
$ mkPlainErrorMsgEnvelope noSrcSpan (DriverFileNotFound offset_file)
where
dflags = homeUnitEnv_dflags (ue_findHomeUnitEnv uid (hsc_unit_env hsc_env))
home_unit = ue_unitHomeUnit uid (hsc_unit_env hsc_env)
getRootSummary Target { targetId = TargetModule modl
, targetContents = maybe_buf
, targetUnitId = uid
}
= do maybe_summary <- summariseModule hsc_env home_unit old_summary_map NotBoot
(L rootLoc modl) (ThisPkg (homeUnitId home_unit))
maybe_buf excl_mods
case maybe_summary of
FoundHome s -> return (Right s)
FoundHomeWithError err -> return (Left err)
_ -> return $ Left $ (uid, moduleNotFoundErr modl)
where
home_unit = ue_unitHomeUnit uid (hsc_unit_env hsc_env)
rootLoc = mkGeneralSrcSpan (fsLit "<command line>")
-- In a root module, the filename is allowed to diverge from the module
-- name, so we have to check that there aren't multiple root files
-- defining the same module (otherwise the duplicates will be silently
-- ignored, leading to confusing behaviour).
checkDuplicates
:: DownsweepCache
-> IO ()
checkDuplicates root_map
| allow_dup_roots = return ()
| null dup_roots = return ()
| otherwise = liftIO $ multiRootsErr (head dup_roots)
where
dup_roots :: [[ModSummary]] -- Each at least of length 2
dup_roots = filterOut isSingleton $ map rights (M.elems root_map)
-- This loops over all the mod summaries in the dependency graph, accumulates the actual dependencies for each module/unit
loopSummaries :: [ModSummary]
-> (M.Map NodeKey ModuleGraphNode, Set.Set (UnitId, UnitId),
DownsweepCache)
-> IO ((M.Map NodeKey ModuleGraphNode), Set.Set (UnitId, UnitId), DownsweepCache)
loopSummaries [] done = return done
loopSummaries (ms:next) (done, pkgs, summarised)
| Just {} <- M.lookup k done
= loopSummaries next (done, pkgs, summarised)
-- Didn't work out what the imports mean yet, now do that.
| otherwise = do
(final_deps, pkgs1, done', summarised') <- loopImports (calcDeps ms) done summarised
-- This has the effect of finding a .hs file if we are looking at the .hs-boot file.
(_, _, done'', summarised'') <- loopImports (maybeToList hs_file_for_boot) done' summarised'
loopSummaries next (M.insert k (ModuleNode final_deps ms) done'', pkgs1 `Set.union` pkgs, summarised'')
where
k = NodeKey_Module (msKey ms)
hs_file_for_boot
| HsBootFile <- ms_hsc_src ms = Just $ ((ms_unitid ms), NoPkgQual, (GWIB (noLoc $ ms_mod_name ms) NotBoot))
| otherwise = Nothing
-- This loops over each import in each summary. It is mutually recursive with loopSummaries if we discover
-- a new module by doing this.
loopImports :: [(UnitId, PkgQual, GenWithIsBoot (Located ModuleName))]
-- Work list: process these modules
-> M.Map NodeKey ModuleGraphNode
-> DownsweepCache
-- Visited set; the range is a list because
-- the roots can have the same module names
-- if allow_dup_roots is True
-> IO ([NodeKey], Set.Set (UnitId, UnitId),
M.Map NodeKey ModuleGraphNode, DownsweepCache)
-- The result is the completed NodeMap
loopImports [] done summarised = return ([], Set.empty, done, summarised)
loopImports ((home_uid,mb_pkg, gwib) : ss) done summarised
| Just summs <- M.lookup cache_key summarised
= case summs of
[Right ms] -> do
let nk = NodeKey_Module (msKey ms)
(rest, pkgs, summarised', done') <- loopImports ss done summarised
return (nk: rest, pkgs, summarised', done')
[Left _err] ->
loopImports ss done summarised
_errs -> do
loopImports ss done summarised
| otherwise
= do
mb_s <- summariseModule hsc_env home_unit old_summary_map
is_boot wanted_mod mb_pkg
Nothing excl_mods
case mb_s of
NotThere -> loopImports ss done summarised
External uid -> do
(other_deps, pkgs, done', summarised') <- loopImports ss done summarised
return (other_deps, Set.insert (homeUnitId home_unit, uid) pkgs, done', summarised')
FoundInstantiation iud -> do
(other_deps, pkgs, done', summarised') <- loopImports ss done summarised
return (NodeKey_Unit iud : other_deps, pkgs, done', summarised')
FoundHomeWithError (_uid, e) -> loopImports ss done (Map.insert cache_key [(Left e)] summarised)
FoundHome s -> do
(done', pkgs1, summarised') <-
loopSummaries [s] (done, Set.empty, Map.insert cache_key [Right s] summarised)
(other_deps, pkgs2, final_done, final_summarised) <- loopImports ss done' summarised'
-- MP: This assumes that we can only instantiate non home units, which is probably fair enough for now.
return (NodeKey_Module (msKey s) : other_deps, pkgs1 `Set.union` pkgs2, final_done, final_summarised)
where
cache_key = (home_uid, mb_pkg, unLoc <$> gwib)
home_unit = ue_unitHomeUnit home_uid (hsc_unit_env hsc_env)
GWIB { gwib_mod = L loc mod, gwib_isBoot = is_boot } = gwib
wanted_mod = L loc mod
-- This function checks then important property that if both p and q are home units
-- then any dependency of p, which transitively depends on q is also a home unit.
checkHomeUnitsClosed :: UnitEnv -> Set.Set UnitId -> [(UnitId, UnitId)] -> [DriverMessages]
-- Fast path, trivially closed.
checkHomeUnitsClosed ue home_id_set home_imp_ids
| Set.size home_id_set == 1 = []
| otherwise =
let res = foldMap loop home_imp_ids
-- Now check whether everything which transitively depends on a home_unit is actually a home_unit
-- These units are the ones which we need to load as home packages but failed to do for some reason,
-- it's a bug in the tool invoking GHC.
bad_unit_ids = Set.difference res home_id_set
in if Set.null bad_unit_ids
then []
else [singleMessage $ mkPlainErrorMsgEnvelope rootLoc $ DriverHomePackagesNotClosed (Set.toList bad_unit_ids)]
where
rootLoc = mkGeneralSrcSpan (fsLit "<command line>")
-- TODO: This could repeat quite a bit of work but I struggled to write this function.
