1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
|
{-# LANGUAGE BangPatterns, ScopedTypeVariables, MagicHash #-}
-----------------------------------------------------------------------------
--
-- GHC Interactive support for inspecting arbitrary closures at runtime
--
-- Pepe Iborra (supported by Google SoC) 2006
--
-----------------------------------------------------------------------------
module GHC.Runtime.Heap.Inspect(
-- * Entry points and types
cvObtainTerm,
cvReconstructType,
improveRTTIType,
Term(..),
-- * Utils
isFullyEvaluatedTerm,
termType, mapTermType, termTyCoVars,
foldTerm, TermFold(..),
cPprTerm, cPprTermBase,
constrClosToName -- exported to use in test T4891
) where
import GHC.Prelude hiding (head, init, last, tail)
import GHC.Platform
import GHC.Runtime.Interpreter as GHCi
import GHCi.RemoteTypes
import GHC.Driver.Env
import GHCi.Message ( fromSerializableException )
import GHC.Core.DataCon
import GHC.Core.Type
import GHC.Types.RepType
import GHC.Core.Multiplicity
import qualified GHC.Core.Unify as U
import GHC.Types.Var
import GHC.Tc.Utils.Monad
import GHC.Tc.Utils.TcType
import GHC.Tc.Utils.TcMType
import GHC.Tc.Utils.Zonk ( zonkTcTypeToTypeX, mkEmptyZonkEnv, ZonkFlexi( RuntimeUnkFlexi ) )
import GHC.Tc.Utils.Unify
import GHC.Tc.Utils.Env
import GHC.Core.TyCon
import GHC.Types.Name
import GHC.Types.Name.Occurrence as OccName
import GHC.Unit.Module
import GHC.Iface.Env
import GHC.Utils.Misc
import GHC.Types.Var.Set
import GHC.Types.Basic ( Boxity(..) )
import GHC.Builtin.Types.Prim
import GHC.Builtin.Types
import GHC.Driver.Session
import GHC.Driver.Ppr
import GHC.Utils.Outputable as Ppr
import GHC.Utils.Panic
import GHC.Utils.Panic.Plain
import GHC.Char
import GHC.Exts.Heap
import GHC.Runtime.Heap.Layout ( roundUpTo )
import GHC.IO (throwIO)
import Control.Monad
import Data.Maybe
import Data.List ((\\))
import Data.List.NonEmpty (NonEmpty (..))
import qualified Data.List.NonEmpty as NE
import GHC.Exts
import qualified Data.Sequence as Seq
import Data.Sequence (viewl, ViewL(..))
import Foreign hiding (shiftL, shiftR)
import System.IO.Unsafe
---------------------------------------------
-- * A representation of semi evaluated Terms
---------------------------------------------
data Term = Term { ty :: RttiType
, dc :: Either String DataCon
-- Carries a text representation if the datacon is
-- not exported by the .hi file, which is the case
-- for private constructors in -O0 compiled libraries
, val :: ForeignHValue
, subTerms :: [Term] }
| Prim { ty :: RttiType
, valRaw :: [Word] }
| Suspension { ctype :: ClosureType
, ty :: RttiType
, val :: ForeignHValue
, bound_to :: Maybe Name -- Useful for printing
}
| NewtypeWrap{ -- At runtime there are no newtypes, and hence no
-- newtype constructors. A NewtypeWrap is just a
-- made-up tag saying "heads up, there used to be
-- a newtype constructor here".
ty :: RttiType
, dc :: Either String DataCon
, wrapped_term :: Term }
| RefWrap { -- The contents of a reference
ty :: RttiType
, wrapped_term :: Term }
termType :: Term -> RttiType
termType t = ty t
isFullyEvaluatedTerm :: Term -> Bool
isFullyEvaluatedTerm Term {subTerms=tt} = all isFullyEvaluatedTerm tt
isFullyEvaluatedTerm Prim {} = True
isFullyEvaluatedTerm NewtypeWrap{wrapped_term=t} = isFullyEvaluatedTerm t
isFullyEvaluatedTerm RefWrap{wrapped_term=t} = isFullyEvaluatedTerm t
isFullyEvaluatedTerm _ = False
instance Outputable (Term) where
ppr t | Just doc <- cPprTerm cPprTermBase t = doc
| otherwise = panic "Outputable Term instance"
----------------------------------------
-- Runtime Closure information functions
----------------------------------------
isThunk :: GenClosure a -> Bool
isThunk ThunkClosure{} = True
isThunk APClosure{} = True
isThunk APStackClosure{} = True
isThunk _ = False
-- Lookup the name in a constructor closure
constrClosToName :: HscEnv -> GenClosure a -> IO (Either String Name)
constrClosToName hsc_env ConstrClosure{pkg=pkg,modl=mod,name=occ} = do
let occName = mkOccName OccName.dataName occ
modName = mkModule (stringToUnit pkg) (mkModuleName mod)
Right `fmap` lookupNameCache (hsc_NC hsc_env) modName occName
constrClosToName _hsc_env clos =
return (Left ("conClosToName: Expected ConstrClosure, got " ++ show (fmap (const ()) clos)))
-----------------------------------
-- * Traversals for Terms
-----------------------------------
type TermProcessor a b = RttiType -> Either String DataCon -> ForeignHValue -> [a] -> b
data TermFold a = TermFold { fTerm :: TermProcessor a a
, fPrim :: RttiType -> [Word] -> a
, fSuspension :: ClosureType -> RttiType -> ForeignHValue
-> Maybe Name -> a
, fNewtypeWrap :: RttiType -> Either String DataCon
-> a -> a
, fRefWrap :: RttiType -> a -> a
}
data TermFoldM m a =
TermFoldM {fTermM :: TermProcessor a (m a)
, fPrimM :: RttiType -> [Word] -> m a
, fSuspensionM :: ClosureType -> RttiType -> ForeignHValue
-> Maybe Name -> m a
, fNewtypeWrapM :: RttiType -> Either String DataCon
-> a -> m a
, fRefWrapM :: RttiType -> a -> m a
}
foldTerm :: TermFold a -> Term -> a
foldTerm tf (Term ty dc v tt) = fTerm tf ty dc v (map (foldTerm tf) tt)
foldTerm tf (Prim ty v ) = fPrim tf ty v
foldTerm tf (Suspension ct ty v b) = fSuspension tf ct ty v b
foldTerm tf (NewtypeWrap ty dc t) = fNewtypeWrap tf ty dc (foldTerm tf t)
foldTerm tf (RefWrap ty t) = fRefWrap tf ty (foldTerm tf t)
foldTermM :: Monad m => TermFoldM m a -> Term -> m a
foldTermM tf (Term ty dc v tt) = mapM (foldTermM tf) tt >>= fTermM tf ty dc v
foldTermM tf (Prim ty v ) = fPrimM tf ty v
foldTermM tf (Suspension ct ty v b) = fSuspensionM tf ct ty v b
foldTermM tf (NewtypeWrap ty dc t) = foldTermM tf t >>= fNewtypeWrapM tf ty dc
foldTermM tf (RefWrap ty t) = foldTermM tf t >>= fRefWrapM tf ty
idTermFold :: TermFold Term
idTermFold = TermFold {
fTerm = Term,
fPrim = Prim,
fSuspension = Suspension,
fNewtypeWrap = NewtypeWrap,
fRefWrap = RefWrap
}
mapTermType :: (RttiType -> Type) -> Term -> Term
mapTermType f = foldTerm idTermFold {
fTerm = \ty dc hval tt -> Term (f ty) dc hval tt,
fSuspension = \ct ty hval n ->
Suspension ct (f ty) hval n,
fNewtypeWrap= \ty dc t -> NewtypeWrap (f ty) dc t,
fRefWrap = \ty t -> RefWrap (f ty) t}
mapTermTypeM :: Monad m => (RttiType -> m Type) -> Term -> m Term
mapTermTypeM f = foldTermM TermFoldM {
fTermM = \ty dc hval tt -> f ty >>= \ty' -> return $ Term ty' dc hval tt,
fPrimM = (return.) . Prim,
