summaryrefslogtreecommitdiff
path: root/compiler/GHC/StgToJS/Prim.hs
blob: 36f12e3409d9b320aa474b1c84b15d09fdd88bd6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE BlockArguments #-}
{-# LANGUAGE MultiWayIf #-}

-- disable this warning because of all the lambdas matching on primops'
-- arguments.
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}

module GHC.StgToJS.Prim
  ( genPrim
  )
where

import GHC.Prelude

import GHC.JS.Unsat.Syntax hiding (JUOp (..))
import GHC.JS.Make

import GHC.StgToJS.Heap
import GHC.StgToJS.Types
import GHC.StgToJS.Profiling
import GHC.StgToJS.Regs

import GHC.Core.Type

import GHC.Builtin.PrimOps
import GHC.Tc.Utils.TcType (isBoolTy)
import GHC.Utils.Encoding (zEncodeString)

import GHC.Data.FastString
import GHC.Utils.Outputable (renderWithContext, defaultSDocContext, ppr)


genPrim :: Bool     -- ^ Profiling (cost-centres) enabled
        -> Bool     -- ^ Array bounds-checking enabled
        -> Type
        -> PrimOp   -- ^ the primitive operation
        -> [JExpr]  -- ^ where to store the result
        -> [JExpr]  -- ^ arguments
        -> PrimRes
genPrim prof bound ty op = case op of
  CharGtOp        -> \[r] [x,y] -> PrimInline $ r |= if10 (x .>. y)
  CharGeOp        -> \[r] [x,y] -> PrimInline $ r |= if10 (x .>=. y)
  CharEqOp        -> \[r] [x,y] -> PrimInline $ r |= if10 (x .===. y)
  CharNeOp        -> \[r] [x,y] -> PrimInline $ r |= if10 (x .!==. y)
  CharLtOp        -> \[r] [x,y] -> PrimInline $ r |= if10 (x .<. y)
  CharLeOp        -> \[r] [x,y] -> PrimInline $ r |= if10 (x .<=. y)
  OrdOp           -> \[r] [x]   -> PrimInline $ r |= x

  Int8ToWord8Op   -> \[r] [x]   -> PrimInline $ r |= mask8 x
  Word8ToInt8Op   -> \[r] [x]   -> PrimInline $ r |= signExtend8 x
  Int16ToWord16Op -> \[r] [x]   -> PrimInline $ r |= mask16 x
  Word16ToInt16Op -> \[r] [x]   -> PrimInline $ r |= signExtend16 x
  Int32ToWord32Op -> \[r] [x]   -> PrimInline $ r |= x .>>>. zero_
  Word32ToInt32Op -> \[r] [x]   -> PrimInline $ r |= toI32 x

------------------------------ Int ----------------------------------------------

  IntAddOp        -> \[r] [x,y] -> PrimInline $ r |= toI32 (Add x y)
  IntSubOp        -> \[r] [x,y] -> PrimInline $ r |= toI32 (Sub x y)
  IntMulOp        -> \[r] [x,y] -> PrimInline $ r |= app "Math.imul" [x, y]
  IntMul2Op       -> \[c,hr,lr] [x,y] -> PrimInline $ appT [c,hr,lr] "h$hs_timesInt2" [x, y]
  IntMulMayOfloOp -> \[r] [x,y] -> PrimInline $ jVar \tmp -> mconcat
                                            [ tmp |= Mul x y
                                            , r   |= if01 (tmp .===. toI32 tmp)
                                            ]
  IntQuotOp       -> \[r]   [x,y] -> PrimInline $ r |= toI32 (Div x y)
  IntRemOp        -> \[r]   [x,y] -> PrimInline $ r |= Mod x y
  IntQuotRemOp    -> \[q,r] [x,y] -> PrimInline $ mconcat
                                            [ q |= toI32 (Div x y)
                                            , r |= x `Sub` (Mul y q)
                                            ]
  IntAndOp        -> \[r] [x,y]   -> PrimInline $ r |= BAnd x y
  IntOrOp         -> \[r] [x,y]   -> PrimInline $ r |= BOr  x y
  IntXorOp        -> \[r] [x,y]   -> PrimInline $ r |= BXor x y
  IntNotOp        -> \[r] [x]     -> PrimInline $ r |= BNot x

  IntNegOp        -> \[r] [x]   -> PrimInline $ r |= toI32 (Negate x)
-- add with carry: overflow == 0 iff no overflow
  IntAddCOp       -> \[r,overf] [x,y] ->
      PrimInline $ jVar \rt -> mconcat
        [ rt    |= Add x y
        , r     |= toI32 rt
        , overf |= if10 (r .!=. rt)
        ]
  IntSubCOp       -> \[r,overf] [x,y] ->
      PrimInline $ jVar \rt -> mconcat
        [ rt    |= Sub x y
        , r     |= toI32 rt
        , overf |= if10 (r .!=. rt)
        ]
  IntGtOp           -> \[r] [x,y] -> PrimInline $ r |= if10 (x .>. y)
  IntGeOp           -> \[r] [x,y] -> PrimInline $ r |= if10 (x .>=. y)
  IntEqOp           -> \[r] [x,y] -> PrimInline $ r |= if10 (x .===. y)
  IntNeOp           -> \[r] [x,y] -> PrimInline $ r |= if10(x .!==. y)
  IntLtOp           -> \[r] [x,y] -> PrimInline $ r |= if10 (x .<. y)
  IntLeOp           -> \[r] [x,y] -> PrimInline $ r |= if10 (x .<=. y)
  ChrOp             -> \[r] [x]   -> PrimInline $ r |= x
  IntToWordOp       -> \[r] [x]   -> PrimInline $ r |= x .>>>. 0
  IntToFloatOp      -> \[r] [x]   -> PrimInline $ r |= x
  IntToDoubleOp     -> \[r] [x]   -> PrimInline $ r |= x
  IntSllOp          -> \[r] [x,y] -> PrimInline $ r |= x .<<. y
  IntSraOp          -> \[r] [x,y] -> PrimInline $ r |= x .>>. y
  IntSrlOp          -> \[r] [x,y] -> PrimInline $ r |= toI32 (x .>>>. y)

------------------------------ Int8 ---------------------------------------------

  Int8ToIntOp       -> \[r] [x]       -> PrimInline $ r |= x
  IntToInt8Op       -> \[r] [x]       -> PrimInline $ r |= signExtend8 x
  Int8NegOp         -> \[r] [x]       -> PrimInline $ r |= signExtend8 (Negate x)
  Int8AddOp         -> \[r] [x,y]     -> PrimInline $ r |= signExtend8 (Add x y)
  Int8SubOp         -> \[r] [x,y]     -> PrimInline $ r |= signExtend8 (Sub x y)
  Int8MulOp         -> \[r] [x,y]     -> PrimInline $ r |= signExtend8 (Mul x y)
  Int8QuotOp        -> \[r] [x,y]     -> PrimInline $ r |= signExtend8 (quotShortInt 8 x y)
  Int8RemOp         -> \[r] [x,y]     -> PrimInline $ r |= signExtend8 (remShortInt 8 x y)
  Int8QuotRemOp     -> \[r1,r2] [x,y] -> PrimInline $ mconcat
                                                [ r1 |= signExtend8 (quotShortInt 8 x y)
                                                , r2 |= signExtend8 (remShortInt 8 x y)
                                                ]
  Int8EqOp          -> \[r] [x,y] -> PrimInline $ r |= if10 (x .===. y)
  Int8GeOp          -> \[r] [x,y] -> PrimInline $ r |= if10 ((x .<<. (Int 24)) .>=. (y .<<. (Int 24)))
  Int8GtOp          -> \[r] [x,y] -> PrimInline $ r |= if10 ((x .<<. (Int 24)) .>.  (y .<<. (Int 24)))
  Int8LeOp          -> \[r] [x,y] -> PrimInline $ r |= if10 ((x .<<. (Int 24)) .<=. (y .<<. (Int 24)))
  Int8LtOp          -> \[r] [x,y] -> PrimInline $ r |= if10 ((x .<<. (Int 24)) .<.  (y .<<. (Int 24)))
  Int8NeOp          -> \[r] [x,y] -> PrimInline $ r |= if10 (x .!==. y)

  Int8SraOp         -> \[r] [x,i]   -> PrimInline $ r |= x .>>. i
  Int8SrlOp         -> \[r] [x,i]   -> PrimInline $ r |= signExtend8 (mask8 x .>>>. i)
  Int8SllOp         -> \[r] [x,i]   -> PrimInline $ r |= signExtend8 (mask8 (x .<<. i))

------------------------------ Word8 --------------------------------------------

  Word8ToWordOp      -> \[r] [x]       -> PrimInline $ r |= mask8 x
  WordToWord8Op      -> \[r] [x]       -> PrimInline $ r |= mask8 x

  Word8AddOp         -> \[r] [x,y]     -> PrimInline $ r |= mask8 (Add x y)
  Word8SubOp         -> \[r] [x,y]     -> PrimInline $ r |= mask8 (Sub x y)
  Word8MulOp         -> \[r] [x,y]     -> PrimInline $ r |= mask8 (Mul x y)
  Word8QuotOp        -> \[r] [x,y]     -> PrimInline $ r |= mask8 (Div x y)
  Word8RemOp         -> \[r] [x,y]     -> PrimInline $ r |= Mod x y
  Word8QuotRemOp     -> \[r1,r2] [x,y] -> PrimInline $ mconcat
                                                  [ r1 |= toI32 (Div x y)
                                                  , r2 |= Mod x y
                                                  ]
  Word8EqOp          -> \[r] [x,y] -> PrimInline $ r |= if10 (x .===. y)
  Word8GeOp          -> \[r] [x,y] -> PrimInline $ r |= if10 (x .>=. y)
  Word8GtOp          -> \[r] [x,y] -> PrimInline $ r |= if10 (x .>. y)
  Word8LeOp          -> \[r] [x,y] -> PrimInline $ r |= if10 (x .<=. y)
  Word8LtOp          -> \[r] [x,y] -> PrimInline $ r |= if10 (x .<. y)
  Word8NeOp          -> \[r] [x,y] -> PrimInline $ r |= if10 (x .!==. y)

  Word8AndOp         -> \[r] [x,y]   -> PrimInline $ r |= BAnd x y
  Word8OrOp          -> \[r] [x,y]   -> PrimInline $ r |= BOr  x y
  Word8XorOp         -> \[r] [x,y]   -> PrimInline $ r |= BXor x y
  Word8NotOp         -> \[r] [x]     -> PrimInline $ r |= BXor x (Int 0xff)

  Word8SllOp         -> \[r] [x,i]   -> PrimInline $ r |= mask8 (x .<<. i)
  Word8SrlOp         -> \[r] [x,i]   -> PrimInline $ r |= x .>>>. i

------------------------------ Int16 -------------------------------------------

  Int16ToIntOp       -> \[r] [x]       -> PrimInline $ r |= x
  IntToInt16Op       -> \[r] [x]       -> PrimInline $ r |= signExtend16 x

  Int16NegOp         -> \[r] [x]       -> PrimInline $ r |= signExtend16 (Negate x)
  Int16AddOp         -> \[r] [x,y]     -> PrimInline $ r |= signExtend16 (Add x y)
  Int16SubOp         -> \[r] [x,y]     -> PrimInline $ r |= signExtend16 (Sub x y)
  Int16MulOp         -> \[r] [x,y]     -> PrimInline $ r |= signExtend16 (Mul x y)
  Int16QuotOp        -> \[r] [x,y]     -> PrimInline $ r |= signExtend16 (quotShortInt 16 x y)
  Int16RemOp         -> \[r] [x,y]     -> PrimInline $ r |= signExtend16 (remShortInt 16 x y)
  Int16QuotRemOp     -> \[r1,r2] [x,y] -> PrimInline $ mconcat
                                                [ r1 |= signExtend16 (quotShortInt 16 x y)
                                                , r2 |= signExtend16 (remShortInt 16 x y)
                                                ]
  Int16EqOp          -> \[r] [x,y] -> PrimInline $ r |= if10 (x .===. y)
  Int16GeOp          -> \[r] [x,y] -> PrimInline $ r |= if10 ((x .<<. (Int 16)) .>=. (y .<<. (Int 16)))
  Int16GtOp          -> \[r] [x,y] -> PrimInline $ r |= if10 ((x .<<. (Int 16)) .>.  (y .<<. (Int 16)))
  Int16LeOp          -> \[r] [x,y] -> PrimInline $ r |= if10 ((x .<<. (Int 16)) .<=. (y .<<. (Int 16)))
  Int16LtOp          -> \[r] [x,y] -> PrimInline $ r |= if10 ((x .<<. (Int 16)) .<.  (y .<<. (Int 16)))
  Int16NeOp          -> \[r] [x,y] -> PrimInline $ r |= if10 (x .!==. y)

  Int16SraOp         -> \[r] [x,i]   -> PrimInline $ r |= x .>>. i
  Int16SrlOp         -> \[r] [x,i]   -> PrimInline $ r |= signExtend16 (mask16 x .>>>. i)
  Int16SllOp         -> \[r] [x,i]   -> PrimInline $ r |= signExtend16 (x .<<. i)

------------------------------ Word16 ------------------------------------------

  Word16ToWordOp     -> \[r] [x]   -> PrimInline $ r |= x
  WordToWord16Op     -> \[r] [x]   -> PrimInline $ r |= mask16 x

  Word16AddOp        -> \[r] [x,y] -> PrimInline $ r |= mask16 (Add x y)
  Word16SubOp        -> \[r] [x,y] -> PrimInline $ r |= mask16 (Sub x y)
  Word16MulOp        -> \[r] [x,y] -> PrimInline $ r |= mask16 (Mul x y)
  Word16QuotOp       -> \[r] [x,y] -> PrimInline $ r |= mask16 (Div x y)
  Word16RemOp        -> \[r] [x,y] -> PrimInline $ r |= Mod x y
  Word16QuotRemOp    -> \[r1,r2] [x,y] -> PrimInline $ mconcat
                                                [ r1 |= toI32 (Div x y)
                                                , r2 |= Mod x y
                                                ]
  Word16EqOp         -> \[r] [x,y] -> PrimInline $ r |= if10 (x .===. y)
  Word16GeOp         -> \[r] [x,y] -> PrimInline $ r |= if10 (x .>=. y)
  Word16GtOp         -> \[r] [x,y] -> PrimInline $ r |= if10 (x .>. y)
  Word16LeOp         -> \[r] [x,y] -> PrimInline $ r |= if10 (x .<=. y)
  Word16LtOp         -> \[r] [x,y] -> PrimInline $ r |= if10 (x .<. y)
  Word16NeOp         -> \[r] [x,y] -> PrimInline $ r |= if10 (x .!==. y)

