1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
|
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE TypeFamilies #-}
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
Pattern-matching bindings (HsBinds and MonoBinds)
Handles @HsBinds@; those at the top level require different handling,
in that the @Rec@/@NonRec@/etc structure is thrown away (whereas at
lower levels it is preserved with @let@/@letrec@s).
-}
module GHC.HsToCore.Binds
( dsTopLHsBinds, dsLHsBinds, decomposeRuleLhs, dsSpec
, dsHsWrapper, dsEvTerm, dsTcEvBinds, dsTcEvBinds_s, dsEvBinds
, dsWarnOrphanRule
)
where
import GHC.Prelude
import GHC.Driver.Session
import GHC.Driver.Config
import qualified GHC.LanguageExtensions as LangExt
import GHC.Unit.Module
import {-# SOURCE #-} GHC.HsToCore.Expr ( dsLExpr )
import {-# SOURCE #-} GHC.HsToCore.Match ( matchWrapper )
import GHC.HsToCore.Monad
import GHC.HsToCore.Errors.Types
import GHC.HsToCore.GuardedRHSs
import GHC.HsToCore.Utils
import GHC.HsToCore.Pmc ( addTyCs, pmcGRHSs )
import GHC.Hs -- lots of things
import GHC.Core -- lots of things
import GHC.Core.SimpleOpt ( simpleOptExpr )
import GHC.Core.Opt.OccurAnal ( occurAnalyseExpr )
import GHC.Core.Make
import GHC.Core.Utils
import GHC.Core.Opt.Arity ( etaExpand )
import GHC.Core.Unfold.Make
import GHC.Core.FVs
import GHC.Core.Predicate
import GHC.Core.TyCon
import GHC.Core.Type
import GHC.Core.Coercion
import GHC.Core.Multiplicity
import GHC.Core.Rules
import GHC.Core.TyCo.Compare( eqType )
import GHC.Builtin.Names
import GHC.Builtin.Types ( naturalTy, typeSymbolKind, charTy )
import GHC.Tc.Types.Evidence
import GHC.Types.Id
import GHC.Types.Name
import GHC.Types.Var.Set
import GHC.Types.Var.Env
import GHC.Types.Var( EvVar )
import GHC.Types.SrcLoc
import GHC.Types.Basic
import GHC.Types.Unique.Set( nonDetEltsUniqSet )
import GHC.Data.Maybe
import GHC.Data.OrdList
import GHC.Data.Graph.Directed
import GHC.Data.Bag
import GHC.Utils.Constants (debugIsOn)
import GHC.Utils.Misc
import GHC.Utils.Monad
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Utils.Panic.Plain
import Control.Monad
{-**********************************************************************
* *
Desugaring a MonoBinds
* *
**********************************************************************-}
-- | Desugar top level binds, strict binds are treated like normal
-- binds since there is no good time to force before first usage.
dsTopLHsBinds :: LHsBinds GhcTc -> DsM (OrdList (Id,CoreExpr))
dsTopLHsBinds binds
-- see Note [Strict binds checks]
| not (isEmptyBag unlifted_binds) || not (isEmptyBag bang_binds)
= do { mapBagM_ (top_level_err UnliftedTypeBinds) unlifted_binds
; mapBagM_ (top_level_err StrictBinds) bang_binds
; return nilOL }
| otherwise
= do { (force_vars, prs) <- dsLHsBinds binds
; when debugIsOn $
do { xstrict <- xoptM LangExt.Strict
; massertPpr (null force_vars || xstrict) (ppr binds $$ ppr force_vars) }
-- with -XStrict, even top-level vars are listed as force vars.
; return (toOL prs) }
where
unlifted_binds = filterBag (isUnliftedHsBind . unLoc) binds
bang_binds = filterBag (isBangedHsBind . unLoc) binds
top_level_err bindsType (L loc bind)
= putSrcSpanDs (locA loc) $
diagnosticDs (DsTopLevelBindsNotAllowed bindsType bind)
-- | Desugar all other kind of bindings, Ids of strict binds are returned to
-- later be forced in the binding group body, see Note [Desugar Strict binds]
dsLHsBinds :: LHsBinds GhcTc -> DsM ([Id], [(Id,CoreExpr)])
dsLHsBinds binds
= do { ds_bs <- mapBagM dsLHsBind binds
; return (foldBag (\(a, a') (b, b') -> (a ++ b, a' ++ b'))
id ([], []) ds_bs) }
------------------------
dsLHsBind :: LHsBind GhcTc
-> DsM ([Id], [(Id,CoreExpr)])
dsLHsBind (L loc bind) = do dflags <- getDynFlags
putSrcSpanDs (locA loc) $ dsHsBind dflags bind
-- | Desugar a single binding (or group of recursive binds).
dsHsBind :: DynFlags
-> HsBind GhcTc
-> DsM ([Id], [(Id,CoreExpr)])
-- ^ The Ids of strict binds, to be forced in the body of the
-- binding group see Note [Desugar Strict binds] and all
-- bindings and their desugared right hand sides.
dsHsBind dflags (VarBind { var_id = var
, var_rhs = expr })
= do { core_expr <- dsLExpr expr
-- Dictionary bindings are always VarBinds,
-- so we only need do this here
; let core_bind@(id,_) = makeCorePair dflags var False 0 core_expr
force_var = if xopt LangExt.Strict dflags
then [id]
else []
; return (force_var, [core_bind]) }
dsHsBind dflags b@(FunBind { fun_id = L loc fun
, fun_matches = matches
, fun_ext = (co_fn, tick)
})
= do { (args, body) <- addTyCs FromSource (hsWrapDictBinders co_fn) $
-- FromSource might not be accurate (we don't have any
-- origin annotations for things in this module), but at
-- worst we do superfluous calls to the pattern match
-- oracle.
