summaryrefslogtreecommitdiff
path: root/compiler/GHC/Tc/Solver/Monad.hs
blob: 08982a1a3243f444bd9dcbc3190280d599b7d3e9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
{-# LANGUAGE CPP #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE DerivingStrategies #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MultiWayIf #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE ViewPatterns #-}

{-# OPTIONS_GHC -Wno-orphans #-}

-- | Monadic definitions for the constraint solver
module GHC.Tc.Solver.Monad (

    -- The TcS monad
    TcS, runTcS, runTcSEarlyAbort, runTcSWithEvBinds, runTcSInerts,
    failTcS, warnTcS, addErrTcS, wrapTcS, ctLocWarnTcS,
    runTcSEqualities,
    nestTcS, nestImplicTcS, setEvBindsTcS,
    emitImplicationTcS, emitTvImplicationTcS,
    emitFunDepWanteds,

    selectNextWorkItem,
    getWorkList,
    updWorkListTcS,
    pushLevelNoWorkList,

    runTcPluginTcS, recordUsedGREs,
    matchGlobalInst, TcM.ClsInstResult(..),

    QCInst(..),

    -- The pipeline
    StopOrContinue(..), continueWith, stopWith, andWhenContinue,
    startAgainWith,

    -- Tracing etc
    panicTcS, traceTcS,
    traceFireTcS, bumpStepCountTcS, csTraceTcS,
    wrapErrTcS, wrapWarnTcS,
    resetUnificationFlag, setUnificationFlag,

    -- Evidence creation and transformation
    MaybeNew(..), freshGoals, isFresh, getEvExpr,

    newTcEvBinds, newNoTcEvBinds,
    newWantedEq, emitNewWantedEq,
    newWanted,
    newWantedNC, newWantedEvVarNC,
    newBoundEvVarId,
    unifyTyVar, reportUnifications, touchabilityAndShapeTest,
    setEvBind, setWantedEq,
    setWantedEvTerm, setEvBindIfWanted,
    newEvVar, newGivenEvVar, emitNewGivens,
    checkReductionDepth,
    getSolvedDicts, setSolvedDicts,

    getInstEnvs, getFamInstEnvs,                -- Getting the environments
    getTopEnv, getGblEnv, getLclEnv, setSrcSpan,
    getTcEvBindsVar, getTcLevel,
    getTcEvTyCoVars, getTcEvBindsMap, setTcEvBindsMap,
    tcLookupClass, tcLookupId, tcLookupTyCon,


    -- Inerts
    updInertTcS, updInertCans, updInertDicts, updInertIrreds,
    getHasGivenEqs, setInertCans,
    getInertEqs, getInertCans, getInertGivens,
    getInertInsols, getInnermostGivenEqLevel,
    getTcSInerts, setTcSInerts,
    getUnsolvedInerts,
    removeInertCts, getPendingGivenScs,
    addInertCan, insertFunEq, addInertForAll,
    emitWorkNC, emitWork,
    lookupInertDict,

    -- The Model
    kickOutAfterUnification,

    -- Inert Safe Haskell safe-overlap failures
    addInertSafehask, insertSafeOverlapFailureTcS, updInertSafehask,
    getSafeOverlapFailures,

    -- Inert solved dictionaries
    addSolvedDict, lookupSolvedDict,

    -- Irreds
    foldIrreds,

    -- The family application cache
    lookupFamAppInert, lookupFamAppCache, extendFamAppCache,
    pprKicked,

    -- Instantiation
    instDFunType,

    -- Unification
    wrapUnifierTcS, unifyFunDeps, uPairsTcM,

    -- MetaTyVars
    newFlexiTcSTy, instFlexiX,
    cloneMetaTyVar,
    tcInstSkolTyVarsX,

    TcLevel,
    isFilledMetaTyVar_maybe, isFilledMetaTyVar,
    zonkTyCoVarsAndFV, zonkTcType, zonkTcTypes, zonkTcTyVar, zonkCo,
    zonkTyCoVarsAndFVList,
    zonkSimples, zonkWC,
    zonkTyCoVarKind,

    -- References
    newTcRef, readTcRef, writeTcRef, updTcRef,

    -- Misc
    getDefaultInfo, getDynFlags, getGlobalRdrEnvTcS,
    matchFam, matchFamTcM,
    checkWellStagedDFun,
    pprEq,

    -- Enforcing invariants for type equalities
    checkTypeEq, checkTouchableTyVarEq
) where

import GHC.Prelude

import GHC.Driver.Env

import qualified GHC.Tc.Utils.Instantiate as TcM
import GHC.Core.InstEnv
import GHC.Tc.Instance.Family as FamInst
import GHC.Core.FamInstEnv

import qualified GHC.Tc.Utils.Monad    as TcM
import qualified GHC.Tc.Utils.TcMType  as TcM
import qualified GHC.Tc.Instance.Class as TcM( matchGlobalInst, ClsInstResult(..) )
import qualified GHC.Tc.Utils.Env      as TcM
       ( checkWellStaged, tcGetDefaultTys
       , tcLookupClass, tcLookupId, tcLookupTyCon
       , topIdLvl
       , tcInitTidyEnv )

import GHC.Driver.Session

import GHC.Tc.Instance.Class( safeOverlap, instanceReturnsDictCon )
import GHC.Tc.Instance.FunDeps( FunDepEqn(..) )
import GHC.Tc.Utils.TcType
import GHC.Tc.Solver.Types
import GHC.Tc.Solver.InertSet
import GHC.Tc.Types.Evidence
import GHC.Tc.Errors.Types
import GHC.Tc.Types
import GHC.Tc.Types.Origin
import GHC.Tc.Types.Constraint
import GHC.Tc.Utils.Unify

import GHC.Builtin.Names ( unsatisfiableClassNameKey )

import GHC.Core.Type
import GHC.Core.TyCo.Rep as Rep
import GHC.Core.Coercion
import GHC.Core.Coercion.Axiom( TypeEqn )
import GHC.Core.Predicate
import GHC.Core.Reduction
import GHC.Core.Class
import GHC.Core.TyCon

import GHC.Types.Error ( mkPlainError, noHints )
import GHC.Types.Name
import GHC.Types.TyThing
import GHC.Types.Name.Reader
import GHC.Types.Var
import GHC.Types.Var.Set
import GHC.Types.Unique.Supply
import GHC.Types.Unique.Set( elementOfUniqSet )

import GHC.Unit.Module ( HasModule, getModule, extractModule )
import qualified GHC.Rename.Env as TcM

import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Utils.Logger
import GHC.Utils.Misc (HasDebugCallStack)

import GHC.Data.Bag as Bag
import GHC.Data.Pair

import GHC.Utils.Monad

import GHC.Exts (oneShot)
import Control.Monad
import Data.IORef
import Data.List ( mapAccumL )
import Data.Foldable
import qualified Data.Semigroup as S
import GHC.Types.SrcLoc

#if defined(DEBUG)
import GHC.Types.Unique.Set (nonDetEltsUniqSet)
import GHC.Data.Graph.Directed
#endif

{- *********************************************************************
*                                                                      *
                   StopOrContinue
*                                                                      *
********************************************************************* -}

data StopOrContinue a
  = StartAgain a      -- Constraint is not solved, but some unifications
                      --   happened, so go back to the beginning of the pipeline

  | ContinueWith a    -- The constraint was not solved, although it may have
                      --   been rewritten

  | Stop CtEvidence   -- The (rewritten) constraint was solved
         SDoc         -- Tells how it was solved
                      -- Any new sub-goals have been put on the work list
  deriving (Functor)

instance Outputable a => Outputable (StopOrContinue a) where
  ppr (Stop ev s)      = text "Stop" <> parens s <+> ppr ev
  ppr (ContinueWith w) = text "ContinueWith" <+> ppr w
  ppr (StartAgain w)   = text "StartAgain" <+> ppr w

startAgainWith :: a -> TcS (StopOrContinue a)
startAgainWith ct = return (StartAgain ct)

continueWith :: a -> TcS (StopOrContinue a)
continueWith ct = return (ContinueWith ct)

stopWith :: CtEvidence -> String -> TcS (StopOrContinue a)
stopWith ev s = return (Stop ev (text s))

andWhenContinue :: TcS (StopOrContinue a)
                -> (a -> TcS (StopOrContinue a))
                -> TcS (StopOrContinue a)
andWhenContinue tcs1 tcs2
  = do { r <- tcs1
       ; case r of
           ContinueWith ct -> tcs2 ct
           _               -> return r }
infixr 0 `andWhenContinue`    -- allow chaining with ($)


{- *********************************************************************
*                                                                      *
                   Inert instances: inert_insts
*                                                                      *
********************************************************************* -}

addInertForAll :: QCInst -> TcS ()
-- Add a local Given instance, typically arising from a type signature
addInertForAll new_qci
  = do { ics  <- getInertCans
       ; ics1 <- add_qci ics

       -- Update given equalities. C.f updateGivenEqs
       ; tclvl <- getTcLevel
       ; let pred         = qci_pred new_qci
             not_equality = isClassPred pred && not (isEqPred pred)
                  -- True <=> definitely not an equality
                  -- A qci_pred like (f a) might be an equality

             ics2 | not_equality = ics1
                  | otherwise    = ics1 { inert_given_eq_lvl = tclvl
                                        , inert_given_eqs    = True }

       ; setInertCans ics2 }
  where
    add_qci :: InertCans -> TcS InertCans
    -- See Note [Do not add duplicate quantified instances]
    add_qci ics@(IC { inert_insts = qcis })
      | any same_qci qcis
      = do { traceTcS "skipping duplicate quantified instance" (ppr new_qci)
           ; return ics }

      | otherwise
      = do { traceTcS "adding new inert quantified instance" (ppr new_qci)
           ; return (ics { inert_insts = new_qci : qcis }) }

    same_qci old_qci = tcEqType (ctEvPred (qci_ev old_qci))
                                (ctEvPred (qci_ev new_qci))

{- Note [Do not add duplicate quantified instances]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
As an optimisation, we avoid adding duplicate quantified instances to the
inert set; we use a simple duplicate check using tcEqType for simplicity,
even though it doesn't account for superficial differences, e.g. it will count
the following two constraints as different (#22223):

  - forall a b. C a b
  - forall b a. C a b

The main logic that allows us to pick local instances, even in the presence of
duplicates, is explained in Note [Use only the best matching quantified constraint]
in GHC.Tc.Solver.Interact.
-}

{- *********************************************************************
*                                                                      *
                  Adding an inert
*                                                                      *
************************************************************************

Note [Adding an equality to the InertCans]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When adding an equality to the inerts:

* Kick out any constraints that can be rewritten by the thing
  we are adding.  Done by kickOutRewritable.

* Note that unifying a:=ty, is like adding [G] a~ty; just use
  kickOutRewritable with Nominal, Given.  See kickOutAfterUnification.

Note [Kick out existing binding for implicit parameter]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have (typecheck/should_compile/ImplicitParamFDs)
  flub :: (?x :: Int) => (Int, Integer)
  flub = (?x, let ?x = 5 in ?x)
When we are checking the last ?x occurrence, we guess its type
to be a fresh unification variable alpha and emit an (IP "x" alpha)
constraint. But the given (?x :: Int) has been translated to an
IP "x" Int constraint, which has a functional dependency from the
name to the type. So fundep interaction tells us that alpha ~ Int,
and we get a type error. This is bad.