fSuspensionM = \ct ty hval n ->
f ty >>= \ty' -> return $ Suspension ct ty' hval n,
fNewtypeWrapM= \ty dc t -> f ty >>= \ty' -> return $ NewtypeWrap ty' dc t,
fRefWrapM = \ty t -> f ty >>= \ty' -> return $ RefWrap ty' t}
termTyCoVars :: Term -> TyCoVarSet
termTyCoVars = foldTerm TermFold {
fTerm = \ty _ _ tt ->
tyCoVarsOfType ty `unionVarSet` concatVarEnv tt,
fSuspension = \_ ty _ _ -> tyCoVarsOfType ty,
fPrim = \ _ _ -> emptyVarSet,
fNewtypeWrap= \ty _ t -> tyCoVarsOfType ty `unionVarSet` t,
fRefWrap = \ty t -> tyCoVarsOfType ty `unionVarSet` t}
where concatVarEnv = foldr unionVarSet emptyVarSet
----------------------------------
-- Pretty printing of terms
----------------------------------
type Precedence = Int
type TermPrinterM m = Precedence -> Term -> m SDoc
app_prec,cons_prec, max_prec ::Int
max_prec = 10
app_prec = max_prec
cons_prec = 5 -- TODO Extract this info from GHC itself
pprTermM, ppr_termM, pprNewtypeWrap :: Monad m => TermPrinterM m -> TermPrinterM m
pprTermM y p t = pprDeeper `liftM` ppr_termM y p t
ppr_termM y p Term{dc=Left dc_tag, subTerms=tt} = do
tt_docs <- mapM (y app_prec) tt
return $ cparen (not (null tt) && p >= app_prec)
(text dc_tag <+> pprDeeperList fsep tt_docs)
ppr_termM y p Term{dc=Right dc, subTerms=tt}
{- | dataConIsInfix dc, (t1:t2:tt') <- tt --TODO fixity
= parens (ppr_term1 True t1 <+> ppr dc <+> ppr_term1 True ppr t2)
<+> hsep (map (ppr_term1 True) tt)
-} -- TODO Printing infix constructors properly
= do { tt_docs' <- mapM (y app_prec) tt
; return $ ifPprDebug (show_tm tt_docs')
(show_tm (dropList (dataConTheta dc) tt_docs'))
-- Don't show the dictionary arguments to
-- constructors unless -dppr-debug is on
}
where
show_tm tt_docs
| null tt_docs = ppr dc
| otherwise = cparen (p >= app_prec) $
sep [ppr dc, nest 2 (pprDeeperList fsep tt_docs)]
ppr_termM y p t@NewtypeWrap{} = pprNewtypeWrap y p t
ppr_termM y p RefWrap{wrapped_term=t} = do
contents <- y app_prec t
return$ cparen (p >= app_prec) (text "GHC.Prim.MutVar#" <+> contents)
-- The constructor name is wired in here ^^^ for the sake of simplicity.
-- I don't think mutvars are going to change in a near future.
-- In any case this is solely a presentation matter: MutVar# is
-- a datatype with no constructors, implemented by the RTS
-- (hence there is no way to obtain a datacon and print it).
ppr_termM _ _ t = ppr_termM1 t
ppr_termM1 :: Monad m => Term -> m SDoc
ppr_termM1 Prim{valRaw=words, ty=ty} =
return $ repPrim (tyConAppTyCon ty) words
ppr_termM1 Suspension{ty=ty, bound_to=Nothing} =
return (char '_' <+> whenPprDebug (dcolon <> pprSigmaType ty))
ppr_termM1 Suspension{ty=ty, bound_to=Just n}
| otherwise = return$ parens$ ppr n <> dcolon <> pprSigmaType ty
ppr_termM1 Term{} = panic "ppr_termM1 - Term"
ppr_termM1 RefWrap{} = panic "ppr_termM1 - RefWrap"
ppr_termM1 NewtypeWrap{} = panic "ppr_termM1 - NewtypeWrap"
pprNewtypeWrap y p NewtypeWrap{ty=ty, wrapped_term=t}
| Just (tc,_) <- tcSplitTyConApp_maybe ty
, assert (isNewTyCon tc) True
, Just new_dc <- tyConSingleDataCon_maybe tc = do
real_term <- y max_prec t
return $ cparen (p >= app_prec) (ppr new_dc <+> real_term)
pprNewtypeWrap _ _ _ = panic "pprNewtypeWrap"
-------------------------------------------------------
-- Custom Term Pretty Printers
-------------------------------------------------------
-- We can want to customize the representation of a
-- term depending on its type.
-- However, note that custom printers have to work with
-- type representations, instead of directly with types.
-- We cannot use type classes here, unless we employ some
-- typerep trickery (e.g. Weirich's RepLib tricks),
-- which I didn't. Therefore, this code replicates a lot
-- of what type classes provide for free.
type CustomTermPrinter m = TermPrinterM m
-> [Precedence -> Term -> (m (Maybe SDoc))]
-- | Takes a list of custom printers with a explicit recursion knot and a term,
-- and returns the output of the first successful printer, or the default printer
cPprTerm :: Monad m => CustomTermPrinter m -> Term -> m SDoc
cPprTerm printers_ = go 0 where
printers = printers_ go
go prec t = do
let default_ = Just `liftM` pprTermM go prec t
mb_customDocs = [pp prec t | pp <- printers] ++ [default_]
mdoc <- firstJustM mb_customDocs
case mdoc of
Nothing -> panic "cPprTerm"
Just doc -> return $ cparen (prec>app_prec+1) doc
firstJustM (mb:mbs) = mb >>= maybe (firstJustM mbs) (return . Just)
firstJustM [] = return Nothing
-- Default set of custom printers. Note that the recursion knot is explicit
cPprTermBase :: forall m. Monad m => CustomTermPrinter m
cPprTermBase y =
[ ifTerm (isTupleTy.ty) (\_p -> liftM (parens . hcat . punctuate comma)
. mapM (y (-1))
. subTerms)
, ifTerm (\t -> isTyCon listTyCon (ty t) && subTerms t `lengthIs` 2)
ppr_list
, ifTerm' (isTyCon intTyCon . ty) ppr_int
, ifTerm' (isTyCon charTyCon . ty) ppr_char
, ifTerm' (isTyCon floatTyCon . ty) ppr_float
, ifTerm' (isTyCon doubleTyCon . ty) ppr_double
, ifTerm' (isTyCon integerTyCon . ty) ppr_integer
, ifTerm' (isTyCon naturalTyCon . ty) ppr_natural
]
where
ifTerm :: (Term -> Bool)
-> (Precedence -> Term -> m SDoc)
-> Precedence -> Term -> m (Maybe SDoc)
ifTerm pred f = ifTerm' pred (\prec t -> Just <$> f prec t)
ifTerm' :: (Term -> Bool)
-> (Precedence -> Term -> m (Maybe SDoc))
-> Precedence -> Term -> m (Maybe SDoc)
ifTerm' pred f prec t@Term{}
| pred t = f prec t
ifTerm' _ _ _ _ = return Nothing
isTupleTy ty = fromMaybe False $ do
(tc,_) <- tcSplitTyConApp_maybe ty
return (isBoxedTupleTyCon tc)
isTyCon a_tc ty = fromMaybe False $ do
(tc,_) <- tcSplitTyConApp_maybe ty
return (a_tc == tc)
ppr_int, ppr_char, ppr_float, ppr_double
:: Precedence -> Term -> m (Maybe SDoc)
ppr_int _ Term{subTerms=[Prim{valRaw=[w]}]} =
return (Just (Ppr.int (fromIntegral w)))
ppr_int _ _ = return Nothing
ppr_char _ Term{subTerms=[Prim{valRaw=[w]}]} =
return (Just (Ppr.pprHsChar (chr (fromIntegral w))))
ppr_char _ _ = return Nothing
ppr_float _ Term{subTerms=[Prim{valRaw=[w]}]} = do
let f = unsafeDupablePerformIO $
alloca $ \p -> poke p w >> peek (castPtr p)
return (Just (Ppr.float f))
ppr_float _ _ = return Nothing
ppr_double _ Term{subTerms=[Prim{valRaw=[w]}]} = do
let f = unsafeDupablePerformIO $
alloca $ \p -> poke p w >> peek (castPtr p)
return (Just (Ppr.double f))
-- let's assume that if we get two words, we're on a 32-bit
-- machine. There's no good way to get a Platform to check the word
-- size here.