-- addTyCs: Add type evidence to the refinement type
-- predicate of the coverage checker
-- See Note [Long-distance information] in "GHC.HsToCore.Pmc"
matchWrapper (mkPrefixFunRhs (L loc (idName fun))) Nothing matches
; core_wrap <- dsHsWrapper co_fn
; let body' = mkOptTickBox tick body
rhs = core_wrap (mkLams args body')
core_binds@(id,_) = makeCorePair dflags fun False 0 rhs
force_var
-- Bindings are strict when -XStrict is enabled
| xopt LangExt.Strict dflags
, matchGroupArity matches == 0 -- no need to force lambdas
= [id]
| isBangedHsBind b
= [id]
| otherwise
= []
; --pprTrace "dsHsBind" (vcat [ ppr fun <+> ppr (idInlinePragma fun)
-- , ppr (mg_alts matches)
-- , ppr args, ppr core_binds, ppr body']) $
return (force_var, [core_binds]) }
dsHsBind dflags (PatBind { pat_lhs = pat, pat_rhs = grhss
, pat_ext = (ty, (rhs_tick, var_ticks))
})
= do { rhss_nablas <- pmcGRHSs PatBindGuards grhss
; body_expr <- dsGuarded grhss ty rhss_nablas
; let body' = mkOptTickBox rhs_tick body_expr
pat' = decideBangHood dflags pat
; (force_var,sel_binds) <- mkSelectorBinds var_ticks pat body'
-- We silently ignore inline pragmas; no makeCorePair
-- Not so cool, but really doesn't matter
; let force_var' = if isBangedLPat pat'
then [force_var]
else []
; return (force_var', sel_binds) }
dsHsBind
dflags
(XHsBindsLR (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts
, abs_exports = exports
, abs_ev_binds = ev_binds
, abs_binds = binds, abs_sig = has_sig }))
= do { ds_binds <- addTyCs FromSource (listToBag dicts) $
dsLHsBinds binds
-- addTyCs: push type constraints deeper
-- for inner pattern match check
-- See Check, Note [Long-distance information]
; ds_ev_binds <- dsTcEvBinds_s ev_binds
-- dsAbsBinds does the hard work
; dsAbsBinds dflags tyvars dicts exports ds_ev_binds ds_binds has_sig }
dsHsBind _ (PatSynBind{}) = panic "dsHsBind: PatSynBind"
-----------------------
dsAbsBinds :: DynFlags
-> [TyVar] -> [EvVar] -> [ABExport]
-> [CoreBind] -- Desugared evidence bindings
-> ([Id], [(Id,CoreExpr)]) -- Desugared value bindings
-> Bool -- Single binding with signature
-> DsM ([Id], [(Id,CoreExpr)])
dsAbsBinds dflags tyvars dicts exports
ds_ev_binds (force_vars, bind_prs) has_sig
-- A very important common case: one exported variable
-- Non-recursive bindings come through this way
-- So do self-recursive bindings
-- gbl_id = wrap (/\tvs \dicts. let ev_binds
-- letrec bind_prs
-- in lcl_id)
| [export] <- exports
, ABE { abe_poly = global_id, abe_mono = local_id
, abe_wrap = wrap, abe_prags = prags } <- export
, Just force_vars' <- case force_vars of
[] -> Just []
[v] | v == local_id -> Just [global_id]
_ -> Nothing
-- If there is a variable to force, it's just the
-- single variable we are binding here
= do { core_wrap <- dsHsWrapper wrap -- Usually the identity
; let rhs = core_wrap $
mkLams tyvars $ mkLams dicts $
mkCoreLets ds_ev_binds $
body
body | has_sig
, [(_, lrhs)] <- bind_prs
= lrhs
| otherwise
= mkLetRec bind_prs (Var local_id)
; (spec_binds, rules) <- dsSpecs rhs prags
; let global_id' = addIdSpecialisations global_id rules
main_bind = makeCorePair dflags global_id'
(isDefaultMethod prags)
(dictArity dicts) rhs
; return (force_vars', main_bind : fromOL spec_binds) }
-- Another common case: no tyvars, no dicts
-- In this case we can have a much simpler desugaring
-- lcl_id{inl-prag} = rhs -- Auxiliary binds
-- gbl_id = lcl_id |> co -- Main binds
| null tyvars, null dicts
= do { let mk_main :: ABExport -> DsM (Id, CoreExpr)
mk_main (ABE { abe_poly = gbl_id, abe_mono = lcl_id
, abe_wrap = wrap })
-- No SpecPrags (no dicts)
-- Can't be a default method (default methods are singletons)
= do { core_wrap <- dsHsWrapper wrap
; return ( gbl_id `setInlinePragma` defaultInlinePragma
, core_wrap (Var lcl_id)) }
; main_prs <- mapM mk_main exports
; return (force_vars, flattenBinds ds_ev_binds
++ mk_aux_binds bind_prs ++ main_prs ) }
-- The general case
-- See Note [Desugaring AbsBinds]
| otherwise
= do { let aux_binds = Rec (mk_aux_binds bind_prs)
-- Monomorphic recursion possible, hence Rec
new_force_vars = get_new_force_vars force_vars
locals = map abe_mono exports
all_locals = locals ++ new_force_vars
tup_expr = mkBigCoreVarTup all_locals
tup_ty = exprType tup_expr
; let poly_tup_rhs = mkLams tyvars $ mkLams dicts $
mkCoreLets ds_ev_binds $
mkLet aux_binds $
tup_expr
; poly_tup_id <- newSysLocalDs ManyTy (exprType poly_tup_rhs)
-- Find corresponding global or make up a new one: sometimes
-- we need to make new export to desugar strict binds, see
-- Note [Desugar Strict binds]
; (exported_force_vars, extra_exports) <- get_exports force_vars
; let mk_bind (ABE { abe_wrap = wrap
, abe_poly = global
, abe_mono = local, abe_prags = spec_prags })
-- See Note [ABExport wrapper] in "GHC.Hs.Binds"
= do { tup_id <- newSysLocalDs ManyTy tup_ty
; core_wrap <- dsHsWrapper wrap
; let rhs = core_wrap $ mkLams tyvars $ mkLams dicts $
mkBigTupleSelector all_locals local tup_id $
mkVarApps (Var poly_tup_id) (tyvars ++ dicts)
rhs_for_spec = Let (NonRec poly_tup_id poly_tup_rhs) rhs
; (spec_binds, rules) <- dsSpecs rhs_for_spec spec_prags
; let global' = (global `setInlinePragma` defaultInlinePragma)
`addIdSpecialisations` rules
-- Kill the INLINE pragma because it applies to
-- the user written (local) function. The global
-- Id is just the selector. Hmm.
; return ((global', rhs) : fromOL spec_binds) }
; export_binds_s <- mapM mk_bind (exports ++ extra_exports)
; return ( exported_force_vars
, (poly_tup_id, poly_tup_rhs) :
concat export_binds_s) }
where
mk_aux_binds :: [(Id,CoreExpr)] -> [(Id,CoreExpr)]
mk_aux_binds bind_prs = [ makeCorePair dflags lcl_w_inline False 0 rhs
| (lcl_id, rhs) <- bind_prs
, let lcl_w_inline = lookupVarEnv inline_env lcl_id
`orElse` lcl_id ]
inline_env :: IdEnv Id -- Maps a monomorphic local Id to one with
-- the inline pragma from the source
-- The type checker put the inline pragma
-- on the *global* Id, so we need to transfer it
inline_env
= mkVarEnv [ (lcl_id, setInlinePragma lcl_id prag)
| ABE { abe_mono = lcl_id, abe_poly = gbl_id } <- exports
, let prag = idInlinePragma gbl_id ]
global_env :: IdEnv Id -- Maps local Id to its global exported Id
global_env =
mkVarEnv [ (local, global)
| ABE { abe_mono = local, abe_poly = global } <- exports
]
-- find variables that are not exported
get_new_force_vars lcls =
foldr (\lcl acc -> case lookupVarEnv global_env lcl of
Just _ -> acc
Nothing -> lcl:acc)
[] lcls
-- find exports or make up new exports for force variables
get_exports :: [Id] -> DsM ([Id], [ABExport])
get_exports lcls =
foldM (\(glbls, exports) lcl ->
case lookupVarEnv global_env lcl of
Just glbl -> return (glbl:glbls, exports)
Nothing -> do export <- mk_export lcl
let glbl = abe_poly export
return (glbl:glbls, export:exports))
([],[]) lcls
mk_export local =
do global <- newSysLocalDs ManyTy
(exprType (mkLams tyvars (mkLams dicts (Var local))))
return (ABE { abe_poly = global
, abe_mono = local
, abe_wrap = WpHole
, abe_prags = SpecPrags [] })
-- | This is where we apply INLINE and INLINABLE pragmas. All we need to
-- do is to attach the unfolding information to the Id.
