1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE TypeFamilies #-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
The Desugarer: turning HsSyn into Core.
-}
module GHC.HsToCore (
-- * Desugaring operations
deSugar, deSugarExpr
) where
import GHC.Prelude
import GHC.Driver.Session
import GHC.Driver.Config
import GHC.Driver.Env
import GHC.Driver.Backend
import GHC.Hs
import GHC.HsToCore.Usage
import GHC.HsToCore.Monad
import GHC.HsToCore.Errors.Types
import GHC.HsToCore.Expr
import GHC.HsToCore.Binds
import GHC.HsToCore.Foreign.Decl
import GHC.HsToCore.Coverage
import GHC.HsToCore.Docs
import GHC.Tc.Types
import GHC.Tc.Utils.Monad ( finalSafeMode, fixSafeInstances )
import GHC.Tc.Module ( runTcInteractive )
import GHC.Core.Type
import GHC.Core.TyCon ( tyConDataCons )
import GHC.Core
import GHC.Core.FVs ( exprsSomeFreeVarsList )
import GHC.Core.SimpleOpt ( simpleOptPgm, simpleOptExpr )
import GHC.Core.Utils
import GHC.Core.Unfold.Make
import GHC.Core.Ppr
import GHC.Core.Coercion
import GHC.Core.DataCon ( dataConWrapId )
import GHC.Core.Make
import GHC.Core.Rules
import GHC.Core.Opt.Monad ( CoreToDo(..) )
import GHC.Core.Lint ( endPassIO )
import GHC.Builtin.Names
import GHC.Builtin.Types.Prim
import GHC.Builtin.Types
import GHC.Data.FastString
import GHC.Data.Maybe ( expectJust )
import GHC.Data.OrdList
import GHC.Utils.Error
import GHC.Utils.Outputable
import GHC.Utils.Panic.Plain
import GHC.Utils.Misc
import GHC.Utils.Monad
import GHC.Utils.Logger
import GHC.Types.Id
import GHC.Types.Id.Info
import GHC.Types.ForeignStubs
import GHC.Types.Avail
import GHC.Types.Basic
import GHC.Types.Var.Set
import GHC.Types.SrcLoc
import GHC.Types.SourceFile
import GHC.Types.TypeEnv
import GHC.Types.Name
import GHC.Types.Name.Set
import GHC.Types.Name.Env
import GHC.Types.Name.Ppr
import GHC.Types.HpcInfo
import GHC.Unit
import GHC.Unit.Module.ModGuts
import GHC.Unit.Module.ModIface
import Data.List (partition)
import Data.IORef
import GHC.Driver.Plugins ( LoadedPlugin(..) )
{-
************************************************************************
* *
* The main function: deSugar
* *
************************************************************************
-}
-- | Main entry point to the desugarer.
deSugar :: HscEnv -> ModLocation -> TcGblEnv -> IO (Messages DsMessage, Maybe ModGuts)
-- Can modify PCS by faulting in more declarations
deSugar hsc_env
mod_loc
tcg_env@(TcGblEnv { tcg_mod = id_mod,
tcg_semantic_mod = mod,
tcg_src = hsc_src,
tcg_type_env = type_env,
tcg_imports = imports,
tcg_exports = exports,
tcg_keep = keep_var,
tcg_th_splice_used = tc_splice_used,
tcg_rdr_env = rdr_env,
tcg_fix_env = fix_env,
tcg_inst_env = inst_env,
tcg_fam_inst_env = fam_inst_env,
tcg_merged = merged,
tcg_warns = warns,
tcg_anns = anns,
tcg_binds = binds,
tcg_imp_specs = imp_specs,
tcg_dependent_files = dependent_files,
tcg_ev_binds = ev_binds,
tcg_th_foreign_files = th_foreign_files_var,
tcg_fords = fords,
tcg_rules = rules,
tcg_patsyns = patsyns,
tcg_tcs = tcs,
tcg_insts = insts,
tcg_fam_insts = fam_insts,
tcg_hpc = other_hpc_info,