-- Which units transitively depend on a home unit
loop :: (UnitId, UnitId) -> Set.Set UnitId -- The units which transitively depend on a home unit
loop (from_uid, uid) =
let us = ue_findHomeUnitEnv from_uid ue in
let um = unitInfoMap (homeUnitEnv_units us) in
case Map.lookup uid um of
Nothing -> pprPanic "uid not found" (ppr uid)
Just ui ->
let depends = unitDepends ui
home_depends = Set.fromList depends `Set.intersection` home_id_set
other_depends = Set.fromList depends `Set.difference` home_id_set
in
-- Case 1: The unit directly depends on a home_id
if not (null home_depends)
then
let res = foldMap (loop . (from_uid,)) other_depends
in Set.insert uid res
-- Case 2: Check the rest of the dependencies, and then see if any of them depended on
else
let res = foldMap (loop . (from_uid,)) other_depends
in
if not (Set.null res)
then Set.insert uid res
else res
-- | Update the every ModSummary that is depended on
-- by a module that needs template haskell. We enable codegen to
-- the specified target, disable optimization and change the .hi
-- and .o file locations to be temporary files.
-- See Note [-fno-code mode]
enableCodeGenForTH
:: Logger
-> TmpFs
-> UnitEnv
-> [ModuleGraphNode]
-> IO [ModuleGraphNode]
enableCodeGenForTH logger tmpfs unit_env =
enableCodeGenWhen logger tmpfs TFL_CurrentModule TFL_GhcSession unit_env
-- | Helper used to implement 'enableCodeGenForTH'.
-- In particular, this enables
-- unoptimized code generation for all modules that meet some
-- condition (first parameter), or are dependencies of those
-- modules. The second parameter is a condition to check before
-- marking modules for code generation.
enableCodeGenWhen
:: Logger
-> TmpFs
-> TempFileLifetime
-> TempFileLifetime
-> UnitEnv
-> [ModuleGraphNode]
-> IO [ModuleGraphNode]
enableCodeGenWhen logger tmpfs staticLife dynLife unit_env mod_graph =
mapM enable_code_gen mod_graph
where
defaultBackendOf ms = platformDefaultBackend (targetPlatform $ ue_unitFlags (ms_unitid ms) unit_env)
enable_code_gen :: ModuleGraphNode -> IO ModuleGraphNode
enable_code_gen n@(ModuleNode deps ms)
| ModSummary
{ ms_location = ms_location
, ms_hsc_src = HsSrcFile
, ms_hspp_opts = dflags
} <- ms
, mkNodeKey n `Set.member` needs_codegen_set =
if | nocode_enable ms -> do
let new_temp_file suf dynsuf = do
tn <- newTempName logger tmpfs (tmpDir dflags) staticLife suf
let dyn_tn = tn -<.> dynsuf
addFilesToClean tmpfs dynLife [dyn_tn]
return (tn, dyn_tn)
-- We don't want to create .o or .hi files unless we have been asked
-- to by the user. But we need them, so we patch their locations in
-- the ModSummary with temporary files.
--
((hi_file, dyn_hi_file), (o_file, dyn_o_file)) <-
-- If ``-fwrite-interface` is specified, then the .o and .hi files
-- are written into `-odir` and `-hidir` respectively. #16670
if gopt Opt_WriteInterface dflags
then return ((ml_hi_file ms_location, ml_dyn_hi_file ms_location)
, (ml_obj_file ms_location, ml_dyn_obj_file ms_location))
else (,) <$> (new_temp_file (hiSuf_ dflags) (dynHiSuf_ dflags))
<*> (new_temp_file (objectSuf_ dflags) (dynObjectSuf_ dflags))
let ms' = ms
{ ms_location =
ms_location { ml_hi_file = hi_file
, ml_obj_file = o_file
, ml_dyn_hi_file = dyn_hi_file
, ml_dyn_obj_file = dyn_o_file }
, ms_hspp_opts = updOptLevel 0 $ dflags {backend = defaultBackendOf ms}
}
-- Recursive call to catch the other cases
enable_code_gen (ModuleNode deps ms')
| dynamic_too_enable ms -> do
let ms' = ms
{ ms_hspp_opts = gopt_set (ms_hspp_opts ms) Opt_BuildDynamicToo
}
-- Recursive call to catch the other cases
enable_code_gen (ModuleNode deps ms')
| ext_interp_enable ms -> do
let ms' = ms
{ ms_hspp_opts = gopt_set (ms_hspp_opts ms) Opt_ExternalInterpreter
}
-- Recursive call to catch the other cases
enable_code_gen (ModuleNode deps ms')
| otherwise -> return n
enable_code_gen ms = return ms
nocode_enable ms@(ModSummary { ms_hspp_opts = dflags }) =
not (backendGeneratesCode (backend dflags)) &&
-- Don't enable codegen for TH on indefinite packages; we
-- can't compile anything anyway! See #16219.
isHomeUnitDefinite (ue_unitHomeUnit (ms_unitid ms) unit_env)
-- #8180 - when using TemplateHaskell, switch on -dynamic-too so
-- the linker can correctly load the object files. This isn't necessary
-- when using -fexternal-interpreter.
dynamic_too_enable ms
= hostIsDynamic && internalInterpreter &&
not isDynWay && not isProfWay && not dyn_too_enabled
where
lcl_dflags = ms_hspp_opts ms
internalInterpreter = not (gopt Opt_ExternalInterpreter lcl_dflags)
dyn_too_enabled = (gopt Opt_BuildDynamicToo lcl_dflags)
isDynWay = hasWay (ways lcl_dflags) WayDyn
isProfWay = hasWay (ways lcl_dflags) WayProf
-- #16331 - when no "internal interpreter" is available but we
-- need to process some TemplateHaskell or QuasiQuotes, we automatically
-- turn on -fexternal-interpreter.
ext_interp_enable ms = not ghciSupported && internalInterpreter
where
lcl_dflags = ms_hspp_opts ms
internalInterpreter = not (gopt Opt_ExternalInterpreter lcl_dflags)
(mg, lookup_node) = moduleGraphNodes False mod_graph
needs_codegen_set = Set.fromList $ map (mkNodeKey . node_payload) $ reachablesG mg (map (expectJust "needs_th" . lookup_node) has_th_set)
has_th_set =
[ mkNodeKey mn
| mn@(ModuleNode _ ms) <- mod_graph
, isTemplateHaskellOrQQNonBoot ms
]
-- | Populate the Downsweep cache with the root modules.
mkRootMap
:: [ModSummary]
-> DownsweepCache
mkRootMap summaries = Map.fromListWith (flip (++))
[ ((ms_unitid s, NoPkgQual, ms_mnwib s), [Right s]) | s <- summaries ]
-----------------------------------------------------------------------------
-- Summarising modules
-- We have two types of summarisation:
--
-- * Summarise a file. This is used for the root module(s) passed to
-- cmLoadModules. The file is read, and used to determine the root
-- module name. The module name may differ from the filename.
--
-- * Summarise a module. We are given a module name, and must provide
-- a summary. The finder is used to locate the file in which the module
-- resides.
summariseFile
:: HscEnv
-> HomeUnit
-> M.Map FilePath ModSummary -- old summaries
-> FilePath -- source file name
-> Maybe Phase -- start phase
-> Maybe (StringBuffer,UTCTime)
-> IO (Either DriverMessages ModSummary)
summariseFile hsc_env' home_unit old_summaries src_fn mb_phase maybe_buf
-- we can use a cached summary if one is available and the
-- source file hasn't changed, But we have to look up the summary
-- by source file, rather than module name as we do in summarise.
| Just old_summary <- M.lookup src_fn old_summaries
= do
let location = ms_location $ old_summary
src_hash <- get_src_hash
-- The file exists; we checked in getRootSummary above.