ppr_double _ Term{subTerms=[Prim{valRaw=[w1,w2]}]} = do
let f = unsafeDupablePerformIO $
alloca $ \p -> do
poke p (fromIntegral w1 :: Word32)
poke (p `plusPtr` 4) (fromIntegral w2 :: Word32)
peek (castPtr p)
return (Just (Ppr.double f))
ppr_double _ _ = return Nothing
ppr_bignat :: Bool -> Precedence -> [Word] -> m (Maybe SDoc)
ppr_bignat sign _ ws = do
let
wordSize = finiteBitSize (0 :: Word) -- does the word size depend on the target?
makeInteger n _ [] = n
makeInteger n s (x:xs) = makeInteger (n + (fromIntegral x `shiftL` s)) (s + wordSize) xs
signf = case sign of
False -> 1
True -> -1
return $ Just $ Ppr.integer $ signf * (makeInteger 0 0 ws)
-- Reconstructing Bignums is a bit of a pain. This depends deeply on their
-- representation, so it'll break if that changes (but there are several
-- tests in tests/ghci.debugger/scripts that will tell us if this is wrong).
--
-- data Integer
-- = IS !Int#
-- | IP !BigNat
-- | IN !BigNat
--
-- data Natural
-- = NS !Word#
-- | NB !BigNat
--
-- type BigNat = ByteArray#
ppr_integer :: Precedence -> Term -> m (Maybe SDoc)
ppr_integer _ Term{dc=Right con, subTerms=[Prim{valRaw=ws}]}
| con == integerISDataCon
, [W# w] <- ws
= return (Just (Ppr.integer (fromIntegral (I# (word2Int# w)))))
ppr_integer p Term{dc=Right con, subTerms=[Term{subTerms=[Prim{valRaw=ws}]}]}
| con == integerIPDataCon = ppr_bignat False p ws
| con == integerINDataCon = ppr_bignat True p ws
| otherwise = panic "Unexpected Integer constructor"
ppr_integer _ _ = return Nothing
ppr_natural :: Precedence -> Term -> m (Maybe SDoc)
ppr_natural _ Term{dc=Right con, subTerms=[Prim{valRaw=ws}]}
| con == naturalNSDataCon
, [w] <- ws
= return (Just (Ppr.integer (fromIntegral w)))
ppr_natural p Term{dc=Right con, subTerms=[Term{subTerms=[Prim{valRaw=ws}]}]}
| con == naturalNBDataCon = ppr_bignat False p ws
| otherwise = panic "Unexpected Natural constructor"
ppr_natural _ _ = return Nothing
--Note pprinting of list terms is not lazy
ppr_list :: Precedence -> Term -> m SDoc
ppr_list p (Term{subTerms=[h,t]}) = do
let elems = h :| getListTerms t
elemList = toList elems
isConsLast = not (termType (NE.last elems) `eqType` termType h)
is_string = all (isCharTy . ty) elems
chars = [ chr (fromIntegral w)
| Term{subTerms=[Prim{valRaw=[w]}]} <- elemList ]
print_elems <- mapM (y cons_prec) elemList
if is_string
then return (Ppr.doubleQuotes (Ppr.text chars))
else if isConsLast
then return $ cparen (p >= cons_prec)
$ pprDeeperList fsep
$ punctuate (space<>colon) print_elems
else return $ brackets
$ pprDeeperList fcat
$ punctuate comma print_elems
where getListTerms Term{subTerms=[h,t]} = h : getListTerms t
getListTerms Term{subTerms=[]} = []
getListTerms t@Suspension{} = [t]
getListTerms t = pprPanic "getListTerms" (ppr t)
ppr_list _ _ = panic "doList"
repPrim :: TyCon -> [Word] -> SDoc
repPrim t = rep where
rep x
-- Char# uses native machine words, whereas Char's Storable instance uses
-- Int32, so we have to read it as an Int.
| t == charPrimTyCon = text $ show (chr (build x :: Int))
| t == intPrimTyCon = text $ show (build x :: Int)
| t == wordPrimTyCon = text $ show (build x :: Word)
| t == floatPrimTyCon = text $ show (build x :: Float)
| t == doublePrimTyCon = text $ show (build x :: Double)
| t == int8PrimTyCon = text $ show (build x :: Int8)
| t == word8PrimTyCon = text $ show (build x :: Word8)
| t == int16PrimTyCon = text $ show (build x :: Int16)
| t == word16PrimTyCon = text $ show (build x :: Word16)
| t == int32PrimTyCon = text $ show (build x :: Int32)
| t == word32PrimTyCon = text $ show (build x :: Word32)
| t == int64PrimTyCon = text $ show (build x :: Int64)
| t == word64PrimTyCon = text $ show (build x :: Word64)
| t == addrPrimTyCon = text $ show (nullPtr `plusPtr` build x)
| t == stablePtrPrimTyCon = text "<stablePtr>"
| t == stableNamePrimTyCon = text "<stableName>"
| t == statePrimTyCon = text "<statethread>"
| t == proxyPrimTyCon = text "<proxy>"
| t == realWorldTyCon = text "<realworld>"
| t == threadIdPrimTyCon = text "<ThreadId>"
| t == weakPrimTyCon = text "<Weak>"
| t == arrayPrimTyCon = text "<array>"
| t == smallArrayPrimTyCon = text "<smallArray>"
| t == byteArrayPrimTyCon = text "<bytearray>"
| t == mutableArrayPrimTyCon = text "<mutableArray>"
| t == smallMutableArrayPrimTyCon = text "<smallMutableArray>"
| t == mutableByteArrayPrimTyCon = text "<mutableByteArray>"
| t == mutVarPrimTyCon = text "<mutVar>"
| t == mVarPrimTyCon = text "<mVar>"
| t == tVarPrimTyCon = text "<tVar>"
| otherwise = char '<' <> ppr t <> char '>'
where build ww = unsafePerformIO $ withArray ww (peek . castPtr)
-- This ^^^ relies on the representation of Haskell heap values being
-- the same as in a C array.
-----------------------------------
-- Type Reconstruction
-----------------------------------
{-
Type Reconstruction is type inference done on heap closures.
The algorithm walks the heap generating a set of equations, which
are solved with syntactic unification.
A type reconstruction equation looks like:
<datacon reptype> = <actual heap contents>
The full equation set is generated by traversing all the subterms, starting
from a given term.
The only difficult part is that newtypes are only found in the lhs of equations.
Right hand sides are missing them. We can either (a) drop them from the lhs, or
(b) reconstruct them in the rhs when possible.