tcg_complete_matches = complete_matches
})
= do { let dflags = hsc_dflags hsc_env
logger = hsc_logger hsc_env
print_unqual = mkPrintUnqualified (hsc_unit_env hsc_env) rdr_env
; withTiming logger dflags
(text "Desugar"<+>brackets (ppr mod))
(const ()) $
do { -- Desugar the program
; let export_set = availsToNameSet exports
bcknd = backend dflags
hpcInfo = emptyHpcInfo other_hpc_info
; (binds_cvr, ds_hpc_info, modBreaks)
<- if not (isHsBootOrSig hsc_src)
then addTicksToBinds hsc_env mod mod_loc
export_set (typeEnvTyCons type_env) binds
else return (binds, hpcInfo, Nothing)
; (msgs, mb_res) <- initDs hsc_env tcg_env $
do { ds_ev_binds <- dsEvBinds ev_binds
; core_prs <- dsTopLHsBinds binds_cvr
; core_prs <- patchMagicDefns core_prs
; (spec_prs, spec_rules) <- dsImpSpecs imp_specs
; (ds_fords, foreign_prs) <- dsForeigns fords
; ds_rules <- mapMaybeM dsRule rules
; let hpc_init
| gopt Opt_Hpc dflags = hpcInitCode (hsc_dflags hsc_env) mod ds_hpc_info
| otherwise = mempty
; return ( ds_ev_binds
, foreign_prs `appOL` core_prs `appOL` spec_prs
, spec_rules ++ ds_rules
, ds_fords `appendStubC` hpc_init) }
; case mb_res of {
Nothing -> return (msgs, Nothing) ;
Just (ds_ev_binds, all_prs, all_rules, ds_fords) ->
do { -- Add export flags to bindings
keep_alive <- readIORef keep_var
; let (rules_for_locals, rules_for_imps) = partition isLocalRule all_rules
final_prs = addExportFlagsAndRules bcknd export_set keep_alive
rules_for_locals (fromOL all_prs)
final_pgm = combineEvBinds ds_ev_binds final_prs
-- Notice that we put the whole lot in a big Rec, even the foreign binds
-- When compiling PrelFloat, which defines data Float = F# Float#
-- we want F# to be in scope in the foreign marshalling code!
-- You might think it doesn't matter, but the simplifier brings all top-level
-- things into the in-scope set before simplifying; so we get no unfolding for F#!
; endPassIO hsc_env print_unqual CoreDesugar final_pgm rules_for_imps
; let simpl_opts = initSimpleOpts dflags
; let (ds_binds, ds_rules_for_imps, occ_anald_binds)
= simpleOptPgm simpl_opts mod final_pgm rules_for_imps
-- The simpleOptPgm gets rid of type
-- bindings plus any stupid dead code
; dumpIfSet_dyn logger dflags Opt_D_dump_occur_anal "Occurrence analysis"
FormatCore (pprCoreBindings occ_anald_binds $$ pprRules ds_rules_for_imps )
; endPassIO hsc_env print_unqual CoreDesugarOpt ds_binds ds_rules_for_imps
; let used_names = mkUsedNames tcg_env
pluginModules = map lpModule (hsc_plugins hsc_env)
home_unit = hsc_home_unit hsc_env
; deps <- mkDependencies (homeUnitId home_unit)
(map mi_module pluginModules) tcg_env
; used_th <- readIORef tc_splice_used
; dep_files <- readIORef dependent_files
; safe_mode <- finalSafeMode dflags tcg_env
; usages <- mkUsageInfo hsc_env mod (imp_mods imports) used_names
dep_files merged pluginModules
-- id_mod /= mod when we are processing an hsig, but hsigs
-- never desugared and compiled (there's no code!)
-- Consequently, this should hold for any ModGuts that make
-- past desugaring. See Note [Identity versus semantic module].
