1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
|
{-
(c) The University of Glasgow 2006
(c) The AQUA Project, Glasgow University, 1996-1998
-}
{-# LANGUAGE CPP, TupleSections, ScopedTypeVariables, MultiWayIf #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE ViewPatterns #-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
-- | Typecheck type and class declarations
module GHC.Tc.TyCl (
tcTyAndClassDecls,
-- Functions used by GHC.Tc.TyCl.Instance to check
-- data/type family instance declarations
kcConDecls, tcConDecls, dataDeclChecks, checkValidTyCon,
tcFamTyPats, tcTyFamInstEqn,
tcAddTyFamInstCtxt, tcMkDataFamInstCtxt, tcAddDataFamInstCtxt,
unravelFamInstPats, addConsistencyConstraints,
wrongKindOfFamily
) where
#include "HsVersions.h"
import GHC.Prelude
import GHC.Hs
import GHC.Driver.Types
import GHC.Tc.TyCl.Build
import GHC.Tc.Utils.Monad
import GHC.Tc.Utils.Env
import GHC.Tc.Validity
import GHC.Tc.Utils.Zonk
import GHC.Tc.TyCl.Utils
import GHC.Tc.TyCl.Class
import {-# SOURCE #-} GHC.Tc.TyCl.Instance( tcInstDecls1 )
import GHC.Tc.Deriv (DerivInfo(..))
import GHC.Tc.Utils.Unify ( checkTvConstraints )
import GHC.Tc.Gen.HsType
import GHC.Tc.Instance.Class( AssocInstInfo(..) )
import GHC.Tc.Utils.TcMType
import GHC.Builtin.Types ( unitTy, makeRecoveryTyCon )
import GHC.Tc.Utils.TcType
import GHC.Core.Multiplicity
import GHC.Rename.Env( lookupConstructorFields )
import GHC.Tc.Instance.Family
import GHC.Core.FamInstEnv
import GHC.Core.Coercion
import GHC.Tc.Types.Origin
import GHC.Core.Type
import GHC.Core.TyCo.Rep -- for checkValidRoles
import GHC.Core.TyCo.Ppr( pprTyVars )
import GHC.Core.Class
import GHC.Core.Coercion.Axiom
import GHC.Core.TyCon
import GHC.Core.DataCon
import GHC.Types.Id
import GHC.Types.Var
import GHC.Types.Var.Env
import GHC.Types.Var.Set
import GHC.Data.FastString
import GHC.Unit
import GHC.Types.Name
import GHC.Types.Name.Set
import GHC.Types.Name.Env
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Data.Maybe
import GHC.Core.Unify
import GHC.Utils.Misc
import GHC.Types.SrcLoc
import GHC.Data.List.SetOps
import GHC.Driver.Session
import GHC.Types.Unique
import GHC.Types.Basic
import qualified GHC.LanguageExtensions as LangExt
import Control.Monad
import Data.Function ( on )
import Data.Functor.Identity
import Data.List
import Data.List.NonEmpty ( NonEmpty(..) )
import qualified Data.Set as Set
import Data.Tuple( swap )
{-
************************************************************************
* *
\subsection{Type checking for type and class declarations}
* *
************************************************************************
Note [Grouping of type and class declarations]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
tcTyAndClassDecls is called on a list of `TyClGroup`s. Each group is a strongly
connected component of mutually dependent types and classes. We kind check and
type check each group separately to enhance kind polymorphism. Take the
following example:
type Id a = a
data X = X (Id Int)
If we were to kind check the two declarations together, we would give Id the
kind * -> *, since we apply it to an Int in the definition of X. But we can do
better than that, since Id really is kind polymorphic, and should get kind
forall (k::*). k -> k. Since it does not depend on anything else, it can be
kind-checked by itself, hence getting the most general kind. We then kind check
X, which works fine because we then know the polymorphic kind of Id, and simply
instantiate k to *.
Note [Check role annotations in a second pass]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Role inference potentially depends on the types of all of the datacons declared
in a mutually recursive group. The validity of a role annotation, in turn,
depends on the result of role inference. Because the types of datacons might
be ill-formed (see #7175 and Note [Checking GADT return types]) we must check
*all* the tycons in a group for validity before checking *any* of the roles.
Thus, we take two passes over the resulting tycons, first checking for general
validity and then checking for valid role annotations.
