1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
|
{-# LANGUAGE TypeFamilies #-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
{-# OPTIONS_GHC -Wno-incomplete-record-updates #-}
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
Desugaring expressions.
-}
module GHC.HsToCore.Expr
( dsExpr, dsLExpr, dsLocalBinds
, dsValBinds, dsLit, dsSyntaxExpr
)
where
import GHC.Prelude
import GHC.HsToCore.Match
import GHC.HsToCore.Match.Literal
import GHC.HsToCore.Binds
import GHC.HsToCore.GuardedRHSs
import GHC.HsToCore.ListComp
import GHC.HsToCore.Utils
import GHC.HsToCore.Arrows
import GHC.HsToCore.Monad
import GHC.HsToCore.Pmc ( addTyCs, pmcGRHSs )
import GHC.HsToCore.Errors.Types
import GHC.Types.SourceText
import GHC.Types.Name
import GHC.Core.FamInstEnv( topNormaliseType )
import GHC.HsToCore.Quote
import GHC.Hs
-- NB: The desugarer, which straddles the source and Core worlds, sometimes
-- needs to see source types
import GHC.Tc.Utils.TcType
import GHC.Tc.Types.Evidence
import GHC.Tc.Utils.Monad
import GHC.Core.Type
import GHC.Core.TyCo.Rep
import GHC.Core
import GHC.Core.Utils
import GHC.Core.Make
import GHC.Driver.Session
import GHC.Types.CostCentre
import GHC.Types.Id
import GHC.Types.Id.Make
import GHC.Unit.Module
import GHC.Core.ConLike
import GHC.Core.DataCon
import GHC.Builtin.Types
import GHC.Builtin.Names
import GHC.Types.Basic
import GHC.Types.SrcLoc
import GHC.Types.Tickish
import GHC.Utils.Misc
import GHC.Data.Bag
import GHC.Utils.Outputable as Outputable
import GHC.Utils.Panic
import GHC.Utils.Panic.Plain
import GHC.Core.PatSyn
import Control.Monad
{-
************************************************************************
* *
dsLocalBinds, dsValBinds
* *
************************************************************************
-}
dsLocalBinds :: HsLocalBinds GhcTc -> CoreExpr -> DsM CoreExpr
dsLocalBinds (EmptyLocalBinds _) body = return body
dsLocalBinds b@(HsValBinds _ binds) body = putSrcSpanDs (spanHsLocaLBinds b) $
dsValBinds binds body
dsLocalBinds (HsIPBinds _ binds) body = dsIPBinds binds body
-------------------------
-- caller sets location
dsValBinds :: HsValBinds GhcTc -> CoreExpr -> DsM CoreExpr
dsValBinds (XValBindsLR (NValBinds binds _)) body
= foldrM ds_val_bind body binds
dsValBinds (ValBinds {}) _ = panic "dsValBinds ValBindsIn"
-------------------------
dsIPBinds :: HsIPBinds GhcTc -> CoreExpr -> DsM CoreExpr
dsIPBinds (IPBinds ev_binds ip_binds) body
= do { ds_binds <- dsTcEvBinds ev_binds
; let inner = mkCoreLets ds_binds body
-- The dict bindings may not be in
-- dependency order; hence Rec
; foldrM ds_ip_bind inner ip_binds }
where
ds_ip_bind :: LIPBind GhcTc -> CoreExpr -> DsM CoreExpr
ds_ip_bind (L _ (IPBind n _ e)) body
= do e' <- dsLExpr e
return (Let (NonRec n e') body)
-------------------------
-- caller sets location
ds_val_bind :: (RecFlag, LHsBinds GhcTc) -> CoreExpr -> DsM CoreExpr
-- Special case for bindings which bind unlifted variables
-- We need to do a case right away, rather than building
-- a tuple and doing selections.
-- Silently ignore INLINE and SPECIALISE pragmas...
ds_val_bind (NonRecursive, hsbinds) body
| [L loc bind] <- bagToList hsbinds
-- Non-recursive, non-overloaded bindings only come in ones
-- ToDo: in some bizarre case it's conceivable that there
-- could be dict binds in the 'binds'. (See the notes
-- below. Then pattern-match would fail. Urk.)
, isUnliftedHsBind bind
= putSrcSpanDs (locA loc) $
-- see Note [Strict binds checks] in GHC.HsToCore.Binds
if is_polymorphic bind
then errDsCoreExpr (DsCannotMixPolyAndUnliftedBindings bind)
-- data Ptr a = Ptr Addr#
-- f x = let p@(Ptr y) = ... in ...