The function congruenceNewtypes takes a shot at (b)
-}
-- See Note [RttiType]
type RttiType = Type
-- An incomplete type as stored in GHCi:
-- no polymorphism: no quantifiers & all tyvars are skolem.
type GhciType = Type
-- The Type Reconstruction monad
--------------------------------
type TR a = TcM a
runTR :: HscEnv -> TR a -> IO a
runTR hsc_env thing = do
mb_val <- runTR_maybe hsc_env thing
case mb_val of
Nothing -> error "unable to :print the term"
Just x -> return x
runTR_maybe :: HscEnv -> TR a -> IO (Maybe a)
runTR_maybe hsc_env thing_inside
= do { (_errs, res) <- initTcInteractive hsc_env thing_inside
; return res }
-- | Term Reconstruction trace
traceTR :: SDoc -> TR ()
traceTR = liftTcM . traceOptTcRn Opt_D_dump_rtti
-- Semantically different to recoverM in GHC.Tc.Utils.Monad
-- recoverM retains the errors in the first action,
-- whereas recoverTc here does not
recoverTR :: TR a -> TR a -> TR a
recoverTR = tryTcDiscardingErrs
trIO :: IO a -> TR a
trIO = liftTcM . liftIO
liftTcM :: TcM a -> TR a
liftTcM = id
-- When we make new unification variables in the GHCi debugger,
-- we use RuntimeUnkTvs. See Note [RuntimeUnkTv].
newVar :: Kind -> TR TcType
newVar kind = liftTcM (do { tv <- newAnonMetaTyVar RuntimeUnkTv kind
; return (mkTyVarTy tv) })
newOpenVar :: TR TcType
newOpenVar = liftTcM (do { kind <- newOpenTypeKind
; newVar kind })
{- Note [RttiType]
~~~~~~~~~~~~~~~~~~
The type synonym `type RttiType = Type` is the type synonym used
by the debugger for the types of the data type `Term`.
For a long time the `RttiType` carried the following comment:
> A (non-mutable) tau type containing
> existentially quantified tyvars.
> (since GHC type language currently does not support
> existentials, we leave these variables unquantified)
The tau type part is only correct for terms representing the results
of fully saturated functions that return non-function (data) values
and not functions.
For non-function values, the GHC runtime always works with concrete
types eg `[Maybe Int]`, but never with polymorphic types like eg
`(Traversable t, Monad m) => t (m a)`. The concrete types, don't
need a quantification. They are always tau types.
The debugger binds the terms of :print commands and of the free
variables at a breakpoint to names. These newly bound names can
be used in new GHCi expressions. If these names represent functions,
then the type checker expects that the types of these functions are
fully-fledged. They must contain the necessary `forall`s and type
constraints. Hence the types of terms that represent functions must
be sigmas and not taus.
(See #12449)
-}
{- Note [RuntimeUnkTv]
~~~~~~~~~~~~~~~~~~~~~~
In the GHCi debugger we use unification variables whose MetaInfo is
RuntimeUnkTv. The special property of a RuntimeUnkTv is that it can
unify with a polytype (see GHC.Tc.Utils.Unify.checkTypeEq).
If we don't do this `:print <term>` will fail if the type of <term>
has nested `forall`s or `=>`s.
This is because the GHCi debugger's internals will attempt to unify a
metavariable with the type of <term> and then display the result, but
if the type has nested `forall`s or `=>`s, then unification will fail
unless we do something special. As a result, `:print` will bail out
and the unhelpful result will be `<term> = (_t1::t1)` (where `t1` is a
metavariable).
Beware: <term> can have nested `forall`s even if its definition doesn't use
RankNTypes! Here is an example from #14828:
class Functor f where
fmap :: (a -> b) -> f a -> f b
Somewhat surprisingly, `:print fmap` considers the type of fmap to have
nested foralls. This is because the GHCi debugger sees the type
`fmap :: forall f. Functor f => forall a b. (a -> b) -> f a -> f b`.
We could envision deeply instantiating this type to get the type
`forall f a b. Functor f => (a -> b) -> f a -> f b`,
but this trick wouldn't work for higher-rank types.
Instead, we adopt a simpler fix: allow RuntimeUnkTv to unify with a
polytype (specifically, see ghci_tv in GHC.Tc.Utils.Unify.preCheck).
This allows metavariables to unify with types that have
nested (or higher-rank) `forall`s/`=>`s, which makes `:print fmap`
display as
`fmap = (_t1::forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b)`,
as expected.
-}
instTyVars :: [TyVar] -> TR (Subst, [TcTyVar])
-- Instantiate fresh mutable type variables from some TyVars
-- This function preserves the print-name, which helps error messages
instTyVars tvs
= liftTcM $ fst <$> captureConstraints (newMetaTyVars tvs)
type RttiInstantiation = [(TcTyVar, TyVar)]
-- Associates the typechecker-world meta type variables
-- (which are mutable and may be refined), to their
-- debugger-world RuntimeUnk counterparts.
-- If the TcTyVar has not been refined by the runtime type
-- elaboration, then we want to turn it back into the
-- original RuntimeUnk
--
-- July 20: I'm not convinced that the little dance from
-- RuntimeUnkTv unification variables to RuntimeUnk skolems
-- is buying us anything. ToDo: get rid of it.
-- | Returns the instantiated type scheme ty', and the
-- mapping from new (instantiated) -to- old (skolem) type variables
instScheme :: QuantifiedType -> TR (TcType, RttiInstantiation)
instScheme (tvs, ty)
= do { (subst, tvs') <- instTyVars tvs
; let rtti_inst = [(tv',tv) | (tv',tv) <- tvs' `zip` tvs]
; traceTR (text "instScheme" <+> (ppr tvs $$ ppr ty $$ ppr tvs'))
; return (substTy subst ty, rtti_inst) }
applyRevSubst :: RttiInstantiation -> TR ()
-- Apply the *reverse* substitution in-place to any un-filled-in
-- meta tyvars. This recovers the original debugger-world variable
-- unless it has been refined by new information from the heap
applyRevSubst pairs = liftTcM (mapM_ do_pair pairs)
where
do_pair (tc_tv, rtti_tv)
= do { tc_ty <- zonkTcTyVar tc_tv
; case tcGetTyVar_maybe tc_ty of
Just tv | isMetaTyVar tv -> writeMetaTyVar tv (mkTyVarTy rtti_tv)
_ -> return () }
-- Adds a constraint of the form t1 == t2
-- t1 is expected to come from walking the heap
-- t2 is expected to come from a datacon signature
-- Before unification, congruenceNewtypes needs to
-- do its magic.
addConstraint :: TcType -> TcType -> TR ()
addConstraint actual expected = do
traceTR (text "add constraint:" <+> fsep [ppr actual, equals, ppr expected])
recoverTR (traceTR $ fsep [text "Failed to unify", ppr actual,
text "with", ppr expected]) $
discardResult $
captureConstraints $
do { (ty1, ty2) <- congruenceNewtypes actual expected
; unifyType Nothing ty1 ty2 }
-- TOMDO: what about the coercion?
-- we should consider family instances
-- | Term reconstruction
--
-- Given a pointer to a heap object (`HValue`) and its type, build a `Term`
-- representation of the object. Subterms (objects in the payload) are also
-- built up to the given `max_depth`. After `max_depth` any subterms will appear
-- as `Suspension`s. Any thunks found while traversing the object will be forced
-- based on `force` parameter.
--
-- Types of terms will be refined based on constructors we find during term
-- reconstruction. See `cvReconstructType` for an overview of how type
-- reconstruction works.