; massert (id_mod == mod)
; foreign_files <- readIORef th_foreign_files_var
; (doc_hdr, decl_docs, arg_docs) <- extractDocs tcg_env
; let mod_guts = ModGuts {
mg_module = mod,
mg_hsc_src = hsc_src,
mg_loc = mkFileSrcSpan mod_loc,
mg_exports = exports,
mg_usages = usages,
mg_deps = deps,
mg_used_th = used_th,
mg_rdr_env = rdr_env,
mg_fix_env = fix_env,
mg_warns = warns,
mg_anns = anns,
mg_tcs = tcs,
mg_insts = fixSafeInstances safe_mode insts,
mg_fam_insts = fam_insts,
mg_inst_env = inst_env,
mg_fam_inst_env = fam_inst_env,
mg_patsyns = patsyns,
mg_rules = ds_rules_for_imps,
mg_binds = ds_binds,
mg_foreign = ds_fords,
mg_foreign_files = foreign_files,
mg_hpc_info = ds_hpc_info,
mg_modBreaks = modBreaks,
mg_safe_haskell = safe_mode,
mg_trust_pkg = imp_trust_own_pkg imports,
mg_complete_matches = complete_matches,
mg_doc_hdr = doc_hdr,
mg_decl_docs = decl_docs,
mg_arg_docs = arg_docs
}
; return (msgs, Just mod_guts)
}}}}
mkFileSrcSpan :: ModLocation -> SrcSpan
mkFileSrcSpan mod_loc
= case ml_hs_file mod_loc of
Just file_path -> mkGeneralSrcSpan (mkFastString file_path)
Nothing -> interactiveSrcSpan -- Presumably
dsImpSpecs :: [LTcSpecPrag] -> DsM (OrdList (Id,CoreExpr), [CoreRule])
dsImpSpecs imp_specs
= do { spec_prs <- mapMaybeM (dsSpec Nothing) imp_specs
; let (spec_binds, spec_rules) = unzip spec_prs
; return (concatOL spec_binds, spec_rules) }
combineEvBinds :: [CoreBind] -> [(Id,CoreExpr)] -> [CoreBind]
-- Top-level bindings can include coercion bindings, but not via superclasses
-- See Note [Top-level evidence]
combineEvBinds [] val_prs
= [Rec val_prs]
combineEvBinds (NonRec b r : bs) val_prs
| isId b = combineEvBinds bs ((b,r):val_prs)
| otherwise = NonRec b r : combineEvBinds bs val_prs
combineEvBinds (Rec prs : bs) val_prs
= combineEvBinds bs (prs ++ val_prs)
{-
Note [Top-level evidence]
~~~~~~~~~~~~~~~~~~~~~~~~~
Top-level evidence bindings may be mutually recursive with the top-level value
bindings, so we must put those in a Rec. But we can't put them *all* in a Rec
because the occurrence analyser doesn't take account of type/coercion variables
when computing dependencies.
So we pull out the type/coercion variables (which are in dependency order),
and Rec the rest.
-}
deSugarExpr :: HscEnv -> LHsExpr GhcTc -> IO (Messages DsMessage, Maybe CoreExpr)
deSugarExpr hsc_env tc_expr = do
let dflags = hsc_dflags hsc_env
let logger = hsc_logger hsc_env
showPass logger dflags "Desugar"
-- Do desugaring
(tc_msgs, mb_result) <- runTcInteractive hsc_env $
initDsTc $
dsLExpr tc_expr
massert (isEmptyMessages tc_msgs) -- the type-checker isn't doing anything here
-- mb_result is Nothing only when a failure happens in the type-checker,
-- but mb_core_expr is Nothing when a failure happens in the desugarer
let (ds_msgs, mb_core_expr) = expectJust "deSugarExpr" mb_result
case mb_core_expr of
Nothing -> return ()
Just expr -> dumpIfSet_dyn logger dflags Opt_D_dump_ds "Desugared"
FormatCore (pprCoreExpr expr)
-- callers (i.e. ioMsgMaybe) expect that no expression is returned if
-- there are errors
let final_res | errorsFound ds_msgs = Nothing
| otherwise = mb_core_expr
return (ds_msgs, final_res)
{-
************************************************************************
* *
* Add rules and export flags to binders
* *
************************************************************************
-}
addExportFlagsAndRules
:: Backend -> NameSet -> NameSet -> [CoreRule]
-> [(Id, t)] -> [(Id, t)]
addExportFlagsAndRules bcknd exports keep_alive rules prs
= mapFst add_one prs
where
add_one bndr = add_rules name (add_export name bndr)
where
name = idName bndr
---------- Rules --------
-- See Note [Attach rules to local ids]
-- NB: the binder might have some existing rules,
-- arising from specialisation pragmas
add_rules name bndr
| Just rules <- lookupNameEnv rule_base name
= bndr `addIdSpecialisations` rules
| otherwise
= bndr
rule_base = extendRuleBaseList emptyRuleBase rules
---------- Export flag --------
-- See Note [Adding export flags]
add_export name bndr
| dont_discard name = setIdExported bndr
| otherwise = bndr
dont_discard :: Name -> Bool
dont_discard name = is_exported name
|| name `elemNameSet` keep_alive
-- In interactive mode, we don't want to discard any top-level
-- entities at all (eg. do not inline them away during
-- simplification), and retain them all in the TypeEnv so they are
-- available from the command line.