-}
tcTyAndClassDecls :: [TyClGroup GhcRn] -- Mutually-recursive groups in
-- dependency order
-> TcM ( TcGblEnv -- Input env extended by types and
-- classes
-- and their implicit Ids,DataCons
, [InstInfo GhcRn] -- Source-code instance decls info
, [DerivInfo] -- Deriving info
)
-- Fails if there are any errors
tcTyAndClassDecls tyclds_s
-- The code recovers internally, but if anything gave rise to
-- an error we'd better stop now, to avoid a cascade
-- Type check each group in dependency order folding the global env
= checkNoErrs $ fold_env [] [] tyclds_s
where
fold_env :: [InstInfo GhcRn]
-> [DerivInfo]
-> [TyClGroup GhcRn]
-> TcM (TcGblEnv, [InstInfo GhcRn], [DerivInfo])
fold_env inst_info deriv_info []
= do { gbl_env <- getGblEnv
; return (gbl_env, inst_info, deriv_info) }
fold_env inst_info deriv_info (tyclds:tyclds_s)
= do { (tcg_env, inst_info', deriv_info') <- tcTyClGroup tyclds
; setGblEnv tcg_env $
-- remaining groups are typechecked in the extended global env.
fold_env (inst_info' ++ inst_info)
(deriv_info' ++ deriv_info)
tyclds_s }
tcTyClGroup :: TyClGroup GhcRn
-> TcM (TcGblEnv, [InstInfo GhcRn], [DerivInfo])
-- Typecheck one strongly-connected component of type, class, and instance decls
-- See Note [TyClGroups and dependency analysis] in GHC.Hs.Decls
tcTyClGroup (TyClGroup { group_tyclds = tyclds
, group_roles = roles
, group_kisigs = kisigs
, group_instds = instds })
= do { let role_annots = mkRoleAnnotEnv roles
-- Step 1: Typecheck the standalone kind signatures and type/class declarations
; traceTc "---- tcTyClGroup ---- {" empty
; traceTc "Decls for" (ppr (map (tcdName . unLoc) tyclds))
; (tyclss, data_deriv_info) <-
tcExtendKindEnv (mkPromotionErrorEnv tyclds) $ -- See Note [Type environment evolution]
do { kisig_env <- mkNameEnv <$> traverse tcStandaloneKindSig kisigs
; tcTyClDecls tyclds kisig_env role_annots }
-- Step 1.5: Make sure we don't have any type synonym cycles
; traceTc "Starting synonym cycle check" (ppr tyclss)
; home_unit <- mkHomeUnitFromFlags <$> getDynFlags
; checkSynCycles (homeUnitAsUnit home_unit) tyclss tyclds
; traceTc "Done synonym cycle check" (ppr tyclss)
-- Step 2: Perform the validity check on those types/classes
-- We can do this now because we are done with the recursive knot
-- Do it before Step 3 (adding implicit things) because the latter
-- expects well-formed TyCons
; traceTc "Starting validity check" (ppr tyclss)
; tyclss <- concatMapM checkValidTyCl tyclss
; traceTc "Done validity check" (ppr tyclss)
; mapM_ (recoverM (return ()) . checkValidRoleAnnots role_annots) tyclss
-- See Note [Check role annotations in a second pass]
; traceTc "---- end tcTyClGroup ---- }" empty
-- Step 3: Add the implicit things;
-- we want them in the environment because
-- they may be mentioned in interface files
; gbl_env <- addTyConsToGblEnv tyclss
-- Step 4: check instance declarations
; (gbl_env', inst_info, datafam_deriv_info) <-
setGblEnv gbl_env $
tcInstDecls1 instds
; let deriv_info = datafam_deriv_info ++ data_deriv_info
; return (gbl_env', inst_info, deriv_info) }
-- Gives the kind for every TyCon that has a standalone kind signature
type KindSigEnv = NameEnv Kind
tcTyClDecls
:: [LTyClDecl GhcRn]
-> KindSigEnv
-> RoleAnnotEnv
-> TcM ([TyCon], [DerivInfo])
tcTyClDecls tyclds kisig_env role_annots
= do { -- Step 1: kind-check this group and returns the final
-- (possibly-polymorphic) kind of each TyCon and Class
-- See Note [Kind checking for type and class decls]
tc_tycons <- kcTyClGroup kisig_env tyclds
; traceTc "tcTyAndCl generalized kinds" (vcat (map ppr_tc_tycon tc_tycons))
-- Step 2: type-check all groups together, returning
-- the final TyCons and Classes
--
-- NB: We have to be careful here to NOT eagerly unfold
-- type synonyms, as we have not tested for type synonym
-- loops yet and could fall into a black hole.