-- If it gets removed subsequently, then this
-- getFileHash may fail, but that's the right
-- behaviour.
-- return the cached summary if the source didn't change
checkSummaryHash
hsc_env (new_summary src_fn)
old_summary location src_hash
| otherwise
= do src_hash <- get_src_hash
new_summary src_fn src_hash
where
-- change the main active unit so all operations happen relative to the given unit
hsc_env = hscSetActiveHomeUnit home_unit hsc_env'
-- src_fn does not necessarily exist on the filesystem, so we need to
-- check what kind of target we are dealing with
get_src_hash = case maybe_buf of
Just (buf,_) -> return $ fingerprintStringBuffer buf
Nothing -> liftIO $ getFileHash src_fn
new_summary src_fn src_hash = runExceptT $ do
preimps@PreprocessedImports {..}
<- getPreprocessedImports hsc_env src_fn mb_phase maybe_buf
let fopts = initFinderOpts (hsc_dflags hsc_env)
-- Make a ModLocation for this file
let location = mkHomeModLocation fopts pi_mod_name src_fn
-- Tell the Finder cache where it is, so that subsequent calls
-- to findModule will find it, even if it's not on any search path
mod <- liftIO $ do
let home_unit = hsc_home_unit hsc_env
let fc = hsc_FC hsc_env
addHomeModuleToFinder fc home_unit pi_mod_name location
liftIO $ makeNewModSummary hsc_env $ MakeNewModSummary
{ nms_src_fn = src_fn
, nms_src_hash = src_hash
, nms_is_boot = NotBoot
, nms_hsc_src =
if isHaskellSigFilename src_fn
then HsigFile
else HsSrcFile
, nms_location = location
, nms_mod = mod
, nms_preimps = preimps
}
checkSummaryHash
:: HscEnv
-> (Fingerprint -> IO (Either e ModSummary))
-> ModSummary -> ModLocation -> Fingerprint
-> IO (Either e ModSummary)
checkSummaryHash
hsc_env new_summary
old_summary
location src_hash
| ms_hs_hash old_summary == src_hash &&
not (gopt Opt_ForceRecomp (hsc_dflags hsc_env)) = do
-- update the object-file timestamp
obj_timestamp <- modificationTimeIfExists (ml_obj_file location)
-- We have to repopulate the Finder's cache for file targets
-- because the file might not even be on the regular search path
-- and it was likely flushed in depanal. This is not technically
-- needed when we're called from sumariseModule but it shouldn't
-- hurt.
-- Also, only add to finder cache for non-boot modules as the finder cache
-- makes sure to add a boot suffix for boot files.
_ <- do
let fc = hsc_FC hsc_env
case ms_hsc_src old_summary of
HsSrcFile -> addModuleToFinder fc (ms_mod old_summary) location
_ -> return ()
hi_timestamp <- modificationTimeIfExists (ml_hi_file location)
hie_timestamp <- modificationTimeIfExists (ml_hie_file location)
return $ Right
( old_summary
{ ms_obj_date = obj_timestamp
, ms_iface_date = hi_timestamp
, ms_hie_date = hie_timestamp
}
)
| otherwise =
-- source changed: re-summarise.
new_summary src_hash
data SummariseResult =
FoundInstantiation InstantiatedUnit
| FoundHomeWithError (UnitId, DriverMessages)
| FoundHome ModSummary
| External UnitId
| NotThere
-- Summarise a module, and pick up source and timestamp.
summariseModule
:: HscEnv
-> HomeUnit
-> M.Map FilePath ModSummary
-- ^ Map of old summaries
-> IsBootInterface -- True <=> a {-# SOURCE #-} import
-> Located ModuleName -- Imported module to be summarised
-> PkgQual
-> Maybe (StringBuffer, UTCTime)
-> [ModuleName] -- Modules to exclude
-> IO SummariseResult
summariseModule hsc_env' home_unit old_summary_map is_boot (L _ wanted_mod) mb_pkg
maybe_buf excl_mods
| wanted_mod `elem` excl_mods
= return NotThere
| otherwise = find_it
where
-- Temporarily change the currently active home unit so all operations
-- happen relative to it
hsc_env = hscSetActiveHomeUnit home_unit hsc_env'
dflags = hsc_dflags hsc_env
find_it :: IO SummariseResult
find_it = do
found <- findImportedModule hsc_env wanted_mod mb_pkg
case found of
Found location mod
| isJust (ml_hs_file location) ->
-- Home package
just_found location mod
| VirtUnit iud <- moduleUnit mod
, not (isHomeModule home_unit mod)
-> return $ FoundInstantiation iud
| otherwise -> return $ External (moduleUnitId mod)
_ -> return NotThere
-- Not found
-- (If it is TRULY not found at all, we'll
-- error when we actually try to compile)
just_found location mod = do
-- Adjust location to point to the hs-boot source file,
-- hi file, object file, when is_boot says so
let location' = case is_boot of
IsBoot -> addBootSuffixLocn location
NotBoot -> location
src_fn = expectJust "summarise2" (ml_hs_file location')
-- Check that it exists
-- It might have been deleted since the Finder last found it
maybe_h <- fileHashIfExists src_fn
case maybe_h of
-- This situation can also happen if we have found the .hs file but the
-- .hs-boot file doesn't exist.
Nothing -> return NotThere
Just h -> do
fresult <- new_summary_cache_check location' mod src_fn h
return $ case fresult of
Left err -> FoundHomeWithError (moduleUnitId mod, err)
Right ms -> FoundHome ms
new_summary_cache_check loc mod src_fn h
| Just old_summary <- Map.lookup src_fn old_summary_map =
-- check the hash on the source file, and
-- return the cached summary if it hasn't changed. If the
-- file has changed then need to resummarise.
case maybe_buf of
Just (buf,_) ->
checkSummaryHash hsc_env (new_summary loc mod src_fn) old_summary loc (fingerprintStringBuffer buf)
Nothing ->
checkSummaryHash hsc_env (new_summary loc mod src_fn) old_summary loc h
| otherwise = new_summary loc mod src_fn h
new_summary :: ModLocation
-> Module
-> FilePath
-> Fingerprint
-> IO (Either DriverMessages ModSummary)
new_summary location mod src_fn src_hash
= runExceptT $ do
preimps@PreprocessedImports {..}
-- Remember to set the active unit here, otherwise the wrong include paths are passed to CPP
-- See multiHomeUnits_cpp2 test
<- getPreprocessedImports (hscSetActiveUnitId (moduleUnitId mod) hsc_env) src_fn Nothing maybe_buf
-- NB: Despite the fact that is_boot is a top-level parameter, we
-- don't actually know coming into this function what the HscSource
-- of the module in question is. This is because we may be processing
-- this module because another module in the graph imported it: in this
-- case, we know if it's a boot or not because of the {-# SOURCE #-}
-- annotation, but we don't know if it's a signature or a regular
-- module until we actually look it up on the filesystem.