-- Here the binding for 'p' is polymorphic, but does
-- not mix with an unlifted binding for 'y'. You should
-- use a bang pattern. #6078.
else do { when (looksLazyPatBind bind) $
diagnosticDs (DsUnbangedStrictPatterns bind)
-- Complain about a binding that looks lazy
-- e.g. let I# y = x in ...
-- Remember, in checkStrictBinds we are going to do strict
-- matching, so (for software engineering reasons) we insist
-- that the strictness is manifest on each binding
-- However, lone (unboxed) variables are ok
; dsUnliftedBind bind body }
where
is_polymorphic (XHsBindsLR (AbsBinds { abs_tvs = tvs, abs_ev_vars = evs }))
= not (null tvs && null evs)
is_polymorphic _ = False
ds_val_bind (is_rec, binds) _body
| anyBag (isUnliftedHsBind . unLoc) binds -- see Note [Strict binds checks] in GHC.HsToCore.Binds
= assert (isRec is_rec )
errDsCoreExpr $ DsRecBindsNotAllowedForUnliftedTys (bagToList binds)
-- Ordinary case for bindings; none should be unlifted
ds_val_bind (is_rec, binds) body
= do { massert (isRec is_rec || isSingletonBag binds)
-- we should never produce a non-recursive list of multiple binds
; (force_vars,prs) <- dsLHsBinds binds
; let body' = foldr seqVar body force_vars
; assertPpr (not (any (isUnliftedType . idType . fst) prs)) (ppr is_rec $$ ppr binds) $
-- NB: bindings have a fixed RuntimeRep, so it's OK to call isUnliftedType
case prs of
[] -> return body
_ -> return (Let (Rec prs) body') }
-- Use a Rec regardless of is_rec.
-- Why? Because it allows the binds to be all
-- mixed up, which is what happens in one rare case
-- Namely, for an AbsBind with no tyvars and no dicts,
-- but which does have dictionary bindings.
-- See notes with GHC.Tc.Solver.inferLoop [NO TYVARS]
-- It turned out that wrapping a Rec here was the easiest solution
--
-- NB The previous case dealt with unlifted bindings, so we
-- only have to deal with lifted ones now; so Rec is ok
------------------
dsUnliftedBind :: HsBind GhcTc -> CoreExpr -> DsM CoreExpr
dsUnliftedBind (XHsBindsLR (AbsBinds { abs_tvs = [], abs_ev_vars = []
, abs_exports = exports
, abs_ev_binds = ev_binds
, abs_binds = lbinds })) body
= do { let body1 = foldr bind_export body exports
bind_export export b = bindNonRec (abe_poly export) (Var (abe_mono export)) b
; body2 <- foldlM (\body lbind -> dsUnliftedBind (unLoc lbind) body)
body1 lbinds
; ds_binds <- dsTcEvBinds_s ev_binds
; return (mkCoreLets ds_binds body2) }
dsUnliftedBind (FunBind { fun_id = L l fun
, fun_matches = matches
, fun_ext = co_fn
, fun_tick = tick }) body
-- Can't be a bang pattern (that looks like a PatBind)
-- so must be simply unboxed
= do { (args, rhs) <- matchWrapper (mkPrefixFunRhs (L l $ idName fun)) Nothing matches
; massert (null args) -- Functions aren't unlifted
; core_wrap <- dsHsWrapper co_fn -- Can be non-identity (#21516)
; let rhs' = core_wrap (mkOptTickBox tick rhs)
; return (bindNonRec fun rhs' body) }
dsUnliftedBind (PatBind {pat_lhs = pat, pat_rhs = grhss
, pat_ext = ty }) body
= -- let C x# y# = rhs in body
-- ==> case rhs of C x# y# -> body
do { match_nablas <- pmcGRHSs PatBindGuards grhss
; rhs <- dsGuarded grhss ty match_nablas
; let upat = unLoc pat
eqn = EqnInfo { eqn_pats = [upat],
eqn_orig = FromSource,
eqn_rhs = cantFailMatchResult body }
; var <- selectMatchVar Many upat
-- `var` will end up in a let binder, so the multiplicity
-- doesn't matter.