--
cvObtainTerm
:: HscEnv
-> Int -- ^ How many times to recurse for subterms
-> Bool -- ^ Force thunks
-> RttiType -- ^ Type of the object to reconstruct
-> ForeignHValue -- ^ Object to reconstruct
-> IO Term
cvObtainTerm hsc_env max_depth force old_ty hval = runTR hsc_env $ do
-- we quantify existential tyvars as universal,
-- as this is needed to be able to manipulate
-- them properly
let quant_old_ty@(old_tvs, _) = quantifyType old_ty
traceTR (text "Term reconstruction started with initial type " <> ppr old_ty)
term <-
if null old_tvs
then do
term <- go max_depth old_ty old_ty hval
term' <- zonkTerm term
return $ fixFunDictionaries $ expandNewtypes term'
else do
(old_ty', rev_subst) <- instScheme quant_old_ty
my_ty <- newOpenVar
when (check1 old_tvs) (traceTR (text "check1 passed") >>
addConstraint my_ty old_ty')
term <- go max_depth my_ty old_ty hval
new_ty <- zonkTcType (termType term)
if isMonomorphic new_ty || check2 new_ty old_ty
then do
traceTR (text "check2 passed")
addConstraint new_ty old_ty'
applyRevSubst rev_subst
zterm' <- zonkTerm term
return ((fixFunDictionaries . expandNewtypes) zterm')
else do
traceTR (text "check2 failed" <+> parens
(ppr term <+> text "::" <+> ppr new_ty))
-- we have unsound types. Replace constructor types in
-- subterms with tyvars
zterm' <- mapTermTypeM
(\ty -> case tcSplitTyConApp_maybe ty of
Just (tc, _:_) | tc /= funTyCon
-> newOpenVar
_ -> return ty)
term
zonkTerm zterm'
traceTR (text "Term reconstruction completed." $$
text "Term obtained: " <> ppr term $$
text "Type obtained: " <> ppr (termType term))
return term
where
interp = hscInterp hsc_env
unit_env = hsc_unit_env hsc_env
go :: Int -> Type -> Type -> ForeignHValue -> TcM Term
-- [SPJ May 11] I don't understand the difference between my_ty and old_ty
go 0 my_ty _old_ty a = do
traceTR (text "Gave up reconstructing a term after" <>
int max_depth <> text " steps")
clos <- trIO $ GHCi.getClosure interp a
return (Suspension (tipe (info clos)) my_ty a Nothing)
go !max_depth my_ty old_ty a = do
let monomorphic = not(isTyVarTy my_ty)
-- This ^^^ is a convention. The ancestor tests for
-- monomorphism and passes a type instead of a tv
clos <- trIO $ GHCi.getClosure interp a
case clos of
-- Thunks we may want to force
t | isThunk t && force -> do
traceTR (text "Forcing a " <> text (show (fmap (const ()) t)))
evalRslt <- liftIO $ GHCi.seqHValue interp unit_env a
case evalRslt of -- #2950
EvalSuccess _ -> go (pred max_depth) my_ty old_ty a
EvalException ex -> do
-- Report the exception to the UI
traceTR $ text "Exception occurred:" <+> text (show ex)
liftIO $ throwIO $ fromSerializableException ex
-- Blackholes are indirections iff the payload is not TSO or BLOCKING_QUEUE. If
-- the indirection is a TSO or BLOCKING_QUEUE, we return the BLACKHOLE itself as
-- the suspension so that entering it in GHCi will enter the BLACKHOLE instead
-- of entering the TSO or BLOCKING_QUEUE (which leads to runtime panic).
BlackholeClosure{indirectee=ind} -> do
traceTR (text "Following a BLACKHOLE")
ind_clos <- trIO (GHCi.getClosure interp ind)
let return_bh_value = return (Suspension BLACKHOLE my_ty a Nothing)
case ind_clos of
-- TSO and BLOCKING_QUEUE cases
BlockingQueueClosure{} -> return_bh_value
OtherClosure info _ _
| tipe info == TSO -> return_bh_value
UnsupportedClosure info
| tipe info == TSO -> return_bh_value
-- Otherwise follow the indirectee
-- (NOTE: This code will break if we support TSO in ghc-heap one day)
_ -> go max_depth my_ty old_ty ind
-- We always follow indirections
IndClosure{indirectee=ind} -> do
traceTR (text "Following an indirection" )
go max_depth my_ty old_ty ind
-- We also follow references
MutVarClosure{var=contents}
| Just (tycon,[lev,world,contents_ty]) <- tcSplitTyConApp_maybe old_ty
-> do
-- Deal with the MutVar# primitive
-- It does not have a constructor at all,
-- so we simulate the following one
-- MutVar# :: contents_ty -> MutVar# s contents_ty
massert (tycon == mutVarPrimTyCon)
massert (isUnliftedType my_ty)
traceTR (text "Following a MutVar")
let contents_kind = mkTYPEapp (mkTyConApp boxedRepDataConTyCon [lev])
contents_tv <- newVar contents_kind
(mutvar_ty,_) <- instScheme $ quantifyType $ mkVisFunTyMany
contents_ty (mkTyConApp tycon [lev, world,contents_ty])
addConstraint (mkVisFunTyMany contents_tv my_ty) mutvar_ty
x <- go (pred max_depth) contents_tv contents_ty contents
return (RefWrap my_ty x)
-- The interesting case
ConstrClosure{ptrArgs=pArgs,dataArgs=dArgs} -> do
traceTR (text "entering a constructor " <> ppr dArgs <+>
if monomorphic
then parens (text "already monomorphic: " <> ppr my_ty)
else Ppr.empty)
Right dcname <- liftIO $ constrClosToName hsc_env clos
(mb_dc, _) <- tryTc (tcLookupDataCon dcname)
case mb_dc of
Nothing -> do -- This can happen for private constructors compiled -O0
-- where the .hi descriptor does not export them
-- In such case, we return a best approximation:
-- ignore the unpointed args, and recover the pointed ones
-- This preserves laziness, and should be safe.
traceTR (text "Not constructor" <+> ppr dcname)
let dflags = hsc_dflags hsc_env
tag = showPpr dflags dcname
vars <- mapM (const (newVar liftedTypeKind)) pArgs
subTerms <- sequence $ zipWith (\x tv ->
go (pred max_depth) tv tv x) pArgs vars
return (Term my_ty (Left ('<' : tag ++ ">")) a subTerms)
Just dc -> do
traceTR (text "Is constructor" <+> (ppr dc $$ ppr my_ty))
subTtypes <- getDataConArgTys dc my_ty
subTerms <- extractSubTerms (\ty -> go (pred max_depth) ty ty) clos subTtypes
return (Term my_ty (Right dc) a subTerms)
-- This is to support printing of Integers. It's not a general
-- mechanism by any means; in particular we lose the size in
-- bytes of the array.
ArrWordsClosure{bytes=b, arrWords=ws} -> do
traceTR (text "ByteArray# closure, size " <> ppr b)
return (Term my_ty (Left "ByteArray#") a [Prim my_ty ws])
-- The otherwise case: can be a Thunk,AP,PAP,etc.