--
-- isExternalName separates the user-defined top-level names from those
-- introduced by the type checker.
is_exported :: Name -> Bool
is_exported | backendRetainsAllBindings bcknd = isExternalName
| otherwise = (`elemNameSet` exports)
{-
Note [Adding export flags]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Set the no-discard flag if either
a) the Id is exported
b) it's mentioned in the RHS of an orphan rule
c) it's in the keep-alive set
It means that the binding won't be discarded EVEN if the binding
ends up being trivial (v = w) -- the simplifier would usually just
substitute w for v throughout, but we don't apply the substitution to
the rules (maybe we should?), so this substitution would make the rule
bogus.
You might wonder why exported Ids aren't already marked as such;
it's just because the type checker is rather busy already and
I didn't want to pass in yet another mapping.
Note [Attach rules to local ids]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Find the rules for locally-defined Ids; then we can attach them
to the binders in the top-level bindings
Reason
- It makes the rules easier to look up
- It means that rewrite rules and specialisations for
locally defined Ids are handled uniformly
- It keeps alive things that are referred to only from a rule
(the occurrence analyser knows about rules attached to Ids)
- It makes sure that, when we apply a rule, the free vars
of the RHS are more likely to be in scope
- The imported rules are carried in the in-scope set
which is extended on each iteration by the new wave of
local binders; any rules which aren't on the binding will
thereby get dropped
************************************************************************
* *
* Desugaring rewrite rules
* *
************************************************************************
-}
dsRule :: LRuleDecl GhcTc -> DsM (Maybe CoreRule)
dsRule (L loc (HsRule { rd_name = name
, rd_act = rule_act
, rd_tmvs = vars
, rd_lhs = lhs
, rd_rhs = rhs }))
= putSrcSpanDs (locA loc) $
do { let bndrs' = [var | L _ (RuleBndr _ (L _ var)) <- vars]
; lhs' <- unsetGOptM Opt_EnableRewriteRules $
unsetWOptM Opt_WarnIdentities $
dsLExpr lhs -- Note [Desugaring RULE left hand sides]
; rhs' <- dsLExpr rhs
; this_mod <- getModule
; (bndrs'', lhs'', rhs'') <- unfold_coerce bndrs' lhs' rhs'
-- Substitute the dict bindings eagerly,
-- and take the body apart into a (f args) form
; dflags <- getDynFlags
; case decomposeRuleLhs dflags bndrs'' lhs'' of {
Left msg -> do { diagnosticDs WarningWithoutFlag msg; return Nothing } ;
Right (final_bndrs, fn_id, args) -> do
{ let is_local = isLocalId fn_id
-- NB: isLocalId is False of implicit Ids. This is good because
-- we don't want to attach rules to the bindings of implicit Ids,
-- because they don't show up in the bindings until just before code gen
fn_name = idName fn_id
simpl_opts = initSimpleOpts dflags
final_rhs = simpleOptExpr simpl_opts rhs'' -- De-crap it
rule_name = snd (unLoc name)
final_bndrs_set = mkVarSet final_bndrs
arg_ids = filterOut (`elemVarSet` final_bndrs_set) $
exprsSomeFreeVarsList isId args
; rule <- dsMkUserRule this_mod is_local
rule_name rule_act fn_name final_bndrs args
final_rhs
; warnRuleShadowing rule_name rule_act fn_id arg_ids
; return (Just rule)
} } }
warnRuleShadowing :: RuleName -> Activation -> Id -> [Id] -> DsM ()
-- See Note [Rules and inlining/other rules]
warnRuleShadowing rule_name rule_act fn_id arg_ids
= do { check False fn_id -- We often have multiple rules for the same Id in a
-- module. Maybe we should check that they don't overlap
-- but currently we don't
; mapM_ (check True) arg_ids }
where
check check_rules_too lhs_id
| isLocalId lhs_id || canUnfold (idUnfolding lhs_id)
-- If imported with no unfolding, no worries
, idInlineActivation lhs_id `competesWith` rule_act
= diagnosticDs (WarningWithFlag Opt_WarnInlineRuleShadowing)
(vcat [ hang (text "Rule" <+> pprRuleName rule_name
<+> text "may never fire")
2 (text "because" <+> quotes (ppr lhs_id)
<+> text "might inline first")