; result <- matchEquations PatBindRhs [var] [eqn] (exprType body)
; return (bindNonRec var rhs result) }
dsUnliftedBind bind body = pprPanic "dsLet: unlifted" (ppr bind $$ ppr body)
{-
************************************************************************
* *
* Variables, constructors, literals *
* *
************************************************************************
-}
-- | Replace the body of the function with this block to test the hsExprType
-- function in GHC.Tc.Utils.Zonk:
-- putSrcSpanDs loc $ do
-- { core_expr <- dsExpr e
-- ; massertPpr (exprType core_expr `eqType` hsExprType e)
-- (ppr e <+> dcolon <+> ppr (hsExprType e) $$
-- ppr core_expr <+> dcolon <+> ppr (exprType core_expr))
-- ; return core_expr }
dsLExpr :: LHsExpr GhcTc -> DsM CoreExpr
dsLExpr (L loc e) =
putSrcSpanDsA loc $ dsExpr e
dsExpr :: HsExpr GhcTc -> DsM CoreExpr
dsExpr (HsVar _ (L _ id)) = dsHsVar id
dsExpr (HsRecSel _ (FieldOcc id _)) = dsHsVar id
dsExpr (HsUnboundVar (HER ref _ _) _) = dsEvTerm =<< readMutVar ref
-- See Note [Holes] in GHC.Tc.Types.Constraint
dsExpr (HsPar _ _ e _) = dsLExpr e
dsExpr (ExprWithTySig _ e _) = dsLExpr e
dsExpr (HsIPVar x _) = dataConCantHappen x
dsExpr (HsGetField x _ _) = dataConCantHappen x
dsExpr (HsProjection x _) = dataConCantHappen x
dsExpr (HsLit _ lit)
= do { warnAboutOverflowedLit lit
; dsLit (convertLit lit) }
dsExpr (HsOverLit _ lit)
= do { warnAboutOverflowedOverLit lit
; dsOverLit lit }
dsExpr e@(XExpr ext_expr_tc)
= case ext_expr_tc of
ExpansionExpr (HsExpanded _ b) -> dsExpr b
WrapExpr {} -> dsHsWrapped e
ConLikeTc con tvs tys -> dsConLike con tvs tys
-- Hpc Support
HsTick tickish e -> do
e' <- dsLExpr e
return (Tick tickish e')
-- There is a problem here. The then and else branches
-- have no free variables, so they are open to lifting.
-- We need someway of stopping this.
-- This will make no difference to binary coverage
-- (did you go here: YES or NO), but will effect accurate
-- tick counting.
HsBinTick ixT ixF e -> do
e2 <- dsLExpr e
do { assert (exprType e2 `eqType` boolTy)
mkBinaryTickBox ixT ixF e2
}
dsExpr (NegApp _ (L loc
(HsOverLit _ lit@(OverLit { ol_val = HsIntegral i})))
neg_expr)
= do { expr' <- putSrcSpanDsA loc $ do
{ warnAboutOverflowedOverLit
(lit { ol_val = HsIntegral (negateIntegralLit i) })
; dsOverLit lit }
; dsSyntaxExpr neg_expr [expr'] }
dsExpr (NegApp _ expr neg_expr)
= do { expr' <- dsLExpr expr
; dsSyntaxExpr neg_expr [expr'] }
dsExpr (HsLam _ a_Match)
= uncurry mkCoreLams <$> matchWrapper LambdaExpr Nothing a_Match
dsExpr (HsLamCase _ lc_variant matches)
= uncurry mkCoreLams <$> matchWrapper (LamCaseAlt lc_variant) Nothing matches
dsExpr e@(HsApp _ fun arg)
= do { fun' <- dsLExpr fun
; arg' <- dsLExpr arg
; return $ mkCoreAppDs (text "HsApp" <+> ppr e) fun' arg' }
dsExpr e@(HsAppType {}) = dsHsWrapped e
{-
Note [Desugaring vars]
~~~~~~~~~~~~~~~~~~~~~~
In one situation we can get a *coercion* variable in a HsVar, namely
the support method for an equality superclass:
class (a~b) => C a b where ...
instance (blah) => C (T a) (T b) where ..
Then we get
$dfCT :: forall ab. blah => C (T a) (T b)
$dfCT ab blah = MkC ($c$p1C a blah) ($cop a blah)
$c$p1C :: forall ab. blah => (T a ~ T b)
$c$p1C ab blah = let ...; g :: T a ~ T b = ... } in g
That 'g' in the 'in' part is an evidence variable, and when
converting to core it must become a CO.
-}
dsExpr (ExplicitTuple _ tup_args boxity)
= do { let go (lam_vars, args) (Missing (Scaled mult ty))
-- For every missing expression, we need
-- another lambda in the desugaring.