let hsc_src
| is_boot == IsBoot = HsBootFile
| isHaskellSigFilename src_fn = HsigFile
| otherwise = HsSrcFile
when (pi_mod_name /= wanted_mod) $
throwE $ singleMessage $ mkPlainErrorMsgEnvelope pi_mod_name_loc
$ DriverFileModuleNameMismatch pi_mod_name wanted_mod
let instantiations = homeUnitInstantiations home_unit
when (hsc_src == HsigFile && isNothing (lookup pi_mod_name instantiations)) $
throwE $ singleMessage $ mkPlainErrorMsgEnvelope pi_mod_name_loc
$ DriverUnexpectedSignature pi_mod_name (checkBuildingCabalPackage dflags) instantiations
liftIO $ makeNewModSummary hsc_env $ MakeNewModSummary
{ nms_src_fn = src_fn
, nms_src_hash = src_hash
, nms_is_boot = is_boot
, nms_hsc_src = hsc_src
, nms_location = location
, nms_mod = mod
, nms_preimps = preimps
}
-- | Convenience named arguments for 'makeNewModSummary' only used to make
-- code more readable, not exported.
data MakeNewModSummary
= MakeNewModSummary
{ nms_src_fn :: FilePath
, nms_src_hash :: Fingerprint
, nms_is_boot :: IsBootInterface
, nms_hsc_src :: HscSource
, nms_location :: ModLocation
, nms_mod :: Module
, nms_preimps :: PreprocessedImports
}
makeNewModSummary :: HscEnv -> MakeNewModSummary -> IO ModSummary
makeNewModSummary hsc_env MakeNewModSummary{..} = do
let PreprocessedImports{..} = nms_preimps
obj_timestamp <- modificationTimeIfExists (ml_obj_file nms_location)
dyn_obj_timestamp <- modificationTimeIfExists (ml_dyn_obj_file nms_location)
hi_timestamp <- modificationTimeIfExists (ml_hi_file nms_location)
hie_timestamp <- modificationTimeIfExists (ml_hie_file nms_location)
extra_sig_imports <- findExtraSigImports hsc_env nms_hsc_src pi_mod_name
(implicit_sigs, _inst_deps) <- implicitRequirementsShallow (hscSetActiveUnitId (moduleUnitId nms_mod) hsc_env) pi_theimps
return $
ModSummary
{ ms_mod = nms_mod
, ms_hsc_src = nms_hsc_src
, ms_location = nms_location
, ms_hspp_file = pi_hspp_fn
, ms_hspp_opts = pi_local_dflags
, ms_hspp_buf = Just pi_hspp_buf
, ms_parsed_mod = Nothing
, ms_srcimps = pi_srcimps
, ms_ghc_prim_import = pi_ghc_prim_import
, ms_textual_imps =
((,) NoPkgQual . noLoc <$> extra_sig_imports) ++
((,) NoPkgQual . noLoc <$> implicit_sigs) ++
pi_theimps
, ms_hs_hash = nms_src_hash
, ms_iface_date = hi_timestamp
, ms_hie_date = hie_timestamp
, ms_obj_date = obj_timestamp
, ms_dyn_obj_date = dyn_obj_timestamp
}
data PreprocessedImports
= PreprocessedImports
{ pi_local_dflags :: DynFlags
, pi_srcimps :: [(PkgQual, Located ModuleName)]
, pi_theimps :: [(PkgQual, Located ModuleName)]
, pi_ghc_prim_import :: Bool
, pi_hspp_fn :: FilePath
, pi_hspp_buf :: StringBuffer
, pi_mod_name_loc :: SrcSpan
, pi_mod_name :: ModuleName
}
-- Preprocess the source file and get its imports
-- The pi_local_dflags contains the OPTIONS pragmas
getPreprocessedImports
:: HscEnv
-> FilePath
-> Maybe Phase
-> Maybe (StringBuffer, UTCTime)
-- ^ optional source code buffer and modification time
-> ExceptT DriverMessages IO PreprocessedImports
getPreprocessedImports hsc_env src_fn mb_phase maybe_buf = do
(pi_local_dflags, pi_hspp_fn)
<- ExceptT $ preprocess hsc_env src_fn (fst <$> maybe_buf) mb_phase
pi_hspp_buf <- liftIO $ hGetStringBuffer pi_hspp_fn
(pi_srcimps', pi_theimps', pi_ghc_prim_import, L pi_mod_name_loc pi_mod_name)
<- ExceptT $ do
let imp_prelude = xopt LangExt.ImplicitPrelude pi_local_dflags
popts = initParserOpts pi_local_dflags
mimps <- getImports popts imp_prelude pi_hspp_buf pi_hspp_fn src_fn
return (first (mkMessages . fmap mkDriverPsHeaderMessage . getMessages) mimps)
let rn_pkg_qual = renameRawPkgQual (hsc_unit_env hsc_env)
let rn_imps = fmap (\(pk, lmn@(L _ mn)) -> (rn_pkg_qual mn pk, lmn))
let pi_srcimps = rn_imps pi_srcimps'
let pi_theimps = rn_imps pi_theimps'
return PreprocessedImports {..}
-----------------------------------------------------------------------------
-- Error messages
-----------------------------------------------------------------------------
-- Defer and group warning, error and fatal messages so they will not get lost
-- in the regular output.
withDeferredDiagnostics :: GhcMonad m => m a -> m a
withDeferredDiagnostics f = do
dflags <- getDynFlags
if not $ gopt Opt_DeferDiagnostics dflags
then f
else do
warnings <- liftIO $ newIORef []
errors <- liftIO $ newIORef []
fatals <- liftIO $ newIORef []
logger <- getLogger
let deferDiagnostics _dflags !msgClass !srcSpan !msg = do
let action = logMsg logger msgClass srcSpan msg
case msgClass of
MCDiagnostic SevWarning _reason _code
-> atomicModifyIORef' warnings $ \i -> (action: i, ())
MCDiagnostic SevError _reason _code
-> atomicModifyIORef' errors $ \i -> (action: i, ())
MCFatal
-> atomicModifyIORef' fatals $ \i -> (action: i, ())
_ -> action
printDeferredDiagnostics = liftIO $
forM_ [warnings, errors, fatals] $ \ref -> do
-- This IORef can leak when the dflags leaks, so let us always
-- reset the content.