  Word16AndOp        -> \[r] [x,y]   -> PrimInline $ r |= BAnd x y
  Word16OrOp         -> \[r] [x,y]   -> PrimInline $ r |= BOr  x y
  Word16XorOp        -> \[r] [x,y]   -> PrimInline $ r |= BXor x y
  Word16NotOp        -> \[r] [x]     -> PrimInline $ r |= BXor x (Int 0xffff)

  Word16SllOp        -> \[r] [x,i]   -> PrimInline $ r |= mask16 (x .<<. i)
  Word16SrlOp        -> \[r] [x,i]   -> PrimInline $ r |= x .>>>. i

------------------------------ Int32 --------------------------------------------

  Int32ToIntOp       -> \[r] [x]   -> PrimInline $ r |= x
  IntToInt32Op       -> \[r] [x]   -> PrimInline $ r |= x

  Int32NegOp         -> \rs  xs    -> genPrim prof bound ty IntNegOp rs xs
  Int32AddOp         -> \rs  xs    -> genPrim prof bound ty IntAddOp rs xs
  Int32SubOp         -> \rs  xs    -> genPrim prof bound ty IntSubOp rs xs
  Int32MulOp         -> \rs  xs    -> genPrim prof bound ty IntMulOp rs xs
  Int32QuotOp        -> \rs  xs    -> genPrim prof bound ty IntQuotOp rs xs
  Int32RemOp         -> \rs  xs    -> genPrim prof bound ty IntRemOp rs xs
  Int32QuotRemOp     -> \rs  xs    -> genPrim prof bound ty IntQuotRemOp rs xs

  Int32EqOp          -> \rs  xs    -> genPrim prof bound ty IntEqOp rs xs
  Int32GeOp          -> \rs  xs    -> genPrim prof bound ty IntGeOp rs xs
  Int32GtOp          -> \rs  xs    -> genPrim prof bound ty IntGtOp rs xs
  Int32LeOp          -> \rs  xs    -> genPrim prof bound ty IntLeOp rs xs
  Int32LtOp          -> \rs  xs    -> genPrim prof bound ty IntLtOp rs xs
  Int32NeOp          -> \rs  xs    -> genPrim prof bound ty IntNeOp rs xs

  Int32SraOp         -> \rs  xs    -> genPrim prof bound ty IntSraOp rs xs
  Int32SrlOp         -> \rs  xs    -> genPrim prof bound ty IntSrlOp rs xs
  Int32SllOp         -> \rs  xs    -> genPrim prof bound ty IntSllOp rs xs

------------------------------ Word32 -------------------------------------------

  Word32ToWordOp     -> \[r] [x]   -> PrimInline $ r |= x
  WordToWord32Op     -> \[r] [x]   -> PrimInline $ r |= x

  Word32AddOp        -> \rs  xs    -> genPrim prof bound ty WordAddOp rs xs
  Word32SubOp        -> \rs  xs    -> genPrim prof bound ty WordSubOp rs xs
  Word32MulOp        -> \rs  xs    -> genPrim prof bound ty WordMulOp rs xs
  Word32QuotOp       -> \rs  xs    -> genPrim prof bound ty WordQuotOp rs xs
  Word32RemOp        -> \rs  xs    -> genPrim prof bound ty WordRemOp rs xs
  Word32QuotRemOp    -> \rs  xs    -> genPrim prof bound ty WordQuotRemOp rs xs

  Word32EqOp         -> \rs  xs    -> genPrim prof bound ty WordEqOp rs xs
  Word32GeOp         -> \rs  xs    -> genPrim prof bound ty WordGeOp rs xs
  Word32GtOp         -> \rs  xs    -> genPrim prof bound ty WordGtOp rs xs
  Word32LeOp         -> \rs  xs    -> genPrim prof bound ty WordLeOp rs xs
  Word32LtOp         -> \rs  xs    -> genPrim prof bound ty WordLtOp rs xs
  Word32NeOp         -> \rs  xs    -> genPrim prof bound ty WordNeOp rs xs

  Word32AndOp        -> \rs xs     -> genPrim prof bound ty WordAndOp rs xs
  Word32OrOp         -> \rs xs     -> genPrim prof bound ty WordOrOp rs xs
  Word32XorOp        -> \rs xs     -> genPrim prof bound ty WordXorOp rs xs
  Word32NotOp        -> \rs xs     -> genPrim prof bound ty WordNotOp rs xs

  Word32SllOp        -> \rs xs     -> genPrim prof bound ty WordSllOp rs xs
  Word32SrlOp        -> \rs xs     -> genPrim prof bound ty WordSrlOp rs xs

------------------------------ Int64 --------------------------------------------

  Int64ToIntOp      -> \[r] [_h,l] -> PrimInline $ r |= toI32 l

  Int64NegOp        -> \[r_h,r_l] [h,l] ->
      PrimInline $ mconcat
        [ r_l |= toU32 (BNot l + 1)
        , r_h |= toI32 (BNot h + Not r_l)
        ]

  Int64AddOp  -> \[hr,lr] [h0,l0,h1,l1] -> PrimInline $ appT [hr,lr] "h$hs_plusInt64"  [h0,l0,h1,l1]
  Int64SubOp  -> \[hr,lr] [h0,l0,h1,l1] -> PrimInline $ appT [hr,lr] "h$hs_minusInt64" [h0,l0,h1,l1]
  Int64MulOp  -> \[hr,lr] [h0,l0,h1,l1] -> PrimInline $ appT [hr,lr] "h$hs_timesInt64" [h0,l0,h1,l1]
  Int64QuotOp -> \[hr,lr] [h0,l0,h1,l1] -> PrimInline $ appT [hr,lr] "h$hs_quotInt64"  [h0,l0,h1,l1]
  Int64RemOp  -> \[hr,lr] [h0,l0,h1,l1] -> PrimInline $ appT [hr,lr] "h$hs_remInt64"   [h0,l0,h1,l1]

  Int64SllOp  -> \[hr,lr] [h,l,n] -> PrimInline $ appT [hr,lr] "h$hs_uncheckedShiftLLInt64" [h,l,n]
  Int64SraOp  -> \[hr,lr] [h,l,n] -> PrimInline $ appT [hr,lr] "h$hs_uncheckedShiftRAInt64" [h,l,n]
  Int64SrlOp  -> \[hr,lr] [h,l,n] -> PrimInline $ appT [hr,lr] "h$hs_uncheckedShiftRLInt64" [h,l,n]

  Int64ToWord64Op   -> \[r1,r2] [x1,x2] ->
      PrimInline $ mconcat
       [ r1 |= toU32 x1
       , r2 |= x2
       ]
  IntToInt64Op      -> \[r1,r2] [x] ->
      PrimInline $ mconcat
       [ r1 |= if_ (x .<. 0) (-1) 0 -- sign-extension
       , r2 |= toU32 x
       ]

  Int64EqOp -> \[r] [h0,l0,h1,l1] -> PrimInline $ r |= if10 (LAnd (l0 .===. l1) (h0 .===. h1))
  Int64NeOp -> \[r] [h0,l0,h1,l1] -> PrimInline $ r |= if10 (LOr (l0 .!==. l1) (h0 .!==. h1))
  Int64GeOp -> \[r] [h0,l0,h1,l1] -> PrimInline $ r |= if10 (LOr (h0 .>. h1) (LAnd (h0 .===. h1) (l0 .>=. l1)))
  Int64GtOp -> \[r] [h0,l0,h1,l1] -> PrimInline $ r |= if10 (LOr (h0 .>. h1) (LAnd (h0 .===. h1) (l0 .>. l1)))
  Int64LeOp -> \[r] [h0,l0,h1,l1] -> PrimInline $ r |= if10 (LOr (h0 .<. h1) (LAnd (h0 .===. h1) (l0 .<=. l1)))
  Int64LtOp -> \[r] [h0,l0,h1,l1] -> PrimInline $ r |= if10 (LOr (h0 .<. h1) (LAnd (h0 .===. h1) (l0 .<. l1)))

------------------------------ Word64 -------------------------------------------

  Word64ToWordOp    -> \[r] [_x1,x2] -> PrimInline $ r |= x2

  WordToWord64Op    -> \[rh,rl] [x] ->
    PrimInline $ mconcat
     [ rh |= 0
     , rl |= x
     ]

  Word64ToInt64Op   -> \[r1,r2] [x1,x2] ->
    PrimInline $ mconcat
     [ r1 |= toI32 x1
     , r2 |= x2
     ]

  Word64EqOp -> \[r] [h0,l0,h1,l1] -> PrimInline $ r |= if10 (LAnd (l0 .===. l1) (h0 .===. h1))
  Word64NeOp -> \[r] [h0,l0,h1,l1] -> PrimInline $ r |= if10 (LOr (l0 .!==. l1) (h0 .!==. h1))
  Word64GeOp -> \[r] [h0,l0,h1,l1] -> PrimInline $ r |= if10 (LOr (h0 .>. h1) (LAnd (h0 .===. h1) (l0 .>=. l1)))
  Word64GtOp -> \[r] [h0,l0,h1,l1] -> PrimInline $ r |= if10 (LOr (h0 .>. h1) (LAnd (h0 .===. h1) (l0 .>. l1)))
  Word64LeOp -> \[r] [h0,l0,h1,l1] -> PrimInline $ r |= if10 (LOr (h0 .<. h1) (LAnd (h0 .===. h1) (l0 .<=. l1)))
  Word64LtOp -> \[r] [h0,l0,h1,l1] -> PrimInline $ r |= if10 (LOr (h0 .<. h1) (LAnd (h0 .===. h1) (l0 .<. l1)))

  Word64SllOp -> \[hr,lr] [h,l,n] -> PrimInline $ appT [hr,lr] "h$hs_uncheckedShiftLWord64" [h,l,n]
  Word64SrlOp -> \[hr,lr] [h,l,n] -> PrimInline $ appT [hr,lr] "h$hs_uncheckedShiftRWord64" [h,l,n]

  Word64OrOp  -> \[hr,hl] [h0, l0, h1, l1] ->
      PrimInline $ mconcat
        [ hr |= toU32 (BOr h0 h1)
        , hl |= toU32 (BOr l0 l1)
        ]

  Word64AndOp -> \[hr,hl] [h0, l0, h1, l1] ->
      PrimInline $ mconcat
        [ hr |= toU32 (BAnd h0 h1)
        , hl |= toU32 (BAnd l0 l1)
        ]

  Word64XorOp -> \[hr,hl] [h0, l0, h1, l1] ->
      PrimInline $ mconcat
        [ hr |= toU32 (BXor h0 h1)
        , hl |= toU32 (BXor l0 l1)
        ]

  Word64NotOp -> \[hr,hl] [h, l] ->
      PrimInline $ mconcat
        [ hr |= toU32 (BNot h)
        , hl |= toU32 (BNot l)
        ]

  Word64AddOp  -> \[hr,lr] [h0,l0,h1,l1] -> PrimInline $ appT [hr,lr] "h$hs_plusWord64"  [h0,l0,h1,l1]
  Word64SubOp  -> \[hr,lr] [h0,l0,h1,l1] -> PrimInline $ appT [hr,lr] "h$hs_minusWord64" [h0,l0,h1,l1]
  Word64MulOp  -> \[hr,lr] [h0,l0,h1,l1] -> PrimInline $ appT [hr,lr] "h$hs_timesWord64" [h0,l0,h1,l1]
  Word64QuotOp -> \[hr,lr] [h0,l0,h1,l1] -> PrimInline $ appT [hr,lr] "h$hs_quotWord64"  [h0,l0,h1,l1]
  Word64RemOp  -> \[hr,lr] [h0,l0,h1,l1] -> PrimInline $ appT [hr,lr] "h$hs_remWord64"   [h0,l0,h1,l1]

------------------------------ Word ---------------------------------------------

  WordAddOp  -> \[r]   [x,y] -> PrimInline $ r |= (x `Add` y) .>>>. zero_
  WordAddCOp -> \[r,c] [x,y] -> PrimInline $
      jVar \t -> mconcat
        [ t |= x `Add` y
        , r |= toU32 t
        , c |= if10 (t .!==. r)
        ]
  WordSubCOp  -> \[r,c] [x,y] ->
      PrimInline $ mconcat
        [ r |= toU32 (Sub x y)
        , c |= if10 (y .>. x)
        ]
  WordAdd2Op    -> \[h,l] [x,y] -> PrimInline $ appT [h,l] "h$wordAdd2" [x,y]
  WordSubOp     -> \  [r] [x,y] -> PrimInline $ r |= toU32 (Sub x y)
  WordMulOp     -> \  [r] [x,y] -> PrimInline $ r |= toU32 (app "Math.imul" [x, y])
  WordMul2Op    -> \[h,l] [x,y] -> PrimInline $ appT [h,l] "h$mul2Word32" [x,y]
  WordQuotOp    -> \  [q] [x,y] -> PrimInline $ q |= app "h$quotWord32" [x,y]
  WordRemOp     -> \  [r] [x,y] -> PrimInline $ r |= app "h$remWord32" [x,y]
  WordQuotRemOp -> \[q,r] [x,y] -> PrimInline $ appT [q,r] "h$quotRemWord32" [x,y]
  WordQuotRem2Op   -> \[q,r] [xh,xl,y] -> PrimInline $ appT [q,r] "h$quotRem2Word32" [xh,xl,y]
  WordAndOp        -> \[r] [x,y] -> PrimInline $ r |= toU32 (BAnd x y)
  WordOrOp         -> \[r] [x,y] -> PrimInline $ r |= toU32 (BOr  x y)
  WordXorOp        -> \[r] [x,y] -> PrimInline $ r |= toU32 (BXor x y)
  WordNotOp        -> \[r] [x]   -> PrimInline $ r |= toU32 (BNot x)
  WordSllOp        -> \[r] [x,y] -> PrimInline $ r |= toU32 (x .<<. y)
  WordSrlOp        -> \[r] [x,y] -> PrimInline $ r |= x .>>>. y
  WordToIntOp      -> \[r] [x]   -> PrimInline $ r |= toI32 x
  WordGtOp         -> \[r] [x,y] -> PrimInline $ r |= if10 (x .>.  y)
  WordGeOp         -> \[r] [x,y] -> PrimInline $ r |= if10 (x .>=. y)
  WordEqOp         -> \[r] [x,y] -> PrimInline $ r |= if10 (x .===. y)
  WordNeOp         -> \[r] [x,y] -> PrimInline $ r |= if10 (x .!==. y)
  WordLtOp         -> \[r] [x,y] -> PrimInline $ r |= if10 (x .<.  y)
  WordLeOp         -> \[r] [x,y] -> PrimInline $ r |= if10 (x .<=. y)
  WordToDoubleOp   -> \[r] [x]   -> PrimInline $ r |= x
  WordToFloatOp    -> \[r] [x]   -> PrimInline $ r |= math_fround [x]
  PopCnt8Op        -> \[r] [x]   -> PrimInline $ r |= var "h$popCntTab" .! (mask8 x)
  PopCnt16Op       -> \[r] [x]   -> PrimInline $ r |= Add (var "h$popCntTab" .! (mask8 x))
                                                      (var "h$popCntTab" .! (mask8 (x .>>>. Int 8)))

