summaryrefslogtreecommitdiff
path: root/compiler/GHC/Tc/Gen/Expr.hs
blob: c2a680b3d4107b7bc43b56e556e347e72320073f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892

{-# LANGUAGE DataKinds           #-}
{-# LANGUAGE FlexibleContexts    #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TupleSections       #-}
{-# LANGUAGE TypeFamilies        #-}
{-# LANGUAGE UndecidableInstances #-} -- Wrinkle in Note [Trees That Grow]
                                      -- in module Language.Haskell.Syntax.Extension
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns   #-}

{-
%
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998

-}

module GHC.Tc.Gen.Expr
       ( tcCheckPolyExpr, tcCheckPolyExprNC,
         tcCheckMonoExpr, tcCheckMonoExprNC,
         tcMonoExpr, tcMonoExprNC,
         tcInferRho, tcInferRhoNC,
         tcPolyExpr, tcExpr,
         tcSyntaxOp, tcSyntaxOpGen, SyntaxOpType(..), synKnownType,
         tcCheckId,
         ) where

import GHC.Prelude

import {-# SOURCE #-}   GHC.Tc.Gen.Splice( tcTypedSplice, tcTypedBracket, tcUntypedBracket )

import GHC.Hs
import GHC.Hs.Syn.Type
import GHC.Rename.Utils
import GHC.Tc.Utils.Zonk
import GHC.Tc.Utils.Monad
import GHC.Tc.Utils.Unify
import GHC.Types.Basic
import GHC.Types.Error
import GHC.Types.FieldLabel
import GHC.Types.Unique.Map ( UniqMap, listToUniqMap, lookupUniqMap )
import GHC.Core.Multiplicity
import GHC.Core.UsageEnv
import GHC.Tc.Errors.Types
import GHC.Tc.Utils.Concrete ( hasFixedRuntimeRep_syntactic, hasFixedRuntimeRep )
import GHC.Tc.Utils.Instantiate
import GHC.Tc.Gen.App
import GHC.Tc.Gen.Head
import GHC.Tc.Gen.Bind        ( tcLocalBinds )
import GHC.Tc.Instance.Family ( tcGetFamInstEnvs )
import GHC.Core.FamInstEnv    ( FamInstEnvs )
import GHC.Rename.Expr        ( mkExpandedExpr )
import GHC.Rename.Env         ( addUsedGRE )
import GHC.Tc.Utils.Env
import GHC.Tc.Gen.Arrow
import GHC.Tc.Gen.Match
import GHC.Tc.Gen.HsType
import GHC.Tc.Utils.TcMType
import GHC.Tc.Types.Origin
import GHC.Tc.Utils.TcType as TcType
import GHC.Types.Id
import GHC.Types.Id.Info
import GHC.Core.ConLike
import GHC.Core.DataCon
import GHC.Core.PatSyn
import GHC.Types.Name
import GHC.Types.Name.Env
import GHC.Types.Name.Set
import GHC.Types.Name.Reader
import GHC.Core.TyCon
import GHC.Core.Type
import GHC.Tc.Types.Evidence
import GHC.Builtin.Types
import GHC.Builtin.Names
import GHC.Builtin.Uniques ( mkBuiltinUnique )
import GHC.Driver.Session
import GHC.Types.SrcLoc
import GHC.Utils.Misc
import GHC.Data.List.SetOps
import GHC.Data.Maybe
import GHC.Utils.Outputable as Outputable
import GHC.Utils.Panic
import GHC.Utils.Panic.Plain
import Control.Monad
import GHC.Core.Class(classTyCon)
import GHC.Types.Unique.Set ( UniqSet, mkUniqSet, elementOfUniqSet, nonDetEltsUniqSet )

import Language.Haskell.Syntax.Basic (FieldLabelString(..))

import Data.Function
import Data.List (partition, sortBy, intersect)
import qualified Data.List.NonEmpty as NE

import GHC.Data.Bag ( unitBag )

{-
************************************************************************
*                                                                      *
\subsection{Main wrappers}
*                                                                      *
************************************************************************
-}


tcCheckPolyExpr, tcCheckPolyExprNC
  :: LHsExpr GhcRn         -- Expression to type check
  -> TcSigmaType           -- Expected type (could be a polytype)
  -> TcM (LHsExpr GhcTc) -- Generalised expr with expected type

-- tcCheckPolyExpr is a convenient place (frequent but not too frequent)
-- place to add context information.
-- The NC version does not do so, usually because the caller wants
-- to do so themselves.

tcCheckPolyExpr   expr res_ty = tcPolyLExpr   expr (mkCheckExpType res_ty)
tcCheckPolyExprNC expr res_ty = tcPolyLExprNC expr (mkCheckExpType res_ty)

-- These versions take an ExpType
tcPolyLExpr, tcPolyLExprNC :: LHsExpr GhcRn -> ExpSigmaType
                           -> TcM (LHsExpr GhcTc)

tcPolyLExpr (L loc expr) res_ty
  = setSrcSpanA loc   $  -- Set location /first/; see GHC.Tc.Utils.Monad
    addExprCtxt expr $  -- Note [Error contexts in generated code]
    do { expr' <- tcPolyExpr expr res_ty
       ; return (L loc expr') }

tcPolyLExprNC (L loc expr) res_ty
  = setSrcSpanA loc    $
    do { expr' <- tcPolyExpr expr res_ty
       ; return (L loc expr') }

---------------
tcCheckMonoExpr, tcCheckMonoExprNC
    :: LHsExpr GhcRn     -- Expression to type check
    -> TcRhoType         -- Expected type
                         -- Definitely no foralls at the top
    -> TcM (LHsExpr GhcTc)
tcCheckMonoExpr   expr res_ty = tcMonoExpr   expr (mkCheckExpType res_ty)
tcCheckMonoExprNC expr res_ty = tcMonoExprNC expr (mkCheckExpType res_ty)

tcMonoExpr, tcMonoExprNC
    :: LHsExpr GhcRn     -- Expression to type check
    -> ExpRhoType        -- Expected type
                         -- Definitely no foralls at the top
    -> TcM (LHsExpr GhcTc)

tcMonoExpr (L loc expr) res_ty
  = setSrcSpanA loc   $  -- Set location /first/; see GHC.Tc.Utils.Monad
    addExprCtxt expr $  -- Note [Error contexts in generated code]
    do  { expr' <- tcExpr expr res_ty
        ; return (L loc expr') }

tcMonoExprNC (L loc expr) res_ty
  = setSrcSpanA loc $
    do  { expr' <- tcExpr expr res_ty
        ; return (L loc expr') }

---------------
tcInferRho, tcInferRhoNC :: LHsExpr GhcRn -> TcM (LHsExpr GhcTc, TcRhoType)
-- Infer a *rho*-type. The return type is always instantiated.
tcInferRho (L loc expr)
  = setSrcSpanA loc   $  -- Set location /first/; see GHC.Tc.Utils.Monad
    addExprCtxt expr $  -- Note [Error contexts in generated code]
    do { (expr', rho) <- tcInfer (tcExpr expr)
       ; return (L loc expr', rho) }

tcInferRhoNC (L loc expr)
  = setSrcSpanA loc $
    do { (expr', rho) <- tcInfer (tcExpr expr)
       ; return (L loc expr', rho) }


{- *********************************************************************
*                                                                      *
        tcExpr: the main expression typechecker
*                                                                      *
********************************************************************* -}

tcPolyExpr :: HsExpr GhcRn -> ExpSigmaType -> TcM (HsExpr GhcTc)
tcPolyExpr expr res_ty
  = do { traceTc "tcPolyExpr" (ppr res_ty)
       ; (wrap, expr') <- tcSkolemiseExpType GenSigCtxt res_ty $ \ res_ty ->
                          tcExpr expr res_ty
       ; return $ mkHsWrap wrap expr' }

tcExpr :: HsExpr GhcRn -> ExpRhoType -> TcM (HsExpr GhcTc)

-- Use tcApp to typecheck applications, which are treated specially
-- by Quick Look.  Specifically:
--   - HsVar         lone variables, to ensure that they can get an
--                     impredicative instantiation (via Quick Look
--                     driven by res_ty (in checking mode)).
--   - HsApp         value applications
--   - HsAppType     type applications
--   - ExprWithTySig (e :: type)
--   - HsRecSel      overloaded record fields
--   - HsExpanded    renamer expansions
--   - HsOpApp       operator applications
--   - HsOverLit     overloaded literals
-- These constructors are the union of
--   - ones taken apart by GHC.Tc.Gen.Head.splitHsApps
--   - ones understood by GHC.Tc.Gen.Head.tcInferAppHead_maybe
-- See Note [Application chains and heads] in GHC.Tc.Gen.App
tcExpr e@(HsVar {})              res_ty = tcApp e res_ty
tcExpr e@(HsApp {})              res_ty = tcApp e res_ty
tcExpr e@(OpApp {})              res_ty = tcApp e res_ty
tcExpr e@(HsAppType {})          res_ty = tcApp e res_ty
tcExpr e@(ExprWithTySig {})      res_ty = tcApp e res_ty
tcExpr e@(HsRecSel {})           res_ty = tcApp e res_ty
tcExpr e@(XExpr (HsExpanded {})) res_ty = tcApp e res_ty

tcExpr e@(HsOverLit _ lit) res_ty
  = do { mb_res <- tcShortCutLit lit res_ty
         -- See Note [Short cut for overloaded literals] in GHC.Tc.Utils.Zonk
       ; case mb_res of
           Just lit' -> return (HsOverLit noAnn lit')
           Nothing   -> tcApp e res_ty }