actions <- atomicModifyIORef' ref $ \i -> ([], i)
sequence_ $ reverse actions
MC.bracket
(pushLogHookM (const deferDiagnostics))
(\_ -> popLogHookM >> printDeferredDiagnostics)
(\_ -> f)
noModError :: HscEnv -> SrcSpan -> ModuleName -> FindResult -> MsgEnvelope GhcMessage
-- ToDo: we don't have a proper line number for this error
noModError hsc_env loc wanted_mod err
= mkPlainErrorMsgEnvelope loc $ GhcDriverMessage $
DriverUnknownMessage $ UnknownDiagnostic $ mkPlainError noHints $
cannotFindModule hsc_env wanted_mod err
{-
noHsFileErr :: SrcSpan -> String -> DriverMessages
noHsFileErr loc path
= singleMessage $ mkPlainErrorMsgEnvelope loc (DriverFileNotFound path)
-}
moduleNotFoundErr :: ModuleName -> DriverMessages
moduleNotFoundErr mod = singleMessage $ mkPlainErrorMsgEnvelope noSrcSpan (DriverModuleNotFound mod)
multiRootsErr :: [ModSummary] -> IO ()
multiRootsErr [] = panic "multiRootsErr"
multiRootsErr summs@(summ1:_)
= throwOneError $ fmap GhcDriverMessage $
mkPlainErrorMsgEnvelope noSrcSpan $ DriverDuplicatedModuleDeclaration mod files
where
mod = ms_mod summ1
files = map (expectJust "checkDup" . ml_hs_file . ms_location) summs
cyclicModuleErr :: [ModuleGraphNode] -> SDoc
-- From a strongly connected component we find
-- a single cycle to report
cyclicModuleErr mss
= assert (not (null mss)) $
case findCycle graph of
Nothing -> text "Unexpected non-cycle" <+> ppr mss
Just path0 -> vcat
[ text "Module graph contains a cycle:"
, nest 2 (show_path path0)]
where
graph :: [Node NodeKey ModuleGraphNode]
graph =
[ DigraphNode
{ node_payload = ms
, node_key = mkNodeKey ms
, node_dependencies = nodeDependencies False ms
}
| ms <- mss
]
show_path :: [ModuleGraphNode] -> SDoc
show_path [] = panic "show_path"
show_path [m] = ppr_node m <+> text "imports itself"
show_path (m1:m2:ms) = vcat ( nest 6 (ppr_node m1)
: nest 6 (text "imports" <+> ppr_node m2)
: go ms )
where
go [] = [text "which imports" <+> ppr_node m1]
go (m:ms) = (text "which imports" <+> ppr_node m) : go ms
ppr_node :: ModuleGraphNode -> SDoc
ppr_node (ModuleNode _deps m) = text "module" <+> ppr_ms m
ppr_node (InstantiationNode _uid u) = text "instantiated unit" <+> ppr u
ppr_node (LinkNode uid _) = pprPanic "LinkNode should not be in a cycle" (ppr uid)
ppr_ms :: ModSummary -> SDoc
ppr_ms ms = quotes (ppr (moduleName (ms_mod ms))) <+>
(parens (text (msHsFilePath ms)))
cleanCurrentModuleTempFilesMaybe :: MonadIO m => Logger -> TmpFs -> DynFlags -> m ()
cleanCurrentModuleTempFilesMaybe logger tmpfs dflags =
unless (gopt Opt_KeepTmpFiles dflags) $
liftIO $ cleanCurrentModuleTempFiles logger tmpfs
addDepsToHscEnv :: [HomeModInfo] -> HscEnv -> HscEnv
addDepsToHscEnv deps hsc_env =
hscUpdateHUG (\hug -> foldr addHomeModInfoToHug hug deps) hsc_env
setHPT :: HomePackageTable -> HscEnv -> HscEnv
setHPT deps hsc_env =
hscUpdateHPT (const $ deps) hsc_env
setHUG :: HomeUnitGraph -> HscEnv -> HscEnv
setHUG deps hsc_env =
hscUpdateHUG (const $ deps) hsc_env
-- | Wrap an action to catch and handle exceptions.
wrapAction :: HscEnv -> IO a -> IO (Maybe a)
wrapAction hsc_env k = do
let lcl_logger = hsc_logger hsc_env
lcl_dynflags = hsc_dflags hsc_env
let logg err = printMessages lcl_logger (initDiagOpts lcl_dynflags) (srcErrorMessages err)
-- MP: It is a bit strange how prettyPrintGhcErrors handles some errors but then we handle
-- SourceError and ThreadKilled differently directly below. TODO: Refactor to use `catches`
-- directly. MP should probably use safeTry here to not catch async exceptions but that will regress performance due to
-- internally using forkIO.
mres <- MC.try $ liftIO $ prettyPrintGhcErrors lcl_logger $ k
case mres of
Right res -> return $ Just res
Left exc -> do
case fromException exc of
Just (err :: SourceError)
-> logg err
Nothing -> case fromException exc of
-- ThreadKilled in particular needs to actually kill the thread.
-- So rethrow that and the other async exceptions
Just (err :: SomeAsyncException) -> throwIO err
_ -> errorMsg lcl_logger (text (show exc))
return Nothing
withParLog :: TVar LogQueueQueue -> Int -> ((Logger -> Logger) -> IO b) -> IO b
withParLog lqq_var k cont = do
let init_log = do
-- Make a new log queue
lq <- newLogQueue k
-- Add it into the LogQueueQueue
atomically $ initLogQueue lqq_var lq
return lq
finish_log lq = liftIO (finishLogQueue lq)
MC.bracket init_log finish_log $ \lq -> cont (pushLogHook (const (parLogAction lq)))
withLoggerHsc :: Int -> MakeEnv -> (HscEnv -> IO a) -> IO a
withLoggerHsc k MakeEnv{withLogger, hsc_env} cont = do
withLogger k $ \modifyLogger -> do
let lcl_logger = modifyLogger (hsc_logger hsc_env)
hsc_env' = hsc_env { hsc_logger = lcl_logger }
-- Run continuation with modified logger
cont hsc_env'
executeInstantiationNode :: Int
-> Int
-> HomeUnitGraph
-> UnitId
-> InstantiatedUnit
-> RunMakeM ()
executeInstantiationNode k n deps uid iu = do
env <- ask
-- Output of the logger is mediated by a central worker to
-- avoid output interleaving
msg <- asks env_messager
lift $ MaybeT $ withLoggerHsc k env $ \hsc_env ->
let lcl_hsc_env = setHUG deps hsc_env
in wrapAction lcl_hsc_env $ do
res <- upsweep_inst lcl_hsc_env msg k n uid iu
cleanCurrentModuleTempFilesMaybe (hsc_logger hsc_env) (hsc_tmpfs hsc_env) (hsc_dflags hsc_env)
return res
executeCompileNode :: Int
-> Int
-> Maybe HomeModInfo
-> HomeUnitGraph
-> Maybe [ModuleName] -- List of modules we need to rehydrate before compiling
-> ModSummary
-> RunMakeM HomeModInfo
executeCompileNode k n !old_hmi hug mrehydrate_mods mod = do
me@MakeEnv{..} <- ask
-- Rehydrate any dependencies if this module had a boot file or is a signature file.
lift $ MaybeT (withAbstractSem compile_sem $ withLoggerHsc k me $ \hsc_env -> do
hydrated_hsc_env <- liftIO $ maybeRehydrateBefore (setHUG hug hsc_env) mod fixed_mrehydrate_mods
let -- Use the cached DynFlags which includes OPTIONS_GHC pragmas
lcl_dynflags = ms_hspp_opts mod
let lcl_hsc_env =
-- Localise the hsc_env to use the cached flags
hscSetFlags lcl_dynflags $
hydrated_hsc_env
-- Compile the module, locking with a semaphore to avoid too many modules
-- being compiled at the same time leading to high memory usage.
wrapAction lcl_hsc_env $ do
res <- upsweep_mod lcl_hsc_env env_messager old_hmi mod k n
cleanCurrentModuleTempFilesMaybe (hsc_logger hsc_env) (hsc_tmpfs hsc_env) lcl_dynflags
return res)
where
fixed_mrehydrate_mods =
case ms_hsc_src mod of
-- MP: It is probably a bit of a misimplementation in backpack that
-- compiling a signature requires an knot_var for that unit.