  PopCnt32Op  -> \[r] [x]     -> PrimInline $ r |= app "h$popCnt32" [x]
  PopCnt64Op  -> \[r] [x1,x2] -> PrimInline $ r |= app "h$popCnt64" [x1,x2]
  PopCntOp    -> \[r] [x]     -> genPrim prof bound ty PopCnt32Op [r] [x]
  Pdep8Op     -> \[r] [s,m]   -> PrimInline $ r |= app "h$pdep8"  [s,m]
  Pdep16Op    -> \[r] [s,m]   -> PrimInline $ r |= app "h$pdep16" [s,m]
  Pdep32Op    -> \[r] [s,m]   -> PrimInline $ r |= app "h$pdep32" [s,m]
  Pdep64Op    -> \[ra,rb] [sa,sb,ma,mb] -> PrimInline $ appT [ra,rb] "h$pdep64" [sa,sb,ma,mb]
  PdepOp      -> \rs xs                 -> genPrim prof bound ty Pdep32Op rs xs
  Pext8Op     -> \[r] [s,m] -> PrimInline $ r |= app "h$pext8" [s,m]
  Pext16Op    -> \[r] [s,m] -> PrimInline $ r |= app "h$pext16" [s,m]
  Pext32Op    -> \[r] [s,m] -> PrimInline $ r |= app "h$pext32" [s,m]
  Pext64Op    -> \[ra,rb] [sa,sb,ma,mb] -> PrimInline $ appT [ra,rb] "h$pext64" [sa,sb,ma,mb]
  PextOp      -> \rs xs     -> genPrim prof bound ty Pext32Op rs xs

  ClzOp       -> \[r]   [x]     -> PrimInline $ r |= app "h$clz32" [x]
  Clz8Op      -> \[r]   [x]     -> PrimInline $ r |= app "h$clz8"  [x]
  Clz16Op     -> \[r]   [x]     -> PrimInline $ r |= app "h$clz16" [x]
  Clz32Op     -> \[r]   [x]     -> PrimInline $ r |= app "h$clz32" [x]
  Clz64Op     -> \[r]   [x1,x2] -> PrimInline $ r |= app "h$clz64" [x1,x2]
  CtzOp       -> \[r]   [x]     -> PrimInline $ r |= app "h$ctz32" [x]
  Ctz8Op      -> \[r]   [x]     -> PrimInline $ r |= app "h$ctz8"  [x]
  Ctz16Op     -> \[r]   [x]     -> PrimInline $ r |= app "h$ctz16" [x]
  Ctz32Op     -> \[r]   [x]     -> PrimInline $ r |= app "h$ctz32" [x]
  Ctz64Op     -> \[r]   [x1,x2] -> PrimInline $ r |= app "h$ctz64" [x1,x2]

  BSwap16Op   -> \[r] [x]   -> PrimInline $
      r |= BOr ((mask8 x) .<<. (Int 8))
               (mask8 (x .>>>. (Int 8)))
  BSwap32Op   -> \[r] [x]   -> PrimInline $
      r |= toU32 ((x .<<. (Int 24))
            `BOr` ((BAnd x (Int 0xFF00)) .<<. (Int 8))
            `BOr` ((BAnd x (Int 0xFF0000)) .>>. (Int 8))
            `BOr` (x .>>>. (Int 24)))
  BSwap64Op   -> \[r1,r2] [x,y] -> PrimInline $ appT [r1,r2] "h$bswap64" [x,y]
  BSwapOp     -> \[r] [x]       -> genPrim prof bound ty BSwap32Op [r] [x]

  BRevOp      -> \[r] [w] -> genPrim prof bound ty BRev32Op [r] [w]
  BRev8Op     -> \[r] [w] -> PrimInline $ r |= (app "h$reverseWord" [w] .>>>. 24)
  BRev16Op    -> \[r] [w] -> PrimInline $ r |= (app "h$reverseWord" [w] .>>>. 16)
  BRev32Op    -> \[r] [w] -> PrimInline $ r |= app "h$reverseWord" [w]
  BRev64Op    -> \[rh,rl] [h,l] -> PrimInline $ mconcat [ rl |= app "h$reverseWord" [h]
                                                        , rh |= app "h$reverseWord" [l]
                                                        ]

------------------------------ Narrow -------------------------------------------

  Narrow8IntOp    -> \[r] [x] -> PrimInline $ r |= signExtend8  x
  Narrow16IntOp   -> \[r] [x] -> PrimInline $ r |= signExtend16 x
  Narrow32IntOp   -> \[r] [x] -> PrimInline $ r |= toI32  x
  Narrow8WordOp   -> \[r] [x] -> PrimInline $ r |= mask8  x
  Narrow16WordOp  -> \[r] [x] -> PrimInline $ r |= mask16 x
  Narrow32WordOp  -> \[r] [x] -> PrimInline $ r |= toU32  x

------------------------------ Double -------------------------------------------

  DoubleGtOp        -> \[r] [x,y] -> PrimInline $ r |= if10 (x .>.   y)
  DoubleGeOp        -> \[r] [x,y] -> PrimInline $ r |= if10 (x .>=.  y)
  DoubleEqOp        -> \[r] [x,y] -> PrimInline $ r |= if10 (x .===. y)
  DoubleNeOp        -> \[r] [x,y] -> PrimInline $ r |= if10 (x .!==. y)
  DoubleLtOp        -> \[r] [x,y] -> PrimInline $ r |= if10 (x .<.   y)
  DoubleLeOp        -> \[r] [x,y] -> PrimInline $ r |= if10 (x .<=.  y)
  DoubleAddOp       -> \[r] [x,y] -> PrimInline $ r |= Add x y
  DoubleSubOp       -> \[r] [x,y] -> PrimInline $ r |= Sub x y
  DoubleMulOp       -> \[r] [x,y] -> PrimInline $ r |= Mul x y
  DoubleDivOp       -> \[r] [x,y] -> PrimInline $ r |= Div x y
  DoubleNegOp       -> \[r] [x]   -> PrimInline $ r |= Negate x
  DoubleFabsOp      -> \[r] [x]   -> PrimInline $ r |= math_abs [x]
  DoubleToIntOp     -> \[r] [x]   -> PrimInline $ r |= toI32 x
  DoubleToFloatOp   -> \[r] [x]   -> PrimInline $ r |= math_fround [x]
  DoubleExpOp       -> \[r] [x]   -> PrimInline $ r |= math_exp  [x]
  DoubleExpM1Op     -> \[r] [x]   -> PrimInline $ r |= math_expm1 [x]
  DoubleLogOp       -> \[r] [x]   -> PrimInline $ r |= math_log  [x]
  DoubleLog1POp     -> \[r] [x]   -> PrimInline $ r |= math_log1p [x]
  DoubleSqrtOp      -> \[r] [x]   -> PrimInline $ r |= math_sqrt [x]
  DoubleSinOp       -> \[r] [x]   -> PrimInline $ r |= math_sin  [x]
  DoubleCosOp       -> \[r] [x]   -> PrimInline $ r |= math_cos  [x]
  DoubleTanOp       -> \[r] [x]   -> PrimInline $ r |= math_tan  [x]
  DoubleAsinOp      -> \[r] [x]   -> PrimInline $ r |= math_asin [x]
  DoubleAcosOp      -> \[r] [x]   -> PrimInline $ r |= math_acos [x]
  DoubleAtanOp      -> \[r] [x]   -> PrimInline $ r |= math_atan [x]
  DoubleSinhOp      -> \[r] [x]   -> PrimInline $ r |= math_sinh [x]
  DoubleCoshOp      -> \[r] [x]   -> PrimInline $ r |= math_cosh [x]
  DoubleTanhOp      -> \[r] [x]   -> PrimInline $ r |= math_tanh [x]
  DoubleAsinhOp     -> \[r] [x]   -> PrimInline $ r |= math_asinh [x]
  DoubleAcoshOp     -> \[r] [x]   -> PrimInline $ r |= math_acosh [x]
  DoubleAtanhOp     -> \[r] [x]   -> PrimInline $ r |= math_atanh [x]
  DoublePowerOp     -> \[r] [x,y] -> PrimInline $ r |= math_pow [x,y]
  DoubleDecode_2IntOp  -> \[s,h,l,e] [x] -> PrimInline $ appT [s,h,l,e] "h$decodeDouble2Int" [x]
  DoubleDecode_Int64Op -> \[s1,s2,e] [d] -> PrimInline $ appT [e,s1,s2] "h$decodeDoubleInt64" [d]

------------------------------ Float --------------------------------------------

  FloatGtOp         -> \[r] [x,y] -> PrimInline $ r |= if10 (x .>.   y)
  FloatGeOp         -> \[r] [x,y] -> PrimInline $ r |= if10 (x .>=.  y)
  FloatEqOp         -> \[r] [x,y] -> PrimInline $ r |= if10 (x .===. y)
  FloatNeOp         -> \[r] [x,y] -> PrimInline $ r |= if10 (x .!==. y)
  FloatLtOp         -> \[r] [x,y] -> PrimInline $ r |= if10 (x .<.   y)
  FloatLeOp         -> \[r] [x,y] -> PrimInline $ r |= if10 (x .<=.  y)
  FloatAddOp        -> \[r] [x,y] -> PrimInline $ r |= math_fround [Add x y]
  FloatSubOp        -> \[r] [x,y] -> PrimInline $ r |= math_fround [Sub x y]
  FloatMulOp        -> \[r] [x,y] -> PrimInline $ r |= math_fround [Mul x y]
  FloatDivOp        -> \[r] [x,y] -> PrimInline $ r |= math_fround [Div x y]
  FloatNegOp        -> \[r] [x]   -> PrimInline $ r |= Negate x
  FloatFabsOp       -> \[r] [x]   -> PrimInline $ r |= math_abs [x]
  FloatToIntOp      -> \[r] [x]   -> PrimInline $ r |= toI32 x
  FloatExpOp        -> \[r] [x]   -> PrimInline $ r |= math_fround [math_exp [x]]
  FloatExpM1Op      -> \[r] [x]   -> PrimInline $ r |= math_fround [math_expm1 [x]]
  FloatLogOp        -> \[r] [x]   -> PrimInline $ r |= math_fround [math_log [x]]
  FloatLog1POp      -> \[r] [x]   -> PrimInline $ r |= math_fround [math_log1p [x]]
  FloatSqrtOp       -> \[r] [x]   -> PrimInline $ r |= math_fround [math_sqrt [x]]
  FloatSinOp        -> \[r] [x]   -> PrimInline $ r |= math_fround [math_sin [x]]
  FloatCosOp        -> \[r] [x]   -> PrimInline $ r |= math_fround [math_cos [x]]
  FloatTanOp        -> \[r] [x]   -> PrimInline $ r |= math_fround [math_tan [x]]
  FloatAsinOp       -> \[r] [x]   -> PrimInline $ r |= math_fround [math_asin [x]]
  FloatAcosOp       -> \[r] [x]   -> PrimInline $ r |= math_fround [math_acos [x]]
  FloatAtanOp       -> \[r] [x]   -> PrimInline $ r |= math_fround [math_atan [x]]
  FloatSinhOp       -> \[r] [x]   -> PrimInline $ r |= math_fround [math_sinh [x]]
  FloatCoshOp       -> \[r] [x]   -> PrimInline $ r |= math_fround [math_cosh [x]]
  FloatTanhOp       -> \[r] [x]   -> PrimInline $ r |= math_fround [math_tanh [x]]
  FloatAsinhOp      -> \[r] [x]   -> PrimInline $ r |= math_fround [math_asinh [x]]
  FloatAcoshOp      -> \[r] [x]   -> PrimInline $ r |= math_fround [math_acosh [x]]
  FloatAtanhOp      -> \[r] [x]   -> PrimInline $ r |= math_fround [math_atanh [x]]
  FloatPowerOp      -> \[r] [x,y] -> PrimInline $ r |= math_fround [math_pow [x,y]]
  FloatToDoubleOp   -> \[r] [x]   -> PrimInline $ r |= x
  FloatDecode_IntOp -> \[s,e] [x] -> PrimInline $ appT [s,e] "h$decodeFloatInt" [x]

------------------------------ Arrays -------------------------------------------

  NewArrayOp           -> \[r] [l,e]   -> PrimInline $ r |= app "h$newArray" [l,e]
  ReadArrayOp          -> \[r] [a,i]   -> PrimInline $ bnd_arr bound a i (r |= a .! i)
  WriteArrayOp         -> \[]  [a,i,v] -> PrimInline $ bnd_arr bound a i (a .! i |= v)
  SizeofArrayOp        -> \[r] [a]     -> PrimInline $ r |= a .^ "length"
  SizeofMutableArrayOp -> \[r] [a]     -> PrimInline $ r |= a .^ "length"
  IndexArrayOp         -> \[r] [a,i]   -> PrimInline $ bnd_arr bound a i (r |= a .! i)
  UnsafeFreezeArrayOp  -> \[r] [a]     -> PrimInline $ r |= a
  UnsafeThawArrayOp    -> \[r] [a]     -> PrimInline $ r |= a
  CopyArrayOp          -> \[] [a,o1,ma,o2,n] ->
    PrimInline
      $ bnd_arr_range bound a o1 n
      $ bnd_arr_range bound ma o2 n
      $ loopBlockS (Int 0) (.<. n) \i ->
      [ ma .! (Add i o2) |= a .! (Add i o1)
      , preIncrS i
      ]
  CopyMutableArrayOp  -> \[]  [a1,o1,a2,o2,n] ->
    PrimInline
      $ bnd_arr_range bound a1 o1 n
      $ bnd_arr_range bound a2 o2 n
      $ appS "h$copyMutableArray" [a1,o1,a2,o2,n]