, text "Probable fix: add an INLINE[n] or NOINLINE[n] pragma for"
<+> quotes (ppr lhs_id)
, whenPprDebug (ppr (idInlineActivation lhs_id) $$ ppr rule_act) ])
| check_rules_too
, bad_rule : _ <- get_bad_rules lhs_id
= diagnosticDs (WarningWithFlag Opt_WarnInlineRuleShadowing)
(vcat [ hang (text "Rule" <+> pprRuleName rule_name
<+> text "may never fire")
2 (text "because rule" <+> pprRuleName (ruleName bad_rule)
<+> text "for"<+> quotes (ppr lhs_id)
<+> text "might fire first")
, text "Probable fix: add phase [n] or [~n] to the competing rule"
, whenPprDebug (ppr bad_rule) ])
| otherwise
= return ()
get_bad_rules lhs_id
= [ rule | rule <- idCoreRules lhs_id
, ruleActivation rule `competesWith` rule_act ]
-- See Note [Desugaring coerce as cast]
unfold_coerce :: [Id] -> CoreExpr -> CoreExpr -> DsM ([Var], CoreExpr, CoreExpr)
unfold_coerce bndrs lhs rhs = do
(bndrs', wrap) <- go bndrs
return (bndrs', wrap lhs, wrap rhs)
where
go :: [Id] -> DsM ([Id], CoreExpr -> CoreExpr)
go [] = return ([], id)
go (v:vs)
| Just (tc, [k, t1, t2]) <- splitTyConApp_maybe (idType v)
, tc `hasKey` coercibleTyConKey = do
u <- newUnique
let ty' = mkTyConApp eqReprPrimTyCon [k, k, t1, t2]
v' = mkLocalCoVar
(mkDerivedInternalName mkRepEqOcc u (getName v)) ty'
box = Var (dataConWrapId coercibleDataCon) `mkTyApps`
[k, t1, t2] `App`
Coercion (mkCoVarCo v')
(bndrs, wrap) <- go vs
return (v':bndrs, mkCoreLet (NonRec v box) . wrap)
| otherwise = do
(bndrs,wrap) <- go vs
return (v:bndrs, wrap)
{- Note [Desugaring RULE left hand sides]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For the LHS of a RULE we do *not* want to desugar
[x] to build (\cn. x `c` n)
We want to leave explicit lists simply as chains
of cons's. We can achieve that slightly indirectly by
switching off EnableRewriteRules. See GHC.HsToCore.Expr.dsExplicitList.
That keeps the desugaring of list comprehensions simple too.
Nor do we want to warn of conversion identities on the LHS;
the rule is precisely to optimise them:
{-# RULES "fromRational/id" fromRational = id :: Rational -> Rational #-}
Note [Desugaring coerce as cast]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We want the user to express a rule saying roughly “mapping a coercion over a
list can be replaced by a coercion”. But the cast operator of Core (▷) cannot
be written in Haskell. So we use `coerce` for that (#2110). The user writes
map coerce = coerce
as a RULE, and this optimizes any kind of mapped' casts away, including `map
MkNewtype`.
For that we replace any forall'ed `c :: Coercible a b` value in a RULE by
corresponding `co :: a ~#R b` and wrap the LHS and the RHS in
`let c = MkCoercible co in ...`. This is later simplified to the desired form
by simpleOptExpr (for the LHS) resp. the simplifiers (for the RHS).
See also Note [Getting the map/coerce RULE to work] in GHC.Core.SimpleOpt.
Note [Rules and inlining/other rules]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If you have
f x = ...
g x = ...
{-# RULES "rule-for-f" forall x. f (g x) = ... #-}
then there's a good chance that in a potential rule redex
...f (g e)...
then 'f' or 'g' will inline before the rule can fire. Solution: add an
INLINE [n] or NOINLINE [n] pragma to 'f' and 'g'.
Note that this applies to all the free variables on the LHS, both the
main function and things in its arguments.
We also check if there are Ids on the LHS that have competing RULES.
In the above example, suppose we had
{-# RULES "rule-for-g" forally. g [y] = ... #-}
Then "rule-for-f" and "rule-for-g" would compete. Better to add phase
control, so "rule-for-f" has a chance to fire before "rule-for-g" becomes
active; or perhaps after "rule-for-g" has become inactive. This is checked
by 'competesWith'
Class methods have a built-in RULE to select the method from the dictionary,
so you can't change the phase on this. That makes id very dubious to
match on class methods in RULE lhs's. See #10595. I'm not happy
about this. For example in Control.Arrow we have
{-# RULES "compose/arr" forall f g .