Instead, we wish to excise any old given for an IP when adding a
new one. We also must make sure not to float out
any IP constraints outside an implication that binds an IP of
the same name; see GHC.Tc.Solver.floatConstraints.
-}

addInertCan :: Ct -> TcS ()
-- Precondition: item /is/ canonical
-- See Note [Adding an equality to the InertCans]
addInertCan ct =
    do { traceTcS "addInertCan {" $
         text "Trying to insert new inert item:" <+> ppr ct
       ; mkTcS (\TcSEnv{tcs_abort_on_insoluble=abort_flag} ->
                 when (abort_flag && insolubleEqCt ct) TcM.failM)
       ; ics <- getInertCans
       ; ics <- maybeKickOut ics ct
       ; tclvl <- getTcLevel
       ; setInertCans (addInertItem tclvl ics ct)

       ; traceTcS "addInertCan }" $ empty }

maybeKickOut :: InertCans -> Ct -> TcS InertCans
-- For a CEqCan, kick out any inert that can be rewritten by the CEqCan
maybeKickOut ics ct
  | CEqCan eq_ct <- ct
  = do { (_, ics') <- kickOutRewritable (KOAfterAdding (eqCtLHS eq_ct))
                                        (eqCtFlavourRole eq_ct) ics
       ; return ics' }

     -- See [Kick out existing binding for implicit parameter]
  | isGivenCt ct
  , CDictCan { cc_class = cls, cc_tyargs = [ip_name_strty, _ip_ty] } <- ct
  , isIPClass cls
  , Just ip_name <- isStrLitTy ip_name_strty
     -- Would this be more efficient if we used findDictsByClass and then delDict?
  = let dict_map = inert_dicts ics
        dict_map' = filterDicts doesn't_match_ip_name dict_map

        doesn't_match_ip_name :: Ct -> Bool
        doesn't_match_ip_name ct
          | Just (inert_ip_name, _inert_ip_ty) <- isIPPred_maybe (ctPred ct)
          = inert_ip_name /= ip_name

          | otherwise
          = True

    in
    return (ics { inert_dicts = dict_map' })

  | otherwise
  = return ics

-----------------------------------------
kickOutRewritable  :: KickOutSpec -> CtFlavourRole
                   -> InertCans -> TcS (Int, InertCans)
kickOutRewritable ko_spec new_fr ics
  = do { let (kicked_out, ics') = kickOutRewritableLHS ko_spec new_fr ics
             n_kicked = lengthBag kicked_out

       ; unless (isEmptyBag kicked_out) $
         do { emitWork kicked_out

              -- The famapp-cache contains Given evidence from the inert set.
              -- If we're kicking out Givens, we need to remove this evidence
              -- from the cache, too.
            ; let kicked_given_ev_vars = foldr add_one emptyVarSet kicked_out
                  add_one :: Ct -> VarSet -> VarSet
                  add_one ct vs | CtGiven { ctev_evar = ev_var } <- ctEvidence ct
                                = vs `extendVarSet` ev_var
                                | otherwise = vs

            ; when (new_fr `eqCanRewriteFR` (Given, NomEq) &&
                   -- if this isn't true, no use looking through the constraints
                    not (isEmptyVarSet kicked_given_ev_vars)) $
              do { traceTcS "Given(s) have been kicked out; drop from famapp-cache"
                            (ppr kicked_given_ev_vars)
                 ; dropFromFamAppCache kicked_given_ev_vars }

            ; csTraceTcS $
              hang (text "Kick out")
                 2 (vcat [ text "n-kicked =" <+> int n_kicked
                         , text "kicked_out =" <+> ppr kicked_out
                         , text "Residual inerts =" <+> ppr ics' ]) }

       ; return (n_kicked, ics') }

kickOutAfterUnification :: [TcTyVar] -> TcS Int
kickOutAfterUnification tvs
  | null tvs
  = return 0
  | otherwise
  = do { ics <- getInertCans
       ; let tv_set = mkVarSet tvs
       ; (n_kicked, ics2) <- kickOutRewritable (KOAfterUnify tv_set)
                                               (Given, NomEq) ics
                              -- Given because the tv := xi is given; NomEq because
                              -- only nominal equalities are solved by unification
       ; setInertCans ics2

       -- Set the unification flag if we have done outer unifications
       -- that might affect an earlier implication constraint
       ; let min_tv_lvl = foldr1 minTcLevel (map tcTyVarLevel tvs)
       ; ambient_lvl <- getTcLevel
       ; when (ambient_lvl `strictlyDeeperThan` min_tv_lvl) $
         setUnificationFlag min_tv_lvl

       ; traceTcS "kickOutAfterUnification" (ppr tvs $$ text "n_kicked =" <+> ppr n_kicked)
       ; return n_kicked }

kickOutAfterFillingCoercionHole :: CoercionHole -> TcS ()
-- See Wrinkle (EIK2) in Note [Equalities with incompatible kinds] in GHC.Tc.Solver.Canonical
-- It's possible that this could just go ahead and unify, but could there be occurs-check
-- problems? Seems simpler just to kick out.
kickOutAfterFillingCoercionHole hole
  = do { ics <- getInertCans
       ; let (kicked_out, ics') = kick_out ics
             n_kicked           = lengthBag kicked_out

       ; unless (n_kicked == 0) $
         do { updWorkListTcS (extendWorkListCts kicked_out)
            ; csTraceTcS $
              hang (text "Kick out, hole =" <+> ppr hole)
                 2 (vcat [ text "n-kicked =" <+> int n_kicked
                         , text "kicked_out =" <+> ppr kicked_out
                         , text "Residual inerts =" <+> ppr ics' ]) }

       ; setInertCans ics' }
  where
    kick_out :: InertCans -> (Cts, InertCans)
    kick_out ics@(IC { inert_irreds = irreds })
      = -- We only care about irreds here, because any constraint blocked
        -- by a coercion hole is an irred.  See wrinkle (EIK2a) in
        -- Note [Equalities with incompatible kinds] in GHC.Tc.Solver.Canonical
        (irreds_to_kick, ics { inert_irreds = irreds_to_keep })
      where
        (irreds_to_kick, irreds_to_keep) = partitionBag kick_ct irreds

    kick_ct :: Ct -> Bool
         -- True: kick out; False: keep.
    kick_ct ct
      | CIrredCan { cc_ev = ev, cc_reason = reason } <- ct
      , CtWanted { ctev_rewriters = RewriterSet rewriters } <- ev
      , NonCanonicalReason ctyeq <- reason
      , ctyeq `cterHasProblem` cteCoercionHole
      , hole `elementOfUniqSet` rewriters
      = True
      | otherwise
      = False

--------------
addInertSafehask :: InertCans -> Ct -> InertCans
addInertSafehask ics item@(CDictCan { cc_class = cls, cc_tyargs = tys })
  = ics { inert_safehask = addDict (inert_dicts ics) cls tys item }

addInertSafehask _ item
  = pprPanic "addInertSafehask: can't happen! Inserting " $ ppr item

insertSafeOverlapFailureTcS :: InstanceWhat -> Ct -> TcS ()
-- See Note [Safe Haskell Overlapping Instances Implementation] in GHC.Tc.Solver
insertSafeOverlapFailureTcS what item
  | safeOverlap what = return ()
  | otherwise        = updInertCans (\ics -> addInertSafehask ics item)

getSafeOverlapFailures :: TcS Cts
-- See Note [Safe Haskell Overlapping Instances Implementation] in GHC.Tc.Solver
getSafeOverlapFailures
 = do { IC { inert_safehask = safehask } <- getInertCans
      ; return $ foldDicts consCts safehask emptyCts }

--------------
addSolvedDict :: InstanceWhat -> CtEvidence -> Class -> [Type] -> TcS ()
-- Conditionally add a new item in the solved set of the monad
-- See Note [Solved dictionaries] in GHC.Tc.Solver.InertSet
addSolvedDict what item cls tys
  | isWanted item
  , instanceReturnsDictCon what
  = do { traceTcS "updSolvedSetTcs:" $ ppr item
       ; updInertTcS $ \ ics ->
             ics { inert_solved_dicts = addDict (inert_solved_dicts ics) cls tys item } }
  | otherwise
  = return ()

getSolvedDicts :: TcS (DictMap CtEvidence)
getSolvedDicts = do { ics <- getTcSInerts; return (inert_solved_dicts ics) }

setSolvedDicts :: DictMap CtEvidence -> TcS ()
setSolvedDicts solved_dicts
  = updInertTcS $ \ ics ->
    ics { inert_solved_dicts = solved_dicts }

{- *********************************************************************
*                                                                      *
                  Other inert-set operations
*                                                                      *
********************************************************************* -}

updInertTcS :: (InertSet -> InertSet) -> TcS ()
-- Modify the inert set with the supplied function
updInertTcS upd_fn
  = do { is_var <- getTcSInertsRef
       ; wrapTcS (do { curr_inert <- TcM.readTcRef is_var
                     ; TcM.writeTcRef is_var (upd_fn curr_inert) }) }

getInertCans :: TcS InertCans
getInertCans = do { inerts <- getTcSInerts; return (inert_cans inerts) }

setInertCans :: InertCans -> TcS ()
setInertCans ics = updInertTcS $ \ inerts -> inerts { inert_cans = ics }

updRetInertCans :: (InertCans -> (a, InertCans)) -> TcS a
-- Modify the inert set with the supplied function
updRetInertCans upd_fn
  = do { is_var <- getTcSInertsRef
       ; wrapTcS (do { inerts <- TcM.readTcRef is_var
                     ; let (res, cans') = upd_fn (inert_cans inerts)
                     ; TcM.writeTcRef is_var (inerts { inert_cans = cans' })
                     ; return res }) }

updInertCans :: (InertCans -> InertCans) -> TcS ()
-- Modify the inert set with the supplied function
updInertCans upd_fn
  = updInertTcS $ \ inerts -> inerts { inert_cans = upd_fn (inert_cans inerts) }

updInertDicts :: (DictMap Ct -> DictMap Ct) -> TcS ()
-- Modify the inert set with the supplied function
updInertDicts upd_fn
  = updInertCans $ \ ics -> ics { inert_dicts = upd_fn (inert_dicts ics) }

updInertSafehask :: (DictMap Ct -> DictMap Ct) -> TcS ()
-- Modify the inert set with the supplied function
updInertSafehask upd_fn
  = updInertCans $ \ ics -> ics { inert_safehask = upd_fn (inert_safehask ics) }

updInertIrreds :: (Cts -> Cts) -> TcS ()
-- Modify the inert set with the supplied function
updInertIrreds upd_fn
  = updInertCans $ \ ics -> ics { inert_irreds = upd_fn (inert_irreds ics) }

getInertEqs :: TcS InertEqs
getInertEqs = do { inert <- getInertCans; return (inert_eqs inert) }

getInnermostGivenEqLevel :: TcS TcLevel
getInnermostGivenEqLevel = do { inert <- getInertCans
                              ; return (inert_given_eq_lvl inert) }

-- | Retrieves all insoluble constraints from the inert set,
-- specifically including Given constraints.
--
-- This consists of:
--
--  - insoluble equalities, such as @Int ~# Bool@;
--  - constraints that are top-level custom type errors, of the form
--    @TypeError msg@, but not constraints such as @Eq (TypeError msg)@
--    in which the type error is nested;
--  - unsatisfiable constraints, of the form @Unsatisfiable msg@.
--
-- The inclusion of Givens is important for pattern match warnings, as we
-- want to consider a pattern match that introduces insoluble Givens to be
-- redundant (see Note [Pattern match warnings with insoluble Givens] in GHC.Tc.Solver).
getInertInsols :: TcS Cts
getInertInsols = do { inert <- getInertCans
                    ; let irreds = inert_irreds inert
                          unsats = findDictsByTyConKey (inert_dicts inert) unsatisfiableClassNameKey
                    ; return $ unsats `unionBags` filterBag insolubleCt irreds }

getInertGivens :: TcS [Ct]
-- Returns the Given constraints in the inert set
getInertGivens
  = do { inerts <- getInertCans
       ; let all_cts = foldIrreds (:) (inert_irreds inerts)
                     $ foldDicts  (:) (inert_dicts inerts)
                     $ foldFunEqs ((:) . CEqCan) (inert_funeqs inerts)
                     $ foldTyEqs  ((:) . CEqCan) (inert_eqs inerts)
                     $ []
       ; return (filter isGivenCt all_cts) }

getPendingGivenScs :: TcS [Ct]
-- Find all inert Given dictionaries, or quantified constraints, such that
--     1. cc_pend_sc flag has fuel strictly > 0
--     2. belongs to the current level
-- For each such dictionary:
-- * Return it (with unmodified cc_pend_sc) in sc_pending
-- * Modify the dict in the inert set to have cc_pend_sc = doNotExpand
--   to record that we have expanded superclasses for this dict
getPendingGivenScs = do { lvl <- getTcLevel
                        ; updRetInertCans (get_sc_pending lvl) }

get_sc_pending :: TcLevel -> InertCans -> ([Ct], InertCans)
get_sc_pending this_lvl ic@(IC { inert_dicts = dicts, inert_insts = insts })
  = assertPpr (all isGivenCt sc_pending) (ppr sc_pending)
       -- When getPendingScDics is called,
       -- there are never any Wanteds in the inert set
    (sc_pending, ic { inert_dicts = dicts', inert_insts = insts' })
  where
    sc_pending = sc_pend_insts ++ sc_pend_dicts

    sc_pend_dicts = foldDicts get_pending dicts []
    dicts' = foldr exhaustAndAdd dicts sc_pend_dicts