; fixM $ \ ~(rec_tyclss, _) -> do
{ tcg_env <- getGblEnv
; let roles = inferRoles (tcg_src tcg_env) role_annots rec_tyclss
-- Populate environment with knot-tied ATyCon for TyCons
-- NB: if the decls mention any ill-staged data cons
-- (see Note [Recursion and promoting data constructors])
-- we will have failed already in kcTyClGroup, so no worries here
; (tycons, data_deriv_infos) <-
tcExtendRecEnv (zipRecTyClss tc_tycons rec_tyclss) $
-- Also extend the local type envt with bindings giving
-- a TcTyCon for each knot-tied TyCon or Class
-- See Note [Type checking recursive type and class declarations]
-- and Note [Type environment evolution]
tcExtendKindEnvWithTyCons tc_tycons $
-- Kind and type check declarations for this group
mapAndUnzipM (tcTyClDecl roles) tyclds
; return (tycons, concat data_deriv_infos)
} }
where
ppr_tc_tycon tc = parens (sep [ ppr (tyConName tc) <> comma
, ppr (tyConBinders tc) <> comma
, ppr (tyConResKind tc)
, ppr (isTcTyCon tc) ])
zipRecTyClss :: [TcTyCon]
-> [TyCon] -- Knot-tied
-> [(Name,TyThing)]
-- Build a name-TyThing mapping for the TyCons bound by decls
-- being careful not to look at the knot-tied [TyThing]
-- The TyThings in the result list must have a visible ATyCon,
-- because typechecking types (in, say, tcTyClDecl) looks at
-- this outer constructor
zipRecTyClss tc_tycons rec_tycons
= [ (name, ATyCon (get name)) | tc_tycon <- tc_tycons, let name = getName tc_tycon ]
where
rec_tc_env :: NameEnv TyCon
rec_tc_env = foldr add_tc emptyNameEnv rec_tycons
add_tc :: TyCon -> NameEnv TyCon -> NameEnv TyCon
add_tc tc env = foldr add_one_tc env (tc : tyConATs tc)
add_one_tc :: TyCon -> NameEnv TyCon -> NameEnv TyCon
add_one_tc tc env = extendNameEnv env (tyConName tc) tc
get name = case lookupNameEnv rec_tc_env name of
Just tc -> tc
other -> pprPanic "zipRecTyClss" (ppr name <+> ppr other)
{-
************************************************************************
* *
Kind checking
* *
************************************************************************
Note [Kind checking for type and class decls]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Kind checking is done thus:
1. Make up a kind variable for each parameter of the declarations,
and extend the kind environment (which is in the TcLclEnv)
2. Kind check the declarations
We need to kind check all types in the mutually recursive group
before we know the kind of the type variables. For example:
class C a where
op :: D b => a -> b -> b
class D c where
bop :: (Monad c) => ...
Here, the kind of the locally-polymorphic type variable "b"
depends on *all the uses of class D*. For example, the use of
Monad c in bop's type signature means that D must have kind Type->Type.
Note: we don't treat type synonyms specially (we used to, in the past);
in particular, even if we have a type synonym cycle, we still kind check
it normally, and test for cycles later (checkSynCycles). The reason
we can get away with this is because we have more systematic TYPE r
inference, which means that we can do unification between kinds that
aren't lifted (this historically was not true.)
The downside of not directly reading off the kinds of the RHS of
type synonyms in topological order is that we don't transparently
support making synonyms of types with higher-rank kinds. But
you can always specify a CUSK directly to make this work out.
See tc269 for an example.
Note [CUSKs and PolyKinds]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
data T (a :: *) = MkT (S a) -- Has CUSK
data S a = MkS (T Int) (S a) -- No CUSK
Via inferInitialKinds we get
T :: * -> *
S :: kappa -> *
Then we call kcTyClDecl on each decl in the group, to constrain the
kind unification variables. BUT we /skip/ the RHS of any decl with
a CUSK. Here we skip the RHS of T, so we eventually get
S :: forall k. k -> *
This gets us more polymorphism than we would otherwise get, similar
(but implemented strangely differently from) the treatment of type
signatures in value declarations.
However, we only want to do so when we have PolyKinds.
When we have NoPolyKinds, we don't skip those decls, because we have defaulting
(#16609). Skipping won't bring us more polymorphism when we have defaulting.
Consider
data T1 a = MkT1 T2 -- No CUSK
data T2 = MkT2 (T1 Maybe) -- Has CUSK
If we skip the rhs of T2 during kind-checking, the kind of a remains unsolved.