-- Typecheck an occurrence of an unbound Id
--
-- Some of these started life as a true expression hole "_".
-- Others might simply be variables that accidentally have no binding site
tcExpr (HsUnboundVar _ occ) res_ty
  = do { ty <- expTypeToType res_ty    -- Allow Int# etc (#12531)
       ; her <- emitNewExprHole occ ty
       ; tcEmitBindingUsage bottomUE   -- Holes fit any usage environment
                                       -- (#18491)
       ; return (HsUnboundVar her occ) }

tcExpr e@(HsLit x lit) res_ty
  = do { let lit_ty = hsLitType lit
       ; tcWrapResult e (HsLit x (convertLit lit)) lit_ty res_ty }

tcExpr (HsPar x lpar expr rpar) res_ty
  = do { expr' <- tcMonoExprNC expr res_ty
       ; return (HsPar x lpar expr' rpar) }

tcExpr (HsPragE x prag expr) res_ty
  = do { expr' <- tcMonoExpr expr res_ty
       ; return (HsPragE x (tcExprPrag prag) expr') }

tcExpr (NegApp x expr neg_expr) res_ty
  = do  { (expr', neg_expr')
            <- tcSyntaxOp NegateOrigin neg_expr [SynAny] res_ty $
               \[arg_ty] [arg_mult] ->
               tcScalingUsage arg_mult $ tcCheckMonoExpr expr arg_ty
        ; return (NegApp x expr' neg_expr') }

tcExpr e@(HsIPVar _ x) res_ty
  = do { ip_ty <- newFlexiTyVarTy liftedTypeKind
          -- Create a unification type variable of kind 'Type'.
          -- (The type of an implicit parameter must have kind 'Type'.)
       ; let ip_name = mkStrLitTy (hsIPNameFS x)
       ; ipClass <- tcLookupClass ipClassName
       ; ip_var <- emitWantedEvVar origin (mkClassPred ipClass [ip_name, ip_ty])
       ; tcWrapResult e
                   (fromDict ipClass ip_name ip_ty (HsVar noExtField (noLocA ip_var)))
                   ip_ty res_ty }
  where
  -- Coerces a dictionary for `IP "x" t` into `t`.
  fromDict ipClass x ty = mkHsWrap $ mkWpCastR $
                          unwrapIP $ mkClassPred ipClass [x,ty]
  origin = IPOccOrigin x

tcExpr (HsLam _ match) res_ty
  = do  { (wrap, match') <- tcMatchLambda herald match_ctxt match res_ty
        ; return (mkHsWrap wrap (HsLam noExtField match')) }
  where
    match_ctxt = MC { mc_what = LambdaExpr, mc_body = tcBody }
    herald = ExpectedFunTyLam match

tcExpr e@(HsLamCase x lc_variant matches) res_ty
  = do { (wrap, matches')
           <- tcMatchLambda herald match_ctxt matches res_ty
       ; return (mkHsWrap wrap $ HsLamCase x lc_variant matches') }
  where
    match_ctxt = MC { mc_what = LamCaseAlt lc_variant, mc_body = tcBody }
    herald = ExpectedFunTyLamCase lc_variant e



{-
************************************************************************
*                                                                      *
                Explicit lists
*                                                                      *
************************************************************************
-}

-- Explicit lists [e1,e2,e3] have been expanded already in the renamer
-- The expansion includes an ExplicitList, but it is always the built-in
-- list type, so that's all we need concern ourselves with here.  See
-- GHC.Rename.Expr. Note [Handling overloaded and rebindable constructs]
tcExpr (ExplicitList _ exprs) res_ty
  = do  { res_ty <- expTypeToType res_ty
        ; (coi, elt_ty) <- matchExpectedListTy res_ty
        ; let tc_elt expr = tcCheckPolyExpr expr elt_ty
        ; exprs' <- mapM tc_elt exprs
        ; return $ mkHsWrapCo coi $ ExplicitList elt_ty exprs' }

tcExpr expr@(ExplicitTuple x tup_args boxity) res_ty
  | all tupArgPresent tup_args
  = do { let arity  = length tup_args
             tup_tc = tupleTyCon boxity arity
               -- NB: tupleTyCon doesn't flatten 1-tuples
               -- See Note [Don't flatten tuples from HsSyn] in GHC.Core.Make
       ; res_ty <- expTypeToType res_ty
       ; (coi, arg_tys) <- matchExpectedTyConApp tup_tc res_ty
                           -- Unboxed tuples have RuntimeRep vars, which we
                           -- don't care about here
                           -- See Note [Unboxed tuple RuntimeRep vars] in GHC.Core.TyCon
       ; let arg_tys' = case boxity of Unboxed -> drop arity arg_tys
                                       Boxed   -> arg_tys
       ; tup_args1 <- tcTupArgs tup_args arg_tys'
       ; return $ mkHsWrapCo coi (ExplicitTuple x tup_args1 boxity) }

  | otherwise
  = -- The tup_args are a mixture of Present and Missing (for tuple sections)
    do { let arity = length tup_args

       ; arg_tys <- case boxity of
           { Boxed   -> newFlexiTyVarTys arity liftedTypeKind
           ; Unboxed -> replicateM arity newOpenFlexiTyVarTy }

       -- Handle tuple sections where
       ; tup_args1 <- tcTupArgs tup_args arg_tys

       ; let expr'       = ExplicitTuple x tup_args1 boxity
             missing_tys = [Scaled mult ty | (Missing (Scaled mult _), ty) <- zip tup_args1 arg_tys]

             -- See Note [Typechecking data constructors] in GHC.Tc.Gen.Head
             -- See Note [Don't flatten tuples from HsSyn] in GHC.Core.Make
             act_res_ty = mkVisFunTys missing_tys (mkTupleTy1 boxity arg_tys)

       ; traceTc "ExplicitTuple" (ppr act_res_ty $$ ppr res_ty)

       ; tcWrapResultMono expr expr' act_res_ty res_ty }

tcExpr (ExplicitSum _ alt arity expr) res_ty
  = do { let sum_tc = sumTyCon arity
       ; res_ty <- expTypeToType res_ty
       ; (coi, arg_tys) <- matchExpectedTyConApp sum_tc res_ty
       ; -- Drop levity vars, we don't care about them here
         let arg_tys' = drop arity arg_tys
             arg_ty   = arg_tys' `getNth` (alt - 1)
       ; expr' <- tcCheckPolyExpr expr arg_ty
       -- Check the whole res_ty, not just the arg_ty, to avoid #20277.
       -- Example:
       --   a :: TYPE rep (representation-polymorphic)
       --   (# 17# | #) :: (# Int# | a #)
       -- This should cause an error, even though (17# :: Int#)
       -- is not representation-polymorphic: we don't know how
       -- wide the concrete representation of the sum type will be.
       ; hasFixedRuntimeRep_syntactic FRRUnboxedSum res_ty
       ; return $ mkHsWrapCo coi (ExplicitSum arg_tys' alt arity expr' ) }


{-
************************************************************************
*                                                                      *
                Let, case, if, do
*                                                                      *
************************************************************************
-}

tcExpr (HsLet x tkLet binds tkIn expr) res_ty
  = do  { (binds', expr') <- tcLocalBinds binds $
                             tcMonoExpr expr res_ty
        ; return (HsLet x tkLet binds' tkIn expr') }

tcExpr (HsCase x scrut matches) res_ty
  = do  {  -- We used to typecheck the case alternatives first.
           -- The case patterns tend to give good type info to use
           -- when typechecking the scrutinee.  For example
           --   case (map f) of
           --     (x:xs) -> ...
           -- will report that map is applied to too few arguments
           --
           -- But now, in the GADT world, we need to typecheck the scrutinee
           -- first, to get type info that may be refined in the case alternatives
          mult <- newFlexiTyVarTy multiplicityTy

          -- Typecheck the scrutinee.  We use tcInferRho but tcInferSigma
          -- would also be possible (tcMatchesCase accepts sigma-types)
          -- Interesting litmus test: do these two behave the same?
          --     case id        of {..}
          --     case (\v -> v) of {..}
          -- This design choice is discussed in #17790
        ; (scrut', scrut_ty) <- tcScalingUsage mult $ tcInferRho scrut

        ; traceTc "HsCase" (ppr scrut_ty)
        ; hasFixedRuntimeRep_syntactic FRRCase scrut_ty
        ; matches' <- tcMatchesCase match_ctxt (Scaled mult scrut_ty) matches res_ty
        ; return (HsCase x scrut' matches') }
 where
    match_ctxt = MC { mc_what = CaseAlt,
                      mc_body = tcBody }

tcExpr (HsIf x pred b1 b2) res_ty
  = do { pred'    <- tcCheckMonoExpr pred boolTy
       ; (u1,b1') <- tcCollectingUsage $ tcMonoExpr b1 res_ty
       ; (u2,b2') <- tcCollectingUsage $ tcMonoExpr b2 res_ty
       ; tcEmitBindingUsage (supUE u1 u2)
       ; return (HsIf x pred' b1' b2') }

tcExpr (HsMultiIf _ alts) res_ty
  = do { alts' <- mapM (wrapLocMA $ tcGRHS match_ctxt res_ty) alts
       ; res_ty <- readExpType res_ty
       ; return (HsMultiIf res_ty alts') }
  where match_ctxt = MC { mc_what = IfAlt, mc_body = tcBody }

tcExpr (HsDo _ do_or_lc stmts) res_ty
  = tcDoStmts do_or_lc stmts res_ty

tcExpr (HsProc x pat cmd) res_ty
  = do  { (pat', cmd', coi) <- tcProc pat cmd res_ty
        ; return $ mkHsWrapCo coi (HsProc x pat' cmd') }

-- Typechecks the static form and wraps it with a call to 'fromStaticPtr'.
-- See Note [Grand plan for static forms] in GHC.Iface.Tidy.StaticPtrTable for an overview.
-- To type check
--      (static e) :: p a
-- we want to check (e :: a),
-- and wrap (static e) in a call to
--    fromStaticPtr :: IsStatic p => StaticPtr a -> p a

tcExpr (HsStatic fvs expr) res_ty
  = do  { res_ty          <- expTypeToType res_ty
        ; (co, (p_ty, expr_ty)) <- matchExpectedAppTy res_ty
        ; (expr', lie)    <- captureConstraints $
            addErrCtxt (hang (text "In the body of a static form:")
                             2 (ppr expr)
                       ) $
            tcCheckPolyExprNC expr expr_ty

        -- Check that the free variables of the static form are closed.
        -- It's OK to use nonDetEltsUniqSet here as the only side effects of
        -- checkClosedInStaticForm are error messages.
        ; mapM_ checkClosedInStaticForm $ nonDetEltsUniqSet fvs

        -- Require the type of the argument to be Typeable.
        ; typeableClass <- tcLookupClass typeableClassName
        ; typeable_ev <- emitWantedEvVar StaticOrigin $
                  mkTyConApp (classTyCon typeableClass)
                             [liftedTypeKind, expr_ty]

        -- Insert the constraints of the static form in a global list for later
        -- validation.
        ; emitStaticConstraints lie