    (sc_pend_insts, insts') = mapAccumL get_pending_inst [] insts

    get_pending :: Ct -> [Ct] -> [Ct]  -- Get dicts with cc_pend_sc > 0
    get_pending dict dicts
        | isPendingScDict dict
        , belongs_to_this_level (ctEvidence dict)
        = dict : dicts
        | otherwise
        = dicts

    exhaustAndAdd :: Ct -> DictMap Ct -> DictMap Ct
    exhaustAndAdd ct@(CDictCan { cc_class = cls, cc_tyargs = tys }) dicts
    -- exhaust the fuel for this constraint before adding it as
    -- we don't want to expand these constraints again
        = addDict dicts cls tys (ct {cc_pend_sc = doNotExpand})
    exhaustAndAdd ct _ = pprPanic "getPendingScDicts" (ppr ct)

    get_pending_inst :: [Ct] -> QCInst -> ([Ct], QCInst)
    get_pending_inst cts qci@(QCI { qci_ev = ev })
       | Just qci' <- pendingScInst_maybe qci
       , belongs_to_this_level ev
       = (CQuantCan qci : cts, qci')
       -- qci' have their fuel exhausted
       -- we don't want to expand these constraints again
       -- qci is expanded
       | otherwise
       = (cts, qci)

    belongs_to_this_level ev = ctLocLevel (ctEvLoc ev) == this_lvl
    -- We only want Givens from this level; see (3a) in
    -- Note [The superclass story] in GHC.Tc.Solver.Canonical

getUnsolvedInerts :: TcS ( Bag Implication
                         , Cts )   -- All simple constraints
-- Return all the unsolved [Wanted] constraints
--
-- Post-condition: the returned simple constraints are all fully zonked
--                     (because they come from the inert set)
--                 the unsolved implics may not be
getUnsolvedInerts
 = do { IC { inert_eqs     = tv_eqs
           , inert_funeqs  = fun_eqs
           , inert_irreds  = irreds
           , inert_dicts   = idicts
           } <- getInertCans

      ; let unsolved_tv_eqs  = foldTyEqs add_if_unsolved_eq tv_eqs emptyCts
            unsolved_fun_eqs = foldFunEqs add_if_unsolved_eq fun_eqs emptyCts
            unsolved_irreds  = Bag.filterBag isWantedCt irreds
            unsolved_dicts   = foldDicts add_if_unsolved idicts emptyCts
            unsolved_others  = unionManyBags [ unsolved_irreds
                                             , unsolved_dicts ]

      ; implics <- getWorkListImplics

      ; traceTcS "getUnsolvedInerts" $
        vcat [ text " tv eqs =" <+> ppr unsolved_tv_eqs
             , text "fun eqs =" <+> ppr unsolved_fun_eqs
             , text "others =" <+> ppr unsolved_others
             , text "implics =" <+> ppr implics ]

      ; return ( implics, unsolved_tv_eqs `unionBags`
                          unsolved_fun_eqs `unionBags`
                          unsolved_others) }
  where
    add_if_unsolved :: Ct -> Cts -> Cts
    add_if_unsolved ct cts | isWantedCt ct = ct `consCts` cts
                           | otherwise     = cts

    add_if_unsolved_eq :: EqCt -> Cts -> Cts
    add_if_unsolved_eq eq_ct cts | isWanted (eq_ev eq_ct) = CEqCan eq_ct `consCts` cts
                                 | otherwise              = cts

getHasGivenEqs :: TcLevel           -- TcLevel of this implication
               -> TcS ( HasGivenEqs -- are there Given equalities?
                      , Cts )       -- Insoluble equalities arising from givens
-- See Note [Tracking Given equalities] in GHC.Tc.Solver.InertSet
getHasGivenEqs tclvl
  = do { inerts@(IC { inert_irreds       = irreds
                    , inert_given_eqs    = given_eqs
                    , inert_given_eq_lvl = ge_lvl })
              <- getInertCans
       ; let given_insols = filterBag insoluble_given_equality irreds
                      -- Specifically includes ones that originated in some
                      -- outer context but were refined to an insoluble by
                      -- a local equality; so no level-check needed

             -- See Note [HasGivenEqs] in GHC.Tc.Types.Constraint, and
             -- Note [Tracking Given equalities] in GHC.Tc.Solver.InertSet
             has_ge | ge_lvl == tclvl = MaybeGivenEqs
                    | given_eqs       = LocalGivenEqs
                    | otherwise       = NoGivenEqs

       ; traceTcS "getHasGivenEqs" $
         vcat [ text "given_eqs:" <+> ppr given_eqs
              , text "ge_lvl:" <+> ppr ge_lvl
              , text "ambient level:" <+> ppr tclvl
              , text "Inerts:" <+> ppr inerts
              , text "Insols:" <+> ppr given_insols]
       ; return (has_ge, given_insols) }
  where
    insoluble_given_equality ct
       = insolubleEqCt ct && isGivenCt ct

removeInertCts :: [Ct] -> InertCans -> InertCans
-- ^ Remove inert constraints from the 'InertCans', for use when a
-- typechecker plugin wishes to discard a given.
removeInertCts cts icans = foldl' removeInertCt icans cts

removeInertCt :: InertCans -> Ct -> InertCans
removeInertCt is ct =
  case ct of

    CDictCan  { cc_class = cl, cc_tyargs = tys } ->
      is { inert_dicts = delDict (inert_dicts is) cl tys }

    CEqCan    eq_ct  -> delEq is eq_ct

    CIrredCan {}     -> is { inert_irreds = filterBag (not . eqCt ct) $ inert_irreds is }

    CQuantCan {}     -> panic "removeInertCt: CQuantCan"
    CNonCanonical {} -> panic "removeInertCt: CNonCanonical"

eqCt :: Ct -> Ct -> Bool
-- Equality via ctEvId
eqCt c c' = ctEvId c == ctEvId c'

-- | Looks up a family application in the inerts.
lookupFamAppInert :: (CtFlavourRole -> Bool)  -- can it rewrite the target?
                  -> TyCon -> [Type] -> TcS (Maybe (Reduction, CtFlavourRole))
lookupFamAppInert rewrite_pred fam_tc tys
  = do { IS { inert_cans = IC { inert_funeqs = inert_funeqs } } <- getTcSInerts
       ; return (lookup_inerts inert_funeqs) }
  where
    lookup_inerts inert_funeqs
      | Just ecl <- findFunEq inert_funeqs fam_tc tys
      , Just (EqCt { eq_ev = ctev, eq_rhs = rhs })
          <- find (rewrite_pred . eqCtFlavourRole) ecl
      = Just (mkReduction (ctEvCoercion ctev) rhs, ctEvFlavourRole ctev)
      | otherwise = Nothing

lookupInInerts :: CtLoc -> TcPredType -> TcS (Maybe CtEvidence)
-- Is this exact predicate type cached in the solved or canonicals of the InertSet?
lookupInInerts loc pty
  | ClassPred cls tys <- classifyPredType pty
  = do { inerts <- getTcSInerts
       ; let mb_solved = lookupSolvedDict inerts loc cls tys
             mb_inert  = fmap ctEvidence (lookupInertDict (inert_cans inerts) loc cls tys)
       ; return $ do -- Maybe monad
            found_ev <- mb_solved `mplus` mb_inert

            -- We're about to "solve" the wanted we're looking up, so we
            -- must make sure doing so wouldn't run afoul of
            -- Note [Solving superclass constraints] in GHC.Tc.TyCl.Instance.
            -- Forgetting this led to #20666.
            guard $ not (prohibitedSuperClassSolve (ctEvLoc found_ev) loc)

            return found_ev }
  | otherwise -- NB: No caching for equalities, IPs, holes, or errors
  = return Nothing

-- | Look up a dictionary inert.
lookupInertDict :: InertCans -> CtLoc -> Class -> [Type] -> Maybe Ct
lookupInertDict (IC { inert_dicts = dicts }) loc cls tys
  = case findDict dicts loc cls tys of
      Just ct -> Just ct
      _       -> Nothing

-- | Look up a solved inert.
lookupSolvedDict :: InertSet -> CtLoc -> Class -> [Type] -> Maybe CtEvidence
-- Returns just if exactly this predicate type exists in the solved.
lookupSolvedDict (IS { inert_solved_dicts = solved }) loc cls tys
  = case findDict solved loc cls tys of
      Just ev -> Just ev
      _       -> Nothing

---------------------------
lookupFamAppCache :: TyCon -> [Type] -> TcS (Maybe Reduction)
lookupFamAppCache fam_tc tys
  = do { IS { inert_famapp_cache = famapp_cache } <- getTcSInerts
       ; case findFunEq famapp_cache fam_tc tys of
           result@(Just redn) ->
             do { traceTcS "famapp_cache hit" (vcat [ ppr (mkTyConApp fam_tc tys)
                                                    , ppr redn ])
                ; return result }
           Nothing -> return Nothing }

extendFamAppCache :: TyCon -> [Type] -> Reduction -> TcS ()
-- NB: co :: rhs ~ F tys, to match expectations of rewriter
extendFamAppCache tc xi_args stuff@(Reduction _ ty)
  = do { dflags <- getDynFlags
       ; when (gopt Opt_FamAppCache dflags) $
    do { traceTcS "extendFamAppCache" (vcat [ ppr tc <+> ppr xi_args
                                            , ppr ty ])
       ; updInertTcS $ \ is@(IS { inert_famapp_cache = fc }) ->
            is { inert_famapp_cache = insertFunEq fc tc xi_args stuff } } }

-- Remove entries from the cache whose evidence mentions variables in the
-- supplied set
dropFromFamAppCache :: VarSet -> TcS ()
dropFromFamAppCache varset
  = do { inerts@(IS { inert_famapp_cache = famapp_cache }) <- getTcSInerts
       ; let filtered = filterTcAppMap check famapp_cache
       ; setTcSInerts $ inerts { inert_famapp_cache = filtered } }
  where
    check :: Reduction -> Bool
    check redn
      = not (anyFreeVarsOfCo (`elemVarSet` varset) $ reductionCoercion redn)

{- *********************************************************************
*                                                                      *
                   Irreds
*                                                                      *
********************************************************************* -}

foldIrreds :: (Ct -> b -> b) -> Cts -> b -> b
foldIrreds k irreds z = foldr k z irreds

{-
************************************************************************
*                                                                      *
*              The TcS solver monad                                    *
*                                                                      *
************************************************************************