= do { lam_var <- newSysLocalDs mult ty
; return (lam_var : lam_vars, Var lam_var : args) }
go (lam_vars, args) (Present _ expr)
-- Expressions that are present don't generate
-- lambdas, just arguments.
= do { core_expr <- dsLExpr expr
; return (lam_vars, core_expr : args) }
; (lam_vars, args) <- foldM go ([], []) (reverse tup_args)
-- The reverse is because foldM goes left-to-right
; return $ mkCoreLams lam_vars (mkCoreTupBoxity boxity args) }
-- See Note [Don't flatten tuples from HsSyn] in GHC.Core.Make
dsExpr (ExplicitSum types alt arity expr)
= mkCoreUbxSum arity alt types <$> dsLExpr expr
dsExpr (HsPragE _ prag expr) =
ds_prag_expr prag expr
dsExpr (HsCase _ discrim matches)
= do { core_discrim <- dsLExpr discrim
; ([discrim_var], matching_code) <- matchWrapper CaseAlt (Just [discrim]) matches
; return (bindNonRec discrim_var core_discrim matching_code) }
-- Pepe: The binds are in scope in the body but NOT in the binding group
-- This is to avoid silliness in breakpoints
dsExpr (HsLet _ _ binds _ body) = do
body' <- dsLExpr body
dsLocalBinds binds body'
-- We need the `ListComp' form to use `deListComp' (rather than the "do" form)
-- because the interpretation of `stmts' depends on what sort of thing it is.
--
dsExpr (HsDo res_ty ListComp (L _ stmts)) = dsListComp stmts res_ty
dsExpr (HsDo _ ctx@DoExpr{} (L _ stmts)) = dsDo ctx stmts
dsExpr (HsDo _ ctx@GhciStmtCtxt (L _ stmts)) = dsDo ctx stmts
dsExpr (HsDo _ ctx@MDoExpr{} (L _ stmts)) = dsDo ctx stmts
dsExpr (HsDo _ MonadComp (L _ stmts)) = dsMonadComp stmts
dsExpr (HsIf _ guard_expr then_expr else_expr)
= do { pred <- dsLExpr guard_expr
; b1 <- dsLExpr then_expr
; b2 <- dsLExpr else_expr
; return $ mkIfThenElse pred b1 b2 }
dsExpr (HsMultiIf res_ty alts)
| null alts
= mkErrorExpr
| otherwise
= do { let grhss = GRHSs emptyComments alts emptyLocalBinds
; rhss_nablas <- pmcGRHSs IfAlt grhss
; match_result <- dsGRHSs IfAlt grhss res_ty rhss_nablas
; error_expr <- mkErrorExpr
; extractMatchResult match_result error_expr }
where
mkErrorExpr = mkErrorAppDs nON_EXHAUSTIVE_GUARDS_ERROR_ID res_ty
(text "multi-way if")
{-
\noindent
\underline{\bf Various data construction things}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-}
dsExpr (ExplicitList elt_ty xs) = dsExplicitList elt_ty xs
dsExpr (ArithSeq expr witness seq)
= case witness of
Nothing -> dsArithSeq expr seq
Just fl -> do { newArithSeq <- dsArithSeq expr seq
; dsSyntaxExpr fl [newArithSeq] }
{-
Static Pointers
~~~~~~~~~~~~~~~
See Note [Grand plan for static forms] in GHC.Iface.Tidy.StaticPtrTable for an overview.
g = ... static f ...
==>
g = ... makeStatic loc f ...
-}
dsExpr (HsStatic (_, whole_ty) expr@(L loc _)) = do
expr_ds <- dsLExpr expr
let (_, [ty]) = splitTyConApp whole_ty
makeStaticId <- dsLookupGlobalId makeStaticName
dflags <- getDynFlags
let platform = targetPlatform dflags
let (line, col) = case locA loc of
RealSrcSpan r _ ->
( srcLocLine $ realSrcSpanStart r
, srcLocCol $ realSrcSpanStart r
)
_ -> (0, 0)
srcLoc = mkCoreConApps (tupleDataCon Boxed 2)
[ Type intTy , Type intTy
, mkIntExprInt platform line, mkIntExprInt platform col
]
putSrcSpanDsA loc $ return $
mkCoreApps (Var makeStaticId) [ Type ty, srcLoc, expr_ds ]
{-
\noindent
\underline{\bf Record construction and update}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For record construction we do this (assuming T has three arguments)
\begin{verbatim}
T { op2 = e }
==>
let err = /\a -> recConErr a
T (recConErr t1 "M.hs/230/op1")
e
(recConErr t1 "M.hs/230/op3")
\end{verbatim}
@recConErr@ then converts its argument string into a proper message
before printing it as
\begin{verbatim}
M.hs, line 230: missing field op1 was evaluated
\end{verbatim}
We also handle @C{}@ as valid construction syntax for an unlabelled
constructor @C@, setting all of @C@'s fields to bottom.