        -- Wrap the static form with the 'fromStaticPtr' call.
        ; fromStaticPtr <- newMethodFromName StaticOrigin fromStaticPtrName
                                             [p_ty]
        ; let wrap = mkWpEvVarApps [typeable_ev] <.> mkWpTyApps [expr_ty]
        ; loc <- getSrcSpanM
        ; static_ptr_ty_con <- tcLookupTyCon staticPtrTyConName
        ; return $ mkHsWrapCo co $ HsApp noComments
                            (L (noAnnSrcSpan loc) $ mkHsWrap wrap fromStaticPtr)
                            (L (noAnnSrcSpan loc) (HsStatic (fvs, mkTyConApp static_ptr_ty_con [expr_ty]) expr'))
        }

{-
************************************************************************
*                                                                      *
                Record construction and update
*                                                                      *
************************************************************************
-}

tcExpr expr@(RecordCon { rcon_con = L loc con_name
                       , rcon_flds = rbinds }) res_ty
  = do  { con_like <- tcLookupConLike con_name

        ; (con_expr, con_sigma) <- tcInferId con_name
        ; (con_wrap, con_tau)   <- topInstantiate orig con_sigma
              -- a shallow instantiation should really be enough for
              -- a data constructor.
        ; let arity = conLikeArity con_like
              Right (arg_tys, actual_res_ty) = tcSplitFunTysN arity con_tau

        ; checkTc (conLikeHasBuilder con_like) $
          nonBidirectionalErr (conLikeName con_like)

        ; rbinds' <- tcRecordBinds con_like (map scaledThing arg_tys) rbinds
                   -- It is currently not possible for a record to have
                   -- multiplicities. When they do, `tcRecordBinds` will take
                   -- scaled types instead. Meanwhile, it's safe to take
                   -- `scaledThing` above, as we know all the multiplicities are
                   -- Many.

        ; let rcon_tc = mkHsWrap con_wrap con_expr
              expr' = RecordCon { rcon_ext = rcon_tc
                                , rcon_con = L loc con_like
                                , rcon_flds = rbinds' }

        ; ret <- tcWrapResultMono expr expr' actual_res_ty res_ty

        -- Check for missing fields.  We do this after type-checking to get
        -- better types in error messages (cf #18869).  For example:
        --     data T a = MkT { x :: a, y :: a }
        --     r = MkT { y = True }
        -- Then we'd like to warn about a missing field `x :: True`, rather than `x :: a0`.
        --
        -- NB: to do this really properly we should delay reporting until typechecking is complete,
        -- via a new `HoleSort`.  But that seems too much work.
        ; checkMissingFields con_like rbinds arg_tys

        ; return ret }
  where
    orig = OccurrenceOf con_name

-- Record updates via dot syntax are replaced by desugared expressions
-- in the renamer. See Note [Overview of record dot syntax] in
-- GHC.Hs.Expr. This is why we match on 'rupd_flds = Left rbnds' here
-- and panic otherwise.
tcExpr expr@(RecordUpd { rupd_expr = record_expr, rupd_flds = Left rbnds }) res_ty
  = assert (notNull rbnds) $
    do  { -- Desugar the record update. See Note [Record Updates].
        ; (ds_expr, ds_res_ty, err_ctxt) <- desugarRecordUpd record_expr rbnds res_ty

          -- Typecheck the desugared expression.
        ; expr' <- addErrCtxt err_ctxt $
                   tcExpr (mkExpandedExpr expr ds_expr) (Check ds_res_ty)
            -- NB: it's important to use ds_res_ty and not res_ty here.
            -- Test case: T18802b.

        ; addErrCtxt err_ctxt $ tcWrapResultMono expr expr' ds_res_ty res_ty
            -- We need to unify the result type of the desugared
            -- expression with the expected result type.
            --
            -- See Note [Unifying result types in tcRecordUpd].
            -- Test case: T10808.
        }

tcExpr (RecordUpd {}) _ = panic "tcExpr: unexpected overloaded-dot RecordUpd"

{-
************************************************************************
*                                                                      *
        Arithmetic sequences                    e.g. [a,b..]
        and their parallel-array counterparts   e.g. [: a,b.. :]

*                                                                      *
************************************************************************
-}

tcExpr (ArithSeq _ witness seq) res_ty
  = tcArithSeq witness seq res_ty

{-
************************************************************************
*                                                                      *
                Record dot syntax
*                                                                      *
************************************************************************
-}

-- These terms have been replaced by desugaring in the renamer. See
-- Note [Overview of record dot syntax].
tcExpr (HsGetField _ _ _) _ = panic "GHC.Tc.Gen.Expr: tcExpr: HsGetField: Not implemented"
tcExpr (HsProjection _ _) _ = panic "GHC.Tc.Gen.Expr: tcExpr: HsProjection: Not implemented"

{-
************************************************************************
*                                                                      *
                Template Haskell
*                                                                      *
************************************************************************
-}

-- Here we get rid of it and add the finalizers to the global environment.
-- See Note [Delaying modFinalizers in untyped splices] in GHC.Rename.Splice.
tcExpr (HsTypedSplice ext splice)   res_ty = tcTypedSplice ext splice res_ty
tcExpr e@(HsTypedBracket _ body)    res_ty = tcTypedBracket e body res_ty

tcExpr e@(HsUntypedBracket ps body) res_ty = tcUntypedBracket e body ps res_ty
tcExpr (HsUntypedSplice splice _)   res_ty
  = case splice of
      HsUntypedSpliceTop mod_finalizers expr
        -> do { addModFinalizersWithLclEnv mod_finalizers
              ; tcExpr expr res_ty }
      HsUntypedSpliceNested {} -> panic "tcExpr: invalid nested splice"

{-
************************************************************************
*                                                                      *
                Catch-all
*                                                                      *
************************************************************************
-}

tcExpr (HsOverLabel {})    ty = pprPanic "tcExpr:HsOverLabel"  (ppr ty)
tcExpr (SectionL {})       ty = pprPanic "tcExpr:SectionL"    (ppr ty)
tcExpr (SectionR {})       ty = pprPanic "tcExpr:SectionR"    (ppr ty)


{-
************************************************************************
*                                                                      *
                Arithmetic sequences [a..b] etc
*                                                                      *
************************************************************************
-}

tcArithSeq :: Maybe (SyntaxExpr GhcRn) -> ArithSeqInfo GhcRn -> ExpRhoType
           -> TcM (HsExpr GhcTc)

tcArithSeq witness seq@(From expr) res_ty
  = do { (wrap, elt_mult, elt_ty, wit') <- arithSeqEltType witness res_ty
       ; expr' <-tcScalingUsage elt_mult $ tcCheckPolyExpr expr elt_ty
       ; enum_from <- newMethodFromName (ArithSeqOrigin seq)
                              enumFromName [elt_ty]
       ; return $ mkHsWrap wrap $
         ArithSeq enum_from wit' (From expr') }

tcArithSeq witness seq@(FromThen expr1 expr2) res_ty
  = do { (wrap, elt_mult, elt_ty, wit') <- arithSeqEltType witness res_ty
       ; expr1' <- tcScalingUsage elt_mult $ tcCheckPolyExpr expr1 elt_ty
       ; expr2' <- tcScalingUsage elt_mult $ tcCheckPolyExpr expr2 elt_ty
       ; enum_from_then <- newMethodFromName (ArithSeqOrigin seq)
                              enumFromThenName [elt_ty]
       ; return $ mkHsWrap wrap $
         ArithSeq enum_from_then wit' (FromThen expr1' expr2') }

tcArithSeq witness seq@(FromTo expr1 expr2) res_ty
  = do { (wrap, elt_mult, elt_ty, wit') <- arithSeqEltType witness res_ty
       ; expr1' <- tcScalingUsage elt_mult $ tcCheckPolyExpr expr1 elt_ty
       ; expr2' <- tcScalingUsage elt_mult $ tcCheckPolyExpr expr2 elt_ty
       ; enum_from_to <- newMethodFromName (ArithSeqOrigin seq)
                              enumFromToName [elt_ty]
       ; return $ mkHsWrap wrap $
         ArithSeq enum_from_to wit' (FromTo expr1' expr2') }

tcArithSeq witness seq@(FromThenTo expr1 expr2 expr3) res_ty
  = do { (wrap, elt_mult, elt_ty, wit') <- arithSeqEltType witness res_ty
        ; expr1' <- tcScalingUsage elt_mult $ tcCheckPolyExpr expr1 elt_ty
        ; expr2' <- tcScalingUsage elt_mult $ tcCheckPolyExpr expr2 elt_ty
        ; expr3' <- tcScalingUsage elt_mult $ tcCheckPolyExpr expr3 elt_ty
        ; eft <- newMethodFromName (ArithSeqOrigin seq)
                              enumFromThenToName [elt_ty]
        ; return $ mkHsWrap wrap $
          ArithSeq eft wit' (FromThenTo expr1' expr2' expr3') }

-----------------
arithSeqEltType :: Maybe (SyntaxExpr GhcRn) -> ExpRhoType
                -> TcM (HsWrapper, Mult, TcType, Maybe (SyntaxExpr GhcTc))
arithSeqEltType Nothing res_ty
  = do { res_ty <- expTypeToType res_ty
       ; (coi, elt_ty) <- matchExpectedListTy res_ty
       ; return (mkWpCastN coi, One, elt_ty, Nothing) }
arithSeqEltType (Just fl) res_ty
  = do { ((elt_mult, elt_ty), fl')
           <- tcSyntaxOp ListOrigin fl [SynList] res_ty $
              \ [elt_ty] [elt_mult] -> return (elt_mult, elt_ty)
       ; return (idHsWrapper, elt_mult, elt_ty, Just fl') }

----------------
tcTupArgs :: [HsTupArg GhcRn]
          -> [TcSigmaType]
              -- ^ Argument types.
              -- This function ensures they all have
              -- a fixed runtime representation.
          -> TcM [HsTupArg GhcTc]
tcTupArgs args tys
  = do massert (equalLength args tys)
       checkTupSize (length args)
       zipWith3M go [1,2..] args tys
  where
    go :: Int -> HsTupArg GhcRn -> TcType -> TcM (HsTupArg GhcTc)
    go i (Missing {})     arg_ty
      = do { mult <- newFlexiTyVarTy multiplicityTy
           ; hasFixedRuntimeRep_syntactic (FRRTupleSection i) arg_ty
           ; return (Missing (Scaled mult arg_ty)) }
    go i (Present x expr) arg_ty
      = do { expr' <- tcCheckPolyExpr expr arg_ty
           ; hasFixedRuntimeRep_syntactic (FRRTupleArg i) arg_ty
           ; return (Present x expr') }