Note [The TcS monad]
~~~~~~~~~~~~~~~~~~~~
The TcS monad is a weak form of the main Tc monad

All you can do is
    * fail
    * allocate new variables
    * fill in evidence variables

Filling in a dictionary evidence variable means to create a binding
for it, so TcS carries a mutable location where the binding can be
added.  This is initialised from the innermost implication constraint.
-}

data TcSEnv
  = TcSEnv {
      tcs_ev_binds    :: EvBindsVar,

      tcs_unified     :: IORef Int,
         -- The number of unification variables we have filled
         -- The important thing is whether it is non-zero

      tcs_unif_lvl  :: IORef (Maybe TcLevel),
         -- The Unification Level Flag
         -- Outermost level at which we have unified a meta tyvar
         -- Starts at Nothing, then (Just i), then (Just j) where j<i
         -- See Note [The Unification Level Flag]

      tcs_count     :: IORef Int, -- Global step count

      tcs_inerts    :: IORef InertSet, -- Current inert set

      -- Whether to throw an exception if we come across an insoluble constraint.
      -- Used to fail-fast when checking for hole-fits. See Note [Speeding up
      -- valid hole-fits].
      tcs_abort_on_insoluble :: Bool,

      -- See Note [WorkList priorities] in GHC.Tc.Solver.InertSet
      tcs_worklist  :: IORef WorkList -- Current worklist
    }

---------------
newtype TcS a = TcS { unTcS :: TcSEnv -> TcM a }
  deriving (Functor)

instance MonadFix TcS where
  mfix k = TcS $ \env -> mfix (\x -> unTcS (k x) env)

-- | Smart constructor for 'TcS', as describe in Note [The one-shot state
-- monad trick] in "GHC.Utils.Monad".
mkTcS :: (TcSEnv -> TcM a) -> TcS a
mkTcS f = TcS (oneShot f)

instance Applicative TcS where
  pure x = mkTcS $ \_ -> return x
  (<*>) = ap

instance Monad TcS where
  m >>= k   = mkTcS $ \ebs -> do
    unTcS m ebs >>= (\r -> unTcS (k r) ebs)

instance MonadIO TcS where
  liftIO act = TcS $ \_env -> liftIO act

instance MonadFail TcS where
  fail err  = mkTcS $ \_ -> fail err

instance MonadUnique TcS where
   getUniqueSupplyM = wrapTcS getUniqueSupplyM

instance HasModule TcS where
   getModule = wrapTcS getModule

instance MonadThings TcS where
   lookupThing n = wrapTcS (lookupThing n)

-- Basic functionality
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
wrapTcS :: TcM a -> TcS a
-- Do not export wrapTcS, because it promotes an arbitrary TcM to TcS,
-- and TcS is supposed to have limited functionality
wrapTcS action = mkTcS $ \_env -> action -- a TcM action will not use the TcEvBinds

wrap2TcS :: (TcM a -> TcM a) -> TcS a -> TcS a
wrap2TcS fn (TcS thing) = mkTcS $ \env -> fn (thing env)

wrapErrTcS :: TcM a -> TcS a
-- The thing wrapped should just fail
-- There's no static check; it's up to the user
-- Having a variant for each error message is too painful
wrapErrTcS = wrapTcS

wrapWarnTcS :: TcM a -> TcS a
-- The thing wrapped should just add a warning, or no-op
-- There's no static check; it's up to the user
wrapWarnTcS = wrapTcS

panicTcS  :: SDoc -> TcS a
failTcS   :: TcRnMessage -> TcS a
warnTcS, addErrTcS :: TcRnMessage -> TcS ()
failTcS      = wrapTcS . TcM.failWith
warnTcS msg  = wrapTcS (TcM.addDiagnostic msg)
addErrTcS    = wrapTcS . TcM.addErr
panicTcS doc = pprPanic "GHC.Tc.Solver.Canonical" doc

-- | Emit a warning within the 'TcS' monad at the location given by the 'CtLoc'.
ctLocWarnTcS :: CtLoc -> TcRnMessage -> TcS ()
ctLocWarnTcS loc msg = wrapTcS $ TcM.setCtLocM loc $ TcM.addDiagnostic msg

traceTcS :: String -> SDoc -> TcS ()
traceTcS herald doc = wrapTcS (TcM.traceTc herald doc)
{-# INLINE traceTcS #-}  -- see Note [INLINE conditional tracing utilities]

runTcPluginTcS :: TcPluginM a -> TcS a
runTcPluginTcS = wrapTcS . runTcPluginM

instance HasDynFlags TcS where
    getDynFlags = wrapTcS getDynFlags

getGlobalRdrEnvTcS :: TcS GlobalRdrEnv
getGlobalRdrEnvTcS = wrapTcS TcM.getGlobalRdrEnv

bumpStepCountTcS :: TcS ()
bumpStepCountTcS = mkTcS $ \env ->
  do { let ref = tcs_count env
     ; n <- TcM.readTcRef ref
     ; TcM.writeTcRef ref (n+1) }

csTraceTcS :: SDoc -> TcS ()
csTraceTcS doc
  = wrapTcS $ csTraceTcM (return doc)
{-# INLINE csTraceTcS #-}  -- see Note [INLINE conditional tracing utilities]

traceFireTcS :: CtEvidence -> SDoc -> TcS ()
-- Dump a rule-firing trace
traceFireTcS ev doc
  = mkTcS $ \env -> csTraceTcM $
    do { n <- TcM.readTcRef (tcs_count env)
       ; tclvl <- TcM.getTcLevel
       ; return (hang (text "Step" <+> int n
                       <> brackets (text "l:" <> ppr tclvl <> comma <>
                                    text "d:" <> ppr (ctLocDepth (ctEvLoc ev)))
                       <+> doc <> colon)
                     4 (ppr ev)) }
{-# INLINE traceFireTcS #-}  -- see Note [INLINE conditional tracing utilities]

csTraceTcM :: TcM SDoc -> TcM ()
-- Constraint-solver tracing, -ddump-cs-trace
csTraceTcM mk_doc
  = do { logger <- getLogger
       ; when (  logHasDumpFlag logger Opt_D_dump_cs_trace
                  || logHasDumpFlag logger Opt_D_dump_tc_trace)
              ( do { msg <- mk_doc
                   ; TcM.dumpTcRn False
                       Opt_D_dump_cs_trace
                       "" FormatText
                       msg }) }
{-# INLINE csTraceTcM #-}  -- see Note [INLINE conditional tracing utilities]

runTcS :: TcS a                -- What to run
       -> TcM (a, EvBindMap)
runTcS tcs
  = do { ev_binds_var <- TcM.newTcEvBinds
       ; res <- runTcSWithEvBinds ev_binds_var tcs
       ; ev_binds <- TcM.getTcEvBindsMap ev_binds_var
       ; return (res, ev_binds) }

-- | This variant of 'runTcS' will immediately fail upon encountering an
-- insoluble ct. See Note [Speeding up valid hole-fits]. Its one usage
-- site does not need the ev_binds, so we do not return them.
runTcSEarlyAbort :: TcS a -> TcM a
runTcSEarlyAbort tcs
  = do { ev_binds_var <- TcM.newTcEvBinds
       ; runTcSWithEvBinds' True True ev_binds_var tcs }

-- | This can deal only with equality constraints.
runTcSEqualities :: TcS a -> TcM a
runTcSEqualities thing_inside
  = do { ev_binds_var <- TcM.newNoTcEvBinds
       ; runTcSWithEvBinds ev_binds_var thing_inside }

-- | A variant of 'runTcS' that takes and returns an 'InertSet' for
-- later resumption of the 'TcS' session.
runTcSInerts :: InertSet -> TcS a -> TcM (a, InertSet)
runTcSInerts inerts tcs = do
  ev_binds_var <- TcM.newTcEvBinds
  runTcSWithEvBinds' False False ev_binds_var $ do
    setTcSInerts inerts
    a <- tcs
    new_inerts <- getTcSInerts
    return (a, new_inerts)

runTcSWithEvBinds :: EvBindsVar
                  -> TcS a
                  -> TcM a
runTcSWithEvBinds = runTcSWithEvBinds' True False

runTcSWithEvBinds' :: Bool -- ^ Restore type variable cycles afterwards?
                           -- Don't if you want to reuse the InertSet.
                           -- See also Note [Type equality cycles]
                           -- in GHC.Tc.Solver.Canonical
                   -> Bool
                   -> EvBindsVar
                   -> TcS a
                   -> TcM a
runTcSWithEvBinds' restore_cycles abort_on_insoluble ev_binds_var tcs
  = do { unified_var <- TcM.newTcRef 0
       ; step_count <- TcM.newTcRef 0
       ; inert_var <- TcM.newTcRef emptyInert
       ; wl_var <- TcM.newTcRef emptyWorkList
       ; unif_lvl_var <- TcM.newTcRef Nothing
       ; let env = TcSEnv { tcs_ev_binds           = ev_binds_var
                          , tcs_unified            = unified_var
                          , tcs_unif_lvl           = unif_lvl_var
                          , tcs_count              = step_count
                          , tcs_inerts             = inert_var
                          , tcs_abort_on_insoluble = abort_on_insoluble
                          , tcs_worklist           = wl_var }

             -- Run the computation
       ; res <- unTcS tcs env

       ; count <- TcM.readTcRef step_count
       ; when (count > 0) $
         csTraceTcM $ return (text "Constraint solver steps =" <+> int count)

       ; when restore_cycles $
         do { inert_set <- TcM.readTcRef inert_var
            ; restoreTyVarCycles inert_set }

#if defined(DEBUG)
       ; ev_binds <- TcM.getTcEvBindsMap ev_binds_var
       ; checkForCyclicBinds ev_binds
#endif

       ; return res }

----------------------------
#if defined(DEBUG)
checkForCyclicBinds :: EvBindMap -> TcM ()
checkForCyclicBinds ev_binds_map
  | null cycles
  = return ()
  | null coercion_cycles
  = TcM.traceTc "Cycle in evidence binds" $ ppr cycles
  | otherwise
  = pprPanic "Cycle in coercion bindings" $ ppr coercion_cycles
  where
    ev_binds = evBindMapBinds ev_binds_map

    cycles :: [[EvBind]]
    cycles = [c | CyclicSCC c <- stronglyConnCompFromEdgedVerticesUniq edges]

    coercion_cycles = [c | c <- cycles, any is_co_bind c]
    is_co_bind (EvBind { eb_lhs = b }) = isEqPrimPred (varType b)

    edges :: [ Node EvVar EvBind ]
    edges = [ DigraphNode bind bndr (nonDetEltsUniqSet (evVarsOfTerm rhs))
            | bind@(EvBind { eb_lhs = bndr, eb_rhs = rhs}) <- bagToList ev_binds ]
            -- It's OK to use nonDetEltsUFM here as
            -- stronglyConnCompFromEdgedVertices is still deterministic even
            -- if the edges are in nondeterministic order as explained in
            -- Note [Deterministic SCC] in GHC.Data.Graph.Directed.
#endif

----------------------------
setEvBindsTcS :: EvBindsVar -> TcS a -> TcS a
setEvBindsTcS ref (TcS thing_inside)
 = TcS $ \ env -> thing_inside (env { tcs_ev_binds = ref })

nestImplicTcS :: EvBindsVar
              -> TcLevel -> TcS a
              -> TcS a
nestImplicTcS ref inner_tclvl (TcS thing_inside)
  = TcS $ \ TcSEnv { tcs_unified            = unified_var
                   , tcs_inerts             = old_inert_var
                   , tcs_count              = count
                   , tcs_unif_lvl           = unif_lvl
                   , tcs_abort_on_insoluble = abort_on_insoluble
                   } ->
    do { inerts <- TcM.readTcRef old_inert_var
       ; let nest_inert = inerts { inert_cycle_breakers = pushCycleBreakerVarStack
                                                            (inert_cycle_breakers inerts)
                                 , inert_cans = (inert_cans inerts)
                                                   { inert_given_eqs = False } }
                 -- All other InertSet fields are inherited
       ; new_inert_var <- TcM.newTcRef nest_inert
       ; new_wl_var    <- TcM.newTcRef emptyWorkList
       ; let nest_env = TcSEnv { tcs_count              = count     -- Inherited
                               , tcs_unif_lvl           = unif_lvl  -- Inherited
                               , tcs_ev_binds           = ref
                               , tcs_unified            = unified_var
                               , tcs_inerts             = new_inert_var
                               , tcs_abort_on_insoluble = abort_on_insoluble
                               , tcs_worklist           = new_wl_var }
       ; res <- TcM.setTcLevel inner_tclvl $
                thing_inside nest_env

       ; out_inert_set <- TcM.readTcRef new_inert_var
       ; restoreTyVarCycles out_inert_set

#if defined(DEBUG)
       -- Perform a check that the thing_inside did not cause cycles
       ; ev_binds <- TcM.getTcEvBindsMap ref
       ; checkForCyclicBinds ev_binds
#endif
       ; return res }

nestTcS ::  TcS a -> TcS a
-- Use the current untouchables, augmenting the current
-- evidence bindings, and solved dictionaries
-- But have no effect on the InertCans, or on the inert_famapp_cache