-- If you remove this then a lot of backpack tests fail.
HsigFile -> Just []
_ -> mrehydrate_mods
{- Rehydration, see Note [Rehydrating Modules] -}
rehydrate :: HscEnv -- ^ The HPT in this HscEnv needs rehydrating.
-> [HomeModInfo] -- ^ These are the modules we want to rehydrate.
-> IO HscEnv
rehydrate hsc_env hmis = do
debugTraceMsg logger 2 $ (
text "Re-hydrating loop: " <+> (ppr (map (mi_module . hm_iface) hmis)))
new_mods <- fixIO $ \new_mods -> do
let new_hpt = addListToHpt old_hpt new_mods
let new_hsc_env = hscUpdateHPT_lazy (const new_hpt) hsc_env
mds <- initIfaceCheck (text "rehydrate") new_hsc_env $
mapM (typecheckIface . hm_iface) hmis
let new_mods = [ (mn,hmi{ hm_details = details })
| (hmi,details) <- zip hmis mds
, let mn = moduleName (mi_module (hm_iface hmi)) ]
return new_mods
return $ setHPT (foldl' (\old (mn, hmi) -> addToHpt old mn hmi) old_hpt new_mods) hsc_env
where
logger = hsc_logger hsc_env
to_delete = (map (moduleName . mi_module . hm_iface) hmis)
-- Filter out old modules before tying the knot, otherwise we can end
-- up with a thunk which keeps reference to the old HomeModInfo.
!old_hpt = foldl' delFromHpt (hsc_HPT hsc_env) to_delete
-- If needed, then rehydrate the necessary modules with a suitable KnotVars for the
-- module currently being compiled.
maybeRehydrateBefore :: HscEnv -> ModSummary -> Maybe [ModuleName] -> IO HscEnv
maybeRehydrateBefore hsc_env _ Nothing = return hsc_env
maybeRehydrateBefore hsc_env mod (Just mns) = do
knot_var <- initialise_knot_var hsc_env
let hmis = map (expectJust "mr" . lookupHpt (hsc_HPT hsc_env)) mns
rehydrate (hsc_env { hsc_type_env_vars = knotVarsFromModuleEnv knot_var }) hmis
where
initialise_knot_var hsc_env = liftIO $
let mod_name = homeModuleInstantiation (hsc_home_unit_maybe hsc_env) (ms_mod mod)
in mkModuleEnv . (:[]) . (mod_name,) <$> newIORef emptyTypeEnv
rehydrateAfter :: HscEnv
-> [ModuleName]
-> IO [HomeModInfo]
rehydrateAfter new_hsc mns = do
let new_hpt = hsc_HPT new_hsc
hmis = map (expectJust "mrAfter" . lookupHpt new_hpt) mns
hsc_env <- rehydrate (new_hsc { hsc_type_env_vars = emptyKnotVars }) hmis
return $ map (\mn -> expectJust "rehydrate" $ lookupHpt (hsc_HPT hsc_env) mn) mns
{-
Note [Hydrating Modules]
~~~~~~~~~~~~~~~~~~~~~~~~
There are at least 4 different representations of an interface file as described
by this diagram.
------------------------------
| On-disk M.hi |
------------------------------
| ^
| Read file | Write file
V |
-------------------------------
| ByteString |
-------------------------------
| ^
| Binary.get | Binary.put
V |
--------------------------------
| ModIface (an acyclic AST) |
--------------------------------
| ^
| hydrate | mkIfaceTc
V |
---------------------------------
| ModDetails (lots of cycles) |
---------------------------------
The last step, converting a ModIface into a ModDetails is known as "hydration".
Hydration happens in three different places
* When an interface file is initially loaded from disk, it has to be hydrated.
* When a module is finished compiling, we hydrate the ModIface in order to generate
the version of ModDetails which exists in memory (see Note [ModDetails and --make mode])
* When dealing with boot files and module loops (see Note [Rehydrating Modules])
Note [Rehydrating Modules]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
If a module has a boot file then it is critical to rehydrate the modules on
the path between the two (see #20561).
Suppose we have ("R" for "recursive"):
```
R.hs-boot: module R where
data T
g :: T -> T
A.hs: module A( f, T, g ) where
import {-# SOURCE #-} R
data S = MkS T
f :: T -> S = ...g...
R.hs: module R where
import A
data T = T1 | T2 S
g = ...f...
```
== Why we need to rehydrate A's ModIface before compiling R.hs
After compiling A.hs we'll have a TypeEnv in which the Id for `f` has a type
type uses the AbstractTyCon T; and a TyCon for `S` that also mentions that same
AbstractTyCon. (Abstract because it came from R.hs-boot; we know nothing about
it.)
When compiling R.hs, we build a TyCon for `T`. But that TyCon mentions `S`, and
it currently has an AbstractTyCon for `T` inside it. But we want to build a
fully cyclic structure, in which `S` refers to `T` and `T` refers to `S`.
Solution: **rehydration**. *Before compiling `R.hs`*, rehydrate all the
ModIfaces below it that depend on R.hs-boot. To rehydrate a ModIface, call
`typecheckIface` to convert it to a ModDetails. It's just a de-serialisation
step, no type inference, just lookups.
Now `S` will be bound to a thunk that, when forced, will "see" the final binding
for `T`; see [Tying the knot](https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary/compiler/tying-the-knot).
But note that this must be done *before* compiling R.hs.
== Why we need to rehydrate A's ModIface after compiling R.hs
When compiling R.hs, the knot-tying stuff above will ensure that `f`'s unfolding
mentions the `LocalId` for `g`. But when we finish R, we carefully ensure that
all those `LocalIds` are turned into completed `GlobalIds`, replete with
unfoldings etc. Alas, that will not apply to the occurrences of `g` in `f`'s
unfolding. And if we leave matters like that, they will stay that way, and *all*
subsequent modules that import A will see a crippled unfolding for `f`.
Solution: rehydrate both R and A's ModIface together, right after completing R.hs.
~~ Which modules to rehydrate
We only need rehydrate modules that are
* Below R.hs
* Above R.hs-boot
There might be many unrelated modules (in the home package) that don't need to be
rehydrated.