-}
dsExpr (RecordCon { rcon_con = L _ con_like
, rcon_flds = rbinds
, rcon_ext = con_expr })
= do { con_expr' <- dsExpr con_expr
; let
(arg_tys, _) = tcSplitFunTys (exprType con_expr')
-- A newtype in the corner should be opaque;
-- hence TcType.tcSplitFunTys
mk_arg (arg_ty, fl)
= case findField (rec_flds rbinds) (flSelector fl) of
(rhs:rhss) -> assert (null rhss)
dsLExpr rhs
[] -> mkErrorAppDs rEC_CON_ERROR_ID arg_ty (ppr (flLabel fl))
unlabelled_bottom arg_ty = mkErrorAppDs rEC_CON_ERROR_ID arg_ty Outputable.empty
labels = conLikeFieldLabels con_like
; con_args <- if null labels
then mapM unlabelled_bottom (map scaledThing arg_tys)
else mapM mk_arg (zipEqual "dsExpr:RecordCon" (map scaledThing arg_tys) labels)
; return (mkCoreApps con_expr' con_args) }
dsExpr (RecordUpd x _ _) = dataConCantHappen x
-- Here is where we desugar the Template Haskell brackets and escapes
-- Template Haskell stuff
-- See Note [The life cycle of a TH quotation]
dsExpr (HsTypedBracket bracket_tc _) = dsBracket bracket_tc
dsExpr (HsUntypedBracket bracket_tc _) = dsBracket bracket_tc
dsExpr (HsTypedSplice _ s) = pprPanic "dsExpr:typed splice" (pprTypedSplice Nothing s)
dsExpr (HsUntypedSplice ext _) = dataConCantHappen ext
-- Arrow notation extension
dsExpr (HsProc _ pat cmd) = dsProcExpr pat cmd
-- HsSyn constructs that just shouldn't be here, because
-- the renamer removed them. See GHC.Rename.Expr.
-- Note [Handling overloaded and rebindable constructs]
dsExpr (HsOverLabel x _) = dataConCantHappen x
dsExpr (OpApp x _ _ _) = dataConCantHappen x
dsExpr (SectionL x _ _) = dataConCantHappen x
dsExpr (SectionR x _ _) = dataConCantHappen x
ds_prag_expr :: HsPragE GhcTc -> LHsExpr GhcTc -> DsM CoreExpr
ds_prag_expr (HsPragSCC _ _ cc) expr = do
dflags <- getDynFlags
if sccProfilingEnabled dflags && gopt Opt_ProfManualCcs dflags
then do
mod_name <- getModule
count <- goptM Opt_ProfCountEntries
let nm = sl_fs cc
flavour <- ExprCC <$> getCCIndexDsM nm
Tick (ProfNote (mkUserCC nm mod_name (getLocA expr) flavour) count True)
<$> dsLExpr expr
else dsLExpr expr
------------------------------
dsSyntaxExpr :: SyntaxExpr GhcTc -> [CoreExpr] -> DsM CoreExpr
dsSyntaxExpr (SyntaxExprTc { syn_expr = expr
, syn_arg_wraps = arg_wraps
, syn_res_wrap = res_wrap })
arg_exprs
= do { fun <- dsExpr expr
; core_arg_wraps <- mapM dsHsWrapper arg_wraps
; core_res_wrap <- dsHsWrapper res_wrap
; let wrapped_args = zipWithEqual "dsSyntaxExpr" ($) core_arg_wraps arg_exprs
; return $ core_res_wrap (mkCoreApps fun wrapped_args) }
dsSyntaxExpr NoSyntaxExprTc _ = panic "dsSyntaxExpr"
findField :: [LHsRecField GhcTc arg] -> Name -> [arg]
findField rbinds sel
= [hfbRHS fld | L _ fld <- rbinds
, sel == idName (hsRecFieldId fld) ]
{-
%--------------------------------------------------------------------
Note [Desugaring explicit lists]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Explicit lists are desugared in a cleverer way to prevent some
fruitless allocations. Essentially, whenever we see a list literal
[x_1, ..., x_n] we generate the corresponding expression in terms of
build:
Explicit lists (literals) are desugared to allow build/foldr fusion when
beneficial. This is a bit of a trade-off,
* build/foldr fusion can generate far larger code than the corresponding
cons-chain (e.g. see #11707)
* even when it doesn't produce more code, build can still fail to fuse,
requiring that the simplifier do more work to bring the expression
back into cons-chain form; this costs compile time
* when it works, fusion can be a significant win. Allocations are reduced
by up to 25% in some nofib programs. Specifically,
Program Size Allocs Runtime CompTime
rewrite +0.0% -26.3% 0.02 -1.8%
ansi -0.3% -13.8% 0.00 +0.0%
lift +0.0% -8.7% 0.00 -2.3%
At the moment we use a simple heuristic to determine whether build will be
fruitful: for small lists we assume the benefits of fusion will be worthwhile;
for long lists we assume that the benefits will be outweighted by the cost of
code duplication. This magic length threshold is @maxBuildLength@. Also, fusion
won't work at all if rewrite rules are disabled, so we don't use the build-based
desugaring in this case.