-- (we want to inherit the latter from processing the Givens)
nestTcS (TcS thing_inside)
  = TcS $ \ env@(TcSEnv { tcs_inerts = inerts_var }) ->
    do { inerts <- TcM.readTcRef inerts_var
       ; new_inert_var <- TcM.newTcRef inerts
       ; new_wl_var    <- TcM.newTcRef emptyWorkList
       ; let nest_env = env { tcs_inerts   = new_inert_var
                            , tcs_worklist = new_wl_var }

       ; res <- thing_inside nest_env

       ; new_inerts <- TcM.readTcRef new_inert_var

       -- we want to propagate the safe haskell failures
       ; let old_ic = inert_cans inerts
             new_ic = inert_cans new_inerts
             nxt_ic = old_ic { inert_safehask = inert_safehask new_ic }

       ; TcM.writeTcRef inerts_var  -- See Note [Propagate the solved dictionaries]
                        (inerts { inert_solved_dicts = inert_solved_dicts new_inerts
                                , inert_cans = nxt_ic })

       ; return res }

emitImplicationTcS :: TcLevel -> SkolemInfoAnon
                   -> [TcTyVar]        -- Skolems
                   -> [EvVar]          -- Givens
                   -> Cts              -- Wanteds
                   -> TcS TcEvBinds
-- Add an implication to the TcS monad work-list
emitImplicationTcS new_tclvl skol_info skol_tvs givens wanteds
  = do { let wc = emptyWC { wc_simple = wanteds }
       ; imp <- wrapTcS $
                do { ev_binds_var <- TcM.newTcEvBinds
                   ; imp <- TcM.newImplication
                   ; return (imp { ic_tclvl  = new_tclvl
                                 , ic_skols  = skol_tvs
                                 , ic_given  = givens
                                 , ic_wanted = wc
                                 , ic_binds  = ev_binds_var
                                 , ic_info   = skol_info }) }

       ; emitImplication imp
       ; return (TcEvBinds (ic_binds imp)) }

emitTvImplicationTcS :: TcLevel -> SkolemInfoAnon
                     -> [TcTyVar]        -- Skolems
                     -> Cts              -- Wanteds
                     -> TcS ()
-- Just like emitImplicationTcS but no givens and no bindings
emitTvImplicationTcS new_tclvl skol_info skol_tvs wanteds
  = do { let wc = emptyWC { wc_simple = wanteds }
       ; imp <- wrapTcS $
                do { ev_binds_var <- TcM.newNoTcEvBinds
                   ; imp <- TcM.newImplication
                   ; return (imp { ic_tclvl  = new_tclvl
                                 , ic_skols  = skol_tvs
                                 , ic_wanted = wc
                                 , ic_binds  = ev_binds_var
                                 , ic_info   = skol_info }) }

       ; emitImplication imp }


{- Note [Propagate the solved dictionaries]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's really quite important that nestTcS does not discard the solved
dictionaries from the thing_inside.
Consider
   Eq [a]
   forall b. empty =>  Eq [a]
We solve the simple (Eq [a]), under nestTcS, and then turn our attention to
the implications.  It's definitely fine to use the solved dictionaries on
the inner implications, and it can make a significant performance difference
if you do so.
-}

-- Getters and setters of GHC.Tc.Utils.Env fields
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-- Getter of inerts and worklist
getTcSInertsRef :: TcS (IORef InertSet)
getTcSInertsRef = TcS (return . tcs_inerts)

getTcSWorkListRef :: TcS (IORef WorkList)
getTcSWorkListRef = TcS (return . tcs_worklist)

getTcSInerts :: TcS InertSet
getTcSInerts = getTcSInertsRef >>= readTcRef

setTcSInerts :: InertSet -> TcS ()
setTcSInerts ics = do { r <- getTcSInertsRef; writeTcRef r ics }

getWorkListImplics :: TcS (Bag Implication)
getWorkListImplics
  = do { wl_var <- getTcSWorkListRef
       ; wl_curr <- readTcRef wl_var
       ; return (wl_implics wl_curr) }

pushLevelNoWorkList :: SDoc -> TcS a -> TcS (TcLevel, a)
-- Push the level and run thing_inside
-- However, thing_inside should not generate any work items
#if defined(DEBUG)
pushLevelNoWorkList err_doc (TcS thing_inside)
  = TcS (\env -> TcM.pushTcLevelM $
                 thing_inside (env { tcs_worklist = wl_panic })
        )
  where
    wl_panic  = pprPanic "GHC.Tc.Solver.Monad.buildImplication" err_doc
                         -- This panic checks that the thing-inside
                         -- does not emit any work-list constraints
#else
pushLevelNoWorkList _ (TcS thing_inside)
  = TcS (\env -> TcM.pushTcLevelM (thing_inside env))  -- Don't check
#endif

updWorkListTcS :: (WorkList -> WorkList) -> TcS ()
updWorkListTcS f
  = do { wl_var <- getTcSWorkListRef
       ; updTcRef wl_var f }

emitWorkNC :: [CtEvidence] -> TcS ()
emitWorkNC evs
  | null evs
  = return ()
  | otherwise
  = emitWork (listToBag (map mkNonCanonical evs))

emitWork :: Cts -> TcS ()
emitWork cts
  | isEmptyBag cts    -- Avoid printing, among other work
  = return ()
  | otherwise
  = do { traceTcS "Emitting fresh work" (pprBag cts)
         -- Zonk the rewriter set of Wanteds, because that affects
         -- the prioritisation of the work-list. Suppose a constraint
         -- c1 is rewritten by another, c2.  When c2 gets solved,
         -- c1 has no rewriters, and can be prioritised; see
         -- Note [Prioritise Wanteds with empty RewriterSet]
         -- in GHC.Tc.Types.Constraint wrinkle (WRW1)
       ; cts <- wrapTcS $ mapBagM TcM.zonkCtRewriterSet cts
       ; updWorkListTcS (extendWorkListCts cts) }

emitImplication :: Implication -> TcS ()
emitImplication implic
  = updWorkListTcS (extendWorkListImplic implic)

newTcRef :: a -> TcS (TcRef a)
newTcRef x = wrapTcS (TcM.newTcRef x)

readTcRef :: TcRef a -> TcS a
readTcRef ref = wrapTcS (TcM.readTcRef ref)

writeTcRef :: TcRef a -> a -> TcS ()
writeTcRef ref val = wrapTcS (TcM.writeTcRef ref val)

updTcRef :: TcRef a -> (a->a) -> TcS ()
updTcRef ref upd_fn = wrapTcS (TcM.updTcRef ref upd_fn)

getTcEvBindsVar :: TcS EvBindsVar
getTcEvBindsVar = TcS (return . tcs_ev_binds)

getTcLevel :: TcS TcLevel
getTcLevel = wrapTcS TcM.getTcLevel

getTcEvTyCoVars :: EvBindsVar -> TcS TyCoVarSet
getTcEvTyCoVars ev_binds_var
  = wrapTcS $ TcM.getTcEvTyCoVars ev_binds_var

getTcEvBindsMap :: EvBindsVar -> TcS EvBindMap
getTcEvBindsMap ev_binds_var
  = wrapTcS $ TcM.getTcEvBindsMap ev_binds_var

setTcEvBindsMap :: EvBindsVar -> EvBindMap -> TcS ()
setTcEvBindsMap ev_binds_var binds
  = wrapTcS $ TcM.setTcEvBindsMap ev_binds_var binds

unifyTyVar :: TcTyVar -> TcType -> TcS ()
-- Unify a meta-tyvar with a type
-- We keep track of how many unifications have happened in tcs_unified,
--
-- We should never unify the same variable twice!
unifyTyVar tv ty
  = assertPpr (isMetaTyVar tv) (ppr tv) $
    TcS $ \ env ->
    do { TcM.traceTc "unifyTyVar" (ppr tv <+> text ":=" <+> ppr ty)
       ; TcM.writeMetaTyVar tv ty
       ; TcM.updTcRef (tcs_unified env) (+1) }

reportUnifications :: TcS a -> TcS (Int, a)
reportUnifications (TcS thing_inside)
  = TcS $ \ env ->
    do { inner_unified <- TcM.newTcRef 0
       ; res <- thing_inside (env { tcs_unified = inner_unified })
       ; n_unifs <- TcM.readTcRef inner_unified
       ; TcM.updTcRef (tcs_unified env) (+ n_unifs)
       ; return (n_unifs, res) }

getDefaultInfo ::  TcS ([Type], (Bool, Bool))
getDefaultInfo = wrapTcS TcM.tcGetDefaultTys

getWorkList :: TcS WorkList
getWorkList = do { wl_var <- getTcSWorkListRef
                 ; wrapTcS (TcM.readTcRef wl_var) }

selectNextWorkItem :: TcS (Maybe Ct)
-- Pick which work item to do next
-- See Note [Prioritise equalities]
selectNextWorkItem
  = do { wl_var <- getTcSWorkListRef
       ; wl <- readTcRef wl_var
       ; case selectWorkItem wl of {
           Nothing -> return Nothing ;
           Just (ct, new_wl) ->
    do { -- checkReductionDepth (ctLoc ct) (ctPred ct)
         -- This is done by GHC.Tc.Solver.Interact.chooseInstance
       ; writeTcRef wl_var new_wl
       ; return (Just ct) } } }

-- Just get some environments needed for instance looking up and matching
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

getInstEnvs :: TcS InstEnvs
getInstEnvs = wrapTcS $ TcM.tcGetInstEnvs

getFamInstEnvs :: TcS (FamInstEnv, FamInstEnv)
getFamInstEnvs = wrapTcS $ FamInst.tcGetFamInstEnvs

getTopEnv :: TcS HscEnv
getTopEnv = wrapTcS $ TcM.getTopEnv

getGblEnv :: TcS TcGblEnv
getGblEnv = wrapTcS $ TcM.getGblEnv

getLclEnv :: TcS TcLclEnv
getLclEnv = wrapTcS $ TcM.getLclEnv

setSrcSpan :: RealSrcSpan -> TcS a -> TcS a
setSrcSpan ss = wrap2TcS (TcM.setSrcSpan (RealSrcSpan ss mempty))

tcLookupClass :: Name -> TcS Class
tcLookupClass c = wrapTcS $ TcM.tcLookupClass c

tcLookupId :: Name -> TcS Id
tcLookupId n = wrapTcS $ TcM.tcLookupId n

tcLookupTyCon :: Name -> TcS TyCon
tcLookupTyCon n = wrapTcS $ TcM.tcLookupTyCon n

-- Any use of this function is a bit suspect, because it violates the
-- pure veneer of TcS. But it's just about warnings around unused imports
-- and local constructors (GHC will issue fewer warnings than it otherwise
-- might), so it's not worth losing sleep over.
recordUsedGREs :: Bag GlobalRdrElt -> TcS ()
recordUsedGREs gres
  = do { wrapTcS $ TcM.addUsedGREs gre_list
         -- If a newtype constructor was imported, don't warn about not
         -- importing it...
       ; wrapTcS $ traverse_ (TcM.keepAlive . greName) gre_list }
         -- ...and similarly, if a newtype constructor was defined in the same
         -- module, don't warn about it being unused.
         -- See Note [Tracking unused binding and imports] in GHC.Tc.Utils.

  where
    gre_list = bagToList gres

-- Various smaller utilities [TODO, maybe will be absorbed in the instance matcher]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

checkWellStagedDFun :: CtLoc -> InstanceWhat -> PredType -> TcS ()
-- Check that we do not try to use an instance before it is available.  E.g.
--    instance Eq T where ...
--    f x = $( ... (\(p::T) -> p == p)... )
-- Here we can't use the equality function from the instance in the splice

checkWellStagedDFun loc what pred
  = do
      mbind_lvl <- checkWellStagedInstanceWhat what
      case mbind_lvl of
        Just bind_lvl | bind_lvl > impLevel ->
          wrapTcS $ TcM.setCtLocM loc $ do
              { use_stage <- TcM.getStage
              ; TcM.checkWellStaged (StageCheckInstance what pred) bind_lvl (thLevel use_stage) }
        _ ->
          return ()

-- | Returns the ThLevel of evidence for the solved constraint (if it has evidence)
-- See Note [Well-staged instance evidence]
checkWellStagedInstanceWhat :: InstanceWhat -> TcS (Maybe ThLevel)
checkWellStagedInstanceWhat what
  | TopLevInstance { iw_dfun_id = dfun_id } <- what
    = return $ Just (TcM.topIdLvl dfun_id)
  | BuiltinTypeableInstance tc <- what
    = do
        cur_mod <- extractModule <$> getGblEnv
        return $ Just (if nameIsLocalOrFrom cur_mod (tyConName tc)
                        then outerLevel
                        else impLevel)
  | otherwise = return Nothing

{-
Note [Well-staged instance evidence]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Evidence for instances must obey the same level restrictions as normal bindings.
In particular, it is forbidden to use an instance in a top-level splice in the
module which the instance is defined. This is because the evidence is bound at
the top-level and top-level definitions are forbidden from being using in top-level splices in
the same module.

For example, suppose you have a function..  foo :: Show a => Code Q a -> Code Q ()
then the following program is disallowed,