--
-- Other decisions about whether to inline are made in
-- `calcUnfoldingGuidance` but the decision about whether to then expose
-- the unfolding in the interface file is made in `GHC.Iface.Tidy.addExternal`
-- using this information.
------------------------
makeCorePair :: DynFlags -> Id -> Bool -> Arity -> CoreExpr
-> (Id, CoreExpr)
makeCorePair dflags gbl_id is_default_method dict_arity rhs
| is_default_method -- Default methods are *always* inlined
-- See Note [INLINE and default methods] in GHC.Tc.TyCl.Instance
= (gbl_id `setIdUnfolding` mkCompulsoryUnfolding' simpl_opts rhs, rhs)
| otherwise
= case inlinePragmaSpec inline_prag of
NoUserInlinePrag -> (gbl_id, rhs)
NoInline {} -> (gbl_id, rhs)
Opaque {} -> (gbl_id, rhs)
Inlinable {} -> (gbl_id `setIdUnfolding` inlinable_unf, rhs)
Inline {} -> inline_pair
where
simpl_opts = initSimpleOpts dflags
inline_prag = idInlinePragma gbl_id
inlinable_unf = mkInlinableUnfolding simpl_opts StableUserSrc rhs
inline_pair
| Just arity <- inlinePragmaSat inline_prag
-- Add an Unfolding for an INLINE (but not for NOINLINE)
-- And eta-expand the RHS; see Note [Eta-expanding INLINE things]
, let real_arity = dict_arity + arity
-- NB: The arity passed to mkInlineUnfoldingWithArity
-- must take account of the dictionaries
= ( gbl_id `setIdUnfolding` mkInlineUnfoldingWithArity simpl_opts StableUserSrc real_arity rhs
, etaExpand real_arity rhs)
| otherwise
= pprTrace "makeCorePair: arity missing" (ppr gbl_id) $
(gbl_id `setIdUnfolding` mkInlineUnfoldingNoArity simpl_opts StableUserSrc rhs, rhs)
dictArity :: [Var] -> Arity
-- Don't count coercion variables in arity
dictArity dicts = count isId dicts
{-
Note [Desugaring AbsBinds]
~~~~~~~~~~~~~~~~~~~~~~~~~~
In the general AbsBinds case we desugar the binding to this:
tup a (d:Num a) = let fm = ...gm...
gm = ...fm...
in (fm,gm)
f a d = case tup a d of { (fm,gm) -> fm }
g a d = case tup a d of { (fm,gm) -> fm }
Note [Rules and inlining]
~~~~~~~~~~~~~~~~~~~~~~~~~
Common special case: no type or dictionary abstraction
This is a bit less trivial than you might suppose
The naive way would be to desugar to something like
f_lcl = ...f_lcl... -- The "binds" from AbsBinds
M.f = f_lcl -- Generated from "exports"
But we don't want that, because if M.f isn't exported,
it'll be inlined unconditionally at every call site (its rhs is
trivial). That would be ok unless it has RULES, which would
thereby be completely lost. Bad, bad, bad.
Instead we want to generate
M.f = ...f_lcl...
f_lcl = M.f
Now all is cool. The RULES are attached to M.f (by SimplCore),
and f_lcl is rapidly inlined away.
This does not happen in the same way to polymorphic binds,
because they desugar to
M.f = /\a. let f_lcl = ...f_lcl... in f_lcl
Although I'm a bit worried about whether full laziness might
float the f_lcl binding out and then inline M.f at its call site
Note [Specialising in no-dict case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Even if there are no tyvars or dicts, we may have specialisation pragmas.
Class methods can generate
AbsBinds [] [] [( ... spec-prag]
{ AbsBinds [tvs] [dicts] ...blah }
So the overloading is in the nested AbsBinds. A good example is in GHC.Float:
class (Real a, Fractional a) => RealFrac a where
round :: (Integral b) => a -> b
instance RealFrac Float where
{-# SPECIALIZE round :: Float -> Int #-}
The top-level AbsBinds for $cround has no tyvars or dicts (because the
instance does not). But the method is locally overloaded!
Note [Abstracting over tyvars only]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When abstracting over type variable only (not dictionaries), we don't really need to
built a tuple and select from it, as we do in the general case. Instead we can take
AbsBinds [a,b] [ ([a,b], fg, fl, _),
([b], gg, gl, _) ]
{ fl = e1
gl = e2
h = e3 }
and desugar it to
fg = /\ab. let B in e1
gg = /\b. let a = () in let B in S(e2)
h = /\ab. let B in e3
where B is the *non-recursive* binding
fl = fg a b
gl = gg b
h = h a b -- See (b); note shadowing!
Notice (a) g has a different number of type variables to f, so we must
use the mkArbitraryType thing to fill in the gaps.
We use a type-let to do that.
(b) The local variable h isn't in the exports, and rather than
clone a fresh copy we simply replace h by (h a b), where
the two h's have different types! Shadowing happens here,
which looks confusing but works fine.
(c) The result is *still* quadratic-sized if there are a lot of
small bindings. So if there are more than some small
number (10), we filter the binding set B by the free
variables of the particular RHS. Tiresome.
Why got to this trouble? It's a common case, and it removes the
quadratic-sized tuple desugaring. Less clutter, hopefully faster
compilation, especially in a case where there are a *lot* of
bindings.
Note [Eta-expanding INLINE things]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
foo :: Eq a => a -> a
{-# INLINE foo #-}
foo x = ...
If (foo d) ever gets floated out as a common sub-expression (which can
happen as a result of method sharing), there's a danger that we never
get to do the inlining, which is a Terribly Bad thing given that the
user said "inline"!
To avoid this we preemptively eta-expand the definition, so that foo
has the arity with which it is declared in the source code. In this
example it has arity 2 (one for the Eq and one for x). Doing this
should mean that (foo d) is a PAP and we don't share it.
Note [Nested arities]
~~~~~~~~~~~~~~~~~~~~~
For reasons that are not entirely clear, method bindings come out looking like
this:
AbsBinds [] [] [$cfromT <= [] fromT]
$cfromT [InlPrag=INLINE] :: T Bool -> Bool
{ AbsBinds [] [] [fromT <= [] fromT_1]
fromT :: T Bool -> Bool
{ fromT_1 ((TBool b)) = not b } } }
Note the nested AbsBind. The arity for the unfolding on $cfromT should be
gotten from the binding for fromT_1.