We used to have a more complex heuristic which would try to break the list into
"static" and "dynamic" parts and only build-desugar the dynamic part.
Unfortunately, determining "static-ness" reliably is a bit tricky and the
heuristic at times produced surprising behavior (see #11710) so it was dropped.
-}
{- | The longest list length which we will desugar using @build@.
This is essentially a magic number and its setting is unfortunate rather
arbitrary. The idea here, as mentioned in Note [Desugaring explicit lists],
is to avoid deforesting large static data into large(r) code. Ideally we'd
want a smaller threshold with larger consumers and vice-versa, but we have no
way of knowing what will be consuming our list in the desugaring impossible to
set generally correctly.
The effect of reducing this number will be that 'build' fusion is applied
less often. From a runtime performance perspective, applying 'build' more
liberally on "moderately" sized lists should rarely hurt and will often it can
only expose further optimization opportunities; if no fusion is possible it will
eventually get rule-rewritten back to a list). We do, however, pay in compile
time.
-}
maxBuildLength :: Int
maxBuildLength = 32
dsExplicitList :: Type -> [LHsExpr GhcTc]
-> DsM CoreExpr
-- See Note [Desugaring explicit lists]
dsExplicitList elt_ty xs
= do { dflags <- getDynFlags
; xs' <- mapM dsLExpr xs
; if xs' `lengthExceeds` maxBuildLength
-- Don't generate builds if the list is very long.
|| null xs'
-- Don't generate builds when the [] constructor will do
|| not (gopt Opt_EnableRewriteRules dflags) -- Rewrite rules off
-- Don't generate a build if there are no rules to eliminate it!
-- See Note [Desugaring RULE left hand sides] in GHC.HsToCore
then return $ mkListExpr elt_ty xs'
else mkBuildExpr elt_ty (mk_build_list xs') }
where
mk_build_list xs' (cons, _) (nil, _)
= return (foldr (App . App (Var cons)) (Var nil) xs')
dsArithSeq :: PostTcExpr -> (ArithSeqInfo GhcTc) -> DsM CoreExpr
dsArithSeq expr (From from)
= App <$> dsExpr expr <*> dsLExpr from
dsArithSeq expr (FromTo from to)
= do fam_envs <- dsGetFamInstEnvs
dflags <- getDynFlags
warnAboutEmptyEnumerations fam_envs dflags from Nothing to
expr' <- dsExpr expr
from' <- dsLExpr from
to' <- dsLExpr to
return $ mkApps expr' [from', to']
dsArithSeq expr (FromThen from thn)
= mkApps <$> dsExpr expr <*> mapM dsLExpr [from, thn]
dsArithSeq expr (FromThenTo from thn to)
= do fam_envs <- dsGetFamInstEnvs
dflags <- getDynFlags
warnAboutEmptyEnumerations fam_envs dflags from (Just thn) to
expr' <- dsExpr expr
from' <- dsLExpr from
thn' <- dsLExpr thn
to' <- dsLExpr to
return $ mkApps expr' [from', thn', to']
{-
Desugar 'do' and 'mdo' expressions (NOT list comprehensions, they're
handled in GHC.HsToCore.ListComp). Basically does the translation given in the
Haskell 98 report:
-}
dsDo :: HsDoFlavour -> [ExprLStmt GhcTc] -> DsM CoreExpr
dsDo ctx stmts
= goL stmts
where
goL [] = panic "dsDo"
goL ((L loc stmt):lstmts) = putSrcSpanDsA loc (go loc stmt lstmts)
go _ (LastStmt _ body _ _) stmts
= assert (null stmts ) dsLExpr body
-- The 'return' op isn't used for 'do' expressions
go _ (BodyStmt _ rhs then_expr _) stmts
= do { rhs2 <- dsLExpr rhs
; warnDiscardedDoBindings rhs (exprType rhs2)
; rest <- goL stmts