```
data T a = T a deriving (Show)

main :: IO ()
main =
  let x = $$(foo [|| T () ||])
  in return ()
```

because the `foo` function (used in a top-level splice) requires `Show T` evidence,
which is defined at the top-level and therefore fails with an error that we have violated
the stage restriction.

```
Main.hs:12:14: error:
    • GHC stage restriction:
        instance for ‘Show
                        (T ())’ is used in a top-level splice, quasi-quote, or annotation,
        and must be imported, not defined locally
    • In the expression: foo [|| T () ||]
      In the Template Haskell splice $$(foo [|| T () ||])
      In the expression: $$(foo [|| T () ||])
   |
12 |   let x = $$(foo [|| T () ||])
   |
```

Solving a `Typeable (T t1 ...tn)` constraint generates code that relies on
`$tcT`, the `TypeRep` for `T`; and we must check that this reference to `$tcT`
is well staged.  It's easy to know the stage of `$tcT`: for imported TyCons it
will be `impLevel`, and for local TyCons it will be `toplevel`.

Therefore the `InstanceWhat` type had to be extended with
a special case for `Typeable`, which recorded the TyCon the evidence was for and
could them be used to check that we were not attempting to evidence in a stage incorrect
manner.

-}

pprEq :: TcType -> TcType -> SDoc
pprEq ty1 ty2 = pprParendType ty1 <+> char '~' <+> pprParendType ty2

isFilledMetaTyVar_maybe :: TcTyVar -> TcS (Maybe Type)
isFilledMetaTyVar_maybe tv = wrapTcS (TcM.isFilledMetaTyVar_maybe tv)

isFilledMetaTyVar :: TcTyVar -> TcS Bool
isFilledMetaTyVar tv = wrapTcS (TcM.isFilledMetaTyVar tv)

zonkTyCoVarsAndFV :: TcTyCoVarSet -> TcS TcTyCoVarSet
zonkTyCoVarsAndFV tvs = wrapTcS (TcM.zonkTyCoVarsAndFV tvs)

zonkTyCoVarsAndFVList :: [TcTyCoVar] -> TcS [TcTyCoVar]
zonkTyCoVarsAndFVList tvs = wrapTcS (TcM.zonkTyCoVarsAndFVList tvs)

zonkCo :: Coercion -> TcS Coercion
zonkCo = wrapTcS . TcM.zonkCo

zonkTcType :: TcType -> TcS TcType
zonkTcType ty = wrapTcS (TcM.zonkTcType ty)

zonkTcTypes :: [TcType] -> TcS [TcType]
zonkTcTypes tys = wrapTcS (TcM.zonkTcTypes tys)

zonkTcTyVar :: TcTyVar -> TcS TcType
zonkTcTyVar tv = wrapTcS (TcM.zonkTcTyVar tv)

zonkSimples :: Cts -> TcS Cts
zonkSimples cts = wrapTcS (TcM.zonkSimples cts)

zonkWC :: WantedConstraints -> TcS WantedConstraints
zonkWC wc = wrapTcS (TcM.zonkWC wc)

zonkTyCoVarKind :: TcTyCoVar -> TcS TcTyCoVar
zonkTyCoVarKind tv = wrapTcS (TcM.zonkTyCoVarKind tv)

----------------------------
pprKicked :: Int -> SDoc
pprKicked 0 = empty
pprKicked n = parens (int n <+> text "kicked out")

{- *********************************************************************
*                                                                      *
*              The Unification Level Flag                              *
*                                                                      *
********************************************************************* -}

{- Note [The Unification Level Flag]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider a deep tree of implication constraints
   forall[1] a.                              -- Outer-implic
      C alpha[1]                               -- Simple
      forall[2] c. ....(C alpha[1])....        -- Implic-1
      forall[2] b. ....(alpha[1] ~ Int)....    -- Implic-2

The (C alpha) is insoluble until we know alpha.  We solve alpha
by unifying alpha:=Int somewhere deep inside Implic-2. But then we
must try to solve the Outer-implic all over again. This time we can
solve (C alpha) both in Outer-implic, and nested inside Implic-1.

When should we iterate solving a level-n implication?
Answer: if any unification of a tyvar at level n takes place
        in the ic_implics of that implication.

* What if a unification takes place at level n-1? Then don't iterate
  level n, because we'll iterate level n-1, and that will in turn iterate
  level n.

* What if a unification takes place at level n, in the ic_simples of
  level n?  No need to track this, because the kick-out mechanism deals
  with it.  (We can't drop kick-out in favour of iteration, because kick-out
  works for skolem-equalities, not just unifications.)

So the monad-global Unification Level Flag, kept in tcs_unif_lvl keeps
track of
  - Whether any unifications at all have taken place (Nothing => no unifications)
  - If so, what is the outermost level that has seen a unification (Just lvl)

The iteration is done in the simplify_loop/maybe_simplify_again loop in GHC.Tc.Solver.

It helpful not to iterate unless there is a chance of progress.  #8474 is
an example:

  * There's a deeply-nested chain of implication constraints.
       ?x:alpha => ?y1:beta1 => ... ?yn:betan => [W] ?x:Int

  * From the innermost one we get a [W] alpha[1] ~ Int,
    so we can unify.

  * It's better not to iterate the inner implications, but go all the
    way out to level 1 before iterating -- because iterating level 1
    will iterate the inner levels anyway.

(In the olden days when we "floated" thse Derived constraints, this was
much, much more important -- we got exponential behaviour, as each iteration
produced the same Derived constraint.)
-}


resetUnificationFlag :: TcS Bool
-- We are at ambient level i
-- If the unification flag = Just i, reset it to Nothing and return True
-- Otherwise leave it unchanged and return False
resetUnificationFlag
  = TcS $ \env ->
    do { let ref = tcs_unif_lvl env
       ; ambient_lvl <- TcM.getTcLevel
       ; mb_lvl <- TcM.readTcRef ref
       ; TcM.traceTc "resetUnificationFlag" $
         vcat [ text "ambient:" <+> ppr ambient_lvl
              , text "unif_lvl:" <+> ppr mb_lvl ]
       ; case mb_lvl of
           Nothing       -> return False
           Just unif_lvl | ambient_lvl `strictlyDeeperThan` unif_lvl
                         -> return False
                         | otherwise
                         -> do { TcM.writeTcRef ref Nothing
                               ; return True } }

setUnificationFlag :: TcLevel -> TcS ()
-- (setUnificationFlag i) sets the unification level to (Just i)
-- unless it already is (Just j) where j <= i
setUnificationFlag lvl
  = TcS $ \env ->
    do { let ref = tcs_unif_lvl env
       ; mb_lvl <- TcM.readTcRef ref
       ; case mb_lvl of
           Just unif_lvl | lvl `deeperThanOrSame` unif_lvl
                         -> return ()
           _ -> TcM.writeTcRef ref (Just lvl) }


{- *********************************************************************
*                                                                      *
*                Instantiation etc.
*                                                                      *
********************************************************************* -}

-- Instantiations
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

instDFunType :: DFunId -> [DFunInstType] -> TcS ([TcType], TcThetaType)
instDFunType dfun_id inst_tys
  = wrapTcS $ TcM.instDFunType dfun_id inst_tys

newFlexiTcSTy :: Kind -> TcS TcType
newFlexiTcSTy knd = wrapTcS (TcM.newFlexiTyVarTy knd)

cloneMetaTyVar :: TcTyVar -> TcS TcTyVar
cloneMetaTyVar tv = wrapTcS (TcM.cloneMetaTyVar tv)

instFlexiX :: Subst -> [TKVar] -> TcS Subst
instFlexiX subst tvs = wrapTcS (instFlexiXTcM subst tvs)

instFlexiXTcM :: Subst -> [TKVar] -> TcM Subst
-- Makes fresh tyvar, extends the substitution, and the in-scope set
-- Takes account of the case [k::Type, a::k, ...],
-- where we must substitute for k in a's kind
instFlexiXTcM subst []
  = return subst
instFlexiXTcM subst (tv:tvs)
  = do { uniq <- TcM.newUnique
       ; details <- TcM.newMetaDetails TauTv
       ; let name   = setNameUnique (tyVarName tv) uniq
             kind   = substTyUnchecked subst (tyVarKind tv)
             tv'    = mkTcTyVar name kind details
             subst' = extendTvSubstWithClone subst tv tv'
       ; instFlexiXTcM subst' tvs  }

matchGlobalInst :: DynFlags
                -> Bool      -- True <=> caller is the short-cut solver
                             -- See Note [Shortcut solving: overlap]
                -> Class -> [Type] -> TcS TcM.ClsInstResult
matchGlobalInst dflags short_cut cls tys
  = wrapTcS (TcM.matchGlobalInst dflags short_cut cls tys)

tcInstSkolTyVarsX :: SkolemInfo -> Subst -> [TyVar] -> TcS (Subst, [TcTyVar])
tcInstSkolTyVarsX skol_info subst tvs = wrapTcS $ TcM.tcInstSkolTyVarsX skol_info subst tvs

-- Creating and setting evidence variables and CtFlavors
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

data MaybeNew = Fresh CtEvidence | Cached EvExpr

isFresh :: MaybeNew -> Bool
isFresh (Fresh {})  = True
isFresh (Cached {}) = False

freshGoals :: [MaybeNew] -> [CtEvidence]
freshGoals mns = [ ctev | Fresh ctev <- mns ]

getEvExpr :: MaybeNew -> EvExpr
getEvExpr (Fresh ctev) = ctEvExpr ctev
getEvExpr (Cached evt) = evt

setEvBind :: EvBind -> TcS ()
setEvBind ev_bind
  = do { evb <- getTcEvBindsVar
       ; wrapTcS $ TcM.addTcEvBind evb ev_bind }

-- | Mark variables as used filling a coercion hole
useVars :: CoVarSet -> TcS ()
useVars co_vars
  = do { ev_binds_var <- getTcEvBindsVar
       ; let ref = ebv_tcvs ev_binds_var
       ; wrapTcS $
         do { tcvs <- TcM.readTcRef ref
            ; let tcvs' = tcvs `unionVarSet` co_vars
            ; TcM.writeTcRef ref tcvs' } }

-- | Equalities only
setWantedEq :: HasDebugCallStack => TcEvDest -> Coercion -> TcS ()
setWantedEq (HoleDest hole) co
  = do { useVars (coVarsOfCo co)
       ; fillCoercionHole hole co }
setWantedEq (EvVarDest ev) _ = pprPanic "setWantedEq: EvVarDest" (ppr ev)

-- | Good for both equalities and non-equalities
setWantedEvTerm :: TcEvDest -> Coherence -> EvTerm -> TcS ()
setWantedEvTerm (HoleDest hole) _coherence tm
  | Just co <- evTermCoercion_maybe tm
  = do { useVars (coVarsOfCo co)
       ; fillCoercionHole hole co }
  | otherwise
  = -- See Note [Yukky eq_sel for a HoleDest]
    do { let co_var = coHoleCoVar hole
       ; setEvBind (mkWantedEvBind co_var IsCoherent tm)
       ; fillCoercionHole hole (mkCoVarCo co_var) }

setWantedEvTerm (EvVarDest ev_id) coherence tm
  = setEvBind (mkWantedEvBind ev_id coherence tm)

{- Note [Yukky eq_sel for a HoleDest]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
How can it be that a Wanted with HoleDest gets evidence that isn't
just a coercion? i.e. evTermCoercion_maybe returns Nothing.

Consider [G] forall a. blah => a ~ T
         [W] S ~# T

Then doTopReactEqPred carefully looks up the (boxed) constraint (S ~ T)
in the quantified constraints, and wraps the (boxed) evidence it
gets back in an eq_sel to extract the unboxed (S ~# T).  We can't put