It might be better to have just one level of AbsBinds, but that requires more
thought!
Note [Desugar Strict binds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
See https://gitlab.haskell.org/ghc/ghc/wikis/strict-pragma
Desugaring strict variable bindings looks as follows (core below ==>)
let !x = rhs
in body
==>
let x = rhs
in x `seq` body -- seq the variable
and if it is a pattern binding the desugaring looks like
let !pat = rhs
in body
==>
let x = rhs -- bind the rhs to a new variable
pat = x
in x `seq` body -- seq the new variable
if there is no variable in the pattern desugaring looks like
let False = rhs
in body
==>
let x = case rhs of {False -> (); _ -> error "Match failed"}
in x `seq` body
In order to force the Ids in the binding group they are passed around
in the dsHsBind family of functions, and later seq'ed in GHC.HsToCore.Expr.ds_val_bind.
Consider a recursive group like this
letrec
f : g = rhs[f,g]
in <body>
Without `Strict`, we get a translation like this:
let t = /\a. letrec tm = rhs[fm,gm]
fm = case t of fm:_ -> fm
gm = case t of _:gm -> gm
in
(fm,gm)
in let f = /\a. case t a of (fm,_) -> fm
in let g = /\a. case t a of (_,gm) -> gm
in <body>
Here `tm` is the monomorphic binding for `rhs`.
With `Strict`, we want to force `tm`, but NOT `fm` or `gm`.
Alas, `tm` isn't in scope in the `in <body>` part.
The simplest thing is to return it in the polymorphic
tuple `t`, thus:
let t = /\a. letrec tm = rhs[fm,gm]
fm = case t of fm:_ -> fm
gm = case t of _:gm -> gm
in
(tm, fm, gm)
in let f = /\a. case t a of (_,fm,_) -> fm
in let g = /\a. case t a of (_,_,gm) -> gm
in let tm = /\a. case t a of (tm,_,_) -> tm
in tm `seq` <body>
See https://gitlab.haskell.org/ghc/ghc/wikis/strict-pragma for a more
detailed explanation of the desugaring of strict bindings.
Note [Strict binds checks]
~~~~~~~~~~~~~~~~~~~~~~~~~~
There are several checks around properly formed strict bindings. They
all link to this Note. These checks must be here in the desugarer because
we cannot know whether or not a type is unlifted until after zonking, due
to representation polymorphism. These checks all used to be handled in the
typechecker in checkStrictBinds (before Jan '17).
We define an "unlifted bind" to be any bind that binds an unlifted id. Note that
x :: Char
(# True, x #) = blah
is *not* an unlifted bind. Unlifted binds are detected by GHC.Hs.Utils.isUnliftedHsBind.
Define a "banged bind" to have a top-level bang. Detected by GHC.Hs.Pat.isBangedHsBind.
Define a "strict bind" to be either an unlifted bind or a banged bind.
The restrictions are:
1. Strict binds may not be top-level. Checked in dsTopLHsBinds.
2. Unlifted binds must also be banged. (There is no trouble to compile an unbanged
unlifted bind, but an unbanged bind looks lazy, and we don't want users to be
surprised by the strictness of an unlifted bind.) Checked in first clause
of GHC.HsToCore.Expr.ds_val_bind.
3. Unlifted binds may not have polymorphism (#6078). (That is, no quantified type
variables or constraints.) Checked in first clause
of GHC.HsToCore.Expr.ds_val_bind.
4. Unlifted binds may not be recursive. Checked in second clause of ds_val_bind.
-}
------------------------
dsSpecs :: CoreExpr -- Its rhs
-> TcSpecPrags
-> DsM ( OrdList (Id,CoreExpr) -- Binding for specialised Ids
, [CoreRule] ) -- Rules for the Global Ids
-- See Note [Handling SPECIALISE pragmas] in GHC.Tc.Gen.Bind
dsSpecs _ IsDefaultMethod = return (nilOL, [])
dsSpecs poly_rhs (SpecPrags sps)
= do { pairs <- mapMaybeM (dsSpec (Just poly_rhs)) sps
; let (spec_binds_s, rules) = unzip pairs
; return (concatOL spec_binds_s, rules) }
dsSpec :: Maybe CoreExpr -- Just rhs => RULE is for a local binding
-- Nothing => RULE is for an imported Id
-- rhs is in the Id's unfolding
-> Located TcSpecPrag
-> DsM (Maybe (OrdList (Id,CoreExpr), CoreRule))
dsSpec mb_poly_rhs (L loc (SpecPrag poly_id spec_co spec_inl))
| isJust (isClassOpId_maybe poly_id)
= putSrcSpanDs loc $
do { diagnosticDs (DsUselessSpecialiseForClassMethodSelector poly_id)
; return Nothing } -- There is no point in trying to specialise a class op
-- Moreover, classops don't (currently) have an inl_sat arity set
-- (it would be Just 0) and that in turn makes makeCorePair bleat
| no_act_spec && isNeverActive rule_act
= putSrcSpanDs loc $
do { diagnosticDs (DsUselessSpecialiseForNoInlineFunction poly_id)
; return Nothing } -- Function is NOINLINE, and the specialisation inherits that
-- See Note [Activation pragmas for SPECIALISE]
| otherwise
= putSrcSpanDs loc $
do { uniq <- newUnique
; let poly_name = idName poly_id
spec_occ = mkSpecOcc (getOccName poly_name)
spec_name = mkInternalName uniq spec_occ (getSrcSpan poly_name)
(spec_bndrs, spec_app) = collectHsWrapBinders spec_co
-- spec_co looks like
-- \spec_bndrs. [] spec_args
-- perhaps with the body of the lambda wrapped in some WpLets
-- E.g. /\a \(d:Eq a). let d2 = $df d in [] (Maybe a) d2
; core_app <- dsHsWrapper spec_app
; let ds_lhs = core_app (Var poly_id)
spec_ty = mkLamTypes spec_bndrs (exprType ds_lhs)
; -- pprTrace "dsRule" (vcat [ text "Id:" <+> ppr poly_id
-- , text "spec_co:" <+> ppr spec_co
-- , text "ds_rhs:" <+> ppr ds_lhs ]) $
dflags <- getDynFlags
; case decomposeRuleLhs dflags spec_bndrs ds_lhs (mkVarSet spec_bndrs) of {
Left msg -> do { diagnosticDs msg; return Nothing } ;
Right (rule_bndrs, _fn, rule_lhs_args) -> do
{ this_mod <- getModule
; let fn_unf = realIdUnfolding poly_id
simpl_opts = initSimpleOpts dflags
spec_unf = specUnfolding simpl_opts spec_bndrs core_app rule_lhs_args fn_unf
spec_id = mkLocalId spec_name ManyTy spec_ty -- Specialised binding is toplevel, hence Many.