== Loops with multiple boot files
It is possible for a module graph to have a loop (SCC, when ignoring boot files)
which requires multiple boot files to break. In this case, we must perform
several hydration steps:
1. The hydration steps described above, which are necessary for correctness.
2. An extra hydration step at the end of compiling the entire SCC, in order to
remove space leaks, as we explain below.
Consider the following example:
┌─────┐ ┌─────┐
│ A │ │ B │
└──┬──┘ └──┬──┘
│ │
┌───▼───────────▼───┐
│ C │
└───┬───────────┬───┘
│ │
┌────▼───┐ ┌───▼────┐
│ A-boot │ │ B-boot │
└────────┘ └────────┘
A, B and C live together in a SCC. Suppose that we compile the modules in the
order:
A-boot, B-boot, C, A, B.
When we come to compile A, we will perform the necessary hydration steps,
because A has a boot file. This means that C will be hydrated relative to A,
and the ModDetails for A will reference C/A. Then, when B is compiled,
C will be rehydrated again, and so B will reference C/A,B. At this point,
its interface will be hydrated relative to both A and B.
This causes a space leak: there are now two different copies of C's ModDetails,
kept alive by modules A and B. This is especially problematic if C is large.
The way to avoid this space leak is to rehydrate an entire SCC together at the
end of compilation, so that all the ModDetails point to interfaces for .hs files.
In this example, when we hydrate A, B and C together, then both A and B will refer to
C/A,B.
See #21900 for some more discussion.
== Modules "above" the loop
This dark corner is the subject of #14092.
Suppose we add to our example
```
X.hs module X where
import A
data XT = MkX T
fx = ...g...
```
If in `--make` we compile R.hs-boot, then A.hs, then X.hs, we'll get a `ModDetails` for `X` that has an AbstractTyCon for `T` in the the argument type of `MkX`. So:
* Either we should delay compiling X until after R has been compiled. (This is what we do)
* Or we should rehydrate X after compiling R -- because it transitively depends on R.hs-boot.
Ticket #20200 has exposed some issues to do with the knot-tying logic in GHC.Make, in `--make` mode.
#20200 has lots of issues, many of them now fixed;
this particular issue starts [here](https://gitlab.haskell.org/ghc/ghc/-/issues/20200#note_385758).
The wiki page [Tying the knot](https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary/compiler/tying-the-knot) is helpful.
Also closely related are
* #14092
* #14103
-}
executeLinkNode :: HomeUnitGraph -> (Int, Int) -> UnitId -> [NodeKey] -> RunMakeM ()
executeLinkNode hug kn uid deps = do
withCurrentUnit uid $ do
MakeEnv{..} <- ask
let dflags = hsc_dflags hsc_env
let hsc_env' = setHUG hug hsc_env
msg' = (\messager -> \recomp -> messager hsc_env kn recomp (LinkNode deps uid)) <$> env_messager
linkresult <- liftIO $ withAbstractSem compile_sem $ do
link (ghcLink dflags)
(hsc_logger hsc_env')
(hsc_tmpfs hsc_env')
(hsc_hooks hsc_env')
dflags
(hsc_unit_env hsc_env')
True -- We already decided to link
msg'
(hsc_HPT hsc_env')
case linkresult of
Failed -> fail "Link Failed"
Succeeded -> return ()
{-
Note [ModuleNameSet, efficiency and space leaks]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
During upsweep, the results of compiling modules are placed into a MVar. When we need
to compute the right compilation environment for a module, we consult this MVar and
set the HomeUnitGraph accordingly. This is done to avoid having to precisely track
module dependencies and recreating the HUG from scratch each time, which is very expensive.
In serial mode (-j1), this all works out fine: a module can only be compiled
after its dependencies have finished compiling, and compilation can't be
interleaved with the compilation of other module loops. This ensures that
the HUG only ever contains finalised interfaces.
In parallel mode, we have to be more careful: the HUG variable can contain non-finalised
interfaces, which have been started by another thread. In order to avoid a space leak
in which a finalised interface is compiled against a HPT which contains a non-finalised
interface, we have to restrict the HUG to only contain the visible modules.
The collection of visible modules explains which transitive modules are visible
from a certain point. It is recorded in the ModuleNameSet.
Before a module is compiled, we use this set to restrict the HUG to the visible
modules only, avoiding this tricky space leak.
Efficiency of the ModuleNameSet is of utmost importance, because a union occurs for
each edge in the module graph. To achieve this, the set is represented directly as an IntSet,
which provides suitable performance – even using a UniqSet (which is backed by an IntMap) is
too slow. The crucial test of performance here is the time taken to a do a no-op build in --make mode.
See test "jspace" for an example which used to trigger this problem.
-}
-- See Note [ModuleNameSet, efficiency and space leaks]
type ModuleNameSet = M.Map UnitId I.IntSet
addToModuleNameSet :: UnitId -> ModuleName -> ModuleNameSet -> ModuleNameSet
addToModuleNameSet uid mn s =
let k = (getKey $ getUnique $ mn)
in M.insertWith (I.union) uid (I.singleton k) s
-- | Wait for some dependencies to finish and then read from the given MVar.
wait_deps_hug :: MVar HomeUnitGraph -> [BuildResult] -> ReaderT MakeEnv (MaybeT IO) (HomeUnitGraph, ModuleNameSet)
wait_deps_hug hug_var deps = do
(_, module_deps) <- wait_deps deps
hug <- liftIO $ readMVar hug_var
let pruneHomeUnitEnv uid hme =
let -- Restrict to things which are in the transitive closure to avoid retaining
-- reference to loop modules which have already been compiled by other threads.
-- See Note [ModuleNameSet, efficiency and space leaks]
!new = udfmRestrictKeysSet (homeUnitEnv_hpt hme) (fromMaybe I.empty $ M.lookup uid module_deps)
in hme { homeUnitEnv_hpt = new }
return (unitEnv_mapWithKey pruneHomeUnitEnv hug, module_deps)
-- | Wait for dependencies to finish, and then return their results.
wait_deps :: [BuildResult] -> RunMakeM ([HomeModInfo], ModuleNameSet)
wait_deps [] = return ([], M.empty)
wait_deps (x:xs) = do
(res, deps) <- lift $ waitResult (resultVar x)
(hmis, all_deps) <- wait_deps xs
let !new_deps = deps `unionModuleNameSet` all_deps
case res of
Nothing -> return (hmis, new_deps)
Just hmi -> return (hmi:hmis, new_deps)
where
unionModuleNameSet = M.unionWith I.union
-- Executing the pipelines
label_self :: String -> IO ()
label_self thread_name = do
self_tid <- CC.myThreadId
CC.labelThread self_tid thread_name
runPipelines :: Int -> HscEnv -> Maybe Messager -> [MakeAction] -> IO ()
-- Don't even initialise plugins if there are no pipelines
runPipelines _ _ _ [] = return ()
runPipelines n_job orig_hsc_env mHscMessager all_pipelines = do
liftIO $ label_self "main --make thread"
plugins_hsc_env <- initializePlugins orig_hsc_env
case n_job of
1 -> runSeqPipelines plugins_hsc_env mHscMessager all_pipelines
_n -> runParPipelines n_job plugins_hsc_env mHscMessager all_pipelines
runSeqPipelines :: HscEnv -> Maybe Messager -> [MakeAction] -> IO ()
runSeqPipelines plugin_hsc_env mHscMessager all_pipelines =
let env = MakeEnv { hsc_env = plugin_hsc_env
, withLogger = \_ k -> k id
, compile_sem = AbstractSem (return ()) (return ())
, env_messager = mHscMessager
}
in runAllPipelines 1 env all_pipelines
-- | Build and run a pipeline
runParPipelines :: Int -- ^ How many capabilities to use
-> HscEnv -- ^ The basic HscEnv which is augmented with specific info for each module
-> Maybe Messager -- ^ Optional custom messager to use to report progress
-> [MakeAction] -- ^ The build plan for all the module nodes
-> IO ()
runParPipelines n_jobs plugin_hsc_env mHscMessager all_pipelines = do
-- A variable which we write to when an error has happened and we have to tell the
-- logging thread to gracefully shut down.