_ -> do
traceTR (text "Unknown closure:" <+>
text (show (fmap (const ()) clos)))
return (Suspension (tipe (info clos)) my_ty a Nothing)
-- insert NewtypeWraps around newtypes
expandNewtypes = foldTerm idTermFold { fTerm = worker } where
worker ty dc hval tt
| Just (tc, args) <- tcSplitTyConApp_maybe ty
, isNewTyCon tc
, wrapped_type <- newTyConInstRhs tc args
, Just dc' <- tyConSingleDataCon_maybe tc
, t' <- worker wrapped_type dc hval tt
= NewtypeWrap ty (Right dc') t'
| otherwise = Term ty dc hval tt
-- Avoid returning types where predicates have been expanded to dictionaries.
fixFunDictionaries = foldTerm idTermFold {fSuspension = worker} where
worker ct ty hval n | isFunTy ty = Suspension ct (dictsView ty) hval n
| otherwise = Suspension ct ty hval n
extractSubTerms :: (Type -> ForeignHValue -> TcM Term)
-> GenClosure ForeignHValue -> [Type] -> TcM [Term]
extractSubTerms recurse clos = liftM thdOf3 . go 0 0
where
array = dataArgs clos
go ptr_i arr_i [] = return (ptr_i, arr_i, [])
go ptr_i arr_i (ty:tys)
| Just (tc, elem_tys) <- tcSplitTyConApp_maybe ty
, isUnboxedTupleTyCon tc
-- See Note [Unboxed tuple RuntimeRep vars] in GHC.Core.TyCon
= do (ptr_i, arr_i, terms0) <-
go ptr_i arr_i (dropRuntimeRepArgs elem_tys)
(ptr_i, arr_i, terms1) <- go ptr_i arr_i tys
return (ptr_i, arr_i, unboxedTupleTerm ty terms0 : terms1)
| otherwise
= case typePrimRepArgs ty of
[rep_ty] -> do
(ptr_i, arr_i, term0) <- go_rep ptr_i arr_i ty rep_ty
(ptr_i, arr_i, terms1) <- go ptr_i arr_i tys
return (ptr_i, arr_i, term0 : terms1)
rep_tys -> do
(ptr_i, arr_i, terms0) <- go_unary_types ptr_i arr_i rep_tys
(ptr_i, arr_i, terms1) <- go ptr_i arr_i tys
return (ptr_i, arr_i, unboxedTupleTerm ty terms0 : terms1)
go_unary_types ptr_i arr_i [] = return (ptr_i, arr_i, [])
go_unary_types ptr_i arr_i (rep_ty:rep_tys) = do
tv <- newVar liftedTypeKind
(ptr_i, arr_i, term0) <- go_rep ptr_i arr_i tv rep_ty
(ptr_i, arr_i, terms1) <- go_unary_types ptr_i arr_i rep_tys
return (ptr_i, arr_i, term0 : terms1)
go_rep ptr_i arr_i ty rep
| isGcPtrRep rep = do
t <- recurse ty $ (ptrArgs clos)!!ptr_i
return (ptr_i + 1, arr_i, t)
| otherwise = do
-- This is a bit involved since we allow packing multiple fields
-- within a single word. See also
-- GHC.StgToCmm.Layout.mkVirtHeapOffsetsWithPadding
platform <- getPlatform
let word_size = platformWordSizeInBytes platform
endian = platformByteOrder platform
size_b = primRepSizeB platform rep
-- Align the start offset (eg, 2-byte value should be 2-byte
-- aligned). But not more than to a word. The offset calculation
-- should be the same with the offset calculation in
-- GHC.StgToCmm.Layout.mkVirtHeapOffsetsWithPadding.
!aligned_idx = roundUpTo arr_i (min word_size size_b)
!new_arr_i = aligned_idx + size_b
ws | size_b < word_size =
[index size_b aligned_idx word_size endian]
| otherwise =
let (q, r) = size_b `quotRem` word_size
in assert (r == 0 )
[ array!!i
| o <- [0.. q - 1]
, let i = (aligned_idx `quot` word_size) + o
]
return (ptr_i, new_arr_i, Prim ty ws)
unboxedTupleTerm ty terms
= Term ty (Right (tupleDataCon Unboxed (length terms)))
(error "unboxedTupleTerm: no HValue for unboxed tuple") terms
-- Extract a sub-word sized field from a word
-- A sub word is aligned to the left-most part of a word on big-endian
-- platforms, and to the right-most part of a word on little-endian
-- platforms. This allows to write and read it back from memory
-- independent of endianness. Bits not belonging to a sub word are zeroed
-- out, although, this is strictly speaking not necessary since a sub word
-- is read back from memory by appropriately casted pointers (see e.g.
-- ppr_float of cPprTermBase).
index size_b aligned_idx word_size endian = case endian of
BigEndian -> (word `shiftL` moveBits) `shiftR` zeroOutBits `shiftL` zeroOutBits
LittleEndian -> (word `shiftR` moveBits) `shiftL` zeroOutBits `shiftR` zeroOutBits
where
(q, r) = aligned_idx `quotRem` word_size
word = array!!q
moveBits = r * 8
zeroOutBits = (word_size - size_b) * 8
-- | Fast, breadth-first Type reconstruction
--
-- Given a heap object (`HValue`) and its (possibly polymorphic) type (usually
-- obtained in GHCi), try to reconstruct a more monomorphic type of the object.
-- This is used for improving type information in debugger. For example, if we
-- have a polymorphic function:
--
-- sumNumList :: Num a => [a] -> a
-- sumNumList [] = 0
-- sumNumList (x : xs) = x + sumList xs
--
-- and add a breakpoint to it:
--
-- ghci> break sumNumList
-- ghci> sumNumList ([0 .. 9] :: [Int])
--
-- ghci shows us more precise types than just `a`s:
--
-- Stopped in Main.sumNumList, debugger.hs:3:23-39
-- _result :: Int = _
-- x :: Int = 0
-- xs :: [Int] = _
--
cvReconstructType
:: HscEnv
-> Int -- ^ How many times to recurse for subterms
-> GhciType -- ^ Type to refine
-> ForeignHValue -- ^ Refine the type using this value
-> IO (Maybe Type)
cvReconstructType hsc_env max_depth old_ty hval = runTR_maybe hsc_env $ do
traceTR (text "RTTI started with initial type " <> ppr old_ty)
let sigma_old_ty@(old_tvs, _) = quantifyType old_ty
new_ty <-
if null old_tvs
then return old_ty
else do
(old_ty', rev_subst) <- instScheme sigma_old_ty
my_ty <- newOpenVar
when (check1 old_tvs) (traceTR (text "check1 passed") >>
addConstraint my_ty old_ty')
search (isMonomorphic `fmap` zonkTcType my_ty)
(\(ty,a) -> go ty a)
(Seq.singleton (my_ty, hval))
max_depth
new_ty <- zonkTcType my_ty
if isMonomorphic new_ty || check2 new_ty old_ty
then do
traceTR (text "check2 passed" <+> ppr old_ty $$ ppr new_ty)
addConstraint my_ty old_ty'
applyRevSubst rev_subst
zonkRttiType new_ty
else traceTR (text "check2 failed" <+> parens (ppr new_ty)) >>
return old_ty
traceTR (text "RTTI completed. Type obtained:" <+> ppr new_ty)
return new_ty
where
interp = hscInterp hsc_env
-- search :: m Bool -> ([a] -> [a] -> [a]) -> [a] -> m ()
search _ _ _ 0 = traceTR (text "Failed to reconstruct a type after " <>
int max_depth <> text " steps")
search stop expand l d =
case viewl l of
EmptyL -> return ()
x :< xx -> unlessM stop $ do
new <- expand x
search stop expand (xx `mappend` Seq.fromList new) $! (pred d)
-- returns unification tasks,since we are going to want a breadth-first search
go :: Type -> ForeignHValue -> TR [(Type, ForeignHValue)]
go my_ty a = do
traceTR (text "go" <+> ppr my_ty)
clos <- trIO $ GHCi.getClosure interp a
case clos of
BlackholeClosure{indirectee=ind} -> go my_ty ind
IndClosure{indirectee=ind} -> go my_ty ind
MutVarClosure{var=contents}
| Just (_tycon,[lev,_world,_contents_ty]) <- tcSplitTyConApp_maybe my_ty
-> do
massert (_tycon == mutVarPrimTyCon)
tv' <- newVar $ mkTYPEapp (mkTyConApp boxedRepDataConTyCon [lev])
world <- newVar liftedTypeKind
addConstraint my_ty $ mkMutVarPrimTy world tv'
return [(tv', contents)]
APClosure {payload=pLoad} -> do -- #19559 (incr)
mapM_ (go my_ty) pLoad
return []
ConstrClosure{ptrArgs=pArgs} -> do
Right dcname <- liftIO $ constrClosToName hsc_env clos
traceTR (text "Constr1" <+> ppr dcname)
(mb_dc, _) <- tryTc (tcLookupDataCon dcname)
case mb_dc of
Nothing->
forM pArgs $ \x -> do
tv <- newVar liftedTypeKind
return (tv, x)
Just dc -> do
arg_tys <- getDataConArgTys dc my_ty
(_, itys) <- findPtrTyss 0 arg_tys
traceTR (text "Constr2" <+> ppr dcname <+> ppr arg_tys)
return $ zipWith (\(_,ty) x -> (ty, x)) itys pArgs
_ -> return []
findPtrTys :: Int -- Current pointer index
-> Type -- Type
-> TR (Int, [(Int, Type)])
findPtrTys i ty
| Just (tc, elem_tys) <- tcSplitTyConApp_maybe ty
, isUnboxedTupleTyCon tc
= findPtrTyss i elem_tys
| otherwise
= case typePrimRep ty of
[rep] | isGcPtrRep rep -> return (i + 1, [(i, ty)])
| otherwise -> return (i, [])
prim_reps ->
foldM (\(i, extras) prim_rep ->
if isGcPtrRep prim_rep
then newVar liftedTypeKind >>= \tv -> return (i + 1, extras ++ [(i, tv)])
else return (i, extras))
(i, []) prim_reps
findPtrTyss :: Int
-> [Type]
-> TR (Int, [(Int, Type)])
findPtrTyss i tys = foldM step (i, []) tys
where step (i, discovered) elem_ty = do
(i, extras) <- findPtrTys i elem_ty
return (i, discovered ++ extras)
-- Compute the difference between a base type and the type found by RTTI
-- improveType <base_type> <rtti_type>
-- The types can contain skolem type variables, which need to be treated as normal vars.