that term into a coercion, so we add a value binding
    h = eq_sel (...)
and the coercion variable h to fill the coercion hole.
We even re-use the CoHole's Id for this binding!

Yuk!
-}

fillCoercionHole :: CoercionHole -> Coercion -> TcS ()
fillCoercionHole hole co
  = do { wrapTcS $ TcM.fillCoercionHole hole co
       ; kickOutAfterFillingCoercionHole hole }

setEvBindIfWanted :: CtEvidence -> Coherence -> EvTerm -> TcS ()
setEvBindIfWanted ev coherence tm
  = case ev of
      CtWanted { ctev_dest = dest } -> setWantedEvTerm dest coherence tm
      _                             -> return ()

newTcEvBinds :: TcS EvBindsVar
newTcEvBinds = wrapTcS TcM.newTcEvBinds

newNoTcEvBinds :: TcS EvBindsVar
newNoTcEvBinds = wrapTcS TcM.newNoTcEvBinds

newEvVar :: TcPredType -> TcS EvVar
newEvVar pred = wrapTcS (TcM.newEvVar pred)

newGivenEvVar :: CtLoc -> (TcPredType, EvTerm) -> TcS CtEvidence
-- Make a new variable of the given PredType,
-- immediately bind it to the given term
-- and return its CtEvidence
-- See Note [Bind new Givens immediately] in GHC.Tc.Types.Constraint
newGivenEvVar loc (pred, rhs)
  = do { new_ev <- newBoundEvVarId pred rhs
       ; return (CtGiven { ctev_pred = pred, ctev_evar = new_ev, ctev_loc = loc }) }

-- | Make a new 'Id' of the given type, bound (in the monad's EvBinds) to the
-- given term
newBoundEvVarId :: TcPredType -> EvTerm -> TcS EvVar
newBoundEvVarId pred rhs
  = do { new_ev <- newEvVar pred
       ; setEvBind (mkGivenEvBind new_ev rhs)
       ; return new_ev }

emitNewGivens :: CtLoc -> [(Role,TcType,TcType,TcCoercion)] -> TcS ()
emitNewGivens loc pts
  = do { evs <- mapM (newGivenEvVar loc) $
                [ (mkPrimEqPredRole role ty1 ty2, evCoercion co)
                | (role, ty1, ty2, co) <- pts
                , not (ty1 `tcEqType` ty2) ] -- Kill reflexive Givens at birth
       ; emitWorkNC evs }

emitNewWantedEq :: CtLoc -> RewriterSet -> Role -> TcType -> TcType -> TcS Coercion
-- | Emit a new Wanted equality into the work-list
emitNewWantedEq loc rewriters role ty1 ty2
  = do { (ev, co) <- newWantedEq loc rewriters role ty1 ty2
       ; updWorkListTcS (extendWorkListEq rewriters (mkNonCanonical ev))
       ; return co }

-- | Create a new Wanted constraint holding a coercion hole
-- for an equality between the two types at the given 'Role'.
newWantedEq :: CtLoc -> RewriterSet -> Role -> TcType -> TcType
            -> TcS (CtEvidence, Coercion)
newWantedEq loc rewriters role ty1 ty2
  = do { hole <- wrapTcS $ TcM.newCoercionHole loc pty
       ; return ( CtWanted { ctev_pred      = pty
                           , ctev_dest      = HoleDest hole
                           , ctev_loc       = loc
                           , ctev_rewriters = rewriters }
                , mkHoleCo hole ) }
  where
    pty = mkPrimEqPredRole role ty1 ty2

-- | Create a new Wanted constraint holding an evidence variable.
--
-- Don't use this for equality constraints: use 'newWantedEq' instead.
newWantedEvVarNC :: CtLoc -> RewriterSet
                 -> TcPredType -> TcS CtEvidence
-- Don't look up in the solved/inerts; we know it's not there
newWantedEvVarNC loc rewriters pty
  = do { new_ev <- newEvVar pty
       ; traceTcS "Emitting new wanted" (ppr new_ev <+> dcolon <+> ppr pty $$
                                         pprCtLoc loc)
       ; return (CtWanted { ctev_pred      = pty
                          , ctev_dest      = EvVarDest new_ev
                          , ctev_loc       = loc
                          , ctev_rewriters = rewriters })}

-- | Like 'newWantedEvVarNC', except it might look up in the inert set
-- to see if an inert already exists, and uses that instead of creating
-- a new Wanted constraint.
--
-- Don't use this for equality constraints: this function is only for
-- constraints with 'EvVarDest'.
newWantedEvVar :: CtLoc -> RewriterSet
               -> TcPredType -> TcS MaybeNew
-- For anything except ClassPred, this is the same as newWantedEvVarNC
newWantedEvVar loc rewriters pty
  = assertPpr (not (isEqPrimPred pty))
      (vcat [ text "newWantedEvVar: HoleDestPred"
            , text "pty:" <+> ppr pty ]) $
    do { mb_ct <- lookupInInerts loc pty
       ; case mb_ct of
            Just ctev
              -> do { traceTcS "newWantedEvVar/cache hit" $ ppr ctev
                    ; return $ Cached (ctEvExpr ctev) }
            _ -> do { ctev <- newWantedEvVarNC loc rewriters pty
                    ; return (Fresh ctev) } }

-- | Create a new Wanted constraint, potentially looking up
-- non-equality constraints in the cache instead of creating
-- a new one from scratch.
--
-- Deals with both equality and non-equality constraints.
newWanted :: CtLoc -> RewriterSet -> PredType -> TcS MaybeNew
newWanted loc rewriters pty
  | Just (role, ty1, ty2) <- getEqPredTys_maybe pty
  = Fresh . fst <$> newWantedEq loc rewriters role ty1 ty2
  | otherwise
  = newWantedEvVar loc rewriters pty

-- | Create a new Wanted constraint.
--
-- Deals with both equality and non-equality constraints.
--
-- Does not attempt to re-use non-equality constraints that already
-- exist in the inert set.
newWantedNC :: CtLoc -> RewriterSet -> PredType -> TcS CtEvidence
newWantedNC loc rewriters pty
  | Just (role, ty1, ty2) <- getEqPredTys_maybe pty
  = fst <$> newWantedEq loc rewriters role ty1 ty2
  | otherwise
  = newWantedEvVarNC loc rewriters pty

-- --------- Check done in GHC.Tc.Solver.Interact.selectNewWorkItem???? ---------
-- | Checks if the depth of the given location is too much. Fails if
-- it's too big, with an appropriate error message.
checkReductionDepth :: CtLoc -> TcType   -- ^ type being reduced
                    -> TcS ()
checkReductionDepth loc ty
  = do { dflags <- getDynFlags
       ; when (subGoalDepthExceeded dflags (ctLocDepth loc)) $
         wrapErrTcS $ solverDepthError loc ty }

matchFam :: TyCon -> [Type] -> TcS (Maybe ReductionN)
matchFam tycon args = wrapTcS $ matchFamTcM tycon args

matchFamTcM :: TyCon -> [Type] -> TcM (Maybe ReductionN)
-- Given (F tys) return (ty, co), where co :: F tys ~N ty
matchFamTcM tycon args
  = do { fam_envs <- FamInst.tcGetFamInstEnvs
       ; let match_fam_result
              = reduceTyFamApp_maybe fam_envs Nominal tycon args
       ; TcM.traceTc "matchFamTcM" $
         vcat [ text "Matching:" <+> ppr (mkTyConApp tycon args)
              , ppr_res match_fam_result ]
       ; return match_fam_result }
  where
    ppr_res Nothing = text "Match failed"
    ppr_res (Just (Reduction co ty))
      = hang (text "Match succeeded:")
          2 (vcat [ text "Rewrites to:" <+> ppr ty
                  , text "Coercion:" <+> ppr co ])

solverDepthError :: CtLoc -> TcType -> TcM a
solverDepthError loc ty
  = TcM.setCtLocM loc $
    do { ty <- TcM.zonkTcType ty
       ; env0 <- TcM.tcInitTidyEnv
       ; let tidy_env     = tidyFreeTyCoVars env0 (tyCoVarsOfTypeList ty)
             tidy_ty      = tidyType tidy_env ty
             msg = mkTcRnUnknownMessage $ mkPlainError noHints $
               vcat [ text "Reduction stack overflow; size =" <+> ppr depth
                      , hang (text "When simplifying the following type:")
                           2 (ppr tidy_ty)
                      , note ]
       ; TcM.failWithTcM (tidy_env, msg) }
  where
    depth = ctLocDepth loc
    note = vcat
      [ text "Use -freduction-depth=0 to disable this check"
      , text "(any upper bound you could choose might fail unpredictably with"
      , text " minor updates to GHC, so disabling the check is recommended if"
      , text " you're sure that type checking should terminate)" ]

{-
************************************************************************
*                                                                      *
              Emitting equalities arising from fundeps
*                                                                      *
************************************************************************
-}

emitFunDepWanteds :: CtEvidence  -- The work item
                  -> [FunDepEqn (CtLoc, RewriterSet)]
                  -> TcS Bool  -- True <=> some unification happened

emitFunDepWanteds _ [] = return False -- common case noop
-- See Note [FunDep and implicit parameter reactions]

emitFunDepWanteds ev fd_eqns
  = unifyFunDeps ev Nominal do_fundeps
  where
    do_fundeps :: UnifyEnv -> TcM ()
    do_fundeps env = mapM_ (do_one env) fd_eqns

    do_one :: UnifyEnv -> FunDepEqn (CtLoc, RewriterSet) -> TcM ()
    do_one uenv (FDEqn { fd_qtvs = tvs, fd_eqs = eqs, fd_loc = (loc, rewriters) })
      = do { eqs' <- instantiate_eqs tvs (reverse eqs)
                     -- (reverse eqs): See Note [Reverse order of fundep equations]
           ; uPairsTcM env_one eqs' }
      where
        env_one = uenv { u_rewriters = u_rewriters uenv S.<> rewriters
                       , u_loc       = loc }

    instantiate_eqs :: [TyVar] -> [TypeEqn] -> TcM [TypeEqn]
    instantiate_eqs tvs eqs
      | null tvs
      = return eqs
      | otherwise
      = do { TcM.traceTc "emitFunDepWanteds 2" (ppr tvs $$ ppr eqs)
           ; subst <- instFlexiXTcM emptySubst tvs  -- Takes account of kind substitution
           ; return [ Pair (substTyUnchecked subst' ty1) ty2
                           -- ty2 does not mention fd_qtvs, so no need to subst it.
                           -- See GHC.Tc.Instance.Fundeps Note [Improving against instances]
                           --     Wrinkle (1)
                    | Pair ty1 ty2 <- eqs
                    , let subst' = extendSubstInScopeSet subst (tyCoVarsOfType ty1) ]
                          -- The free vars of ty1 aren't just fd_qtvs: ty1 is the result
                          -- of matching with the [W] constraint. So we add its free
                          -- vars to InScopeSet, to satisfy substTy's invariants, even
                          -- though ty1 will never (currently) be a poytype, so this
                          -- InScopeSet will never be looked at.
           }

{-
************************************************************************
*                                                                      *
              Unification
*                                                                      *
************************************************************************

Note [wrapUnifierTcS]
~~~~~~~~~~~~~~~~~~~
When decomposing equalities we often create new wanted constraints for
(s ~ t).  But what if s=t?  Then it'd be faster to return Refl right away.