---------------------------
-- See TcType.SyntaxOpType also for commentary
tcSyntaxOp :: CtOrigin
           -> SyntaxExprRn
           -> [SyntaxOpType]           -- ^ shape of syntax operator arguments
           -> ExpRhoType               -- ^ overall result type
           -> ([TcSigmaType] -> [Mult] -> TcM a) -- ^ Type check any arguments,
                                                 -- takes a type per hole and a
                                                 -- multiplicity per arrow in
                                                 -- the shape.
           -> TcM (a, SyntaxExprTc)
-- ^ Typecheck a syntax operator
-- The operator is a variable or a lambda at this stage (i.e. renamer
-- output)t
tcSyntaxOp orig expr arg_tys res_ty
  = tcSyntaxOpGen orig expr arg_tys (SynType res_ty)

-- | Slightly more general version of 'tcSyntaxOp' that allows the caller
-- to specify the shape of the result of the syntax operator
tcSyntaxOpGen :: CtOrigin
              -> SyntaxExprRn
              -> [SyntaxOpType]
              -> SyntaxOpType
              -> ([TcSigmaTypeFRR] -> [Mult] -> TcM a)
              -> TcM (a, SyntaxExprTc)
tcSyntaxOpGen orig (SyntaxExprRn op) arg_tys res_ty thing_inside
  = do { (expr, sigma) <- tcInferAppHead (op, VACall op 0 noSrcSpan) []
             -- Ugh!! But all this code is scheduled for demolition anyway
       ; traceTc "tcSyntaxOpGen" (ppr op $$ ppr expr $$ ppr sigma)
       ; (result, expr_wrap, arg_wraps, res_wrap)
           <- tcSynArgA orig op sigma arg_tys res_ty $
              thing_inside
       ; traceTc "tcSyntaxOpGen" (ppr op $$ ppr expr $$ ppr sigma )
       ; return (result, SyntaxExprTc { syn_expr = mkHsWrap expr_wrap expr
                                      , syn_arg_wraps = arg_wraps
                                      , syn_res_wrap  = res_wrap }) }
tcSyntaxOpGen _ NoSyntaxExprRn _ _ _ = panic "tcSyntaxOpGen"

{-
Note [tcSynArg]
~~~~~~~~~~~~~~~
Because of the rich structure of SyntaxOpType, we must do the
contra-/covariant thing when working down arrows, to get the
instantiation vs. skolemisation decisions correct (and, more
obviously, the orientation of the HsWrappers). We thus have
two tcSynArgs.
-}

-- works on "expected" types, skolemising where necessary
-- See Note [tcSynArg]
tcSynArgE :: CtOrigin
          -> HsExpr GhcRn -- ^ the operator to check (for error messages only)
          -> TcSigmaType
          -> SyntaxOpType                -- ^ shape it is expected to have
          -> ([TcSigmaTypeFRR] -> [Mult] -> TcM a) -- ^ check the arguments
          -> TcM (a, HsWrapper)
           -- ^ returns a wrapper :: (type of right shape) "->" (type passed in)
tcSynArgE orig op sigma_ty syn_ty thing_inside
  = do { (skol_wrap, (result, ty_wrapper))
           <- tcTopSkolemise GenSigCtxt sigma_ty
                (\ rho_ty -> go rho_ty syn_ty)
       ; return (result, skol_wrap <.> ty_wrapper) }
    where
    go rho_ty SynAny
      = do { result <- thing_inside [rho_ty] []
           ; return (result, idHsWrapper) }

    go rho_ty SynRho   -- same as SynAny, because we skolemise eagerly
      = do { result <- thing_inside [rho_ty] []
           ; return (result, idHsWrapper) }

    go rho_ty SynList
      = do { (list_co, elt_ty) <- matchExpectedListTy rho_ty
           ; result <- thing_inside [elt_ty] []
           ; return (result, mkWpCastN list_co) }

    go rho_ty (SynFun arg_shape res_shape)
      = do { ( match_wrapper                         -- :: (arg_ty -> res_ty) "->" rho_ty
             , ( ( (result, arg_ty, res_ty, op_mult)
                 , res_wrapper )                     -- :: res_ty_out "->" res_ty
               , arg_wrapper1, [], arg_wrapper2 ) )  -- :: arg_ty "->" arg_ty_out
               <- matchExpectedFunTys herald GenSigCtxt 1 (mkCheckExpType rho_ty) $
                  \ [arg_ty] res_ty ->
                  do { arg_tc_ty <- expTypeToType (scaledThing arg_ty)
                     ; res_tc_ty <- expTypeToType res_ty

                         -- another nested arrow is too much for now,
                         -- but I bet we'll never need this
                     ; massertPpr (case arg_shape of
                                   SynFun {} -> False;
                                   _         -> True)
                                  (text "Too many nested arrows in SyntaxOpType" $$
                                   pprCtOrigin orig)

                     ; let arg_mult = scaledMult arg_ty
                     ; tcSynArgA orig op arg_tc_ty [] arg_shape $
                       \ arg_results arg_res_mults ->
                       tcSynArgE orig op res_tc_ty res_shape $
                       \ res_results res_res_mults ->
                       do { result <- thing_inside (arg_results ++ res_results) ([arg_mult] ++ arg_res_mults ++ res_res_mults)
                          ; return (result, arg_tc_ty, res_tc_ty, arg_mult) }}

           ; let fun_wrap = mkWpFun (arg_wrapper2 <.> arg_wrapper1) res_wrapper
                              (Scaled op_mult arg_ty) res_ty
               -- NB: arg_ty comes from matchExpectedFunTys, so it has a
               -- fixed RuntimeRep, as needed to call mkWpFun.
           ; return (result, match_wrapper <.> fun_wrap) }
      where
        herald = ExpectedFunTySyntaxOp orig op

    go rho_ty (SynType the_ty)
      = do { wrap   <- tcSubTypePat orig GenSigCtxt the_ty rho_ty
           ; result <- thing_inside [] []
           ; return (result, wrap) }

-- works on "actual" types, instantiating where necessary
-- See Note [tcSynArg]
tcSynArgA :: CtOrigin
          -> HsExpr GhcRn -- ^ the operator we are checking (for error messages)
          -> TcSigmaType
          -> [SyntaxOpType]              -- ^ argument shapes
          -> SyntaxOpType                -- ^ result shape
          -> ([TcSigmaTypeFRR] -> [Mult] -> TcM a) -- ^ check the arguments
          -> TcM (a, HsWrapper, [HsWrapper], HsWrapper)
            -- ^ returns a wrapper to be applied to the original function,
            -- wrappers to be applied to arguments
            -- and a wrapper to be applied to the overall expression
tcSynArgA orig op sigma_ty arg_shapes res_shape thing_inside
  = do { (match_wrapper, arg_tys, res_ty)
           <- matchActualFunTysRho herald orig Nothing
                                   (length arg_shapes) sigma_ty
              -- match_wrapper :: sigma_ty "->" (arg_tys -> res_ty)
       ; ((result, res_wrapper), arg_wrappers)
           <- tc_syn_args_e (map scaledThing arg_tys) arg_shapes $ \ arg_results arg_res_mults ->
              tc_syn_arg    res_ty  res_shape  $ \ res_results ->
              thing_inside (arg_results ++ res_results) (map scaledMult arg_tys ++ arg_res_mults)
       ; return (result, match_wrapper, arg_wrappers, res_wrapper) }
  where
    herald = ExpectedFunTySyntaxOp orig op

    tc_syn_args_e :: [TcSigmaTypeFRR] -> [SyntaxOpType]
                  -> ([TcSigmaTypeFRR] -> [Mult] -> TcM a)
                  -> TcM (a, [HsWrapper])
                    -- the wrappers are for arguments
    tc_syn_args_e (arg_ty : arg_tys) (arg_shape : arg_shapes) thing_inside
      = do { ((result, arg_wraps), arg_wrap)
               <- tcSynArgE     orig  op arg_ty  arg_shape  $ \ arg1_results arg1_mults ->
                  tc_syn_args_e          arg_tys arg_shapes $ \ args_results args_mults ->
                  thing_inside (arg1_results ++ args_results) (arg1_mults ++ args_mults)
           ; return (result, arg_wrap : arg_wraps) }
    tc_syn_args_e _ _ thing_inside = (, []) <$> thing_inside [] []

    tc_syn_arg :: TcSigmaTypeFRR -> SyntaxOpType
               -> ([TcSigmaTypeFRR] -> TcM a)
               -> TcM (a, HsWrapper)
                  -- the wrapper applies to the overall result
    tc_syn_arg res_ty SynAny thing_inside
      = do { result <- thing_inside [res_ty]
           ; return (result, idHsWrapper) }
    tc_syn_arg res_ty SynRho thing_inside
      = do { (inst_wrap, rho_ty) <- topInstantiate orig res_ty
               -- inst_wrap :: res_ty "->" rho_ty
           ; result <- thing_inside [rho_ty]
           ; return (result, inst_wrap) }
    tc_syn_arg res_ty SynList thing_inside
      = do { (inst_wrap, rho_ty) <- topInstantiate orig res_ty
               -- inst_wrap :: res_ty "->" rho_ty
           ; (list_co, elt_ty)   <- matchExpectedListTy rho_ty
               -- list_co :: [elt_ty] ~N rho_ty
           ; result <- thing_inside [elt_ty]
           ; return (result, mkWpCastN (mkTcSymCo list_co) <.> inst_wrap) }
    tc_syn_arg _ (SynFun {}) _
      = pprPanic "tcSynArgA hits a SynFun" (ppr orig)
    tc_syn_arg res_ty (SynType the_ty) thing_inside
      = do { wrap   <- tcSubType orig GenSigCtxt res_ty the_ty
           ; result <- thing_inside []
           ; return (result, wrap) }

{-
Note [Push result type in]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Unify with expected result before type-checking the args so that the
info from res_ty percolates to args.  This is when we might detect a
too-few args situation.  (One can think of cases when the opposite
order would give a better error message.)
experimenting with putting this first.

Here's an example where it actually makes a real difference

   class C t a b | t a -> b
   instance C Char a Bool

   data P t a = forall b. (C t a b) => MkP b
   data Q t   = MkQ (forall a. P t a)

   f1, f2 :: Q Char;
   f1 = MkQ (MkP True)
   f2 = MkQ (MkP True :: forall a. P Char a)

With the change, f1 will type-check, because the 'Char' info from
the signature is propagated into MkQ's argument. With the check
in the other order, the extra signature in f2 is reqd.
-}

{- *********************************************************************
*                                                                      *
                 Desugaring record update
*                                                                      *
********************************************************************* -}

{-
Note [Type of a record update]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The main complication with RecordUpd is that we need to explicitly
handle the *non-updated* fields.  Consider:

        data T a b c = MkT1 { fa :: a, fb :: (b,c) }
                     | MkT2 { fa :: a, fb :: (b,c), fc :: c -> c }
                     | MkT3 { fd :: a }

        upd :: T a b c -> (b',c) -> T a b' c
        upd t x = t { fb = x}

The result type should be (T a b' c)
not (T a b c),   because 'b' *is not* mentioned in a non-updated field
not (T a b' c'), because 'c' *is*     mentioned in a non-updated field
NB that it's not good enough to look at just one constructor; we must
look at them all; cf #3219

After all, upd should be equivalent to:
        upd t x = case t of
                        MkT1 p q -> MkT1 p x
                        MkT2 a b -> MkT2 p b
                        MkT3 d   -> error ...

So we need to give a completely fresh type to the result record,
and then constrain it by the fields that are *not* updated ("p" above).
We call these the "fixed" type variables, and compute them in getFixedTyVars.

Note that because MkT3 doesn't contain all the fields being updated,
its RHS is simply an error, so it doesn't impose any type constraints.
Hence the use of 'relevant_cont'.

Note [Implicit type sharing]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
We also take into account any "implicit" non-update fields.  For example
        data T a b where { MkT { f::a } :: T a a; ... }
So the "real" type of MkT is: forall ab. (a~b) => a -> T a b

Then consider
        upd t x = t { f=x }
We infer the type
        upd :: T a b -> a -> T a b
        upd (t::T a b) (x::a)
           = case t of { MkT (co:a~b) (_:a) -> MkT co x }
We can't give it the more general type
        upd :: T a b -> c -> T c b

Note [Criteria for update]
~~~~~~~~~~~~~~~~~~~~~~~~~~
We want to allow update for existentials etc, provided the updated
field isn't part of the existential. For example, this should be ok.
  data T a where { MkT { f1::a, f2::b->b } :: T a }
  f :: T a -> b -> T b
  f t b = t { f1=b }