stopped_var <- newTVarIO False
-- The queue of LogQueues which actions are able to write to. When an action starts it
-- will add it's LogQueue into this queue.
log_queue_queue_var <- newTVarIO newLogQueueQueue
-- Thread which coordinates the printing of logs
wait_log_thread <- logThread n_jobs (length all_pipelines) (hsc_logger plugin_hsc_env) stopped_var log_queue_queue_var
-- Make the logger thread-safe, in case there is some output which isn't sent via the LogQueue.
thread_safe_logger <- liftIO $ makeThreadSafe (hsc_logger plugin_hsc_env)
let thread_safe_hsc_env = plugin_hsc_env { hsc_logger = thread_safe_logger }
let updNumCapabilities = liftIO $ do
n_capabilities <- getNumCapabilities
n_cpus <- getNumProcessors
-- Setting number of capabilities more than
-- CPU count usually leads to high userspace
-- lock contention. #9221
let n_caps = min n_jobs n_cpus
unless (n_capabilities /= 1) $ setNumCapabilities n_caps
return n_capabilities
let resetNumCapabilities orig_n = do
liftIO $ setNumCapabilities orig_n
atomically $ writeTVar stopped_var True
wait_log_thread
compile_sem <- newQSem n_jobs
let abstract_sem = AbstractSem (waitQSem compile_sem) (signalQSem compile_sem)
-- Reset the number of capabilities once the upsweep ends.
let env = MakeEnv { hsc_env = thread_safe_hsc_env
, withLogger = withParLog log_queue_queue_var
, compile_sem = abstract_sem
, env_messager = mHscMessager
}
MC.bracket updNumCapabilities resetNumCapabilities $ \_ ->
runAllPipelines n_jobs env all_pipelines
withLocalTmpFS :: RunMakeM a -> RunMakeM a
withLocalTmpFS act = do
let initialiser = do
MakeEnv{..} <- ask
lcl_tmpfs <- liftIO $ forkTmpFsFrom (hsc_tmpfs hsc_env)
return $ hsc_env { hsc_tmpfs = lcl_tmpfs }
finaliser lcl_env = do
gbl_env <- ask
liftIO $ mergeTmpFsInto (hsc_tmpfs lcl_env) (hsc_tmpfs (hsc_env gbl_env))
-- Add remaining files which weren't cleaned up into local tmp fs for
-- clean-up later.
-- Clear the logQueue if this node had it's own log queue
MC.bracket initialiser finaliser $ \lcl_hsc_env -> local (\env -> env { hsc_env = lcl_hsc_env}) act
-- | Run the given actions and then wait for them all to finish.
runAllPipelines :: Int -> MakeEnv -> [MakeAction] -> IO ()
runAllPipelines n_jobs env acts = do
let spawn_actions :: IO [ThreadId]
spawn_actions = if n_jobs == 1
then (:[]) <$> (forkIOWithUnmask $ \unmask -> void $ runLoop (\io -> io unmask) env acts)
else runLoop forkIOWithUnmask env acts
kill_actions :: [ThreadId] -> IO ()
kill_actions tids = mapM_ killThread tids
MC.bracket spawn_actions kill_actions $ \_ -> do
mapM_ waitMakeAction acts
-- | Execute each action in order, limiting the amount of parallelism by the given
-- semaphore.
runLoop :: (((forall a. IO a -> IO a) -> IO ()) -> IO a) -> MakeEnv -> [MakeAction] -> IO [a]
runLoop _ _env [] = return []
runLoop fork_thread env (MakeAction act res_var :acts) = do
new_thread <-
fork_thread $ \unmask -> (do
mres <- (unmask $ run_pipeline (withLocalTmpFS act))
`MC.onException` (putMVar res_var Nothing) -- Defensive: If there's an unhandled exception then still signal the failure.
putMVar res_var mres)
threads <- runLoop fork_thread env acts
return (new_thread : threads)
where
run_pipeline :: RunMakeM a -> IO (Maybe a)
run_pipeline p = runMaybeT (runReaderT p env)
data MakeAction = forall a . MakeAction (RunMakeM a) (MVar (Maybe a))
waitMakeAction :: MakeAction -> IO ()
waitMakeAction (MakeAction _ mvar) = () <$ readMVar mvar
{- Note [GHC Heap Invariants]
~~~~~~~~~~~~~~~~~~~~~~~~~~
This note is a general place to explain some of the heap invariants which should
hold for a program compiled with --make mode. These invariants are all things
which can be checked easily using ghc-debug.
1. No HomeModInfo are reachable via the EPS.
Why? Interfaces are lazily loaded into the EPS and the lazy thunk retains
a reference to the entire HscEnv, if we are not careful the HscEnv will
contain the HomePackageTable at the time the interface was loaded and
it will never be released.
Where? dontLeakTheHPT in GHC.Iface.Load
2. No KnotVars are live at the end of upsweep (#20491)
Why? KnotVars contains an old stale reference to the TypeEnv for modules
which participate in a loop. At the end of a loop all the KnotVars references
should be removed by the call to typecheckLoop.
Where? typecheckLoop in GHC.Driver.Make.
3. Immediately after a reload, no ModDetails are live.
Why? During the upsweep all old ModDetails are replaced with a new ModDetails
generated from a ModIface. If we don't clear the ModDetails before the
reload takes place then memory usage during the reload is twice as much
as it should be as we retain a copy of the ModDetails for too long.
Where? pruneCache in GHC.Driver.Make
4. No TcGblEnv or TcLclEnv are live after typechecking is completed.
Why? By the time we get to simplification all the data structures from typechecking
should be eliminated.
Where? No one place in the compiler. These leaks can be introduced by not suitable
forcing functions which take a TcLclEnv as an argument.
5. At the end of a successful upsweep, the number of live ModDetails equals the
number of non-boot Modules.
Why? Each module has a HomeModInfo which contains a ModDetails from that module.
Where? See Note [ModuleNameSet, efficiency and space leaks], a variety of places
in the driver are responsible.
-}
|