; dsSyntaxExpr then_expr [rhs2, rest] }
go _ (LetStmt _ binds) stmts
= do { rest <- goL stmts
; dsLocalBinds binds rest }
go _ (BindStmt xbs pat rhs) stmts
= do { body <- goL stmts
; rhs' <- dsLExpr rhs
; var <- selectSimpleMatchVarL (xbstc_boundResultMult xbs) pat
; match <- matchSinglePatVar var Nothing (StmtCtxt (HsDoStmt ctx)) pat
(xbstc_boundResultType xbs) (cantFailMatchResult body)
; match_code <- dsHandleMonadicFailure ctx pat match (xbstc_failOp xbs)
; dsSyntaxExpr (xbstc_bindOp xbs) [rhs', Lam var match_code] }
go _ (ApplicativeStmt body_ty args mb_join) stmts
= do {
let
(pats, rhss) = unzip (map (do_arg . snd) args)
do_arg (ApplicativeArgOne fail_op pat expr _) =
((pat, fail_op), dsLExpr expr)
do_arg (ApplicativeArgMany _ stmts ret pat _) =
((pat, Nothing), dsDo ctx (stmts ++ [noLocA $ mkLastStmt (noLocA ret)]))
; rhss' <- sequence rhss
; body' <- dsLExpr $ noLocA $ HsDo body_ty ctx (noLocA stmts)
; let match_args (pat, fail_op) (vs,body)
= do { var <- selectSimpleMatchVarL Many pat
; match <- matchSinglePatVar var Nothing (StmtCtxt (HsDoStmt ctx)) pat
body_ty (cantFailMatchResult body)
; match_code <- dsHandleMonadicFailure ctx pat match fail_op
; return (var:vs, match_code)
}
; (vars, body) <- foldrM match_args ([],body') pats
; let fun' = mkLams vars body
; let mk_ap_call l (op,r) = dsSyntaxExpr op [l,r]
; expr <- foldlM mk_ap_call fun' (zip (map fst args) rhss')
; case mb_join of
Nothing -> return expr
Just join_op -> dsSyntaxExpr join_op [expr] }
go loc (RecStmt { recS_stmts = L _ rec_stmts, recS_later_ids = later_ids
, recS_rec_ids = rec_ids, recS_ret_fn = return_op
, recS_mfix_fn = mfix_op, recS_bind_fn = bind_op
, recS_ext = RecStmtTc
{ recS_bind_ty = bind_ty
, recS_rec_rets = rec_rets
, recS_ret_ty = body_ty} }) stmts
= goL (new_bind_stmt : stmts) -- rec_ids can be empty; eg rec { print 'x' }
where
new_bind_stmt = L loc $ BindStmt
XBindStmtTc
{ xbstc_bindOp = bind_op
, xbstc_boundResultType = bind_ty
, xbstc_boundResultMult = Many
, xbstc_failOp = Nothing -- Tuple cannot fail
}
(mkBigLHsPatTupId later_pats)
mfix_app
tup_ids = rec_ids ++ filterOut (`elem` rec_ids) later_ids
tup_ty = mkBigCoreTupTy (map idType tup_ids) -- Deals with singleton case
rec_tup_pats = map nlVarPat tup_ids
later_pats = rec_tup_pats
rets = map noLocA rec_rets
mfix_app = nlHsSyntaxApps mfix_op [mfix_arg]
mfix_arg = noLocA $ HsLam noExtField
(MG { mg_alts = noLocA [mkSimpleMatch
LambdaExpr
[mfix_pat] body]
, mg_ext = MatchGroupTc [unrestricted tup_ty] body_ty Generated
})
mfix_pat = noLocA $ LazyPat noExtField $ mkBigLHsPatTupId rec_tup_pats
body = noLocA $ HsDo body_ty
ctx (noLocA (rec_stmts ++ [ret_stmt]))
ret_app = nlHsSyntaxApps return_op [mkBigLHsTupId rets]
ret_stmt = noLocA $ mkLastStmt ret_app
-- This LastStmt will be desugared with dsDo,
-- which ignores the return_op in the LastStmt,
-- so we must apply the return_op explicitly
go _ (ParStmt {}) _ = panic "dsDo ParStmt"
go _ (TransStmt {}) _ = panic "dsDo TransStmt"
{-
************************************************************************
* *
Desugaring Variables
* *
************************************************************************
-}
dsHsVar :: Id -> DsM CoreExpr
-- We could just call dsHsUnwrapped; but this is a short-cut
-- for the very common case of a variable with no wrapper.