`setInlinePragma` inl_prag
`setIdUnfolding` spec_unf
rule = mkSpecRule dflags this_mod False rule_act (text "USPEC")
poly_id rule_bndrs rule_lhs_args
(mkVarApps (Var spec_id) spec_bndrs)
spec_rhs = mkLams spec_bndrs (core_app poly_rhs)
; dsWarnOrphanRule rule
; return (Just (unitOL (spec_id, spec_rhs), rule))
-- NB: do *not* use makeCorePair on (spec_id,spec_rhs), because
-- makeCorePair overwrites the unfolding, which we have
-- just created using specUnfolding
} } }
where
is_local_id = isJust mb_poly_rhs
poly_rhs | Just rhs <- mb_poly_rhs
= rhs -- Local Id; this is its rhs
| Just unfolding <- maybeUnfoldingTemplate (realIdUnfolding poly_id)
= unfolding -- Imported Id; this is its unfolding
-- Use realIdUnfolding so we get the unfolding
-- even when it is a loop breaker.
-- We want to specialise recursive functions!
| otherwise = pprPanic "dsImpSpecs" (ppr poly_id)
-- The type checker has checked that it *has* an unfolding
id_inl = idInlinePragma poly_id
-- See Note [Activation pragmas for SPECIALISE]
inl_prag | not (isDefaultInlinePragma spec_inl) = spec_inl
| not is_local_id -- See Note [Specialising imported functions]
-- in OccurAnal
, isStrongLoopBreaker (idOccInfo poly_id) = neverInlinePragma
| otherwise = id_inl
-- Get the INLINE pragma from SPECIALISE declaration, or,
-- failing that, from the original Id
spec_prag_act = inlinePragmaActivation spec_inl
-- See Note [Activation pragmas for SPECIALISE]
-- no_act_spec is True if the user didn't write an explicit
-- phase specification in the SPECIALISE pragma
no_act_spec = case inlinePragmaSpec spec_inl of
NoInline _ -> isNeverActive spec_prag_act
Opaque _ -> isNeverActive spec_prag_act
_ -> isAlwaysActive spec_prag_act
rule_act | no_act_spec = inlinePragmaActivation id_inl -- Inherit
| otherwise = spec_prag_act -- Specified by user
dsWarnOrphanRule :: CoreRule -> DsM ()
dsWarnOrphanRule rule
= when (isOrphan (ru_orphan rule)) $
diagnosticDs (DsOrphanRule rule)
{- Note [SPECIALISE on INLINE functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We used to warn that using SPECIALISE for a function marked INLINE
would be a no-op; but it isn't! Especially with worker/wrapper split
we might have
{-# INLINE f #-}
f :: Ord a => Int -> a -> ...
f d x y = case x of I# x' -> $wf d x' y
We might want to specialise 'f' so that we in turn specialise '$wf'.
We can't even /name/ '$wf' in the source code, so we can't specialise
it even if we wanted to. #10721 is a case in point.
Note [Activation pragmas for SPECIALISE]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
From a user SPECIALISE pragma for f, we generate
a) A top-level binding spec_fn = rhs
b) A RULE f dOrd = spec_fn
We need two pragma-like things:
* spec_fn's inline pragma: inherited from f's inline pragma (ignoring
activation on SPEC), unless overridden by SPEC INLINE
* Activation of RULE: from SPECIALISE pragma (if activation given)
otherwise from f's inline pragma
This is not obvious (see #5237)!
Examples Rule activation Inline prag on spec'd fn
---------------------------------------------------------------------
SPEC [n] f :: ty [n] Always, or NOINLINE [n]
copy f's prag
NOINLINE f
SPEC [n] f :: ty [n] NOINLINE
copy f's prag
NOINLINE [k] f
SPEC [n] f :: ty [n] NOINLINE [k]
copy f's prag
INLINE [k] f
SPEC [n] f :: ty [n] INLINE [k]
copy f's prag
SPEC INLINE [n] f :: ty [n] INLINE [n]
(ignore INLINE prag on f,
same activation for rule and spec'd fn)
NOINLINE [k] f
SPEC f :: ty [n] INLINE [k]
************************************************************************
* *
\subsection{Adding inline pragmas}
* *
************************************************************************
-}
decomposeRuleLhs :: DynFlags -> [Var] -> CoreExpr
-> VarSet -- Free vars of the RHS
-> Either DsMessage ([Var], Id, [CoreExpr])
-- (decomposeRuleLhs bndrs lhs) takes apart the LHS of a RULE,
-- The 'bndrs' are the quantified binders of the rules, but decomposeRuleLhs
-- may add some extra dictionary binders (see Note [Free dictionaries on rule LHS])
--
-- Returns an error message if the LHS isn't of the expected shape
-- Note [Decomposing the left-hand side of a RULE]
decomposeRuleLhs dflags orig_bndrs orig_lhs rhs_fvs
| Var funId <- fun2
, Just con <- isDataConId_maybe funId
= Left (DsRuleIgnoredDueToConstructor con) -- See Note [No RULES on datacons]
| otherwise = case decompose fun2 args2 of
Nothing -> Left (DsRuleLhsTooComplicated orig_lhs lhs2)
Just (fn_id, args)
| not (null unbound) ->
-- Check for things unbound on LHS
-- See Note [Unused spec binders]
-- pprTrace "decomposeRuleLhs 1" (vcat [ text "orig_bndrs:" <+> ppr orig_bndrs
-- , text "orig_lhs:" <+> ppr orig_lhs
-- , text "lhs_fvs:" <+> ppr lhs_fvs
-- , text "rhs_fvs:" <+> ppr rhs_fvs
-- , text "unbound:" <+> ppr unbound
-- ]) $
Left (DsRuleBindersNotBound unbound orig_bndrs orig_lhs lhs2)
| otherwise ->
-- pprTrace "decomposeRuleLhs 2" (vcat [ text "orig_bndrs:" <+> ppr orig_bndrs
-- , text "orig_lhs:" <+> ppr orig_lhs
-- , text "lhs1:" <+> ppr lhs1
-- , text "extra_bndrs:" <+> ppr extra_bndrs
-- , text "fn_id:" <+> ppr fn_id
-- , text "args:" <+> ppr args
-- , text "args fvs:" <+> ppr (exprsFreeVarsList args)
-- ]) $
Right (trimmed_bndrs ++ extra_bndrs, fn_id, args)
where -- See Note [Variables unbound on the LHS]
lhs_fvs = exprsFreeVars args
all_fvs = lhs_fvs `unionVarSet` rhs_fvs
trimmed_bndrs = filter (`elemVarSet` all_fvs) orig_bndrs
unbound = filterOut (`elemVarSet` lhs_fvs) trimmed_bndrs
-- Needed on RHS but not bound on LHS
-- Add extra tyvar binders: Note [Free tyvars on rule LHS]
-- and extra dict binders: Note [Free dictionaries on rule LHS]
extra_bndrs = scopedSort extra_tvs ++ extra_dicts
where
extra_tvs = [ v | v <- extra_vars, isTyVar v ]
extra_dicts =
[ mkLocalId (localiseName (idName d)) ManyTy (idType d)
| d <- extra_vars, isDictId d ]
extra_vars =
[ v
| v <- exprsFreeVarsList args
, not (v `elemVarSet` orig_bndr_set)
, not (v == fn_id) ]
-- fn_id: do not quantify over the function itself, which may
-- itself be a dictionary (in pathological cases, #10251)