  CloneArrayOp        -> \[r] [a,start,n]     ->
    PrimInline
      $ bnd_arr_range bound a start n
      $ r |= app "h$sliceArray" [a,start,n]

  CloneMutableArrayOp -> \[r] [a,start,n]     ->
    PrimInline
      $ bnd_arr_range bound a start n
      $ r |= app "h$sliceArray" [a,start,n]

  FreezeArrayOp       -> \[r] [a,start,n]     ->
    PrimInline
      $ bnd_arr_range bound a start n
      $ r |= app "h$sliceArray" [a,start,n]

  ThawArrayOp         -> \[r] [a,start,n]     ->
    PrimInline
      $ bnd_arr_range bound a start n
      $ r |= app "h$sliceArray" [a,start,n]

  CasArrayOp          -> \[s,o] [a,i,old,new] ->
    PrimInline
      $ bnd_arr bound a i
      $ jVar \x -> mconcat
          [ x |= a .! i
          , ifBlockS (x .===. old)
                     [ o |= new
                     , a .! i |= new
                     , s |= zero_
                     ]
                     [ s |= one_
                     , o |= x
                     ]
          ]

------------------------------ Small Arrays -------------------------------------

  NewSmallArrayOp            -> \[a]   [n,e]         -> PrimInline $ a |= app "h$newArray" [n,e]
  ReadSmallArrayOp           -> \[r]   [a,i]         -> PrimInline $ bnd_arr bound a i (r |= a .! i)
  WriteSmallArrayOp          -> \[]    [a,i,e]       -> PrimInline $ bnd_arr bound a i (a .! i |= e)
  SizeofSmallArrayOp         -> \[r]   [a]           -> PrimInline $ r |= a .^ "length"
  SizeofSmallMutableArrayOp  -> \[r]   [a]           -> PrimInline $ r |= a .^ "length"
  IndexSmallArrayOp          -> \[r]   [a,i]         -> PrimInline $ bnd_arr bound a i (r |= a .! i)
  UnsafeFreezeSmallArrayOp   -> \[r]   [a]           -> PrimInline $ r |= a
  UnsafeThawSmallArrayOp     -> \[r]   [a]           -> PrimInline $ r |= a
  CopySmallArrayOp           -> \[]    [s,si,d,di,n] ->
    PrimInline
      $ bnd_arr_range bound s si n
      $ bnd_arr_range bound d di n
      $ loopBlockS (Sub n one_) (.>=. zero_) \i ->
          [ d .! (Add di i) |= s .! (Add si i)
          , postDecrS i
          ]
  CopySmallMutableArrayOp    -> \[]    [s,si,d,di,n] ->
    PrimInline
      $ bnd_arr_range bound s si n
      $ bnd_arr_range bound d di n
      $ appS "h$copyMutableArray" [s,si,d,di,n]

  CloneSmallArrayOp          -> \[r]   [a,o,n]       -> PrimInline $ cloneArray bound r a o n
  CloneSmallMutableArrayOp   -> \[r]   [a,o,n]       -> PrimInline $ cloneArray bound r a o n
  FreezeSmallArrayOp         -> \[r]   [a,o,n]       -> PrimInline $ cloneArray bound r a o n
  ThawSmallArrayOp           -> \[r]   [a,o,n]       -> PrimInline $ cloneArray bound r a o n

  CasSmallArrayOp            -> \[s,o] [a,i,old,new] ->
    PrimInline
      $ bnd_arr bound a i
      $ jVar \x -> mconcat
        [ x |= a .! i
        , ifBlockS (x .===. old)
            [ o |= new
            , a .! i |= new
            , s |= zero_
            ]
            [ s |= one_
            , o |= x
            ]
        ]

------------------------------- Byte Arrays -------------------------------------

  NewByteArrayOp_Char               -> \[r]   [l]        -> PrimInline (newByteArray r l)
  NewPinnedByteArrayOp_Char         -> \[r]   [l]        -> PrimInline (newByteArray r l)
  NewAlignedPinnedByteArrayOp_Char  -> \[r]   [l,_align] -> PrimInline (newByteArray r l)
  MutableByteArrayIsPinnedOp        -> \[r]   [_]        -> PrimInline $ r |= one_
  ByteArrayIsPinnedOp               -> \[r]   [_]        -> PrimInline $ r |= one_
  ByteArrayContents_Char            -> \[a,o] [b]        -> PrimInline $ mconcat [a |= b, o |= zero_]
  MutableByteArrayContents_Char     -> \[a,o] [b]        -> PrimInline $ mconcat [a |= b, o |= zero_]
  ShrinkMutableByteArrayOp_Char     -> \[]    [a,n]      -> PrimInline $ appS "h$shrinkMutableByteArray" [a,n]
  ResizeMutableByteArrayOp_Char     -> \[r]   [a,n]      -> PrimInline $ r |= app "h$resizeMutableByteArray" [a,n]
  UnsafeFreezeByteArrayOp           -> \[a]   [b]        -> PrimInline $ a |= b
  SizeofByteArrayOp                 -> \[r]   [a]        -> PrimInline $ r |= a .^ "len"
  SizeofMutableByteArrayOp          -> \[r]   [a]        -> PrimInline $ r |= a .^ "len"
  GetSizeofMutableByteArrayOp       -> \[r]   [a]        -> PrimInline $ r |= a .^ "len"

  IndexByteArrayOp_Char      -> \[r]   [a,i] -> PrimInline $ bnd_ix8  bound a i $ r |= read_u8  a i
  IndexByteArrayOp_WideChar  -> \[r]   [a,i] -> PrimInline $ bnd_ix32 bound a i $ r |= read_i32 a i
  IndexByteArrayOp_Int       -> \[r]   [a,i] -> PrimInline $ bnd_ix32 bound a i $ r |= read_i32 a i
  IndexByteArrayOp_Word      -> \[r]   [a,i] -> PrimInline $ bnd_ix32 bound a i $ r |= read_u32 a i
  IndexByteArrayOp_Addr      -> \[r,o] [a,i] -> PrimInline $ bnd_ix32 bound a i $ read_addr a i r o
  IndexByteArrayOp_Float     -> \[r]   [a,i] -> PrimInline $ bnd_ix32 bound a i $ r |= read_f32 a i
  IndexByteArrayOp_Double    -> \[r]   [a,i] -> PrimInline $ bnd_ix64 bound a i $ r |= read_f64 a i
  IndexByteArrayOp_StablePtr -> \[r,o] [a,i] -> PrimInline $ bnd_ix32 bound a i $ read_stableptr a i r o
  IndexByteArrayOp_Int8      -> \[r]   [a,i] -> PrimInline $ bnd_ix8  bound a i $ r |= read_i8  a i
  IndexByteArrayOp_Int16     -> \[r]   [a,i] -> PrimInline $ bnd_ix16 bound a i $ r |= read_i16 a i
  IndexByteArrayOp_Int32     -> \[r]   [a,i] -> PrimInline $ bnd_ix32 bound a i $ r |= read_i32 a i
  IndexByteArrayOp_Int64     -> \[h,l] [a,i] -> PrimInline $ bnd_ix64 bound a i $ read_i64 a i h l
  IndexByteArrayOp_Word8     -> \[r]   [a,i] -> PrimInline $ bnd_ix8  bound a i $ r |= read_u8  a i
  IndexByteArrayOp_Word16    -> \[r]   [a,i] -> PrimInline $ bnd_ix16 bound a i $ r |= read_u16 a i
  IndexByteArrayOp_Word32    -> \[r]   [a,i] -> PrimInline $ bnd_ix32 bound a i $ r |= read_u32 a i
  IndexByteArrayOp_Word64    -> \[h,l] [a,i] -> PrimInline $ bnd_ix64 bound a i $ read_u64 a i h l

  ReadByteArrayOp_Char       -> \[r]   [a,i] -> PrimInline $ bnd_ix8 bound a i $ r |= read_u8  a i
  ReadByteArrayOp_WideChar   -> \[r]   [a,i] -> PrimInline $ bnd_ix32 bound a i $ r |= read_i32 a i
  ReadByteArrayOp_Int        -> \[r]   [a,i] -> PrimInline $ bnd_ix32 bound a i $ r |= read_i32 a i
  ReadByteArrayOp_Word       -> \[r]   [a,i] -> PrimInline $ bnd_ix32 bound a i $ r |= read_u32 a i
  ReadByteArrayOp_Addr       -> \[r,o] [a,i] -> PrimInline $ bnd_ix32 bound a i $ read_addr a i r o
  ReadByteArrayOp_Float      -> \[r]   [a,i] -> PrimInline $ bnd_ix32 bound a i $ r |= read_f32 a i
  ReadByteArrayOp_Double     -> \[r]   [a,i] -> PrimInline $ bnd_ix64 bound a i $ r |= read_f64 a i
  ReadByteArrayOp_StablePtr  -> \[r,o] [a,i] -> PrimInline $ bnd_ix32 bound a i $ read_stableptr a i r o
  ReadByteArrayOp_Int8       -> \[r]   [a,i] -> PrimInline $ bnd_ix8  bound a i $ r |= read_i8  a i
  ReadByteArrayOp_Int16      -> \[r]   [a,i] -> PrimInline $ bnd_ix16 bound a i $ r |= read_i16 a i
  ReadByteArrayOp_Int32      -> \[r]   [a,i] -> PrimInline $ bnd_ix32 bound a i $ r |= read_i32 a i
  ReadByteArrayOp_Int64      -> \[h,l] [a,i] -> PrimInline $ bnd_ix64 bound a i $ read_i64 a i h l
  ReadByteArrayOp_Word8      -> \[r]   [a,i] -> PrimInline $ bnd_ix8  bound a i $ r |= read_u8  a i
  ReadByteArrayOp_Word16     -> \[r]   [a,i] -> PrimInline $ bnd_ix16 bound a i $ r |= read_u16 a i
  ReadByteArrayOp_Word32     -> \[r]   [a,i] -> PrimInline $ bnd_ix32 bound a i $ r |= read_u32 a i
  ReadByteArrayOp_Word64     -> \[h,l] [a,i] -> PrimInline $ bnd_ix64 bound a i $ read_u64 a i h l

  WriteByteArrayOp_Char      -> \[] [a,i,e]   -> PrimInline $ bnd_ix8  bound a i $ write_u8  a i e
  WriteByteArrayOp_WideChar  -> \[] [a,i,e]   -> PrimInline $ bnd_ix32 bound a i $ write_i32 a i e
  WriteByteArrayOp_Int       -> \[] [a,i,e]   -> PrimInline $ bnd_ix32 bound a i $ write_i32 a i e
  WriteByteArrayOp_Word      -> \[] [a,i,e]   -> PrimInline $ bnd_ix32 bound a i $ write_u32 a i e
  WriteByteArrayOp_Addr      -> \[] [a,i,r,o] -> PrimInline $ bnd_ix32 bound a i $ write_addr a i r o
  WriteByteArrayOp_Float     -> \[] [a,i,e]   -> PrimInline $ bnd_ix32 bound a i $ write_f32 a i e
  WriteByteArrayOp_Double    -> \[] [a,i,e]   -> PrimInline $ bnd_ix64 bound a i $ write_f64 a i e
  WriteByteArrayOp_StablePtr -> \[] [a,i,r,o] -> PrimInline $ bnd_ix32 bound a i $ write_stableptr a i r o
  WriteByteArrayOp_Int8      -> \[] [a,i,e]   -> PrimInline $ bnd_ix8  bound a i $ write_i8  a i e
  WriteByteArrayOp_Int16     -> \[] [a,i,e]   -> PrimInline $ bnd_ix16 bound a i $ write_i16 a i e
  WriteByteArrayOp_Int32     -> \[] [a,i,e]   -> PrimInline $ bnd_ix32 bound a i $ write_i32 a i e
  WriteByteArrayOp_Int64     -> \[] [a,i,h,l] -> PrimInline $ bnd_ix64 bound a i $ write_i64 a i h l
  WriteByteArrayOp_Word8     -> \[] [a,i,e]   -> PrimInline $ bnd_ix8  bound a i $ write_u8  a i e
  WriteByteArrayOp_Word16    -> \[] [a,i,e]   -> PrimInline $ bnd_ix16 bound a i $ write_u16 a i e
  WriteByteArrayOp_Word32    -> \[] [a,i,e]   -> PrimInline $ bnd_ix32 bound a i $ write_u32 a i e
  WriteByteArrayOp_Word64    -> \[] [a,i,h,l] -> PrimInline $ bnd_ix64 bound a i $ write_u64 a i h l

  CompareByteArraysOp -> \[r] [a1,o1,a2,o2,n] ->
      PrimInline . bnd_ba_range bound a1 o1 n
                 . bnd_ba_range bound a2 o2 n
                 $ r |= app "h$compareByteArrays" [a1,o1,a2,o2,n]

  -- We assume the arrays aren't overlapping since they're of different types
  -- (ByteArray vs MutableByteArray, Addr# vs MutableByteArray#, [Mutable]ByteArray# vs Addr#)
  CopyByteArrayOp                      -> \[] [a1,o1,a2,o2,n] -> copyByteArray False bound a1 o1 a2 o2 n
  CopyAddrToByteArrayOp                -> \[] [a1,o1,a2,o2,n] -> copyByteArray False bound a1 o1 a2 o2 n
  CopyMutableByteArrayToAddrOp         -> \[] [a1,o1,a2,o2,n] -> copyByteArray False bound a1 o1 a2 o2 n
  CopyMutableByteArrayNonOverlappingOp -> \[] [a1,o1,a2,o2,n] -> copyByteArray False bound a1 o1 a2 o2 n
  CopyAddrToAddrNonOverlappingOp       -> \[] [a1,o1,a2,o2,n] -> copyByteArray False bound a1 o1 a2 o2 n
  CopyByteArrayToAddrOp                -> \[] [a1,o1,a2,o2,n] -> copyByteArray False bound a1 o1 a2 o2 n

  CopyMutableByteArrayOp               -> \[] [a1,o1,a2,o2,n] -> copyByteArray True  bound a1 o1 a2 o2 n
  CopyAddrToAddrOp                     -> \[] [a1,o1,a2,o2,n] -> copyByteArray True  bound a1 o1 a2 o2 n

  SetByteArrayOp -> \[] [a,o,n,v] ->
      PrimInline . bnd_ba_range bound a o n $ loopBlockS zero_ (.<. n) \i ->
        [ write_u8 a (Add o i) v
        , postIncrS i
        ]
  SetAddrRangeOp -> \[] xs@[_a,_o,_n,_v] -> genPrim prof bound ty SetByteArrayOp [] xs