-- In particular, we want them to unify with things.
improveRTTIType :: HscEnv -> RttiType -> RttiType -> Maybe Subst
improveRTTIType _ base_ty new_ty = U.tcUnifyTyKi base_ty new_ty
getDataConArgTys :: DataCon -> Type -> TR [Type]
-- Given the result type ty of a constructor application (D a b c :: ty)
-- return the types of the arguments. This is RTTI-land, so 'ty' might
-- not be fully known. Moreover, the arg types might involve existentials;
-- if so, make up fresh RTTI type variables for them
getDataConArgTys dc con_app_ty
= do { let rep_con_app_ty = unwrapType con_app_ty
; traceTR (text "getDataConArgTys 1" <+> (ppr con_app_ty $$ ppr rep_con_app_ty
$$ ppr (tcSplitTyConApp_maybe rep_con_app_ty)))
; assert (all isTyVar ex_tvs ) return ()
-- ex_tvs can only be tyvars as data types in source
-- Haskell cannot mention covar yet (Aug 2018)
; (subst, _) <- instTyVars (univ_tvs ++ ex_tvs)
; addConstraint rep_con_app_ty (substTy subst (dataConOrigResTy dc))
-- See Note [Constructor arg types]
; let con_arg_tys = substTys subst (map scaledThing $ dataConRepArgTys dc)
; traceTR (text "getDataConArgTys 2" <+> (ppr rep_con_app_ty $$ ppr con_arg_tys $$ ppr subst))
; return con_arg_tys }
where
univ_tvs = dataConUnivTyVars dc
ex_tvs = dataConExTyCoVars dc
{- Note [Constructor arg types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider a GADT (cf #7386)
data family D a b
data instance D [a] a where
MkT :: a -> D [a] (Maybe a)
...
In getDataConArgTys
* con_app_ty is the known type (from outside) of the constructor application,
say D [Int] Int
* The data constructor MkT has a (representation) dataConTyCon = DList,
say where
data DList a where
MkT :: a -> DList a (Maybe a)
...
So the dataConTyCon of the data constructor, DList, differs from
the "outside" type, D. So we can't straightforwardly decompose the
"outside" type, and we end up in the "_" branch of the case.
Then we match the dataConOrigResTy of the data constructor against the
outside type, hoping to get a substitution that tells how to instantiate
the *representation* type constructor. This looks a bit delicate to
me, but it seems to work.
-}
-- Soundness checks
--------------------
{-
This is not formalized anywhere, so hold to your seats!
RTTI in the presence of newtypes can be a tricky and unsound business.
Example:
~~~~~~~~~
Suppose we are doing RTTI for a partially evaluated
closure t, the real type of which is t :: MkT Int, for
newtype MkT a = MkT [Maybe a]
The table below shows the results of RTTI and the improvement
calculated for different combinations of evaluatedness and :type t.
Regard the two first columns as input and the next two as output.
# | t | :type t | rtti(t) | improv. | result
------------------------------------------------------------
1 | _ | t b | a | none | OK
2 | _ | MkT b | a | none | OK
3 | _ | t Int | a | none | OK
If t is not evaluated at *all*, we are safe.
4 | (_ : _) | t b | [a] | t = [] | UNSOUND
5 | (_ : _) | MkT b | MkT a | none | OK (compensating for the missing newtype)
6 | (_ : _) | t Int | [Int] | t = [] | UNSOUND
If a is a minimal whnf, we run into trouble. Note that
row 5 above does newtype enrichment on the ty_rtty parameter.
7 | (Just _:_)| t b |[Maybe a] | t = [], | UNSOUND
| | | b = Maybe a|
8 | (Just _:_)| MkT b | MkT a | none | OK
9 | (Just _:_)| t Int | FAIL | none | OK
And if t is any more evaluated than whnf, we are still in trouble.
Because constraints are solved in top-down order, when we reach the
Maybe subterm what we got is already unsound. This explains why the
row 9 fails to complete.
10 | (Just _:_)| t Int | [Maybe a] | FAIL | OK
11 | (Just 1:_)| t Int | [Maybe Int] | FAIL | OK
We can undo the failure in row 9 by leaving out the constraint
coming from the type signature of t (i.e., the 2nd column).
Note that this type information is still used
to calculate the improvement. But we fail
when trying to calculate the improvement, as there is no unifier for
t Int = [Maybe a] or t Int = [Maybe Int].
Another set of examples with t :: [MkT (Maybe Int)] \equiv [[Maybe (Maybe Int)]]
# | t | :type t | rtti(t) | improvement | result
---------------------------------------------------------------------
1 |(Just _:_) | [t (Maybe a)] | [[Maybe b]] | t = [] |
| | | | b = Maybe a |
The checks:
~~~~~~~~~~~
Consider a function obtainType that takes a value and a type and produces
the Term representation and a substitution (the improvement).
Assume an auxiliary rtti' function which does the actual job if recovering
the type, but which may produce a false type.
In pseudocode:
rtti' :: a -> IO Type -- Does not use the static type information
obtainType :: a -> Type -> IO (Maybe (Term, Improvement))
obtainType v old_ty = do
rtti_ty <- rtti' v
if monomorphic rtti_ty || (check rtti_ty old_ty)
then ...
else return Nothing
where check rtti_ty old_ty = check1 rtti_ty &&
check2 rtti_ty old_ty
check1 :: Type -> Bool
check2 :: Type -> Type -> Bool
Now, if rtti' returns a monomorphic type, we are safe.
If that is not the case, then we consider two conditions.