Rather than making an equality test (which traverses the structure of the type,
perhaps fruitlessly), we call uType (via wrapUnifierTcS) to traverse the common
structure, and bales out when it finds a difference by creating a new deferred
Wanted constraint.  But where it succeeds in finding common structure, it just
builds a coercion to reflect it.

This is all much faster than creating a new constraint, putting it in the
work list, picking it out, canonicalising it, etc etc.

Note [unifyFunDeps]
~~~~~~~~~~~~~~~~~~~
The Bool returned by `unifyFunDeps` is True if we have unified a variable
that occurs in the constraint we are trying to solve; it is not in the
inert set so `wrapUnifierTcS` won't kick it out.  Instead we want to send it
back to the start of the pipeline.  Hence the Bool.

It's vital that we don't return (not (null unified)) because the fundeps
may create fresh variables; unifying them (alone) should not make us send
the constraint back to the start, or we'll get an infinite loop.  See
Note [Fundeps with instances, and equality orientation] in GHC.Tc.Solver.Dict
and Note [Improvement orientation] in GHC.Tc.Solver.Equality.
-}

uPairsTcM :: UnifyEnv -> [TypeEqn] -> TcM ()
uPairsTcM uenv eqns = mapM_ (\(Pair ty1 ty2) -> uType uenv ty1 ty2) eqns

unifyFunDeps :: CtEvidence -> Role
             -> (UnifyEnv -> TcM ())
             -> TcS Bool
unifyFunDeps ev role do_unifications
  = do { (_, _, unified) <- wrapUnifierTcS ev role do_unifications
       ; return (any (`elemVarSet` fvs) unified) }
         -- See Note [unifyFunDeps]
  where
    fvs = tyCoVarsOfType (ctEvPred ev)

wrapUnifierTcS :: CtEvidence -> Role
               -> (UnifyEnv -> TcM a)  -- Some calls to uType
               -> TcS (a, Bag Ct, [TcTyVar])
-- Invokes the do_unifications argument, with a suitable UnifyEnv.
-- Emit deferred equalities and kick-out from the inert set as a
-- result of any unifications.
-- Very good short-cut when the two types are equal, or nearly so
-- See Note [wrapUnifierTcS]
--
-- The [TcTyVar] is the list of unification variables that were
-- unified the process; the (Bag Ct) are the deferred constraints.

wrapUnifierTcS ev role do_unifications
  = do { (cos, unified, rewriters, cts) <- wrapTcS $
             do { defer_ref   <- TcM.newTcRef emptyBag
                ; unified_ref <- TcM.newTcRef []
                ; rewriters <- TcM.zonkRewriterSet (ctEvRewriters ev)
                ; let env = UE { u_role      = role
                               , u_rewriters = rewriters
                               , u_loc       = ctEvLoc ev
                               , u_defer     = defer_ref
                               , u_unified   = Just unified_ref}

                ; cos <- do_unifications env

                ; cts     <- TcM.readTcRef defer_ref
                ; unified <- TcM.readTcRef unified_ref
                ; return (cos, unified, rewriters, cts) }

       -- Emit the deferred constraints
       -- See Note [Work-list ordering] in GHC.Tc.Solved.Equality
       ; unless (isEmptyBag cts) $
         updWorkListTcS (extendWorkListEqs rewriters cts)

       -- And kick out any inert constraint that we have unified
       ; _ <- kickOutAfterUnification unified

       ; return (cos, cts, unified) }


{-
************************************************************************
*                                                                      *
              Breaking type variable cycles
*                                                                      *
************************************************************************
-}

checkTouchableTyVarEq
   :: CtEvidence
   -> TcTyVar    -- A touchable meta-tyvar
   -> TcType     -- The RHS
   -> TcS (PuResult () Reduction)
-- Used for Nominal, Wanted equalities, with a touchable meta-tyvar on LHS
-- If checkTouchableTyVarEq tv ty = PuOK cts redn
--   then we can unify
--       tv := ty |> redn
--   with extra wanteds 'cts'
-- If it returns (PuFail reason) we can't unify, and the reason explains why.
checkTouchableTyVarEq ev lhs_tv rhs
  | simpleUnifyCheck True lhs_tv rhs
    -- True <=> type families are ok on the RHS
  = do { traceTcS "checkTouchableTyVarEq: simple-check wins" (ppr lhs_tv $$ ppr rhs)
       ; return (pure (mkReflRedn Nominal rhs)) }

  | otherwise
  = do { traceTcS "checkTouchableTyVarEq {" (ppr lhs_tv $$ ppr rhs)
       ; check_result <- wrapTcS (check_rhs rhs)
       ; traceTcS "checkTouchableTyVarEq }" (ppr lhs_tv $$ ppr check_result)
       ; case check_result of
            PuFail reason -> return (PuFail reason)
            PuOK cts redn -> do { emitWork cts
                                ; return (pure redn) } }

  where
    (lhs_tv_info, lhs_tv_lvl) = case tcTyVarDetails lhs_tv of
       MetaTv { mtv_info = info, mtv_tclvl = lvl } -> (info,lvl)
       _ -> pprPanic "checkTouchableTyVarEq" (ppr lhs_tv)
            -- lhs_tv should be a meta-tyvar

    is_concrete_lhs_tv = isConcreteInfo lhs_tv_info

    check_rhs rhs
       -- Crucial special case for  alpha ~ F tys
       -- We don't want to flatten that (F tys)!
       | Just (TyFamLHS tc tys) <- canTyFamEqLHS_maybe rhs
       = if is_concrete_lhs_tv
         then failCheckWith (cteProblem cteConcrete)
         else recurseIntoTyConApp arg_flags tc tys
       | otherwise
       = checkTyEqRhs flags rhs

    flags = TEF { tef_foralls  = False -- isRuntimeUnkSkol lhs_tv
                , tef_fam_app  = mkTEFA_Break ev NomEq break_wanted
                , tef_unifying = Unifying lhs_tv_info lhs_tv_lvl LC_Promote
                , tef_lhs      = TyVarLHS lhs_tv
                , tef_occurs   = cteInsolubleOccurs }

    arg_flags = famAppArgFlags flags

    break_wanted fam_app
      -- Occurs check or skolem escape; so flatten
      = do { let fam_app_kind = typeKind fam_app
           ; reason <- checkPromoteFreeVars cteInsolubleOccurs
                            lhs_tv lhs_tv_lvl (tyCoVarsOfType fam_app_kind)
           ; if not (cterHasNoProblem reason)  -- Failed to promote free vars
             then failCheckWith reason
             else
        do { new_tv_ty <-
              case lhs_tv_info of
                ConcreteTv conc_info ->
                  -- Make a concrete tyvar if lhs_tv is concrete
                  -- e.g.  alpha[2,conc] ~ Maybe (F beta[4])
                  --       We want to flatten to
                  --       alpha[2,conc] ~ Maybe gamma[2,conc]
                  --       gamma[2,conc] ~ F beta[4]
                  TcM.newConcreteTyVarTyAtLevel conc_info lhs_tv_lvl fam_app_kind
                _ -> TcM.newMetaTyVarTyAtLevel lhs_tv_lvl fam_app_kind

           ; let pty = mkPrimEqPredRole Nominal fam_app new_tv_ty
           ; hole <- TcM.newVanillaCoercionHole pty
           ; let new_ev = CtWanted { ctev_pred      = pty
                                   , ctev_dest      = HoleDest hole
                                   , ctev_loc       = cb_loc
                                   , ctev_rewriters = ctEvRewriters ev }
           ; return (PuOK (singleCt (mkNonCanonical new_ev))
                          (mkReduction (HoleCo hole) new_tv_ty)) } }

    -- See Detail (7) of the Note
    cb_loc = updateCtLocOrigin (ctEvLoc ev) CycleBreakerOrigin

------------------------
checkTypeEq :: CtEvidence -> EqRel -> CanEqLHS -> TcType
            -> TcS (PuResult () Reduction)
-- Used for general CanEqLHSs, ones that do
-- not have a touchable type variable on the LHS (i.e. not unifying)
checkTypeEq ev eq_rel lhs rhs
  | isGiven ev
  = do { traceTcS "checkTypeEq {" (vcat [ text "lhs:" <+> ppr lhs
                                        , text "rhs:" <+> ppr rhs ])
       ; check_result <- wrapTcS (check_given_rhs rhs)
       ; traceTcS "checkTypeEq }" (ppr check_result)
       ; case check_result of
            PuFail reason -> return (PuFail reason)
            PuOK prs redn -> do { new_givens <- mapBagM mk_new_given prs
                                ; emitWork new_givens
                                ; updInertTcS (addCycleBreakerBindings prs)
                                ; return (pure redn) } }

  | otherwise  -- Wanted
  = do { check_result <- wrapTcS (checkTyEqRhs wanted_flags rhs)
       ; case check_result of
            PuFail reason -> return (PuFail reason)
            PuOK cts redn -> do { emitWork cts
                                ; return (pure redn) } }
  where
    check_given_rhs :: TcType -> TcM (PuResult (TcTyVar,TcType) Reduction)
    check_given_rhs rhs
       -- See Note [Special case for top-level of Given equality]
       | Just (TyFamLHS tc tys) <- canTyFamEqLHS_maybe rhs
       = recurseIntoTyConApp arg_flags tc tys
       | otherwise
       = checkTyEqRhs given_flags rhs

    arg_flags = famAppArgFlags given_flags

    given_flags :: TyEqFlags (TcTyVar,TcType)
    given_flags = TEF { tef_lhs      = lhs
                      , tef_foralls  = False
                      , tef_unifying = NotUnifying
                      , tef_fam_app  = mkTEFA_Break ev eq_rel break_given
                      , tef_occurs   = occ_prob }
        -- TEFA_Break used for: [G] a ~ Maybe (F a)
        --                   or [W] F a ~ Maybe (F a)

    wanted_flags = TEF { tef_lhs      = lhs
                       , tef_foralls  = False
                       , tef_unifying = NotUnifying
                       , tef_fam_app  = TEFA_Recurse
                       , tef_occurs   = occ_prob }
        -- TEFA_Recurse: see Note [Don't cycle-break Wanteds when not unifying]

    -- occ_prob: see Note [Occurs check and representational equality]
    occ_prob = case eq_rel of
                 NomEq  -> cteInsolubleOccurs
                 ReprEq -> cteSolubleOccurs

    break_given :: TcType -> TcM (PuResult (TcTyVar,TcType) Reduction)
    break_given fam_app
      = do { new_tv <- TcM.newCycleBreakerTyVar (typeKind fam_app)
           ; return (PuOK (unitBag (new_tv, fam_app))
                          (mkReflRedn Nominal (mkTyVarTy new_tv))) }
                    -- Why reflexive? See Detail (4) of the Note

    ---------------------------
    mk_new_given :: (TcTyVar, TcType) -> TcS Ct
    mk_new_given (new_tv, fam_app)
      = mkNonCanonical <$> newGivenEvVar cb_loc (given_pred, given_term)
      where
        new_ty     = mkTyVarTy new_tv
        given_pred = mkPrimEqPred fam_app new_ty
        given_term = evCoercion $ mkNomReflCo new_ty  -- See Detail (4) of Note

    -- See Detail (7) of the Note
    cb_loc = updateCtLocOrigin (ctEvLoc ev) CycleBreakerOrigin

mkTEFA_Break :: CtEvidence -> EqRel -> FamAppBreaker a -> TyEqFamApp a
mkTEFA_Break ev eq_rel breaker
  | NomEq <- eq_rel
  , not cycle_breaker_origin
  = TEFA_Break breaker
  | otherwise
  = TEFA_Recurse
  where
    -- cycle_breaker_origin: see Detail (7) of Note [Type equality cycles]
    -- in GHC.Tc.Solver.Equality
    cycle_breaker_origin = case ctLocOrigin (ctEvLoc ev) of
                              CycleBreakerOrigin {} -> True
                              _                     -> False

-------------------------
-- | Fill in CycleBreakerTvs with the variables they stand for.
-- See Note [Type equality cycles] in GHC.Tc.Solver.Canonical.
restoreTyVarCycles :: InertSet -> TcM ()
restoreTyVarCycles is
  = forAllCycleBreakerBindings_ (inert_cycle_breakers is) TcM.writeMetaTyVar
{-# SPECIALISE forAllCycleBreakerBindings_ ::
      CycleBreakerVarStack -> (TcTyVar -> TcType -> TcM ()) -> TcM () #-}


{- Note [Occurs check and representational equality]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(a ~R# b a) is soluble if b later turns out to be Identity
So we treat this as a "soluble occurs check".

Note [Special case for top-level of Given equality]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We take care when examining
    [G] F ty ~ G (...(F ty)...)
where both sides are TyFamLHSs.  We don't want to flatten that RHS to
    [G] F ty ~ cbv
    [G] G (...(F ty)...) ~ cbv
Instead we'd like to say "occurs-check" and swap LHS and RHS, which yields a
canonical constraint
    [G] G (...(F ty)...) ~ F ty
That tents to rewrite a big type to smaller one. This happens in T15703,
where we had:
    [G] Pure g ~ From1 (To1 (Pure g))
Making a loop breaker and rewriting left to right just makes much bigger
types than swapping it over.

(We might hope to have swapped it over before getting to checkTypeEq,
but better safe than sorry.)

NB: We never see a TyVarLHS here, such as
    [G] a ~ F tys here
because we'd have swapped it to
   [G] F tys ~ a
in canEqCanLHS2, before getting to checkTypeEq.

Note [Don't cycle-break Wanteds when not unifying]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consdier
  [W] a[2] ~ Maybe (F a[2])

Should we cycle-break this Wanted, thus?

  [W] a[2] ~ Maybe delta[2]
  [W] delta[2] ~ F a[2]

For a start, this is dodgy because we might just unify delta, thus undoing
what we have done, and getting an infinite loop in the solver.  Even if we
somehow prevented ourselves from doing so, is there any merit in the split?
Maybe: perhaps we can use that equality on `a` to unlock other constraints?
Consider
  type instance F (Maybe _) = Bool

  [G] g1: a ~ Maybe Bool
  [W] w1: a ~ Maybe (F a)

If we loop-break w1 to get
  [W] w1': a ~ Maybe gamma
  [W] w3:  gamma ~ F a
Now rewrite w3 with w1'
  [W] w3':  gamma ~ F (Maybe gamma)
Now use the type instance to get
  gamma := Bool
Now we are left with
  [W] w1': a ~ Maybe Bool
which we can solve from the Given.

BUT in this situation we could have rewritten the
/original/ Wanted from the Given, like this:
  [W] w1': Maybe Bool ~ Maybe (F (Maybe Bool))
and that is readily soluble.

In short: loop-breaking Wanteds, when we aren't unifying,
seems of no merit.  Hence TEFA_Recurse, rather than TEFA_Break,
in `wanted_flags` in `checkTypeEq`.
-}