  AtomicReadByteArrayOp_Int  -> \[r]   [a,i]   -> PrimInline $ bnd_ix32 bound a i $ r |= read_i32 a i
  AtomicWriteByteArrayOp_Int -> \[]    [a,i,v] -> PrimInline $ bnd_ix32 bound a i $ write_i32 a i v
  FetchAddByteArrayOp_Int    -> \[r]   [a,i,v] -> PrimInline $ bnd_ix32 bound a i $ fetchOpByteArray Add  r a i v
  FetchSubByteArrayOp_Int    -> \[r]   [a,i,v] -> PrimInline $ bnd_ix32 bound a i $ fetchOpByteArray Sub  r a i v
  FetchAndByteArrayOp_Int    -> \[r]   [a,i,v] -> PrimInline $ bnd_ix32 bound a i $ fetchOpByteArray BAnd r a i v
  FetchOrByteArrayOp_Int     -> \[r]   [a,i,v] -> PrimInline $ bnd_ix32 bound a i $ fetchOpByteArray BOr  r a i v
  FetchNandByteArrayOp_Int   -> \[r]   [a,i,v] -> PrimInline $ bnd_ix32 bound a i $ fetchOpByteArray (\x y -> BNot (BAnd x y)) r a i v
  FetchXorByteArrayOp_Int    -> \[r]   [a,i,v] -> PrimInline $ bnd_ix32 bound a i $ fetchOpByteArray BXor r a i v

------------------------------- Addr# ------------------------------------------

  AddrAddOp   -> \[a',o'] [a,o,i]         -> PrimInline $ mconcat [a' |= a, o' |= Add o i]
  AddrSubOp   -> \[i]     [_a1,o1,_a2,o2] -> PrimInline $ i |= Sub o1 o2
  AddrRemOp   -> \[r]     [_a,o,i]        -> PrimInline $ r |= Mod o i
  AddrToIntOp -> \[i]     [_a,o]          -> PrimInline $ i |= o -- only usable for comparisons within one range
  IntToAddrOp -> \[a,o]   [i]             -> PrimInline $ mconcat [a |= null_, o |= i]
  AddrGtOp -> \[r] [a1,o1,a2,o2] -> PrimInline $ r |= if10 (app "h$comparePointer" [a1,o1,a2,o2] .>. zero_)
  AddrGeOp -> \[r] [a1,o1,a2,o2] -> PrimInline $ r |= if10 (app "h$comparePointer" [a1,o1,a2,o2] .>=. zero_)
  AddrEqOp -> \[r] [a1,o1,a2,o2] -> PrimInline $ r |= if10 (app "h$comparePointer" [a1,o1,a2,o2] .===. zero_)
  AddrNeOp -> \[r] [a1,o1,a2,o2] -> PrimInline $ r |= if10 (app "h$comparePointer" [a1,o1,a2,o2] .!==. zero_)
  AddrLtOp -> \[r] [a1,o1,a2,o2] -> PrimInline $ r |= if10 (app "h$comparePointer" [a1,o1,a2,o2] .<. zero_)
  AddrLeOp -> \[r] [a1,o1,a2,o2] -> PrimInline $ r |= if10 (app "h$comparePointer" [a1,o1,a2,o2] .<=. zero_)

------------------------------- Addr Indexing: Unboxed Arrays -------------------

  IndexOffAddrOp_Char      -> \[r]     [a,o,i] -> PrimInline $ r |= read_boff_u8  a (off8  o i)
  IndexOffAddrOp_WideChar  -> \[r]     [a,o,i] -> PrimInline $ r |= read_boff_i32 a (off32 o i)
  IndexOffAddrOp_Int       -> \[r]     [a,o,i] -> PrimInline $ r |= read_boff_i32 a (off32 o i)
  IndexOffAddrOp_Word      -> \[r]     [a,o,i] -> PrimInline $ r |= read_boff_u32 a (off32 o i)
  IndexOffAddrOp_Addr      -> \[ra,ro] [a,o,i] -> PrimInline $ read_boff_addr a (off32 o i) ra ro
  IndexOffAddrOp_Float     -> \[r]     [a,o,i] -> PrimInline $ r |= read_boff_f32 a (off32 o i)
  IndexOffAddrOp_Double    -> \[r]     [a,o,i] -> PrimInline $ r |= read_boff_f64 a (off64 o i)
  IndexOffAddrOp_StablePtr -> \[ra,ro] [a,o,i] -> PrimInline $ read_boff_stableptr a (off32 o i) ra ro
  IndexOffAddrOp_Int8      -> \[r]     [a,o,i] -> PrimInline $ r |= read_boff_i8  a (off8  o i)
  IndexOffAddrOp_Int16     -> \[r]     [a,o,i] -> PrimInline $ r |= read_boff_i16 a (off16 o i)
  IndexOffAddrOp_Int32     -> \[r]     [a,o,i] -> PrimInline $ r |= read_boff_i32 a (off32 o i)
  IndexOffAddrOp_Int64     -> \[h,l]   [a,o,i] -> PrimInline $ read_boff_i64 a (off64 o i) h l
  IndexOffAddrOp_Word8     -> \[r]     [a,o,i] -> PrimInline $ r |= read_boff_u8  a (off8  o i)
  IndexOffAddrOp_Word16    -> \[r]     [a,o,i] -> PrimInline $ r |= read_boff_u16 a (off16 o i)
  IndexOffAddrOp_Word32    -> \[r]     [a,o,i] -> PrimInline $ r |= read_boff_u32 a (off32 o i)
  IndexOffAddrOp_Word64    -> \[h,l]   [a,o,i] -> PrimInline $ read_boff_u64 a (off64 o i) h l

  ReadOffAddrOp_Char       -> \[r]     [a,o,i] -> PrimInline $ r |= read_boff_u8  a (off8  o i)
  ReadOffAddrOp_WideChar   -> \[r]     [a,o,i] -> PrimInline $ r |= read_boff_i32 a (off32 o i)
  ReadOffAddrOp_Int        -> \[r]     [a,o,i] -> PrimInline $ r |= read_boff_i32 a (off32 o i)
  ReadOffAddrOp_Word       -> \[r]     [a,o,i] -> PrimInline $ r |= read_boff_u32 a (off32 o i)
  ReadOffAddrOp_Addr       -> \[ra,ro] [a,o,i] -> PrimInline $ read_boff_addr a (off32 o i) ra ro
  ReadOffAddrOp_Float      -> \[r]     [a,o,i] -> PrimInline $ r |= read_boff_f32 a (off32 o i)
  ReadOffAddrOp_Double     -> \[r]     [a,o,i] -> PrimInline $ r |= read_boff_f64 a (off64 o i)
  ReadOffAddrOp_StablePtr  -> \[ra,ro] [a,o,i] -> PrimInline $ read_boff_stableptr a (off32 o i) ra ro
  ReadOffAddrOp_Int8       -> \[r]     [a,o,i] -> PrimInline $ r |= read_boff_i8  a (off8  o i)
  ReadOffAddrOp_Int16      -> \[r]     [a,o,i] -> PrimInline $ r |= read_boff_i16 a (off16 o i)
  ReadOffAddrOp_Int32      -> \[r]     [a,o,i] -> PrimInline $ r |= read_boff_i32 a (off32 o i)
  ReadOffAddrOp_Int64      -> \[h,l]   [a,o,i] -> PrimInline $ read_boff_i64 a (off64 o i) h l
  ReadOffAddrOp_Word8      -> \[r]     [a,o,i] -> PrimInline $ r |= read_boff_u8  a (off8  o i)
  ReadOffAddrOp_Word16     -> \[r]     [a,o,i] -> PrimInline $ r |= read_boff_u16 a (off16 o i)
  ReadOffAddrOp_Word32     -> \[r]     [a,o,i] -> PrimInline $ r |= read_boff_u32 a (off32 o i)
  ReadOffAddrOp_Word64     -> \[h,l]   [a,o,i] -> PrimInline $ read_boff_u64 a (off64 o i) h l

  WriteOffAddrOp_Char      -> \[] [a,o,i,v]     -> PrimInline $ write_boff_u8  a (off8  o i) v
  WriteOffAddrOp_WideChar  -> \[] [a,o,i,v]     -> PrimInline $ write_boff_i32 a (off32 o i) v
  WriteOffAddrOp_Int       -> \[] [a,o,i,v]     -> PrimInline $ write_boff_i32 a (off32 o i) v
  WriteOffAddrOp_Word      -> \[] [a,o,i,v]     -> PrimInline $ write_boff_u32 a (off32 o i) v
  WriteOffAddrOp_Addr      -> \[] [a,o,i,va,vo] -> PrimInline $ write_boff_addr a (off32 o i) va vo
  WriteOffAddrOp_Float     -> \[] [a,o,i,v]     -> PrimInline $ write_boff_f32 a (off32 o i) v
  WriteOffAddrOp_Double    -> \[] [a,o,i,v]     -> PrimInline $ write_boff_f64 a (off64 o i) v
  WriteOffAddrOp_StablePtr -> \[] [a,o,i,va,vo] -> PrimInline $ write_boff_stableptr a (off32 o i) va vo
  WriteOffAddrOp_Int8      -> \[] [a,o,i,v]     -> PrimInline $ write_boff_i8  a (off8  o i) v
  WriteOffAddrOp_Int16     -> \[] [a,o,i,v]     -> PrimInline $ write_boff_i16 a (off16 o i) v
  WriteOffAddrOp_Int32     -> \[] [a,o,i,v]     -> PrimInline $ write_boff_i32 a (off32 o i) v
  WriteOffAddrOp_Int64     -> \[] [a,o,i,h,l]   -> PrimInline $ write_boff_i64 a (off64 o i) h l
  WriteOffAddrOp_Word8     -> \[] [a,o,i,v]     -> PrimInline $ write_boff_u8  a (off8  o i) v
  WriteOffAddrOp_Word16    -> \[] [a,o,i,v]     -> PrimInline $ write_boff_u16 a (off16 o i) v
  WriteOffAddrOp_Word32    -> \[] [a,o,i,v]     -> PrimInline $ write_boff_u32 a (off32 o i) v
  WriteOffAddrOp_Word64    -> \[] [a,o,i,h,l]   -> PrimInline $ write_boff_u64 a (off64 o i) h l

------------------------------- Mutable varialbes --------------------------------------
  NewMutVarOp           -> \[r] [x]       -> PrimInline $ r |= New (app "h$MutVar" [x])
  ReadMutVarOp          -> \[r] [m]       -> PrimInline $ r |= m .^ "val"
  WriteMutVarOp         -> \[] [m,x]      -> PrimInline $ m .^ "val" |= x
  AtomicModifyMutVar2Op -> \[r1,r2] [m,f] -> PrimInline $ appT [r1,r2] "h$atomicModifyMutVar2" [m,f]
  AtomicModifyMutVar_Op -> \[r1,r2] [m,f] -> PrimInline $ appT [r1,r2] "h$atomicModifyMutVar" [m,f]

  AtomicSwapMutVarOp    -> \[r] [mv,v] -> PrimInline $ mconcat
                                                [ r |= mv .^ "val", mv .^ "val" |= v ]
  CasMutVarOp -> \[status,r] [mv,o,n] -> PrimInline $ ifS (mv .^ "val" .===. o)
                   (mconcat [status |= zero_, r |= n, mv .^ "val" |= n])
                   (mconcat [status |= one_ , r |= mv .^ "val"])

------------------------------- Exceptions --------------------------------------

  CatchOp -> \[_r] [a,handler] -> PRPrimCall $ returnS (app "h$catch" [a, handler])

                             -- fully ignore the result arity as it can use 1 or 2
                             -- slots, depending on the return type.
  RaiseOp                 -> \_r [a] -> PRPrimCall $ returnS (app "h$throw" [a, false_])
  RaiseIOOp               -> \_r [a] -> PRPrimCall $ returnS (app "h$throw" [a, false_])
  RaiseUnderflowOp        -> \_r []  -> PRPrimCall $ returnS (app "h$throw" [var "h$baseZCGHCziExceptionziTypeziunderflowException", false_])
  RaiseOverflowOp         -> \_r []  -> PRPrimCall $ returnS (app "h$throw" [var "h$baseZCGHCziExceptionziTypezioverflowException", false_])
  RaiseDivZeroOp          -> \_r []  -> PRPrimCall $ returnS (app "h$throw" [var "h$baseZCGHCziExceptionziTypezidivZZeroException", false_])
  MaskAsyncExceptionsOp   -> \_r [a] -> PRPrimCall $ returnS (app "h$maskAsync" [a])
  MaskUninterruptibleOp   -> \_r [a] -> PRPrimCall $ returnS (app "h$maskUnintAsync" [a])
  UnmaskAsyncExceptionsOp -> \_r [a] -> PRPrimCall $ returnS (app "h$unmaskAsync" [a])

  MaskStatus -> \[r] [] -> PrimInline $ r |= app "h$maskStatus" []

------------------------------- STM-accessible Mutable Variables  --------------

  AtomicallyOp -> \[_r] [a]   -> PRPrimCall $ returnS (app "h$atomically" [a])
  RetryOp      -> \_r   []    -> PRPrimCall $ returnS (app "h$stmRetry" [])
  CatchRetryOp -> \[_r] [a,b] -> PRPrimCall $ returnS (app "h$stmCatchRetry" [a,b])
  CatchSTMOp   -> \[_r] [a,h] -> PRPrimCall $ returnS (app "h$catchStm" [a,h])
  NewTVarOp    -> \[tv] [v]   -> PrimInline $ tv |= app "h$newTVar" [v]
  ReadTVarOp   -> \[r] [tv]   -> PrimInline $ r |= app "h$readTVar" [tv]
  ReadTVarIOOp -> \[r] [tv]   -> PrimInline $ r |= app "h$readTVarIO" [tv]
  WriteTVarOp  -> \[] [tv,v]  -> PrimInline $ appS "h$writeTVar" [tv,v]

------------------------------- Synchronized Mutable Variables ------------------