The criterion we use is this:

  The types of the updated fields
  mention only the universally-quantified type variables
  of the data constructor

NB: this is not (quite) the same as being a "naughty" record selector
(See Note [Naughty record selectors]) in GHC.Tc.TyCl), at least
in the case of GADTs. Consider
   data T a where { MkT :: { f :: a } :: T [a] }
Then f is not "naughty" because it has a well-typed record selector.
But we don't allow updates for 'f'.  (One could consider trying to
allow this, but it makes my head hurt.  Badly.  And no one has asked
for it.)

In principle one could go further, and allow
  g :: T a -> T a
  g t = t { f2 = \x -> x }
because the expression is polymorphic...but that seems a bridge too far.

Note [Data family example]
~~~~~~~~~~~~~~~~~~~~~~~~~~
    data instance T (a,b) = MkT { x::a, y::b }
  --->
    data :TP a b = MkT { a::a, y::b }
    coTP a b :: T (a,b) ~ :TP a b

Suppose r :: T (t1,t2), e :: t3
Then  r { x=e } :: T (t3,t1)
  --->
      case r |> co1 of
        MkT x y -> MkT e y |> co2
      where co1 :: T (t1,t2) ~ :TP t1 t2
            co2 :: :TP t3 t2 ~ T (t3,t2)
The wrapping with co2 is done by the constructor wrapper for MkT

Outgoing invariants
~~~~~~~~~~~~~~~~~~~
In the outgoing (HsRecordUpd scrut binds cons in_inst_tys out_inst_tys):

  * cons are the data constructors to be updated

  * in_inst_tys, out_inst_tys have same length, and instantiate the
        *representation* tycon of the data cons.  In Note [Data
        family example], in_inst_tys = [t1,t2], out_inst_tys = [t3,t2]

Note [Mixed Record Field Updates]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the following pattern synonym.

  data MyRec = MyRec { foo :: Int, qux :: String }

  pattern HisRec{f1, f2} = MyRec{foo = f1, qux=f2}

This allows updates such as the following

  updater :: MyRec -> MyRec
  updater a = a {f1 = 1 }

It would also make sense to allow the following update (which we reject).

  updater a = a {f1 = 1, qux = "two" } ==? MyRec 1 "two"

This leads to confusing behaviour when the selectors in fact refer the same
field.

  updater a = a {f1 = 1, foo = 2} ==? ???

For this reason, we reject a mixture of pattern synonym and normal record
selectors in the same update block. Although of course we still allow the
following.

  updater a = (a {f1 = 1}) {foo = 2}

  > updater (MyRec 0 "str")
  MyRec 2 "str"