where
simpl_opts = initSimpleOpts dflags
orig_bndr_set = mkVarSet orig_bndrs
lhs1 = drop_dicts orig_lhs
lhs2 = simpleOptExpr simpl_opts lhs1 -- See Note [Simplify rule LHS]
(fun2,args2) = collectArgs lhs2
decompose (Var fn_id) args
| not (fn_id `elemVarSet` orig_bndr_set)
= Just (fn_id, args)
decompose _ _ = Nothing
drop_dicts :: CoreExpr -> CoreExpr
drop_dicts e
= wrap_lets needed bnds body
where
needed = orig_bndr_set `minusVarSet` exprFreeVars body
(bnds, body) = split_lets (occurAnalyseExpr e)
-- The occurAnalyseExpr drops dead bindings which is
-- crucial to ensure that every binding is used later;
-- which in turn makes wrap_lets work right
split_lets :: CoreExpr -> ([(DictId,CoreExpr)], CoreExpr)
split_lets (Let (NonRec d r) body)
| isDictId d
= ((d,r):bs, body')
where (bs, body') = split_lets body
-- handle "unlifted lets" too, needed for "map/coerce"
split_lets (Case r d _ [Alt DEFAULT _ body])
| isCoVar d
= ((d,r):bs, body')
where (bs, body') = split_lets body
split_lets e = ([], e)
wrap_lets :: VarSet -> [(DictId,CoreExpr)] -> CoreExpr -> CoreExpr
wrap_lets _ [] body = body
wrap_lets needed ((d, r) : bs) body
| rhs_fvs `intersectsVarSet` needed = mkCoreLet (NonRec d r) (wrap_lets needed' bs body)
| otherwise = wrap_lets needed bs body
where
rhs_fvs = exprFreeVars r
needed' = (needed `minusVarSet` rhs_fvs) `extendVarSet` d
{-
Note [Variables unbound on the LHS]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We obviously want to complain about
RULE forall x. f True = not x
because the forall'd variable `x` is not bound on the LHS.
It can be a bit delicate when dictionaries are involved.
Consider #22471
{-# RULES "foo" forall (f :: forall a. [a] -> Int).
foo (\xs. 1 + f xs) = 2 + foo f #-}
We get two dicts on the LHS, one from `1` and one from `+`.
For reasons described in Note [The SimplifyRule Plan] in
GHC.Tc.Gen.Rule, we quantify separately over those dictionaries:
forall f (d1::Num Int) (d2 :: Num Int).
foo (\xs. (+) d1 (fromInteger d2 1) xs) = ...
Now the desugarer shortcircuits (fromInteger d2 1) to (I# 1); so d2 is
not mentioned at all (on LHS or RHS)! We don't want to complain about
and unbound d2. Hence the trimmed_bndrs.
Note [Decomposing the left-hand side of a RULE]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There are several things going on here.
* drop_dicts: see Note [Drop dictionary bindings on rule LHS]
* simpleOptExpr: see Note [Simplify rule LHS]
* extra_dict_bndrs: see Note [Free dictionaries on rule LHS]
Note [Free tyvars on rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
data T a = C
foo :: T a -> Int
foo C = 1
{-# RULES "myrule" foo C = 1 #-}
After type checking the LHS becomes (foo alpha (C alpha)), where alpha
is an unbound meta-tyvar. The zonker in GHC.Tc.Utils.Zonk is careful not to
turn the free alpha into Any (as it usually does). Instead it turns it
into a TyVar 'a'. See Note [Zonking the LHS of a RULE] in "GHC.Tc.Utils.Zonk".
Now we must quantify over that 'a'. It's /really/ inconvenient to do that
in the zonker, because the HsExpr data type is very large. But it's /easy/
to do it here in the desugarer.
Moreover, we have to do something rather similar for dictionaries;
see Note [Free dictionaries on rule LHS]. So that's why we look for
type variables free on the LHS, and quantify over them.
This relies on there not being any in-scope tyvars, which is true for
user-defined RULEs, which are always top-level.
Note [Free dictionaries on rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When the LHS of a specialisation rule, (/\as\ds. f es) has a free dict,
which is presumably in scope at the function definition site, we can quantify
over it too. *Any* dict with that type will do.
So for example when you have
f :: Eq a => a -> a
f = <rhs>
... SPECIALISE f :: Int -> Int ...
Then we get the SpecPrag
SpecPrag (f Int dInt)
And from that we want the rule
RULE forall dInt. f Int dInt = f_spec
f_spec = let f = <rhs> in f Int dInt
But be careful! That dInt might be GHC.Base.$fOrdInt, which is an External
Name, and you can't bind them in a lambda or forall without getting things
confused. Likewise it might have a stable unfolding or something, which would be
utterly bogus. So we really make a fresh Id, with the same unique and type
as the old one, but with an Internal name and no IdInfo.
Note [Drop dictionary bindings on rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
drop_dicts drops dictionary bindings on the LHS where possible.
E.g. let d:Eq [Int] = $fEqList $fEqInt in f d
--> f d
Reasoning here is that there is only one d:Eq [Int], and so we can
quantify over it. That makes 'd' free in the LHS, but that is later
picked up by extra_dict_bndrs (see Note [Unused spec binders]).
NB 1: We can only drop the binding if the RHS doesn't bind
one of the orig_bndrs, which we assume occur on RHS.
Example
f :: (Eq a) => b -> a -> a
{-# SPECIALISE f :: Eq a => b -> [a] -> [a] #-}
Here we want to end up with
RULE forall d:Eq a. f ($dfEqList d) = f_spec d
Of course, the ($dfEqlist d) in the pattern makes it less likely
to match, but there is no other way to get d:Eq a
NB 2: We do drop_dicts *before* simplOptEpxr, so that we expect all
the evidence bindings to be wrapped around the outside of the
LHS. (After simplOptExpr they'll usually have been inlined.)
dsHsWrapper does dependency analysis, so that civilised ones
will be simple NonRec bindings. We don't handle recursive
dictionaries!
NB3: In the common case of a non-overloaded, but perhaps-polymorphic
specialisation, we don't need to bind *any* dictionaries for use
in the RHS. For example (#8331)
{-# SPECIALIZE INLINE useAbstractMonad :: ReaderST s Int #-}
useAbstractMonad :: MonadAbstractIOST m => m Int
Here, deriving (MonadAbstractIOST (ReaderST s)) is a lot of code
but the RHS uses no dictionaries, so we want to end up with
RULE forall s (d :: MonadAbstractIOST (ReaderT s)).
useAbstractMonad (ReaderT s) d = $suseAbstractMonad s
#8848 is a good example of where there are some interesting
dictionary bindings to discard.