  NewMVarOp     -> \[r]   []    -> PrimInline $ r |= New (app "h$MVar" [])
  TakeMVarOp    -> \[_r]  [m]   -> PRPrimCall $ returnS (app "h$takeMVar" [m])
  TryTakeMVarOp -> \[r,v] [m]   -> PrimInline $ appT [r,v] "h$tryTakeMVar" [m]
  PutMVarOp     -> \[]    [m,v] -> PRPrimCall $ returnS (app "h$putMVar" [m,v])
  TryPutMVarOp  -> \[r]   [m,v] -> PrimInline $ r |= app "h$tryPutMVar" [m,v]
  ReadMVarOp    -> \[_r]  [m]   -> PRPrimCall $ returnS (app "h$readMVar" [m])
  TryReadMVarOp -> \[r,v] [m]   -> PrimInline $ mconcat
                                                    [ v |= m .^ "val"
                                                    , r |= if01 (v .===. null_)
                                                    ]
  IsEmptyMVarOp -> \[r]   [m]   -> PrimInline $ r |= if10 (m .^ "val" .===. null_)

------------------------------- Delay/Wait Ops ---------------------------------

  DelayOp     -> \[] [t]  -> PRPrimCall $ returnS (app "h$delayThread" [t])
  WaitReadOp  -> \[] [fd] -> PRPrimCall $ returnS (app "h$waidRead" [fd])
  WaitWriteOp -> \[] [fd] -> PRPrimCall $ returnS (app "h$waitWrite" [fd])

------------------------------- Concurrency Primitives -------------------------

  ForkOp                 -> \[_tid] [x]    -> PRPrimCall $ returnS (app "h$fork" [x, true_])
  ForkOnOp               -> \[_tid] [_p,x] -> PRPrimCall $ returnS (app "h$fork" [x, true_]) -- ignore processor argument
  KillThreadOp           -> \[] [tid,ex]   -> PRPrimCall $ returnS (app "h$killThread" [tid,ex])
  YieldOp                -> \[] []         -> PRPrimCall $ returnS (app "h$yield" [])
  MyThreadIdOp           -> \[r] []        -> PrimInline $ r |= var "h$currentThread"
  IsCurrentThreadBoundOp -> \[r] []        -> PrimInline $ r |= one_
  NoDuplicateOp          -> \[] []         -> PrimInline mempty -- don't need to do anything as long as we have eager blackholing
  ThreadStatusOp         -> \[stat,cap,locked] [tid] -> PrimInline $ appT [stat, cap, locked] "h$threadStatus" [tid]
  ListThreadsOp          -> \[r] [] -> PrimInline $ appT [r] "h$listThreads" []
  GetThreadLabelOp       -> \[r1, r2] [t]  -> PrimInline $ appT [r1, r2] "h$getThreadLabel" [t]
  LabelThreadOp          -> \[] [t,l]      -> PrimInline $ t .^ "label" |= l

------------------------------- Weak Pointers -----------------------------------

  MkWeakOp              -> \[r] [o,b,c] -> PrimInline $ r |= app "h$makeWeak" [o,b,c]
  MkWeakNoFinalizerOp   -> \[r] [o,b]   -> PrimInline $ r |= app "h$makeWeakNoFinalizer" [o,b]
  AddCFinalizerToWeakOp -> \[r] [_a1,_a1o,_a2,_a2o,_i,_a3,_a3o,_w] -> PrimInline $ r |= one_
  DeRefWeakOp           -> \[f,v] [w] -> PrimInline $ mconcat
                                                        [ v |= w .^ "val"
                                                        , f |= if01 (v .===. null_)
                                                        ]
  FinalizeWeakOp     -> \[fl,fin] [w] -> PrimInline $ appT [fin, fl] "h$finalizeWeak" [w]
  TouchOp            -> \[] [_e]      -> PrimInline mempty
  KeepAliveOp        -> \[_r] [x, f]  -> PRPrimCall $ ReturnStat (app "h$keepAlive" [x, f])


------------------------------ Stable pointers and names ------------------------

  MakeStablePtrOp -> \[s1,s2] [a] -> PrimInline $ mconcat
      [ s1 |= var "h$stablePtrBuf"
      , s2 |= app "h$makeStablePtr" [a]
      ]
  DeRefStablePtrOp -> \[r] [_s1,s2]            -> PrimInline $ r |= app "h$deRefStablePtr" [s2]
  EqStablePtrOp    -> \[r] [_sa1,sa2,_sb1,sb2] -> PrimInline $ r |= if10 (sa2 .===. sb2)

  MakeStableNameOp  -> \[r] [a] -> PrimInline $ r |= app "h$makeStableName" [a]
  StableNameToIntOp -> \[r] [s] -> PrimInline $ r |= app "h$stableNameInt" [s]

------------------------------ Compact normal form -----------------------------

  CompactNewOp           -> \[c] [s]   -> PrimInline $ c |= app "h$compactNew" [s]
  CompactResizeOp        -> \[]  [c,s] -> PrimInline $ appS "h$compactResize" [c,s]
  CompactContainsOp      -> \[r] [c,v] -> PrimInline $ r |= app "h$compactContains" [c,v]
  CompactContainsAnyOp   -> \[r] [v]   -> PrimInline $ r |= app "h$compactContainsAny" [v]
  CompactGetFirstBlockOp -> \[ra,ro,s] [c] ->
    PrimInline $ appT [ra,ro,s] "h$compactGetFirstBlock" [c]
  CompactGetNextBlockOp -> \[ra,ro,s] [c,a,o] ->
    PrimInline $ appT [ra,ro,s] "h$compactGetNextBlock" [c,a,o]
  CompactAllocateBlockOp -> \[ra,ro] [size,sa,so] ->
    PrimInline $ appT [ra,ro] "h$compactAllocateBlock" [size,sa,so]
  CompactFixupPointersOp -> \[c,newroota, newrooto] [blocka,blocko,roota,rooto] ->
    PrimInline $ appT [c,newroota,newrooto] "h$compactFixupPointers" [blocka,blocko,roota,rooto]
  CompactAdd -> \[_r] [c,o] ->
    PRPrimCall $ returnS (app "h$compactAdd" [c,o])
  CompactAddWithSharing -> \[_r] [c,o] ->
    PRPrimCall $ returnS (app "h$compactAddWithSharing" [c,o])
  CompactSize -> \[s] [c] ->
    PrimInline $ s |= app "h$compactSize" [c]

------------------------------ Unsafe pointer equality --------------------------

  ReallyUnsafePtrEqualityOp -> \[r] [p1,p2] -> PrimInline $ r |= if10 (p1 .===. p2)

------------------------------ Parallelism --------------------------------------

  ParOp     -> \[r] [_a] -> PrimInline $ r |= zero_
  SparkOp   -> \[r] [a]  -> PrimInline $ r |= a
  SeqOp     -> \[_r] [e] -> PRPrimCall $ returnS (app "h$e" [e])
  NumSparks -> \[r] []   -> PrimInline $ r |= zero_

------------------------------ Tag to enum stuff --------------------------------

  DataToTagOp -> \[_r] [d] -> PRPrimCall $ mconcat
      [ stack .! PreInc sp |= var "h$dataToTag_e"
      , returnS (app "h$e" [d])
      ]
  TagToEnumOp -> \[r] [tag] -> if
    | isBoolTy ty -> PrimInline $ r |= IfExpr tag true_ false_
    | otherwise   -> PrimInline $ r |= app "h$tagToEnum" [tag]

------------------------------ Bytecode operations ------------------------------

  AddrToAnyOp -> \[r] [d,_o] -> PrimInline $ r |= d

------------------------------ Profiling (CCS)  ------------------------------

  GetCCSOfOp -> \[a, o] [obj] -> if
    | prof -> PrimInline $ mconcat
        [ a |= if_ (isObject obj)
                    (app "h$buildCCSPtr" [obj .^ "cc"])
                    null_
        , o |= zero_
        ]
    | otherwise -> PrimInline $ mconcat
                    [ a |= null_
                    , o |= zero_
                    ]

  GetCurrentCCSOp -> \[a, o] [_dummy_arg] ->
    let ptr = if prof then app "h$buildCCSPtr" [jCurrentCCS]
                      else null_
    in PrimInline $ mconcat
        [ a |= ptr
        , o |= zero_
        ]

  ClearCCSOp -> \[_r] [x] -> PRPrimCall $ ReturnStat (app "h$clearCCS" [x])

------------------------------ Eventlog -------------------

  TraceEventOp       -> \[] [ed,eo]     -> PrimInline $ appS "h$traceEvent" [ed,eo]
  TraceEventBinaryOp -> \[] [ed,eo,len] -> PrimInline $ appS "h$traceEventBinary" [ed,eo,len]
  TraceMarkerOp      -> \[] [ed,eo]     -> PrimInline $ appS "h$traceMarker" [ed,eo]

------------------------------ ByteArray -------------------

  IndexByteArrayOp_Word8AsChar      -> \[r]   [a,i] -> PrimInline $ bnd_ba8  bound a i $ r |= read_boff_u8  a i
  IndexByteArrayOp_Word8AsWideChar  -> \[r]   [a,i] -> PrimInline $ bnd_ba32 bound a i $ r |= read_boff_i32 a i
  IndexByteArrayOp_Word8AsAddr      -> \[r,o] [a,i] -> PrimInline $ bnd_ba32 bound a i $ read_boff_addr a i r o
  IndexByteArrayOp_Word8AsFloat     -> \[r]   [a,i] -> PrimInline $ bnd_ba32 bound a i $ r |= read_boff_f32 a i
  IndexByteArrayOp_Word8AsDouble    -> \[r]   [a,i] -> PrimInline $ bnd_ba64 bound a i $ r |= read_boff_f64 a i
  IndexByteArrayOp_Word8AsStablePtr -> \[r,o] [a,i] -> PrimInline $ bnd_ba32 bound a i $ read_boff_stableptr a i r o
  IndexByteArrayOp_Word8AsInt16     -> \[r]   [a,i] -> PrimInline $ bnd_ba16 bound a i $ r |= read_boff_i16 a i
  IndexByteArrayOp_Word8AsInt32     -> \[r]   [a,i] -> PrimInline $ bnd_ba32 bound a i $ r |= read_boff_i32 a i
  IndexByteArrayOp_Word8AsInt64     -> \[h,l] [a,i] -> PrimInline $ bnd_ba64 bound a i $ read_boff_i64 a i h l
  IndexByteArrayOp_Word8AsInt       -> \[r]   [a,i] -> PrimInline $ bnd_ba32 bound a i $ r |= read_boff_i32  a i
  IndexByteArrayOp_Word8AsWord16    -> \[r]   [a,i] -> PrimInline $ bnd_ba16 bound a i $ r |= read_boff_u16  a i
  IndexByteArrayOp_Word8AsWord32    -> \[r]   [a,i] -> PrimInline $ bnd_ba32 bound a i $ r |= read_boff_u32  a i
  IndexByteArrayOp_Word8AsWord64    -> \[h,l] [a,i] -> PrimInline $ bnd_ba64 bound a i $ read_boff_u64 a i h l
  IndexByteArrayOp_Word8AsWord      -> \[r]   [a,i] -> PrimInline $ bnd_ba32 bound a i $ r |= read_boff_u32  a i

  ReadByteArrayOp_Word8AsChar       -> \[r]   [a,i] -> PrimInline $ bnd_ba8  bound a i $ r |= read_boff_u8  a i
  ReadByteArrayOp_Word8AsWideChar   -> \[r]   [a,i] -> PrimInline $ bnd_ba32 bound a i $ r |= read_boff_i32 a i
  ReadByteArrayOp_Word8AsAddr       -> \[r,o] [a,i] -> PrimInline $ bnd_ba32 bound a i $ read_boff_addr a i r o
  ReadByteArrayOp_Word8AsFloat      -> \[r]   [a,i] -> PrimInline $ bnd_ba32 bound a i $ r |= read_boff_f32 a i
  ReadByteArrayOp_Word8AsDouble     -> \[r]   [a,i] -> PrimInline $ bnd_ba64 bound a i $ r |= read_boff_f64 a i
  ReadByteArrayOp_Word8AsStablePtr  -> \[r,o] [a,i] -> PrimInline $ bnd_ba32 bound a i $ read_boff_stableptr a i r o
  ReadByteArrayOp_Word8AsInt16      -> \[r]   [a,i] -> PrimInline $ bnd_ba16 bound a i $ r |= read_boff_i16 a i
  ReadByteArrayOp_Word8AsInt32      -> \[r]   [a,i] -> PrimInline $ bnd_ba32 bound a i $ r |= read_boff_i32 a i
  ReadByteArrayOp_Word8AsInt64      -> \[h,l] [a,i] -> PrimInline $ bnd_ba64 bound a i $ read_boff_i64 a i h l
  ReadByteArrayOp_Word8AsInt        -> \[r]   [a,i] -> PrimInline $ bnd_ba32 bound a i $ r |= read_boff_i32  a i
  ReadByteArrayOp_Word8AsWord16     -> \[r]   [a,i] -> PrimInline $ bnd_ba16 bound a i $ r |= read_boff_u16  a i
  ReadByteArrayOp_Word8AsWord32     -> \[r]   [a,i] -> PrimInline $ bnd_ba32 bound a i $ r |= read_boff_u32  a i
  ReadByteArrayOp_Word8AsWord64     -> \[h,l] [a,i] -> PrimInline $ bnd_ba64 bound a i $ read_boff_u64 a i h l
  ReadByteArrayOp_Word8AsWord       -> \[r]   [a,i] -> PrimInline $ bnd_ba32 bound a i $ r |= read_boff_u32  a i

  WriteByteArrayOp_Word8AsChar      -> \[] [a,i,e]   -> PrimInline $ bnd_ba8  bound a i $ write_boff_i8  a i e
  WriteByteArrayOp_Word8AsWideChar  -> \[] [a,i,e]   -> PrimInline $ bnd_ba32 bound a i $ write_boff_i32 a i e
  WriteByteArrayOp_Word8AsAddr      -> \[] [a,i,r,o] -> PrimInline $ bnd_ba32 bound a i $ write_boff_addr a i r o
  WriteByteArrayOp_Word8AsFloat     -> \[] [a,i,e]   -> PrimInline $ bnd_ba32 bound a i $ write_boff_f32 a i e
  WriteByteArrayOp_Word8AsDouble    -> \[] [a,i,e]   -> PrimInline $ bnd_ba64 bound a i $ write_boff_f64 a i e
  WriteByteArrayOp_Word8AsStablePtr -> \[] [a,i,_,o] -> PrimInline $ bnd_ba32 bound a i $ write_boff_i32 a i o
  WriteByteArrayOp_Word8AsInt16     -> \[] [a,i,e]   -> PrimInline $ bnd_ba16 bound a i $ write_boff_i16 a i e
  WriteByteArrayOp_Word8AsInt32     -> \[] [a,i,e]   -> PrimInline $ bnd_ba32 bound a i $ write_boff_i32 a i e
  WriteByteArrayOp_Word8AsInt64     -> \[] [a,i,h,l] -> PrimInline $ bnd_ba64 bound a i $ write_boff_i64 a i h l
  WriteByteArrayOp_Word8AsInt       -> \[] [a,i,e]   -> PrimInline $ bnd_ba32 bound a i $ write_boff_i32 a i e
  WriteByteArrayOp_Word8AsWord16    -> \[] [a,i,e]   -> PrimInline $ bnd_ba16 bound a i $ write_boff_u16 a i e
  WriteByteArrayOp_Word8AsWord32    -> \[] [a,i,e]   -> PrimInline $ bnd_ba32 bound a i $ write_boff_u32 a i e
  WriteByteArrayOp_Word8AsWord64    -> \[] [a,i,h,l] -> PrimInline $ bnd_ba64 bound a i $ write_boff_u64 a i h l
  WriteByteArrayOp_Word8AsWord      -> \[] [a,i,e]   -> PrimInline $ bnd_ba32 bound a i $ write_boff_u32 a i e