Note [Record Updates]
~~~~~~~~~~~~~~~~~~~~~
To typecheck a record update, we desugar it first.  Suppose we have
    data T p q = T1 { x :: Int, y :: Bool, z :: Char }
               | T2 { v :: Char }
               | T3 { x :: Int }
               | T4 { p :: Float, y :: Bool, x :: Int }
               | T5
Then the record update `e { x=e1, y=e2 }` desugars as follows

       e { x=e1, y=e2 }
    ===>
       let { x' = e1; y' = e2 } in
       case e of
          T1 _ _ z -> T1 x' y' z
          T4 p _ _ -> T4 p y' x'
T2, T3 and T5 should not occur, so we omit them from the match.
The critical part of desugaring is to identify T and then T1/T4.

Wrinkle [Disambiguating fields]
As outlined above, to typecheck a record update via desugaring, we first need
to identify the parent record `TyCon` (`T` above). This can be tricky when several
record types share the same field (with `-XDuplicateRecordFields`).

Currently, we use the inferred type of the record to help disambiguate the record
fields. For example, in

  ( mempty :: T a b ) { x = 3 }

the type signature on `mempty` allows us to disambiguate the record `TyCon` to `T`,
when there might be other datatypes with field `x :: Int`.
This complexity is scheduled for removal via the implementation of GHC proposal #366
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0366-no-ambiguous-field-access.rst

However, for the time being, we still need to disambiguate record fields using the
inferred types. This means that, when typechecking a record update via desugaring,
we need to do the following:

  D1. Perform a first typechecking pass on the record expression (`e` in the example above),
      to infer the type of the record being updated.
  D2. Desugar the record update as described above, using an HsExpansion.
  D3. Typecheck the desugared code.

In (D1), we call inferRho to infer the type of the record being updated. This returns the
inferred type of the record, together with a typechecked expression (of type HsExpr GhcTc)
and a collection of residual constraints.
We have no need for the latter two, because we will typecheck again in (D3). So, for
the time being (and until GHC proposal #366 is implemented), we simply drop them.

Wrinkle [Using IdSig]
As noted above, we want to let-bind the updated fields to avoid code duplication:

  let { x' = e1; y' = e2 } in
  case e of
     T1 _ _ z -> T1 x' y' z
     T4 p _ _ -> T4 p y' x'

However, doing so in a naive way would cause difficulties for type inference.
For example:

  data R b = MkR { f :: (forall a. a -> a) -> (Int,b), c :: Int }
  foo r = r { f = \ k -> (k 3, k 'x') }

If we desugar to:

  ds_foo r =
    let f' = \ k -> (k 3, k 'x')
    in case r of
      MkR _ b -> MkR f' b

then we are unable to infer an appropriately polymorphic type for f', because we
never infer higher-rank types. To circumvent this problem, we proceed as follows:

  1. Obtain general field types by instantiating any of the constructors
     that contain all the necessary fields. (Note that the field type must be
     identical across different constructors of a given data constructor).
  2. Let-bind an 'IdSig' with this type. This amounts to giving the let-bound
     'Id's a partial type signature.

In the above example, it's as if we wrote:

  ds_foo r =
    let f' :: (forall a. a -> a) -> (Int, _b)
        f' = \ k -> (k 3, k 'x')
    in case r of
      MkR _ b -> MkR f' b

This allows us to compute the right type for f', and thus accept this record update.

Note [Unifying result types in tcRecordUpd]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
After desugaring and typechecking a record update in the way described in
Note [Record Updates], we must take care to unify the result types.

Example:

  type family F (a :: Type) :: Type where {}
  data D a = MkD { fld :: F a }

  f :: F Int -> D Bool -> D Int
  f i r = r { fld = i }

This record update desugars to:

  let x :: F alpha -- metavariable
      x = i
  in case r of
    MkD _ -> MkD x

Because the type family F is not injective, our only hope for unifying the
metavariable alpha is through the result type of the record update, which tells
us that we should unify alpha := Int.

Test case: T10808.

Wrinkle [GADT result type in tcRecordUpd]

  When dealing with a GADT, we want to be careful about which result type we use.

  Example:

    data G a b where
      MkG :: { bar :: F a } -> G a Int

    g :: F Int -> G Float b -> G Int b
    g i r = r { bar = i }

    We **do not** want to use the result type from the constructor MkG, which would
    leave us with a result type "G alpha Int". Instead, we should use the result type
    from the GADT header, instantiating as above, to get "G alpha beta" which will get
    unified withy "G Int b".

    Test cases: T18809, HardRecordUpdate.

-}

-- | Desugars a record update @record_expr { fld1 = e1, fld2 = e2}@ into a case expression
-- that matches on the constructors of the record @r@, as described in
-- Note [Record Updates].
--
-- Returns a renamed but not-yet-typechecked expression, together with the
-- result type of this desugared record update.
desugarRecordUpd :: LHsExpr GhcRn
                      -- ^ @record_expr@: expression to which the record update is applied
                 -> [LHsRecUpdField GhcRn]
                      -- ^ the record update fields
                 -> ExpRhoType
                      -- ^ the expected result type of the record update
                 -> TcM ( HsExpr GhcRn
                           -- desugared record update expression
                        , TcType
                           -- result type of desugared record update
                        , SDoc
                           -- error context to push when typechecking
                           -- the desugared code
                        )
desugarRecordUpd record_expr rbnds res_ty
  = do {  -- STEP -2: typecheck the record_expr, the record to be updated
          -- Until GHC proposal #366 is implemented, we still use the type of
          -- the record to disambiguate its fields, so we must infer the record
          -- type here before we can desugar. See Wrinkle [Disambiguating fields]
          -- in Note [Record Updates].
       ; ((_, record_rho), _lie) <- captureConstraints $  -- see (1) below
                                    tcScalingUsage Many $ -- see (2) below
                                    tcInferRho record_expr

            -- (1)
            -- Note that we capture, and then discard, the constraints.
            -- This `tcInferRho` is used *only* to identify the data type,
            -- so we can deal with field disambiguation.
            -- Then we are going to generate a desugared record update, including `record_expr`,
            -- and typecheck it from scratch.  We don't want to generate the constraints twice!

            -- (2)
            -- Record update drops some of the content of the record (namely the
            -- content of the field being updated). As a consequence, unless the
            -- field being updated is unrestricted in the record, we need an
            -- unrestricted record. Currently, we simply always require an
            -- unrestricted record.
            --
            -- Consider the following example:
            --
            -- data R a = R { self :: a }
            -- bad :: a ⊸ ()
            -- bad x = let r = R x in case r { self = () } of { R x' -> x' }
            --
            -- This should definitely *not* typecheck.

       -- STEP -1  See Note [Disambiguating record fields] in GHC.Tc.Gen.Head
       -- After this we know that rbinds is unambiguous
       ; rbinds <- disambiguateRecordBinds record_expr record_rho rbnds res_ty
       ; let upd_flds = map (unLoc . hfbLHS . unLoc) rbinds
             upd_fld_occs = map (FieldLabelString . occNameFS . rdrNameOcc . rdrNameAmbiguousFieldOcc) upd_flds
             sel_ids      = map selectorAmbiguousFieldOcc upd_flds
             upd_fld_names = map idName sel_ids

       -- STEP 0
       -- Check that the field names are really field names
       -- and they are all field names for proper records or
       -- all field names for pattern synonyms.
       ; let bad_guys = [ setSrcSpan loc $ addErrTc (notSelector fld_name)
                        | fld <- rbinds,
                          -- Excludes class ops
                          let L loc sel_id = hsRecUpdFieldId (unLoc fld),
                          not (isRecordSelector sel_id),
                          let fld_name = idName sel_id ]
       ; unless (null bad_guys) (sequence bad_guys >> failM)
       -- See Note [Mixed Record Field Updates]
       ; let (data_sels, pat_syn_sels) =
               partition isDataConRecordSelector sel_ids
       ; massert (all isPatSynRecordSelector pat_syn_sels)
       ; checkTc ( null data_sels || null pat_syn_sels )
                 ( mixedSelectors data_sels pat_syn_sels )

       -- STEP 1
       -- Figure out the tycon and data cons from the first field name
       ; let   -- It's OK to use the non-tc splitters here (for a selector)
             sel_id : _  = sel_ids
             con_likes :: [ConLike]
             con_likes = case idDetails sel_id of
                            RecSelId (RecSelData tc) _
                               -> map RealDataCon (tyConDataCons tc)
                            RecSelId (RecSelPatSyn ps) _
                               -> [PatSynCon ps]
                            _  -> panic "tcRecordUpd"
               -- NB: for a data type family, the tycon is the instance tycon
             relevant_cons = conLikesWithFields con_likes upd_fld_occs
               -- A constructor is only relevant to this process if
               -- it contains *all* the fields that are being updated
               -- Other ones will cause a runtime error if they occur

       -- STEP 2
       -- Check that at least one constructor has all the named fields
       -- i.e. has an empty set of bad fields returned by badFields
       ; case relevant_cons of
         { [] -> failWithTc (badFieldsUpd rbinds con_likes)
         ; relevant_con : _ ->

      -- STEP 3
      -- Create new variables for the fields we are updating,
      -- so that we can share them across constructors.
      --
      -- Example:
      --
      --   e { x=e1, y=e2 }
      --
      -- We want to let-bind variables to `e1` and `e2`:
      --
      --   let x' :: Int
      --       x' = e1
      --       y' :: Bool
      --       y' = e2
      --   in ...

    do { -- Instantiate the type variables of any relevant constuctor
         -- with metavariables to obtain a type for each 'Id'.
         -- This will allow us to have 'Id's with polymorphic types
         -- by using 'IdSig'. See Wrinkle [Using IdSig] in Note [Record Updates].
       ; let (univ_tvs, ex_tvs, eq_spec, _, _, arg_tys, con_res_ty) = conLikeFullSig relevant_con
       ; (subst, tc_tvs) <- newMetaTyVars (univ_tvs ++ ex_tvs)
       ; let (actual_univ_tys, _actual_ex_tys) = splitAtList univ_tvs $ map mkTyVarTy tc_tvs

             -- See Wrinkle [GADT result type in tcRecordUpd]
             -- for an explanation of the following.
             ds_res_ty = case relevant_con of
               RealDataCon con
                 | not (null eq_spec) -- We only need to do this if we have actual GADT equalities.
                 -> mkFamilyTyConApp (dataConTyCon con) actual_univ_tys
               _ -> substTy subst con_res_ty

       -- Gather pairs of let-bound Ids and their right-hand sides,
       -- e.g. (x', e1), (y', e2), ...
       ; let mk_upd_id :: Name -> LHsFieldBind GhcTc fld (LHsExpr GhcRn) -> TcM (Name, (TcId, LHsExpr GhcRn))
             mk_upd_id fld_nm (L _ rbind)
               = do { let Scaled m arg_ty = lookupNameEnv_NF arg_ty_env fld_nm
                          nm_occ = rdrNameOcc . nameRdrName $ fld_nm
                          actual_arg_ty = substTy subst arg_ty
                          rhs = hfbRHS rbind
                    ; (_co, actual_arg_ty) <- hasFixedRuntimeRep (FRRRecordUpdate fld_nm (unLoc rhs)) actual_arg_ty
                      -- We get a better error message by doing a (redundant) representation-polymorphism check here,
                      -- rather than delaying until the typechecker typechecks the let-bindings,
                      -- because the let-bound Ids have internal names.
                      -- (As we will typecheck the let-bindings later, we can drop this coercion here.)