The drop_dicts algorithm is based on these observations:
* Given (let d = rhs in e) where d is a DictId,
matching 'e' will bind e's free variables.
* So we want to keep the binding if one of the needed variables (for
which we need a binding) is in fv(rhs) but not already in fv(e).
* The "needed variables" are simply the orig_bndrs. Consider
f :: (Eq a, Show b) => a -> b -> String
... SPECIALISE f :: (Show b) => Int -> b -> String ...
Then orig_bndrs includes the *quantified* dictionaries of the type
namely (dsb::Show b), but not the one for Eq Int
So we work inside out, applying the above criterion at each step.
Note [Simplify rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~
simplOptExpr occurrence-analyses and simplifies the LHS:
(a) Inline any remaining dictionary bindings (which hopefully
occur just once)
(b) Substitute trivial lets, so that they don't get in the way.
Note that we substitute the function too; we might
have this as a LHS: let f71 = M.f Int in f71
(c) Do eta reduction. To see why, consider the fold/build rule,
which without simplification looked like:
fold k z (build (/\a. g a)) ==> ...
This doesn't match unless you do eta reduction on the build argument.
Similarly for a LHS like
augment g (build h)
we do not want to get
augment (\a. g a) (build h)
otherwise we don't match when given an argument like
augment (\a. h a a) (build h)
Note [Unused spec binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
f :: a -> a
... SPECIALISE f :: Eq a => a -> a ...
It's true that this *is* a more specialised type, but the rule
we get is something like this:
f_spec d = f
RULE: f = f_spec d
Note that the rule is bogus, because it mentions a 'd' that is
not bound on the LHS! But it's a silly specialisation anyway, because
the constraint is unused. We could bind 'd' to (error "unused")
but it seems better to reject the program because it's almost certainly
a mistake. That's what the isDeadBinder call detects.
Note [No RULES on datacons]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Previously, `RULES` like
"JustNothing" forall x . Just x = Nothing
were allowed. Simon Peyton Jones says this seems to have been a
mistake, that such rules have never been supported intentionally,
and that he doesn't know if they can break in horrible ways.
Furthermore, Ben Gamari and Reid Barton are considering trying to
detect the presence of "static data" that the simplifier doesn't
need to traverse at all. Such rules do not play well with that.
So for now, we ban them altogether as requested by #13290. See also #7398.
************************************************************************
* *
Desugaring evidence
* *
************************************************************************
Note [Desugaring WpFun]
~~~~~~~~~~~~~~~~~~~~~~~
See comments on WpFun in GHC.Tc.Types.Evidence for what WpFun means.
Roughly:
(WpFun w_arg w_res)[ e ] = \x. w_res[ e w_arg[x] ]
This eta-expansion risk duplicating work, if `e` is not in HNF.
At one stage I thought we could avoid that by desugaring to
let f = e in \x. w_res[ f w_arg[x] ]
But that /fundamentally/ doesn't work, because `w_res` may bind
evidence that is used in `e`.
This question arose when thinking about deep subsumption; see
https://github.com/ghc-proposals/ghc-proposals/pull/287#issuecomment-1125419649).
-}
dsHsWrapper :: HsWrapper -> DsM (CoreExpr -> CoreExpr)
dsHsWrapper WpHole = return $ \e -> e
dsHsWrapper (WpTyApp ty) = return $ \e -> App e (Type ty)
dsHsWrapper (WpEvLam ev) = return $ Lam ev
dsHsWrapper (WpTyLam tv) = return $ Lam tv
dsHsWrapper (WpLet ev_binds) = do { bs <- dsTcEvBinds ev_binds
; return (mkCoreLets bs) }
dsHsWrapper (WpCompose c1 c2) = do { w1 <- dsHsWrapper c1
; w2 <- dsHsWrapper c2
; return (w1 . w2) }
dsHsWrapper (WpFun c1 c2 (Scaled w t1)) -- See Note [Desugaring WpFun]
= do { x <- newSysLocalDs w t1
; w1 <- dsHsWrapper c1
; w2 <- dsHsWrapper c2
; let app f a = mkCoreAppDs (text "dsHsWrapper") f a
arg = w1 (Var x)
; return (\e -> (Lam x (w2 (app e arg)))) }
dsHsWrapper (WpCast co) = assert (coercionRole co == Representational) $
return $ \e -> mkCastDs e co
dsHsWrapper (WpEvApp tm) = do { core_tm <- dsEvTerm tm
; return (\e -> App e core_tm) }
-- See Note [Wrapper returned from tcSubMult] in GHC.Tc.Utils.Unify.
dsHsWrapper (WpMultCoercion co) = do { when (not (isReflexiveCo co)) $
diagnosticDs DsMultiplicityCoercionsNotSupported
; return $ \e -> e }
--------------------------------------
dsTcEvBinds_s :: [TcEvBinds] -> DsM [CoreBind]
dsTcEvBinds_s [] = return []
dsTcEvBinds_s (b:rest) = assert (null rest) $ -- Zonker ensures null
dsTcEvBinds b
dsTcEvBinds :: TcEvBinds -> DsM [CoreBind]
dsTcEvBinds (TcEvBinds {}) = panic "dsEvBinds" -- Zonker has got rid of this
dsTcEvBinds (EvBinds bs) = dsEvBinds bs
dsEvBinds :: Bag EvBind -> DsM [CoreBind]
dsEvBinds bs
= do { ds_bs <- mapBagM dsEvBind bs
; return (mk_ev_binds ds_bs) }
mk_ev_binds :: Bag (Id,CoreExpr) -> [CoreBind]
-- We do SCC analysis of the evidence bindings, /after/ desugaring
-- them. This is convenient: it means we can use the GHC.Core
-- free-variable functions rather than having to do accurate free vars
-- for EvTerm.
mk_ev_binds ds_binds
= map ds_scc (stronglyConnCompFromEdgedVerticesUniq edges)
where
edges :: [ Node EvVar (EvVar,CoreExpr) ]
edges = foldr ((:) . mk_node) [] ds_binds
mk_node :: (Id, CoreExpr) -> Node EvVar (EvVar,CoreExpr)
mk_node b@(var, rhs)
= DigraphNode { node_payload = b
, node_key = var
, node_dependencies = nonDetEltsUniqSet $
exprFreeVars rhs `unionVarSet`
coVarsOfType (varType var) }
-- It's OK to use nonDetEltsUniqSet here as stronglyConnCompFromEdgedVertices
-- is still deterministic even if the edges are in nondeterministic order
-- as explained in Note [Deterministic SCC] in GHC.Data.Graph.Directed.