  CasByteArrayOp_Int                -> \[r] [a,i,o,n] -> PrimInline $ bnd_ix32 bound a i $ casOp read_i32 write_i32 r a i o n
  CasByteArrayOp_Int8               -> \[r] [a,i,o,n] -> PrimInline $ bnd_ix8  bound a i $ casOp read_i8  write_i8  r a i o n
  CasByteArrayOp_Int16              -> \[r] [a,i,o,n] -> PrimInline $ bnd_ix16 bound a i $ casOp read_i16 write_i16 r a i o n
  CasByteArrayOp_Int32              -> \[r] [a,i,o,n] -> PrimInline $ bnd_ix32 bound a i $ casOp read_i32 write_i32 r a i o n

  CasByteArrayOp_Int64              -> \[rh,rl] [a,i,oh,ol,nh,nl] -> PrimInline $ bnd_ix64 bound a i $ casOp2 read_i64 write_i64 (rh,rl) a i (oh,ol) (nh,nl)

  CasAddrOp_Addr                    -> \[ra,ro] [a,o,oa,oo,na,no] -> PrimInline $ casOp2 read_boff_addr write_boff_addr (ra,ro) a o (oa,oo) (na,no)
  CasAddrOp_Word                    -> \[r] [a,o,old,new] -> PrimInline $ casOp read_u32 write_u32 r a o old new
  CasAddrOp_Word8                   -> \[r] [a,o,old,new] -> PrimInline $ casOp read_u8  write_u8  r a o old new
  CasAddrOp_Word16                  -> \[r] [a,o,old,new] -> PrimInline $ casOp read_u16 write_u16 r a o old new
  CasAddrOp_Word32                  -> \[r] [a,o,old,new] -> PrimInline $ casOp read_u32 write_u32 r a o old new
  CasAddrOp_Word64                  -> \[rh,rl] [a,o,oh,ol,nh,nl] -> PrimInline $ casOp2 read_u64 write_u64 (rh,rl) a o (oh,ol) (nh,nl)

  FetchAddAddrOp_Word               -> \[r] [a,o,v] -> PrimInline $ fetchOpAddr Add   r a o v
  FetchSubAddrOp_Word               -> \[r] [a,o,v] -> PrimInline $ fetchOpAddr Sub   r a o v
  FetchAndAddrOp_Word               -> \[r] [a,o,v] -> PrimInline $ fetchOpAddr BAnd  r a o v
  FetchNandAddrOp_Word              -> \[r] [a,o,v] -> PrimInline $ fetchOpAddr ((BNot .) . BAnd) r a o v
  FetchOrAddrOp_Word                -> \[r] [a,o,v] -> PrimInline $ fetchOpAddr BOr   r a o v
  FetchXorAddrOp_Word               -> \[r] [a,o,v] -> PrimInline $ fetchOpAddr BXor  r a o v

  InterlockedExchange_Addr          -> \[ra,ro] [a1,o1,a2,o2] -> PrimInline $ mconcat
                                          [ read_boff_addr a1 o1 ra ro
                                          , write_boff_addr a1 o1 a2 o2
                                          ]
  InterlockedExchange_Word          -> \[r] [a,o,w] -> PrimInline $ mconcat
                                          [ r |= read_boff_u32 a o
                                          , write_boff_u32 a o w
                                          ]

  ShrinkSmallMutableArrayOp_Char    -> \[]  [a,n] -> PrimInline $ appS "h$shrinkMutableCharArray" [a,n]
  GetSizeofSmallMutableArrayOp      -> \[r] [a]   -> PrimInline $ r |= a .^ "length"

  AtomicReadAddrOp_Word             -> \[r] [a,o]   -> PrimInline $ r |= read_boff_u32 a o
  AtomicWriteAddrOp_Word            -> \[]  [a,o,w] -> PrimInline $ write_boff_u32 a o w


------------------------------ Unhandled primops -------------------

  NewPromptTagOp                    -> unhandledPrimop op
  PromptOp                          -> unhandledPrimop op
  Control0Op                        -> unhandledPrimop op

  NewIOPortOp                       -> unhandledPrimop op
  ReadIOPortOp                      -> unhandledPrimop op
  WriteIOPortOp                     -> unhandledPrimop op

  GetSparkOp                        -> unhandledPrimop op
  AnyToAddrOp                       -> unhandledPrimop op
  MkApUpd0_Op                       -> unhandledPrimop op
  NewBCOOp                          -> unhandledPrimop op
  UnpackClosureOp                   -> unhandledPrimop op
  ClosureSizeOp                     -> unhandledPrimop op
  GetApStackValOp                   -> unhandledPrimop op
  WhereFromOp                       -> unhandledPrimop op -- should be easily implementable with o.f.n

  SetThreadAllocationCounter        -> unhandledPrimop op

------------------------------- Vector -----------------------------------------
-- For now, vectors are unsupported on the JS backend. Simply put, they do not
-- make much sense to support given support for arrays and lack of SIMD support
-- in JS. We could try to roll something special but we would not be able to
-- give any performance guarentees to the user and so we leave these has
-- unhandled for now.
  VecBroadcastOp _ _ _              -> unhandledPrimop op
  VecPackOp _ _ _                   -> unhandledPrimop op
  VecUnpackOp _ _ _                 -> unhandledPrimop op
  VecInsertOp _ _ _                 -> unhandledPrimop op
  VecAddOp _ _ _                    -> unhandledPrimop op
  VecSubOp _ _ _                    -> unhandledPrimop op
  VecMulOp _ _ _                    -> unhandledPrimop op
  VecDivOp _ _ _                    -> unhandledPrimop op
  VecQuotOp _ _ _                   -> unhandledPrimop op
  VecRemOp _ _ _                    -> unhandledPrimop op
  VecNegOp _ _ _                    -> unhandledPrimop op
  VecIndexByteArrayOp _ _ _         -> unhandledPrimop op
  VecReadByteArrayOp _ _ _          -> unhandledPrimop op
  VecWriteByteArrayOp _ _ _         -> unhandledPrimop op
  VecIndexOffAddrOp _ _ _           -> unhandledPrimop op
  VecReadOffAddrOp _ _ _            -> unhandledPrimop op
  VecWriteOffAddrOp _ _ _           -> unhandledPrimop op

  VecIndexScalarByteArrayOp _ _ _   -> unhandledPrimop op
  VecReadScalarByteArrayOp _ _ _    -> unhandledPrimop op
  VecWriteScalarByteArrayOp _ _ _   -> unhandledPrimop op
  VecIndexScalarOffAddrOp _ _ _     -> unhandledPrimop op
  VecReadScalarOffAddrOp _ _ _      -> unhandledPrimop op
  VecWriteScalarOffAddrOp _ _ _     -> unhandledPrimop op

  PrefetchByteArrayOp3              -> noOp
  PrefetchMutableByteArrayOp3       -> noOp
  PrefetchAddrOp3                   -> noOp
  PrefetchValueOp3                  -> noOp
  PrefetchByteArrayOp2              -> noOp
  PrefetchMutableByteArrayOp2       -> noOp
  PrefetchAddrOp2                   -> noOp
  PrefetchValueOp2                  -> noOp
  PrefetchByteArrayOp1              -> noOp
  PrefetchMutableByteArrayOp1       -> noOp
  PrefetchAddrOp1                   -> noOp
  PrefetchValueOp1                  -> noOp
  PrefetchByteArrayOp0              -> noOp
  PrefetchMutableByteArrayOp0       -> noOp
  PrefetchAddrOp0                   -> noOp
  PrefetchValueOp0                  -> noOp

unhandledPrimop :: PrimOp -> [JExpr] -> [JExpr] -> PrimRes
unhandledPrimop op rs as = PrimInline $ mconcat
  [ appS "h$log" [toJExpr $ mconcat
      [ "warning, unhandled primop: "
      , renderWithContext defaultSDocContext (ppr op)
      , " "
      , show (length rs, length as)
      ]]
  , appS (mkFastString $ "h$primop_" ++ zEncodeString (renderWithContext defaultSDocContext (ppr op))) as
    -- copyRes
  , mconcat $ zipWith (\r reg -> r |= toJExpr reg) rs (enumFrom Ret1)
  ]

-- | A No Op, used for primops the JS platform cannot or do not support. For
-- example, the prefetching primops do not make sense on the JS platform because
-- we do not have enough control over memory to provide any kind of prefetching
-- mechanism. Hence, these are NoOps.
noOp :: Foldable f => f a -> f a -> PrimRes
noOp = const . const $ PrimInline mempty

-- tuple returns
appT :: [JExpr] -> FastString -> [JExpr] -> JStat
appT []     f xs = appS f xs
appT (r:rs) f xs = mconcat
  [ r |= app f xs
  , mconcat (zipWith (\r ret -> r |= toJExpr ret) rs (enumFrom Ret1))
  ]

--------------------------------------------
-- ByteArray indexing
--------------------------------------------

-- For every ByteArray, the RTS creates the following views:
--  i3: Int32 view
--  u8: Word8 view
--  u1: Word16 view
--  f3: Float32 view
--  f6: Float64 view
--  dv: generic DataView
-- It seems a bit weird to mix Int and Word views like this, but perhaps they
-- are the more common.
--
-- See 'h$newByteArray' in 'ghc/rts/js/mem.js' for details.
--
-- Note that *byte* indexing can only be done with the generic DataView. Use
-- read_boff_* and write_boff_* for this.
--
-- Other read_* and write_* helpers directly use the more specific views.
-- Prefer using them over idx_* to make your intent clearer.

idx_i32, idx_u8, idx_u16, idx_f64, idx_f32 :: JExpr -> JExpr -> JExpr
idx_i32 a i = IdxExpr (a .^ "i3") i
idx_u8  a i = IdxExpr (a .^ "u8") i
idx_u16 a i = IdxExpr (a .^ "u1") i
idx_f64 a i = IdxExpr (a .^ "f6") i
idx_f32 a i = IdxExpr (a .^ "f3") i

read_u8 :: JExpr -> JExpr -> JExpr
read_u8 a i = idx_u8 a i

read_u16 :: JExpr -> JExpr -> JExpr
read_u16 a i = idx_u16 a i

read_u32 :: JExpr -> JExpr -> JExpr
read_u32 a i = toU32 (idx_i32 a i)

read_i8 :: JExpr -> JExpr -> JExpr
read_i8 a i = signExtend8 (idx_u8 a i)

read_i16 :: JExpr -> JExpr -> JExpr
read_i16 a i = signExtend16 (idx_u16 a i)

read_i32 :: JExpr -> JExpr -> JExpr
read_i32 a i = idx_i32 a i

read_f32 :: JExpr -> JExpr -> JExpr
read_f32 a i = idx_f32 a i

read_f64 :: JExpr -> JExpr -> JExpr
read_f64 a i = idx_f64 a i

read_u64 :: JExpr -> JExpr -> JExpr -> JExpr -> JStat
read_u64 a i rh rl = mconcat
  [ rl |= read_u32 a (i .<<. 1)
  , rh |= read_u32 a (Add 1 (i .<<. 1))
  ]

read_i64 :: JExpr -> JExpr -> JExpr -> JExpr -> JStat
read_i64 a i rh rl = mconcat
  [ rl |= read_u32 a (i .<<. 1)
  , rh |= read_i32 a (Add 1 (i .<<. 1))
  ]

--------------------------------------
-- Addr#
--------------------------------------

write_addr :: JExpr -> JExpr -> JExpr -> JExpr -> JStat
write_addr a i r o = mconcat
  [ write_i32 a i o
    -- create the hidden array for arrays if it doesn't exist
  , ifS (Not (a .^ "arr")) (a .^ "arr" |= ValExpr (JList [])) mempty
  , a .^ "arr" .! (i .<<. 2) |= r
  ]

read_addr :: JExpr -> JExpr -> JExpr -> JExpr -> JStat
read_addr a i r o = mconcat
  [ o |= read_i32 a i
  , r |= if_ ((a .^ "arr") .&&. (a .^ "arr" .! (i .<<. 2)))
            (a .^ "arr" .! (i .<<. 2))
            null_
  ]

read_boff_addr :: JExpr -> JExpr -> JExpr -> JExpr -> JStat
read_boff_addr a i r o = mconcat
  [ o |= read_boff_i32 a i
  , r |= if_ ((a .^ "arr") .&&. (a .^ "arr" .! i))
            (a .^ "arr" .! i)
            null_
  ]

write_boff_addr :: JExpr -> JExpr -> JExpr -> JExpr -> JStat
write_boff_addr a i r o = mconcat
  [ write_boff_i32 a i o
    -- create the hidden array for arrays if it doesn't exist
  , ifS (Not (a .^ "arr")) (a .^ "arr" |= ValExpr (JList [])) mempty
  , a .^ "arr" .! i |= r
  ]