                      -- See RepPolyRecordUpdate test.
                    ; nm <- newNameAt nm_occ generatedSrcSpan
                    ; let id = mkLocalId nm m actual_arg_ty
                      -- NB: create fresh names to avoid any accidental shadowing
                      -- occurring in the RHS expressions when creating the let bindings:
                      --
                      --  let x1 = e1; x2 = e2; ...
                    ; return (fld_nm, (id, rhs))
                    }
             arg_ty_env = mkNameEnv
                        $ zipWith (\ lbl arg_ty -> (flSelector lbl, arg_ty))
                            (conLikeFieldLabels relevant_con)
                            arg_tys

       ; upd_ids <- zipWithM mk_upd_id upd_fld_names rbinds
       ; let updEnv :: UniqMap Name (Id, LHsExpr GhcRn)
             updEnv = listToUniqMap $ upd_ids

             make_pat :: ConLike -> LMatch GhcRn (LHsExpr GhcRn)
             -- As explained in Note [Record Updates], to desugar
             --
             --   e { x=e1, y=e2 }
             --
             -- we generate a case statement, with an equation for
             -- each constructor of the record. For example, for
             -- the constructor
             --
             --   T1 :: { x :: Int, y :: Bool, z :: Char } -> T p q
             --
             -- we let-bind x' = e1, y' = e2 and generate the equation:
             --
             --   T1 _ _ z -> T1 x' y' z
             make_pat conLike = mkSimpleMatch CaseAlt [pat] rhs
               where
                 (lhs_con_pats, rhs_con_args)
                    = zipWithAndUnzip mk_con_arg [1..] con_fields
                 pat = genSimpleConPat con lhs_con_pats
                 rhs = wrapGenSpan $ genHsApps con rhs_con_args
                 con = conLikeName conLike
                 con_fields = conLikeFieldLabels conLike

             mk_con_arg :: Int
                        -> FieldLabel
                        -> ( LPat GhcRn
                              -- LHS constructor pattern argument
                           , LHsExpr GhcRn )
                              -- RHS constructor argument
             mk_con_arg i fld_lbl =
               -- The following generates the pattern matches of the desugared `case` expression.
               -- For fields being updated (for example `x`, `y` in T1 and T4 in Note [Record Updates]),
               -- wildcards are used to avoid creating unused variables.
               case lookupUniqMap updEnv $ flSelector fld_lbl of
                 -- Field is being updated: LHS = wildcard pattern, RHS = appropriate let-bound Id.
                 Just (upd_id, _) -> (genWildPat, genLHsVar (idName upd_id))
                 -- Field is not being updated: LHS = variable pattern, RHS = that same variable.
                 _  -> let fld_nm = mkInternalName (mkBuiltinUnique i)
                                      (mkVarOccFS (field_label $ flLabel fld_lbl))
                                      generatedSrcSpan
                       in (genVarPat fld_nm, genLHsVar fld_nm)

       -- STEP 4
       -- Desugar to HsCase, as per note [Record Updates]
       ; let ds_expr :: HsExpr GhcRn
             ds_expr = HsLet noExtField noHsTok let_binds noHsTok (L gen case_expr)

             case_expr :: HsExpr GhcRn
             case_expr = HsCase noExtField record_expr (mkMatchGroup Generated (wrapGenSpan matches))
             matches :: [LMatch GhcRn (LHsExpr GhcRn)]
             matches = map make_pat relevant_cons

             let_binds :: HsLocalBindsLR GhcRn GhcRn
             let_binds = HsValBinds noAnn $ XValBindsLR
                       $ NValBinds upd_ids_lhs (map mk_idSig upd_ids)
             upd_ids_lhs :: [(RecFlag, LHsBindsLR GhcRn GhcRn)]
             upd_ids_lhs = [ (NonRecursive, unitBag $ genSimpleFunBind (idName id) [] rhs)
                           | (_, (id, rhs)) <- upd_ids ]
             mk_idSig :: (Name, (Id, LHsExpr GhcRn)) -> LSig GhcRn
             mk_idSig (_, (id, _)) = L gen $ XSig $ IdSig id
               -- We let-bind variables using 'IdSig' in order to accept
               -- record updates involving higher-rank types.
               -- See Wrinkle [Using IdSig] in Note [Record Updates].
             gen = noAnnSrcSpan generatedSrcSpan

        ; traceTc "desugarRecordUpd" $
            vcat [ text "relevant_con:" <+> ppr relevant_con
                 , text "res_ty:" <+> ppr res_ty
                 , text "ds_res_ty:" <+> ppr ds_res_ty
                 ]

        ; let cons = pprQuotedList relevant_cons
              err_lines =
                (text "In a record update at field" <> plural upd_fld_names <+> pprQuotedList upd_fld_names :)
                $ case relevant_con of
                     RealDataCon con ->
                        [ text "with type constructor" <+> quotes (ppr (dataConTyCon con))
                        , text "data constructor" <+> plural relevant_cons <+> cons ]
                     PatSynCon {} ->
                        [ text "with pattern synonym" <+> plural relevant_cons <+> cons ]
                ++ if null ex_tvs
                   then []
                   else [ text "existential variable" <> plural ex_tvs <+> pprQuotedList ex_tvs ]
              err_ctxt = make_lines_msg err_lines

        ; return (ds_expr, ds_res_ty, err_ctxt) } } }

-- | Pretty-print a collection of lines, adding commas at the end of each line,
-- and adding "and" to the start of the last line.
make_lines_msg :: [SDoc] -> SDoc
make_lines_msg []      = empty
make_lines_msg [last]  = ppr last <> dot
make_lines_msg [l1,l2] = l1 $$ text "and" <+> l2 <> dot
make_lines_msg (l:ls)  = l <> comma $$ make_lines_msg ls

{- *********************************************************************
*                                                                      *
                 Record bindings
*                                                                      *
********************************************************************* -}

-- Disambiguate the fields in a record update.
-- See Note [Disambiguating record fields] in GHC.Tc.Gen.Head
disambiguateRecordBinds :: LHsExpr GhcRn -> TcRhoType
                 -> [LHsRecUpdField GhcRn] -> ExpRhoType
                 -> TcM [LHsFieldBind GhcTc (LAmbiguousFieldOcc GhcTc) (LHsExpr GhcRn)]
disambiguateRecordBinds record_expr record_rho rbnds res_ty
    -- Are all the fields unambiguous?
  = case mapM isUnambiguous rbnds of
                     -- If so, just skip to looking up the Ids
                     -- Always the case if DuplicateRecordFields is off
      Just rbnds' -> mapM lookupSelector rbnds'
      Nothing     -> -- If not, try to identify a single parent
        do { fam_inst_envs <- tcGetFamInstEnvs
             -- Look up the possible parents for each field
           ; rbnds_with_parents <- getUpdFieldsParents
           ; let possible_parents = map (map fst . snd) rbnds_with_parents
             -- Identify a single parent
           ; p <- identifyParent fam_inst_envs possible_parents
             -- Pick the right selector with that parent for each field
           ; checkNoErrs $ mapM (pickParent p) rbnds_with_parents }
  where
    -- Extract the selector name of a field update if it is unambiguous
    isUnambiguous :: LHsRecUpdField GhcRn -> Maybe (LHsRecUpdField GhcRn,Name)
    isUnambiguous x = case unLoc (hfbLHS (unLoc x)) of
                        Unambiguous sel_name _ -> Just (x, sel_name)
                        Ambiguous{}            -> Nothing

    -- Look up the possible parents and selector GREs for each field
    getUpdFieldsParents :: TcM [(LHsRecUpdField GhcRn
                                , [(RecSelParent, GlobalRdrElt)])]
    getUpdFieldsParents
      = fmap (zip rbnds) $ mapM
          (lookupParents False . unLoc . hsRecUpdFieldRdr . unLoc)
          rbnds

    -- Given a the lists of possible parents for each field,
    -- identify a single parent
    identifyParent :: FamInstEnvs -> [[RecSelParent]] -> TcM RecSelParent
    identifyParent fam_inst_envs possible_parents
      = case foldr1 intersect possible_parents of
        -- No parents for all fields: record update is ill-typed
        []  -> failWithTc (TcRnNoPossibleParentForFields rbnds)

        -- Exactly one datatype with all the fields: use that
        [p] -> return p

        -- Multiple possible parents: try harder to disambiguate
        -- Can we get a parent TyCon from the pushed-in type?
        _:_ | Just p <- tyConOfET fam_inst_envs res_ty ->
              do { reportAmbiguousField p
                 ; return (RecSelData p) }

        -- Does the expression being updated have a type signature?
        -- If so, try to extract a parent TyCon from it
            | Just {} <- obviousSig (unLoc record_expr)
            , Just tc <- tyConOf fam_inst_envs record_rho
            -> do { reportAmbiguousField tc
                  ; return (RecSelData tc) }

        -- Nothing else we can try...
        _ -> failWithTc (TcRnBadOverloadedRecordUpdate rbnds)

    -- Make a field unambiguous by choosing the given parent.
    -- Emits an error if the field cannot have that parent,
    -- e.g. if the user writes
    --     r { x = e } :: T
    -- where T does not have field x.
    pickParent :: RecSelParent
               -> (LHsRecUpdField GhcRn, [(RecSelParent, GlobalRdrElt)])
               -> TcM (LHsFieldBind GhcTc (LAmbiguousFieldOcc GhcTc) (LHsExpr GhcRn))
    pickParent p (upd, xs)
      = case lookup p xs of
                      -- Phew! The parent is valid for this field.
                      -- Previously ambiguous fields must be marked as
                      -- used now that we know which one is meant, but
                      -- unambiguous ones shouldn't be recorded again
                      -- (giving duplicate deprecation warnings).
          Just gre -> do { unless (null (tail xs)) $ do
                             let L loc _ = hfbLHS (unLoc upd)
                             setSrcSpanA loc $ addUsedGRE True gre
                         ; lookupSelector (upd, greMangledName gre) }
                      -- The field doesn't belong to this parent, so report
                      -- an error but keep going through all the fields
          Nothing  -> do { addErrTc (fieldNotInType p
                                      (unLoc (hsRecUpdFieldRdr (unLoc upd))))
                         ; lookupSelector (upd, greMangledName (snd (head xs))) }

    -- Given a (field update, selector name) pair, look up the
    -- selector to give a field update with an unambiguous Id
    lookupSelector :: (LHsRecUpdField GhcRn, Name)
                 -> TcM (LHsFieldBind GhcRn (LAmbiguousFieldOcc GhcTc) (LHsExpr GhcRn))
    lookupSelector (L l upd, n)
      = do { i <- tcLookupId n
           ; let L loc af = hfbLHS upd
                 lbl      = rdrNameAmbiguousFieldOcc af
           ; return $ L l HsFieldBind
               { hfbAnn = hfbAnn upd
               , hfbLHS
                       = L (l2l loc) (Unambiguous i (L (l2l loc) lbl))
               , hfbRHS = hfbRHS upd
               , hfbPun = hfbPun upd
               }
           }

    -- See Note [Deprecating ambiguous fields] in GHC.Tc.Gen.Head
    reportAmbiguousField :: TyCon -> TcM ()
    reportAmbiguousField parent_type =
        setSrcSpan loc $ addDiagnostic $ TcRnAmbiguousField rupd parent_type
      where
        rupd = RecordUpd { rupd_expr = record_expr, rupd_flds = Left rbnds, rupd_ext = noExtField }
        loc  = getLocA (head rbnds)

{-
Game plan for record bindings
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1. Find the TyCon for the bindings, from the first field label.

2. Instantiate its tyvars and unify (T a1 .. an) with expected_ty.

For each binding field = value

3. Instantiate the field type (from the field label) using the type
   envt from step 2.

4  Type check the value using tcCheckPolyExprNC (in tcRecordField),
   passing the field type as the expected argument type.

This extends OK when the field types are universally quantified.
-}

tcRecordBinds
        :: ConLike
        -> [TcType]     -- Expected type for each field
        -> HsRecordBinds GhcRn
        -> TcM (HsRecordBinds GhcTc)

tcRecordBinds con_like arg_tys (HsRecFields rbinds dd)
  = do  { mb_binds <- mapM do_bind rbinds
        ; return (HsRecFields (catMaybes mb_binds) dd) }
  where
    fields = map flSelector $ conLikeFieldLabels con_like
    flds_w_tys = zipEqual "tcRecordBinds" fields arg_tys