ds_scc (AcyclicSCC (v,r)) = NonRec v r
ds_scc (CyclicSCC prs) = Rec prs
dsEvBind :: EvBind -> DsM (Id, CoreExpr)
dsEvBind (EvBind { eb_lhs = v, eb_rhs = r}) = liftM ((,) v) (dsEvTerm r)
{-**********************************************************************
* *
Desugaring EvTerms
* *
**********************************************************************-}
dsEvTerm :: EvTerm -> DsM CoreExpr
dsEvTerm (EvExpr e) = return e
dsEvTerm (EvTypeable ty ev) = dsEvTypeable ty ev
dsEvTerm (EvFun { et_tvs = tvs, et_given = given
, et_binds = ev_binds, et_body = wanted_id })
= do { ds_ev_binds <- dsTcEvBinds ev_binds
; return $ (mkLams (tvs ++ given) $
mkCoreLets ds_ev_binds $
Var wanted_id) }
{-**********************************************************************
* *
Desugaring Typeable dictionaries
* *
**********************************************************************-}
dsEvTypeable :: Type -> EvTypeable -> DsM CoreExpr
-- Return a CoreExpr :: Typeable ty
-- This code is tightly coupled to the representation
-- of TypeRep, in base library Data.Typeable.Internal
dsEvTypeable ty ev
= do { tyCl <- dsLookupTyCon typeableClassName -- Typeable
; let kind = typeKind ty
typeable_data_con = tyConSingleDataCon tyCl -- "Data constructor"
-- for Typeable
; rep_expr <- ds_ev_typeable ty ev -- :: TypeRep a
-- Package up the method as `Typeable` dictionary
; return $ mkConApp typeable_data_con [Type kind, Type ty, rep_expr] }
type TypeRepExpr = CoreExpr
-- | Returns a @CoreExpr :: TypeRep ty@
ds_ev_typeable :: Type -> EvTypeable -> DsM CoreExpr
ds_ev_typeable ty (EvTypeableTyCon tc kind_ev)
= do { mkTrCon <- dsLookupGlobalId mkTrConName
-- mkTrCon :: forall k (a :: k). TyCon -> TypeRep k -> TypeRep a
; someTypeRepTyCon <- dsLookupTyCon someTypeRepTyConName
; someTypeRepDataCon <- dsLookupDataCon someTypeRepDataConName
-- SomeTypeRep :: forall k (a :: k). TypeRep a -> SomeTypeRep
; tc_rep <- tyConRep tc -- :: TyCon
; let ks = tyConAppArgs ty
-- Construct a SomeTypeRep
toSomeTypeRep :: Type -> EvTerm -> DsM CoreExpr
toSomeTypeRep t ev = do
rep <- getRep ev t
return $ mkCoreConApps someTypeRepDataCon [Type (typeKind t), Type t, rep]
; kind_arg_reps <- sequence $ zipWith toSomeTypeRep ks kind_ev -- :: TypeRep t
; let -- :: [SomeTypeRep]
kind_args = mkListExpr (mkTyConTy someTypeRepTyCon) kind_arg_reps
-- Note that we use the kind of the type, not the TyCon from which it
-- is constructed since the latter may be kind polymorphic whereas the
-- former we know is not (we checked in the solver).
; let expr = mkApps (Var mkTrCon) [ Type (typeKind ty)
, Type ty
, tc_rep
, kind_args ]
-- ; pprRuntimeTrace "Trace mkTrTyCon" (ppr expr) expr
; return expr
}
ds_ev_typeable ty (EvTypeableTyApp ev1 ev2)
| Just (t1,t2) <- splitAppTy_maybe ty
= do { e1 <- getRep ev1 t1
; e2 <- getRep ev2 t2
; mkTrApp <- dsLookupGlobalId mkTrAppName
-- mkTrApp :: forall k1 k2 (a :: k1 -> k2) (b :: k1).
-- TypeRep a -> TypeRep b -> TypeRep (a b)
; let (_, k1, k2) = splitFunTy (typeKind t1) -- drop the multiplicity,
-- since it's a kind
; let expr = mkApps (mkTyApps (Var mkTrApp) [ k1, k2, t1, t2 ])
[ e1, e2 ]
-- ; pprRuntimeTrace "Trace mkTrApp" (ppr expr) expr
; return expr
}
ds_ev_typeable ty (EvTypeableTrFun evm ev1 ev2)
| Just (_af,m,t1,t2) <- splitFunTy_maybe ty
= do { e1 <- getRep ev1 t1
; e2 <- getRep ev2 t2
; em <- getRep evm m
; mkTrFun <- dsLookupGlobalId mkTrFunName
-- mkTrFun :: forall (m :: Multiplicity) r1 r2 (a :: TYPE r1) (b :: TYPE r2).
-- TypeRep m -> TypeRep a -> TypeRep b -> TypeRep (a % m -> b)
; let r1 = getRuntimeRep t1
r2 = getRuntimeRep t2
; return $ mkApps (mkTyApps (Var mkTrFun) [m, r1, r2, t1, t2])
[ em, e1, e2 ]
}
ds_ev_typeable ty (EvTypeableTyLit ev)
= -- See Note [Typeable for Nat and Symbol] in GHC.Tc.Solver.Interact
do { fun <- dsLookupGlobalId tr_fun
; dict <- dsEvTerm ev -- Of type KnownNat/KnownSymbol
; return (mkApps (mkTyApps (Var fun) [ty]) [ dict ]) }
where
ty_kind = typeKind ty
-- tr_fun is the Name of
-- typeNatTypeRep :: KnownNat a => TypeRep a
-- of typeSymbolTypeRep :: KnownSymbol a => TypeRep a
tr_fun | ty_kind `eqType` naturalTy = typeNatTypeRepName
| ty_kind `eqType` typeSymbolKind = typeSymbolTypeRepName
| ty_kind `eqType` charTy = typeCharTypeRepName
| otherwise = panic "dsEvTypeable: unknown type lit kind"
ds_ev_typeable ty ev
= pprPanic "dsEvTypeable" (ppr ty $$ ppr ev)
getRep :: EvTerm -- ^ EvTerm for @Typeable ty@
-> Type -- ^ The type @ty@
-> DsM TypeRepExpr -- ^ Return @CoreExpr :: TypeRep ty@
-- namely @typeRep# dict@
-- Remember that
-- typeRep# :: forall k (a::k). Typeable k a -> TypeRep a
getRep ev ty
= do { typeable_expr <- dsEvTerm ev
; typeRepId <- dsLookupGlobalId typeRepIdName
; let ty_args = [typeKind ty, ty]
; return (mkApps (mkTyApps (Var typeRepId) ty_args) [ typeable_expr ]) }
tyConRep :: TyCon -> DsM CoreExpr
-- Returns CoreExpr :: TyCon
tyConRep tc
| Just tc_rep_nm <- tyConRepName_maybe tc
= do { tc_rep_id <- dsLookupGlobalId tc_rep_nm
; return (Var tc_rep_id) }
| otherwise
= pprPanic "tyConRep" (ppr tc)
|