--------------------------------------
-- StablePtr
--------------------------------------

read_stableptr :: JExpr -> JExpr -> JExpr -> JExpr -> JStat
read_stableptr a i r o = mconcat
  [ r |= var "h$stablePtrBuf" -- stable pointers are always in this array
  , o |= read_i32 a i
  ]

read_boff_stableptr :: JExpr -> JExpr -> JExpr -> JExpr -> JStat
read_boff_stableptr a i r o = mconcat
  [ r |= var "h$stablePtrBuf" -- stable pointers are always in this array
  , o |= read_boff_i32 a i
  ]

write_stableptr :: JExpr -> JExpr -> JExpr -> JExpr -> JStat
write_stableptr a i _r o = write_i32 a i o
  -- don't store "r" as it must be h$stablePtrBuf

write_boff_stableptr :: JExpr -> JExpr -> JExpr -> JExpr -> JStat
write_boff_stableptr a i _r o = write_boff_i32 a i o
  -- don't store "r" as it must be h$stablePtrBuf

write_u8 :: JExpr -> JExpr -> JExpr -> JStat
write_u8 a i v = idx_u8 a i |= v

write_u16 :: JExpr -> JExpr -> JExpr -> JStat
write_u16 a i v = idx_u16 a i |= v

write_u32 :: JExpr -> JExpr -> JExpr -> JStat
write_u32 a i v = idx_i32 a i |= v

write_i8 :: JExpr -> JExpr -> JExpr -> JStat
write_i8 a i v = idx_u8 a i |= v

write_i16 :: JExpr -> JExpr -> JExpr -> JStat
write_i16 a i v = idx_u16 a i |= v

write_i32 :: JExpr -> JExpr -> JExpr -> JStat
write_i32 a i v = idx_i32 a i |= v

write_f32 :: JExpr -> JExpr -> JExpr -> JStat
write_f32 a i v = idx_f32 a i |= v

write_f64 :: JExpr -> JExpr -> JExpr -> JStat
write_f64 a i v = idx_f64 a i |= v

write_u64 :: JExpr -> JExpr -> JExpr -> JExpr -> JStat
write_u64 a i h l = mconcat
  [ write_u32 a (i .<<. 1)         l
  , write_u32 a (Add 1 (i .<<. 1)) h
  ]

write_i64 :: JExpr -> JExpr -> JExpr -> JExpr -> JStat
write_i64 a i h l = mconcat
  [ write_u32 a (i .<<. 1)         l
  , write_i32 a (Add 1 (i .<<. 1)) h
  ]

-- Data View helper functions: byte indexed!
--
-- The argument list consists of the array @a@, the index @i@, and the new value
-- to set (in the case of a setter) @v@.

write_boff_i8, write_boff_u8, write_boff_i16, write_boff_u16, write_boff_i32, write_boff_u32, write_boff_f32, write_boff_f64 :: JExpr -> JExpr -> JExpr -> JStat
write_boff_i8  a i v = write_i8 a i v
write_boff_u8  a i v = write_u8 a i v
write_boff_i16 a i v = ApplStat (a .^ "dv" .^ "setInt16"  ) [i, v, true_]
write_boff_u16 a i v = ApplStat (a .^ "dv" .^ "setUint16" ) [i, v, true_]
write_boff_i32 a i v = ApplStat (a .^ "dv" .^ "setInt32"  ) [i, v, true_]
write_boff_u32 a i v = ApplStat (a .^ "dv" .^ "setUint32" ) [i, v, true_]
write_boff_f32 a i v = ApplStat (a .^ "dv" .^ "setFloat32") [i, v, true_]
write_boff_f64 a i v = ApplStat (a .^ "dv" .^ "setFloat64") [i, v, true_]

write_boff_i64, write_boff_u64 :: JExpr -> JExpr -> JExpr -> JExpr -> JStat
write_boff_i64 a i h l = mconcat
  [ write_boff_i32 a (Add i (Int 4)) h
  , write_boff_u32 a i l
  ]
write_boff_u64 a i h l = mconcat
  [ write_boff_u32 a (Add i (Int 4)) h
  , write_boff_u32 a i l
  ]

read_boff_i8, read_boff_u8, read_boff_i16, read_boff_u16, read_boff_i32, read_boff_u32, read_boff_f32, read_boff_f64 :: JExpr -> JExpr -> JExpr
read_boff_i8  a i = read_i8 a i
read_boff_u8  a i = read_u8 a i
read_boff_i16 a i = ApplExpr (a .^ "dv" .^ "getInt16"  ) [i, true_]
read_boff_u16 a i = ApplExpr (a .^ "dv" .^ "getUint16" ) [i, true_]
read_boff_i32 a i = ApplExpr (a .^ "dv" .^ "getInt32"  ) [i, true_]
read_boff_u32 a i = ApplExpr (a .^ "dv" .^ "getUint32" ) [i, true_]
read_boff_f32 a i = ApplExpr (a .^ "dv" .^ "getFloat32") [i, true_]
read_boff_f64 a i = ApplExpr (a .^ "dv" .^ "getFloat64") [i, true_]

read_boff_i64 :: JExpr -> JExpr -> JExpr -> JExpr -> JStat
read_boff_i64 a i rh rl = mconcat
  [ rh |= read_boff_i32 a (Add i (Int 4))
  , rl |= read_boff_u32 a i
  ]

read_boff_u64 :: JExpr -> JExpr -> JExpr -> JExpr -> JStat
read_boff_u64 a i rh rl = mconcat
  [ rh |= read_boff_u32 a (Add i (Int 4))
  , rl |= read_boff_u32 a i
  ]

fetchOpByteArray :: (JExpr -> JExpr -> JExpr) -> JExpr -> JExpr -> JExpr -> JExpr -> JStat
fetchOpByteArray op tgt src i v = mconcat
  [ tgt |= read_i32 src i
  , write_i32 src i (op tgt v)
  ]

fetchOpAddr :: (JExpr -> JExpr -> JExpr) -> JExpr -> JExpr -> JExpr -> JExpr -> JStat
fetchOpAddr op tgt src i v = mconcat
  [ tgt |= read_boff_u32 src i
  , write_boff_u32 src i (op tgt v)
  ]

casOp
  :: (JExpr -> JExpr -> JExpr)          -- read
  -> (JExpr -> JExpr -> JExpr -> JStat) -- write
  -> JExpr                     -- target register to store result
  -> JExpr                     -- source array
  -> JExpr                     -- index
  -> JExpr                     -- old value to compare
  -> JExpr                     -- new value to write
  -> JStat
casOp read write tgt src i old new = mconcat
  [ tgt |= read src i
  , ifS (tgt .===. old)
        (write src i new)
         mempty
  ]

casOp2
  :: (JExpr -> JExpr -> JExpr -> JExpr -> JStat) -- read
  -> (JExpr -> JExpr -> JExpr -> JExpr -> JStat) -- write
  -> (JExpr,JExpr)             -- target registers to store result
  -> JExpr                     -- source array
  -> JExpr                     -- index
  -> (JExpr,JExpr)             -- old value to compare
  -> (JExpr,JExpr)             -- new value to write
  -> JStat
casOp2 read write (tgt1,tgt2) src i (old1,old2) (new1,new2) = mconcat
  [ read src i tgt1 tgt2
  , ifS ((tgt2 .===. old2) .&&. (tgt1 .===. old1))
        (write src i new1 new2)
         mempty
  ]

--------------------------------------------------------------------------------
--                            Lifted Arrays
--------------------------------------------------------------------------------
-- | lifted arrays
cloneArray :: Bool -> JExpr -> JExpr -> JExpr -> JExpr -> JStat
cloneArray bound_check tgt src start len =
  bnd_arr_range bound_check src start len
  $ mconcat
      [ tgt |= ApplExpr (src .^ "slice") [start, Add len start]
      , tgt .^ closureMeta_   |= zero_
      , tgt .^ "__ghcjsArray" |= true_
      ]

newByteArray :: JExpr -> JExpr -> JStat
newByteArray tgt len =
  tgt |= app "h$newByteArray" [len]

-- | Check that index is positive and below a max value. Halt the process with
-- error code 134 otherwise. This is used to implement -fcheck-prim-bounds
check_bound
  :: JExpr -- ^ Max index expression
  -> Bool  -- ^ Should we do bounds checking?
  -> JExpr -- ^ Index
  -> JStat -- ^ Result
  -> JStat
check_bound _         False _ r = r
check_bound max_index True  i r = mconcat
  [ jwhenS ((i .<. zero_) .||. (i .>=. max_index)) $
      returnS (app "h$exitProcess" [Int 134])
  , r
  ]

-- | Bounds checking using ".length" property (Arrays)
bnd_arr
  :: Bool  -- ^ Should we do bounds checking?
  -> JExpr -- ^ Array
  -> JExpr -- ^ Index
  -> JStat -- ^ Result
  -> JStat
bnd_arr do_check arr = check_bound (arr .^ "length") do_check

-- | Range bounds checking using ".length" property (Arrays)
--
-- Empty ranges trivially pass the check
bnd_arr_range
  :: Bool  -- ^ Should we do bounds checking?
  -> JExpr -- ^ Array
  -> JExpr -- ^ Index
  -> JExpr -- ^ Range size
  -> JStat -- ^ Result
  -> JStat
bnd_arr_range False _arr _i _n r = r
bnd_arr_range True   arr  i  n r =
  ifS (n .<. zero_) (returnS $ app "h$exitProcess" [Int 134]) $
  -- Empty ranges trivially pass the check
  ifS (n .===. zero_)
      r
      (bnd_arr True arr i $ bnd_arr True arr (Add i (Sub n 1)) r)

-- | Bounds checking using ".len" property (ByteArrays)
bnd_ba
  :: Bool  -- ^ Should we do bounds checking?
  -> JExpr -- ^ Array
  -> JExpr -- ^ Index
  -> JStat -- ^ Result
  -> JStat
bnd_ba do_check arr = check_bound (arr .^ "len") do_check

-- | ByteArray bounds checking (byte offset, 8-bit value)
bnd_ba8 :: Bool -> JExpr -> JExpr -> JStat -> JStat
bnd_ba8 = bnd_ba

-- | ByteArray bounds checking (byte offset, 16-bit value)
bnd_ba16 :: Bool -> JExpr -> JExpr -> JStat -> JStat
bnd_ba16 do_check arr idx r =
  -- check that idx non incremented is in range:
  -- (idx + 1) may be in range while idx isn't
  bnd_ba do_check arr idx
  $ bnd_ba do_check arr (Add idx 1) r

-- | ByteArray bounds checking (byte offset, 32-bit value)
bnd_ba32 :: Bool -> JExpr -> JExpr -> JStat -> JStat
bnd_ba32 do_check arr idx r =
  -- check that idx non incremented is in range:
  -- (idx + 3) may be in range while idx isn't
  bnd_ba do_check arr idx
  $ bnd_ba do_check arr (Add idx 3) r

-- | ByteArray bounds checking (byte offset, 64-bit value)
bnd_ba64 :: Bool -> JExpr -> JExpr -> JStat -> JStat
bnd_ba64 do_check arr idx r =
  -- check that idx non incremented is in range:
  -- (idx + 7) may be in range while idx isn't
  bnd_ba do_check arr idx
  $ bnd_ba do_check arr (Add idx 7) r

-- | ByteArray bounds checking (8-bit offset, 8-bit value)
bnd_ix8 :: Bool -> JExpr -> JExpr -> JStat -> JStat
bnd_ix8 = bnd_ba8

-- | ByteArray bounds checking (16-bit offset, 16-bit value)
bnd_ix16 :: Bool -> JExpr -> JExpr -> JStat -> JStat
bnd_ix16 do_check arr idx r = bnd_ba16 do_check arr (idx .<<. 1) r

-- | ByteArray bounds checking (32-bit offset, 32-bit value)
bnd_ix32 :: Bool -> JExpr -> JExpr -> JStat -> JStat
bnd_ix32 do_check arr idx r = bnd_ba32 do_check arr (idx .<<. 2) r

-- | ByteArray bounds checking (64-bit offset, 64-bit value)
bnd_ix64 :: Bool -> JExpr -> JExpr -> JStat -> JStat
bnd_ix64 do_check arr idx r = bnd_ba64 do_check arr (idx .<<. 3) r

-- | Bounds checking on a range and using ".len" property (ByteArrays)
--
-- Empty ranges trivially pass the check
bnd_ba_range
  :: Bool  -- ^ Should we do bounds checking?
  -> JExpr -- ^ Array
  -> JExpr -- ^ Index
  -> JExpr -- ^ Range size
  -> JStat -- ^ Result
  -> JStat
bnd_ba_range False _  _ _ r = r
bnd_ba_range True  xs i n r =
  ifS (n .<. zero_) (returnS $ app "h$exitProcess" [Int 134]) $
  -- Empty ranges trivially pass the check
  ifS (n .===. zero_)
      r
      (bnd_ba True xs (Add i (Sub n 1)) (bnd_ba True xs i r))

checkOverlapByteArray
  :: Bool  -- ^ Should we do bounds checking?
  -> JExpr -- ^ First array
  -> JExpr -- ^ First offset
  -> JExpr -- ^ Second array
  -> JExpr -- ^ Second offset
  -> JExpr -- ^ Range size
  -> JStat -- ^ Result
  -> JStat
checkOverlapByteArray False _ _ _ _ _ r    = r
checkOverlapByteArray True a1 o1 a2 o2 n r =
  ifS (app "h$checkOverlapByteArray" [a1, o1, a2, o2, n])
    r
    (returnS $ app "h$exitProcess" [Int 134])

copyByteArray :: Bool -> Bool -> JExpr -> JExpr -> JExpr -> JExpr -> JExpr -> PrimRes
copyByteArray allow_overlap bound a1 o1 a2 o2 n = PrimInline $ check $ appS "h$copyMutableByteArray" [a1,o1,a2,o2,n]
  where
      check = bnd_ba_range bound a1 o1 n
              . bnd_ba_range bound a2 o2 n
              . (if not allow_overlap then checkOverlapByteArray bound a1 o1 a2 o2 n else id)

-- e|0 (32 bit signed integer truncation) required because of JS numbers. e|0
-- converts e to an Int32. Note that e|0 _is still a Double_ because JavaScript.
-- So (x|0) * (y|0) can still return values outside of the Int32 range. You have
-- been warned!
toI32 :: JExpr -> JExpr
toI32 e = BOr e zero_

-- e>>>0  (32 bit unsigned integer truncation)
-- required because of JS numbers. e>>>0 converts e to a Word32
-- so  (-2147483648)       >>> 0  = 2147483648
-- and ((-2147483648) >>>0) | 0   = -2147483648
toU32 :: JExpr -> JExpr
toU32 e = e .>>>. zero_

quotShortInt :: Int -> JExpr -> JExpr -> JExpr
quotShortInt bits x y = BAnd (signed x `Div` signed y) mask
  where
    signed z = (z .<<. shift) .>>. shift
    shift    = toJExpr (32 - bits)
    mask     = toJExpr (((2::Integer) ^ bits) - 1)

remShortInt :: Int -> JExpr -> JExpr -> JExpr
remShortInt bits x y = BAnd (signed x `Mod` signed y) mask
  where
    signed z = (z .<<. shift) .>>. shift
    shift    = toJExpr (32 - bits)
    mask     = toJExpr (((2::Integer) ^ bits) - 1)