dsHsVar var
= return (varToCoreExpr var) -- See Note [Desugaring vars]
dsHsConLike :: ConLike -> DsM CoreExpr
dsHsConLike (RealDataCon dc)
= return (varToCoreExpr (dataConWrapId dc))
dsHsConLike (PatSynCon ps)
| Just (builder_name, _, add_void) <- patSynBuilder ps
= do { builder_id <- dsLookupGlobalId builder_name
; return (if add_void
then mkCoreApp (text "dsConLike" <+> ppr ps)
(Var builder_id) (Var voidPrimId)
else Var builder_id) }
| otherwise
= pprPanic "dsConLike" (ppr ps)
dsConLike :: ConLike -> [TcTyVar] -> [Scaled Type] -> DsM CoreExpr
-- This function desugars ConLikeTc
-- See Note [Typechecking data constructors] in GHC.Tc.Gen.Head
-- for what is going on here
dsConLike con tvs tys
= do { ds_con <- dsHsConLike con
; ids <- newSysLocalsDs tys
-- newSysLocalDs: /can/ be lev-poly; see
; return (mkLams tvs $
mkLams ids $
ds_con `mkTyApps` mkTyVarTys tvs
`mkVarApps` drop_stupid ids) }
where
drop_stupid = dropList (conLikeStupidTheta con)
-- drop_stupid: see Note [Instantiating stupid theta]
-- in GHC.Tc.Gen.Head
{-
************************************************************************
* *
\subsection{Errors and contexts}
* *
************************************************************************
-}
-- Warn about certain types of values discarded in monadic bindings (#3263)
warnDiscardedDoBindings :: LHsExpr GhcTc -> Type -> DsM ()
warnDiscardedDoBindings rhs rhs_ty
| Just (m_ty, elt_ty) <- tcSplitAppTy_maybe rhs_ty
= do { warn_unused <- woptM Opt_WarnUnusedDoBind
; warn_wrong <- woptM Opt_WarnWrongDoBind
; when (warn_unused || warn_wrong) $
do { fam_inst_envs <- dsGetFamInstEnvs
; let norm_elt_ty = topNormaliseType fam_inst_envs elt_ty
-- Warn about discarding non-() things in 'monadic' binding
; if warn_unused && not (isUnitTy norm_elt_ty)
then diagnosticDs (DsUnusedDoBind rhs elt_ty)
else
-- Warn about discarding m a things in 'monadic' binding of the same type,
-- but only if we didn't already warn due to Opt_WarnUnusedDoBind
when warn_wrong $
case tcSplitAppTy_maybe norm_elt_ty of
Just (elt_m_ty, _)
| m_ty `eqType` topNormaliseType fam_inst_envs elt_m_ty
-> diagnosticDs (DsWrongDoBind rhs elt_ty)
_ -> return () } }
| otherwise -- RHS does have type of form (m ty), which is weird
= return () -- but at least this warning is irrelevant
{-
************************************************************************
* *
dsHsWrapped
* *
************************************************************************
-}
------------------------------
dsHsWrapped :: HsExpr GhcTc -> DsM CoreExpr
dsHsWrapped orig_hs_expr
= go idHsWrapper orig_hs_expr
where
go wrap (HsPar _ _ (L _ hs_e) _)
= go wrap hs_e
go wrap1 (XExpr (WrapExpr (HsWrap wrap2 hs_e)))
= go (wrap1 <.> wrap2) hs_e
go wrap (HsAppType ty (L _ hs_e) _)
= go (wrap <.> WpTyApp ty) hs_e
go wrap (HsVar _ (L _ var))
= do { wrap' <- dsHsWrapper wrap
; let expr = wrap' (varToCoreExpr var)
ty = exprType expr
; dflags <- getDynFlags
; warnAboutIdentities dflags var ty
; return expr }
go wrap hs_e
= do { wrap' <- dsHsWrapper wrap
; addTyCs FromSource (hsWrapDictBinders wrap) $
do { e <- dsExpr hs_e
; return (wrap' e) } }
|