    do_bind :: LHsRecField GhcRn (LHsExpr GhcRn)
            -> TcM (Maybe (LHsRecField GhcTc (LHsExpr GhcTc)))
    do_bind (L l fld@(HsFieldBind { hfbLHS = f
                                 , hfbRHS = rhs }))

      = do { mb <- tcRecordField con_like flds_w_tys f rhs
           ; case mb of
               Nothing         -> return Nothing
               -- Just (f', rhs') -> return (Just (L l (fld { hfbLHS = f'
               --                                            , hfbRHS = rhs' }))) }
               Just (f', rhs') -> return (Just (L l (HsFieldBind
                                                     { hfbAnn = hfbAnn fld
                                                     , hfbLHS = f'
                                                     , hfbRHS = rhs'
                                                     , hfbPun = hfbPun fld}))) }


tcRecordField :: ConLike -> Assoc Name Type
              -> LFieldOcc GhcRn -> LHsExpr GhcRn
              -> TcM (Maybe (LFieldOcc GhcTc, LHsExpr GhcTc))
tcRecordField con_like flds_w_tys (L loc (FieldOcc sel_name lbl)) rhs
  | Just field_ty <- assocMaybe flds_w_tys sel_name
      = addErrCtxt (fieldCtxt field_lbl) $
        do { rhs' <- tcCheckPolyExprNC rhs field_ty
           ; hasFixedRuntimeRep_syntactic (FRRRecordCon (unLoc lbl) (unLoc rhs'))
                field_ty
           ; let field_id = mkUserLocal (nameOccName sel_name)
                                        (nameUnique sel_name)
                                        Many field_ty (locA loc)
                -- Yuk: the field_id has the *unique* of the selector Id
                --          (so we can find it easily)
                --      but is a LocalId with the appropriate type of the RHS
                --          (so the desugarer knows the type of local binder to make)
           ; return (Just (L loc (FieldOcc field_id lbl), rhs')) }
      | otherwise
      = do { addErrTc (badFieldConErr (getName con_like) field_lbl)
           ; return Nothing }
  where
        field_lbl = FieldLabelString $ occNameFS $ rdrNameOcc (unLoc lbl)


checkMissingFields ::  ConLike -> HsRecordBinds GhcRn -> [Scaled TcType] -> TcM ()
checkMissingFields con_like rbinds arg_tys
  | null field_labels   -- Not declared as a record;
                        -- But C{} is still valid if no strict fields
  = if any isBanged field_strs then
        -- Illegal if any arg is strict
        addErrTc (TcRnMissingStrictFields con_like [])
    else do
        when (notNull field_strs && null field_labels) $ do
          let msg = TcRnMissingFields con_like []
          (diagnosticTc True msg)

  | otherwise = do              -- A record
    unless (null missing_s_fields) $ do
        fs <- zonk_fields missing_s_fields
        -- It is an error to omit a strict field, because
        -- we can't substitute it with (error "Missing field f")
        addErrTc (TcRnMissingStrictFields con_like fs)

    warn <- woptM Opt_WarnMissingFields
    when (warn && notNull missing_ns_fields) $ do
        fs <- zonk_fields missing_ns_fields
        -- It is not an error (though we may want) to omit a
        -- lazy field, because we can always use
        -- (error "Missing field f") instead.
        let msg = TcRnMissingFields con_like fs
        diagnosticTc True msg

  where
    -- we zonk the fields to get better types in error messages (#18869)
    zonk_fields fs = forM fs $ \(str,ty) -> do
        ty' <- zonkTcType ty
        return (str,ty')
    missing_s_fields
        = [ (flLabel fl, scaledThing ty) | (fl,str,ty) <- field_info,
                 isBanged str,
                 not (fl `elemField` field_names_used)
          ]
    missing_ns_fields
        = [ (flLabel fl, scaledThing ty) | (fl,str,ty) <- field_info,
                 not (isBanged str),
                 not (fl `elemField` field_names_used)
          ]

    field_names_used = hsRecFields rbinds
    field_labels     = conLikeFieldLabels con_like

    field_info = zip3 field_labels field_strs arg_tys

    field_strs = conLikeImplBangs con_like

    fl `elemField` flds = any (\ fl' -> flSelector fl == fl') flds

{-
************************************************************************
*                                                                      *
\subsection{Errors and contexts}
*                                                                      *
************************************************************************

Boring and alphabetical:
-}

fieldCtxt :: FieldLabelString -> SDoc
fieldCtxt field_name
  = text "In the" <+> quotes (ppr field_name) <+> text "field of a record"

badFieldsUpd
  :: [LHsFieldBind GhcTc (LAmbiguousFieldOcc GhcTc) (LHsExpr GhcRn)]
               -- Field names that don't belong to a single datacon
  -> [ConLike] -- Data cons of the type which the first field name belongs to
  -> TcRnMessage
badFieldsUpd rbinds data_cons
  = TcRnNoConstructorHasAllFields conflictingFields
          -- See Note [Finding the conflicting fields]
  where
    -- A (preferably small) set of fields such that no constructor contains
    -- all of them.  See Note [Finding the conflicting fields]
    conflictingFields = case nonMembers of
        -- nonMember belongs to a different type.
        (nonMember, _) : _ -> [aMember, nonMember]
        [] -> let
            -- All of rbinds belong to one type. In this case, repeatedly add
            -- a field to the set until no constructor contains the set.

            -- Each field, together with a list indicating which constructors
            -- have all the fields so far.
            growingSets :: [(FieldLabelString, [Bool])]
            growingSets = scanl1 combine membership
            combine (_, setMem) (field, fldMem)
              = (field, zipWith (&&) setMem fldMem)
            in
            -- Fields that don't change the membership status of the set
            -- are redundant and can be dropped.
            map (fst . NE.head) $ NE.groupWith snd growingSets

    aMember = assert (not (null members) ) fst (head members)
    (members, nonMembers) = partition (or . snd) membership

    -- For each field, which constructors contain the field?
    membership :: [(FieldLabelString, [Bool])]
    membership = sortMembership $
        map (\fld -> (fld, map (fld `elementOfUniqSet`) fieldLabelSets)) $
          map (FieldLabelString . occNameFS . rdrNameOcc . rdrNameAmbiguousFieldOcc . unLoc . hfbLHS . unLoc) rbinds

    fieldLabelSets :: [UniqSet FieldLabelString]
    fieldLabelSets = map (mkUniqSet . map flLabel . conLikeFieldLabels) data_cons

    -- Sort in order of increasing number of True, so that a smaller
    -- conflicting set can be found.
    sortMembership =
      map snd .
      sortBy (compare `on` fst) .
      map (\ item@(_, membershipRow) -> (countTrue membershipRow, item))

    countTrue = count id

{-
Note [Finding the conflicting fields]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have
  data A = A {a0, a1 :: Int}
         | B {b0, b1 :: Int}
and we see a record update
  x { a0 = 3, a1 = 2, b0 = 4, b1 = 5 }
Then we'd like to find the smallest subset of fields that no
constructor has all of.  Here, say, {a0,b0}, or {a0,b1}, etc.
We don't really want to report that no constructor has all of
{a0,a1,b0,b1}, because when there are hundreds of fields it's
hard to see what was really wrong.

We may need more than two fields, though; eg
  data T = A { x,y :: Int, v::Int }
          | B { y,z :: Int, v::Int }
          | C { z,x :: Int, v::Int }
with update
   r { x=e1, y=e2, z=e3 }, we

Finding the smallest subset is hard, so the code here makes
a decent stab, no more.  See #7989.
-}

mixedSelectors :: [Id] -> [Id] -> TcRnMessage
mixedSelectors data_sels@(dc_rep_id:_) pat_syn_sels@(ps_rep_id:_)
  = TcRnMixedSelectors (tyConName rep_dc) data_sels (patSynName rep_ps) pat_syn_sels
  where
    RecSelPatSyn rep_ps = recordSelectorTyCon ps_rep_id
    RecSelData rep_dc = recordSelectorTyCon dc_rep_id
mixedSelectors _ _ = panic "GHC.Tc.Gen.Expr: mixedSelectors emptylists"

{-
************************************************************************
*                                                                      *
\subsection{Static Pointers}
*                                                                      *
************************************************************************
-}

-- | Checks if the given name is closed and emits an error if not.
--
-- See Note [Not-closed error messages].
checkClosedInStaticForm :: Name -> TcM ()
checkClosedInStaticForm name = do
    type_env <- getLclTypeEnv
    case checkClosed type_env name of
      Nothing -> return ()
      Just reason -> addErrTc $ explain name reason
  where
    -- See Note [Checking closedness].
    checkClosed :: TcTypeEnv -> Name -> Maybe NotClosedReason
    checkClosed type_env n = checkLoop type_env (unitNameSet n) n

    checkLoop :: TcTypeEnv -> NameSet -> Name -> Maybe NotClosedReason
    checkLoop type_env visited n =
      -- The @visited@ set is an accumulating parameter that contains the set of
      -- visited nodes, so we avoid repeating cycles in the traversal.
      case lookupNameEnv type_env n of
        Just (ATcId { tct_id = tcid, tct_info = info }) -> case info of
          ClosedLet   -> Nothing
          NotLetBound -> Just NotLetBoundReason
          NonClosedLet fvs type_closed -> listToMaybe $
            -- Look for a non-closed variable in fvs
            [ NotClosed n' reason
            | n' <- nameSetElemsStable fvs
            , not (elemNameSet n' visited)
            , Just reason <- [checkLoop type_env (extendNameSet visited n') n']
            ] ++
            if type_closed then
              []
            else
              -- We consider non-let-bound variables easier to figure out than
              -- non-closed types, so we report non-closed types to the user
              -- only if we cannot spot the former.
              [ NotTypeClosed $ tyCoVarsOfType (idType tcid) ]
        -- The binding is closed.
        _ -> Nothing

    -- Converts a reason into a human-readable sentence.
    --
    -- @explain name reason@ starts with
    --
    -- "<name> is used in a static form but it is not closed because it"
    --
    -- and then follows a list of causes. For each id in the path, the text
    --
    -- "uses <id> which"
    --
    -- is appended, yielding something like
    --
    -- "uses <id> which uses <id1> which uses <id2> which"
    --
    -- until the end of the path is reached, which is reported as either
    --
    -- "is not let-bound"
    --
    -- when the final node is not let-bound, or
    --
    -- "has a non-closed type because it contains the type variables:
    -- v1, v2, v3"
    --
    -- when the final node has a non-closed type.
    --
    explain :: Name -> NotClosedReason -> TcRnMessage
    explain = TcRnStaticFormNotClosed

-- Note [Not-closed error messages]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
--
-- When variables in a static form are not closed, we go through the trouble
-- of explaining why they aren't.
--
-- Thus, the following program
--
-- > {-# LANGUAGE StaticPointers #-}
-- > module M where
-- >
-- > f x = static g
-- >   where
-- >     g = h
-- >     h = x
--
-- produces the error
--
--    'g' is used in a static form but it is not closed because it
--    uses 'h' which uses 'x' which is not let-bound.
--
-- And a program like
--
-- > {-# LANGUAGE StaticPointers #-}
-- > module M where
-- >
-- > import Data.Typeable
-- > import GHC.StaticPtr
-- >
-- > f :: Typeable a => a -> StaticPtr TypeRep
-- > f x = const (static (g undefined)) (h x)
-- >   where
-- >     g = h
-- >     h = typeOf
--
-- produces the error
--
--    'g' is used in a static form but it is not closed because it
--    uses 'h' which has a non-closed type because it contains the
--    type variables: 'a'
--

-- Note [Checking closedness]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~
--
-- @checkClosed@ checks if a binding is closed and returns a reason if it is
-- not.
--
-- The bindings define a graph where the nodes are ids, and there is an edge
-- from @id1@ to @id2@ if the rhs of @id1@ contains @id2@ among its free
-- variables.
--
-- When @n@ is not closed, it has to exist in the graph some node reachable
-- from @n@ that it is not a let-bound variable or that it has a non-closed
-- type. Thus, the "reason" is a path from @n@ to this offending node.
--
-- When @n@ is not closed, we traverse the graph reachable from @n@ to build
-- the reason.
--