(arr f) . (arr g) = arr (f . g) #-}
and similar, which will elicit exactly these warnings, and risk never
firing. But it's not clear what to do instead. We could make the
class method rules inactive in phase 2, but that would delay when
subsequent transformations could fire.
-}
{-
************************************************************************
* *
* Magic definitions
* *
************************************************************************
Note [Patching magic definitions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We sometimes need to have access to defined Ids in pure contexts. Usually, we
simply "wire in" these entities, as we do for types in GHC.Builtin.Types and for Ids
in GHC.Types.Id.Make. See Note [Wired-in Ids] in GHC.Types.Id.Make.
However, it is sometimes *much* easier to define entities in Haskell,
even if we need pure access; note that wiring-in an Id requires all
entities used in its definition *also* to be wired in, transitively
and recursively. This can be a huge pain. The little trick
documented here allows us to have the best of both worlds.
Motivating example: unsafeCoerce#. See [Wiring in unsafeCoerce#] for the
details.
The trick is to
* Define the known-key Id in a library module, with a stub definition,
unsafeCoerce# :: ..a suitable type signature..
unsafeCoerce# = error "urk"
* Magically over-write its RHS here in the desugarer, in
patchMagicDefns. This update can be done with full access to the
DsM monad, and hence, dsLookupGlobal. We thus do not have to wire in
all the entities used internally, a potentially big win.
This step should not change the Name or type of the Id.
Because an Id stores its unfolding directly (as opposed to in the second
component of a (Id, CoreExpr) pair), the patchMagicDefns function returns
a new Id to use.
Here are the moving parts:
- patchMagicDefns checks whether we're in a module with magic definitions;
if so, patch the magic definitions. If not, skip.
- patchMagicDefn just looks up in an environment to find a magic defn and
patches it in.
- magicDefns holds the magic definitions.
- magicDefnsEnv allows for quick access to magicDefns.
- magicDefnModules, built also from magicDefns, contains the modules that
need careful attention.
Note [Wiring in unsafeCoerce#]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We want (Haskell)
unsafeCoerce# :: forall (r1 :: RuntimeRep) (r2 :: RuntimeRep)
(a :: TYPE r1) (b :: TYPE r2).
a -> b
unsafeCoerce# x = case unsafeEqualityProof @r1 @r2 of
UnsafeRefl -> case unsafeEqualityProof @a @b of
UnsafeRefl -> x
or (Core)
unsafeCoerce# :: forall (r1 :: RuntimeRep) (r2 :: RuntimeRep)
(a :: TYPE r1) (b :: TYPE r2).
a -> b
unsafeCoerce# = \ @r1 @r2 @a @b (x :: a).
case unsafeEqualityProof @RuntimeRep @r1 @r2 of
UnsafeRefl (co1 :: r1 ~# r2) ->
case unsafeEqualityProof @(TYPE r2) @(a |> TYPE co1) @b of
UnsafeRefl (co2 :: (a |> TYPE co1) ~# b) ->
(x |> (GRefl :: a ~# (a |> TYPE co1)) ; co2)
It looks like we can write this in Haskell directly, but we can't:
the levity polymorphism checks defeat us. Note that `x` is a levity-
polymorphic variable. So we must wire it in with a compulsory
unfolding, like other levity-polymorphic primops.
The challenge is that UnsafeEquality is a GADT, and wiring in a GADT
is *hard*: it has a worker separate from its wrapper, with all manner
of complications. (Simon and Richard tried to do this. We nearly wept.)
The solution is documented in Note [Patching magic definitions]. We now
simply look up the UnsafeEquality GADT in the environment, leaving us
only to wire in unsafeCoerce# directly.
Wrinkle: see Note [Always expose compulsory unfoldings] in GHC.Iface.Tidy
-}
-- Postcondition: the returned Ids are in one-to-one correspondence as the
-- input Ids; each returned Id has the same type as the passed-in Id.