1. To prevent the class of unsoundness displayed by
rows 4 and 7 in the example: no higher kind tyvars
accepted.
check1 (t a) = NO
check1 (t Int) = NO
check1 ([] a) = YES
2. To prevent the class of unsoundness shown by row 6,
the rtti type should be structurally more
defined than the old type we are comparing it to.
check2 :: NewType -> OldType -> Bool
check2 a _ = True
check2 [a] a = True
check2 [a] (t Int) = False
check2 [a] (t a) = False -- By check1 we never reach this equation
check2 [Int] a = True
check2 [Int] (t Int) = True
check2 [Maybe a] (t Int) = False
check2 [Maybe Int] (t Int) = True
check2 (Maybe [a]) (m [Int]) = False
check2 (Maybe [Int]) (m [Int]) = True
-}
check1 :: [TyVar] -> Bool
check1 tvs = not $ any isHigherKind (map tyVarKind tvs)
where
isHigherKind = not . null . fst . splitPiTys
check2 :: Type -> Type -> Bool
check2 rtti_ty old_ty = check2' (tauPart rtti_ty) (tauPart old_ty)
-- The function `tcSplitTyConApp_maybe` doesn't split foralls or types
-- headed with (=>). Hence here we need only the tau part of a type.
-- See Note [Missing test case].
where
check2' rtti_ty old_ty
| Just (_, rttis) <- tcSplitTyConApp_maybe rtti_ty
= case () of
_ | Just (_,olds) <- tcSplitTyConApp_maybe old_ty
-> and$ zipWith check2 rttis olds
_ | Just _ <- splitAppTy_maybe old_ty
-> isMonomorphicOnNonPhantomArgs rtti_ty
_ -> True
| otherwise = True
tauPart ty = tau
where
(_, _, tau) = tcSplitNestedSigmaTys ty
{-
Note [Missing test case]
~~~~~~~~~~~~~~~~~~~~~~~~
Her we miss a test case. It should be a term, with a function `f`
with a non-empty sigma part and an unsound type. The result of
`check2 f` should be different if we omit or do the calls to `tauPart`.
I (R.Senn) was unable to find such a term, and I'm in doubt, whether it exists.
-}
-- Dealing with newtypes
--------------------------
{-
congruenceNewtypes does a parallel fold over two Type values,
compensating for missing newtypes on both sides.
This is necessary because newtypes are not present
in runtime, but sometimes there is evidence available.
Evidence can come from DataCon signatures or
from compile-time type inference.
What we are doing here is an approximation
of unification modulo a set of equations derived
from newtype definitions. These equations should be the
same as the equality coercions generated for newtypes
in System Fc. The idea is to perform a sort of rewriting,
taking those equations as rules, before launching unification.
The caller must ensure the following.
The 1st type (lhs) comes from the heap structure of ptrs,nptrs.
The 2nd type (rhs) comes from a DataCon type signature.
Rewriting (i.e. adding/removing a newtype wrapper) can happen
in both types, but in the rhs it is restricted to the result type.
Note that it is very tricky to make this 'rewriting'
work with the unification implemented by TcM, where
substitutions are operationally inlined. The order in which
constraints are unified is vital as we cannot modify
anything that has been touched by a previous unification step.
Therefore, congruenceNewtypes is sound only if the types
recovered by the RTTI mechanism are unified Top-Down.
-}
congruenceNewtypes :: TcType -> TcType -> TR (TcType,TcType)
congruenceNewtypes lhs rhs = go lhs rhs >>= \rhs' -> return (lhs,rhs')
where
go l r
-- TyVar lhs inductive case
| Just tv <- getTyVar_maybe l
, isTcTyVar tv
, isMetaTyVar tv
= recoverTR (return r) $ do
Indirect ty_v <- readMetaTyVar tv
traceTR $ fsep [text "(congruence) Following indirect tyvar:",
ppr tv, equals, ppr ty_v]
go ty_v r
-- FunTy inductive case
| Just (w1,l1,l2) <- splitFunTy_maybe l
, Just (w2,r1,r2) <- splitFunTy_maybe r
, w1 `eqType` w2
= do r2' <- go l2 r2
r1' <- go l1 r1
return (mkVisFunTy w1 r1' r2')
-- TyconApp Inductive case; this is the interesting bit.
| Just (tycon_l, _) <- tcSplitTyConApp_maybe lhs
, Just (tycon_r, _) <- tcSplitTyConApp_maybe rhs
, tycon_l /= tycon_r
= upgrade tycon_l r
| otherwise = return r
where upgrade :: TyCon -> Type -> TR Type
upgrade new_tycon ty
| not (isNewTyCon new_tycon) = do
traceTR (text "(Upgrade) Not matching newtype evidence: " <>
ppr new_tycon <> text " for " <> ppr ty)
return ty
| otherwise = do
traceTR (text "(Upgrade) upgraded " <> ppr ty <>
text " in presence of newtype evidence " <> ppr new_tycon)
(_, vars) <- instTyVars (tyConTyVars new_tycon)
let ty' = mkTyConApp new_tycon (mkTyVarTys vars)
rep_ty = unwrapType ty'
_ <- liftTcM (unifyType Nothing ty rep_ty)
-- assumes that reptype doesn't ^^^^ touch tyconApp args
return ty'
zonkTerm :: Term -> TcM Term
zonkTerm = foldTermM (TermFoldM
{ fTermM = \ty dc v tt -> zonkRttiType ty >>= \ty' ->
return (Term ty' dc v tt)
, fSuspensionM = \ct ty v b -> zonkRttiType ty >>= \ty ->
return (Suspension ct ty v b)
, fNewtypeWrapM = \ty dc t -> zonkRttiType ty >>= \ty' ->
return$ NewtypeWrap ty' dc t
, fRefWrapM = \ty t -> return RefWrap `ap`
zonkRttiType ty `ap` return t
, fPrimM = (return.) . Prim })
zonkRttiType :: TcType -> TcM Type
-- Zonk the type, replacing any unbound Meta tyvars
-- by RuntimeUnk skolems, safely out of Meta-tyvar-land
zonkRttiType ty= do { ze <- mkEmptyZonkEnv RuntimeUnkFlexi
; zonkTcTypeToTypeX ze ty }
--------------------------------------------------------------------------------
-- Restore Class predicates out of a representation type
dictsView :: Type -> Type
dictsView ty = ty
-- Use only for RTTI types
isMonomorphic :: RttiType -> Bool
isMonomorphic ty = noExistentials && noUniversals
where (tvs, _, ty') = tcSplitSigmaTy ty
noExistentials = noFreeVarsOfType ty'
noUniversals = null tvs
-- Use only for RTTI types
isMonomorphicOnNonPhantomArgs :: RttiType -> Bool
isMonomorphicOnNonPhantomArgs ty
| Just (tc, all_args) <- tcSplitTyConApp_maybe (unwrapType ty)
, phantom_vars <- tyConPhantomTyVars tc
, concrete_args <- [ arg | (tyv,arg) <- tyConTyVars tc `zip` all_args
, tyv `notElem` phantom_vars]
= all isMonomorphicOnNonPhantomArgs concrete_args
| Just (_, ty1, ty2) <- splitFunTy_maybe ty
= all isMonomorphicOnNonPhantomArgs [ty1,ty2]
| otherwise = isMonomorphic ty
tyConPhantomTyVars :: TyCon -> [TyVar]
tyConPhantomTyVars tc
| isAlgTyCon tc
, Just dcs <- tyConDataCons_maybe tc
, dc_vars <- concatMap dataConUnivTyVars dcs
= tyConTyVars tc \\ dc_vars
tyConPhantomTyVars _ = []
type QuantifiedType = ([TyVar], Type)
-- Make the free type variables explicit
quantifyType :: Type -> QuantifiedType
-- Find all free and forall'd tyvars and return them
-- together with the unmodified input type.
quantifyType ty = ( filter isTyVar $
tyCoVarsOfTypeWellScoped rho
, ty)
where
(_tvs, _, rho) = tcSplitNestedSigmaTys ty
|