-- See Note [Patching magic definitions]
patchMagicDefns :: OrdList (Id,CoreExpr)
-> DsM (OrdList (Id,CoreExpr))
patchMagicDefns pairs
-- optimization: check whether we're in a magic module before looking
-- at all the ids
= do { this_mod <- getModule
; if this_mod `elemModuleSet` magicDefnModules
then traverse patchMagicDefn pairs
else return pairs }
patchMagicDefn :: (Id, CoreExpr) -> DsM (Id, CoreExpr)
patchMagicDefn orig_pair@(orig_id, orig_rhs)
| Just mk_magic_pair <- lookupNameEnv magicDefnsEnv (getName orig_id)
= do { magic_pair@(magic_id, _) <- mk_magic_pair orig_id orig_rhs
-- Patching should not change the Name or the type of the Id
; massert (getUnique magic_id == getUnique orig_id)
; massert (varType magic_id `eqType` varType orig_id)
; return magic_pair }
| otherwise
= return orig_pair
magicDefns :: [(Name, Id -> CoreExpr -- old Id and RHS
-> DsM (Id, CoreExpr) -- new Id and RHS
)]
magicDefns = [ (unsafeCoercePrimName, mkUnsafeCoercePrimPair) ]
magicDefnsEnv :: NameEnv (Id -> CoreExpr -> DsM (Id, CoreExpr))
magicDefnsEnv = mkNameEnv magicDefns
magicDefnModules :: ModuleSet
magicDefnModules = mkModuleSet $ map (nameModule . getName . fst) magicDefns
mkUnsafeCoercePrimPair :: Id -> CoreExpr -> DsM (Id, CoreExpr)
-- See Note [Wiring in unsafeCoerce#] for the defn we are creating here
mkUnsafeCoercePrimPair _old_id old_expr
= do { unsafe_equality_proof_id <- dsLookupGlobalId unsafeEqualityProofName
; unsafe_equality_tc <- dsLookupTyCon unsafeEqualityTyConName
; let [unsafe_refl_data_con] = tyConDataCons unsafe_equality_tc
rhs = mkLams [ runtimeRep1TyVar, runtimeRep2TyVar
, openAlphaTyVar, openBetaTyVar
, x ] $
mkSingleAltCase scrut1
(mkWildValBinder Many scrut1_ty)
(DataAlt unsafe_refl_data_con)
[rr_cv] $
mkSingleAltCase scrut2
(mkWildValBinder Many scrut2_ty)
(DataAlt unsafe_refl_data_con)
[ab_cv] $
Var x `mkCast` x_co
[x, rr_cv, ab_cv] = mkTemplateLocals
[ openAlphaTy -- x :: a
, rr_cv_ty -- rr_cv :: r1 ~# r2
, ab_cv_ty -- ab_cv :: (alpha |> alpha_co ~# beta)
]
-- Returns (scrutinee, scrutinee type, type of covar in AltCon)
unsafe_equality k a b
= ( mkTyApps (Var unsafe_equality_proof_id) [k,b,a]
, mkTyConApp unsafe_equality_tc [k,b,a]
, mkHeteroPrimEqPred k k a b
)
-- NB: UnsafeRefl :: (b ~# a) -> UnsafeEquality a b, so we have to
-- carefully swap the arguments above
(scrut1, scrut1_ty, rr_cv_ty) = unsafe_equality runtimeRepTy
runtimeRep1Ty
runtimeRep2Ty
(scrut2, scrut2_ty, ab_cv_ty) = unsafe_equality (tYPE runtimeRep2Ty)
(openAlphaTy `mkCastTy` alpha_co)
openBetaTy
-- alpha_co :: TYPE r1 ~# TYPE r2
-- alpha_co = TYPE rr_cv
alpha_co = mkTyConAppCo Nominal tYPETyCon [mkCoVarCo rr_cv]
-- x_co :: alpha ~R# beta
x_co = mkGReflCo Representational openAlphaTy (MCo alpha_co) `mkTransCo`
mkSubCo (mkCoVarCo ab_cv)
info = noCafIdInfo `setInlinePragInfo` alwaysInlinePragma
`setUnfoldingInfo` mkCompulsoryUnfolding' rhs
ty = mkSpecForAllTys [ runtimeRep1TyVar, runtimeRep2TyVar
, openAlphaTyVar, openBetaTyVar ] $
mkVisFunTyMany openAlphaTy openBetaTy
id = mkExportedVanillaId unsafeCoercePrimName ty `setIdInfo` info
; return (id, old_expr) }
|