With PolyKinds, we do generalization to get T1 :: forall a. a -> *. And the
program type-checks.
But with NoPolyKinds, we do defaulting to get T1 :: * -> *. Defaulting happens
in quantifyTyVars, which is called from generaliseTcTyCon. Then type-checking
(T1 Maybe) will throw a type error.
Summary: with PolyKinds, we must skip; with NoPolyKinds, we must /not/ skip.
Open type families
~~~~~~~~~~~~~~~~~~
This treatment of type synonyms only applies to Haskell 98-style synonyms.
General type functions can be recursive, and hence, appear in `alg_decls'.
The kind of an open type family is solely determinded by its kind signature;
hence, only kind signatures participate in the construction of the initial
kind environment (as constructed by `inferInitialKind'). In fact, we ignore
instances of families altogether in the following. However, we need to include
the kinds of *associated* families into the construction of the initial kind
environment. (This is handled by `allDecls').
See also Note [Kind checking recursive type and class declarations]
Note [How TcTyCons work]
~~~~~~~~~~~~~~~~~~~~~~~~
TcTyCons are used for two distinct purposes
1. When recovering from a type error in a type declaration,
we want to put the erroneous TyCon in the environment in a
way that won't lead to more errors. We use a TcTyCon for this;
see makeRecoveryTyCon.
2. When checking a type/class declaration (in module GHC.Tc.TyCl), we come
upon knowledge of the eventual tycon in bits and pieces.
S1) First, we use inferInitialKinds to look over the user-provided
kind signature of a tycon (including, for example, the number
of parameters written to the tycon) to get an initial shape of
the tycon's kind. We record that shape in a TcTyCon.
For CUSK tycons, the TcTyCon has the final, generalised kind.
For non-CUSK tycons, the TcTyCon has as its tyConBinders only
the explicit arguments given -- no kind variables, etc.
S2) Then, using these initial kinds, we kind-check the body of the
tycon (class methods, data constructors, etc.), filling in the
metavariables in the tycon's initial kind.
S3) We then generalize to get the (non-CUSK) tycon's final, fixed
kind. Finally, once this has happened for all tycons in a
mutually recursive group, we can desugar the lot.
For convenience, we store partially-known tycons in TcTyCons, which
might store meta-variables. These TcTyCons are stored in the local
environment in GHC.Tc.TyCl, until the real full TyCons can be created
during desugaring. A desugared program should never have a TcTyCon.
3. In a TcTyCon, everything is zonked after the kind-checking pass (S2).
4. tyConScopedTyVars. A challenging piece in all of this is that we
end up taking three separate passes over every declaration:
- one in inferInitialKind (this pass look only at the head, not the body)
- one in kcTyClDecls (to kind-check the body)
- a final one in tcTyClDecls (to desugar)
In the latter two passes, we need to connect the user-written type
variables in an LHsQTyVars with the variables in the tycon's
inferred kind. Because the tycon might not have a CUSK, this
matching up is, in general, quite hard to do. (Look through the
git history between Dec 2015 and Apr 2016 for
GHC.Tc.Gen.HsType.splitTelescopeTvs!)
Instead of trying, we just store the list of type variables to
bring into scope, in the tyConScopedTyVars field of the TcTyCon.
These tyvars are brought into scope in GHC.Tc.Gen.HsType.bindTyClTyVars.
In a TcTyCon, why is tyConScopedTyVars :: [(Name,TcTyVar)] rather
than just [TcTyVar]? Consider these mutually-recursive decls
data T (a :: k1) b = MkT (S a b)
data S (c :: k2) d = MkS (T c d)
We start with k1 bound to kappa1, and k2 to kappa2; so initially
in the (Name,TcTyVar) pairs the Name is that of the TcTyVar. But
then kappa1 and kappa2 get unified; so after the zonking in
'generalise' in 'kcTyClGroup' the Name and TcTyVar may differ.
See also Note [Type checking recursive type and class declarations].
Note [Swizzling the tyvars before generaliseTcTyCon]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This Note only applies when /inferring/ the kind of a TyCon.
If there is a separate kind signature, or a CUSK, we take an entirely
different code path.
For inference, consider
class C (f :: k) x where
type T f
op :: D f => blah
class D (g :: j) y where
op :: C g => y -> blah
Here C and D are considered mutually recursive. Neither has a CUSK.
Just before generalisation we have the (un-quantified) kinds
C :: k1 -> k2 -> Constraint
T :: k1 -> Type
D :: k1 -> Type -> Constraint
Notice that f's kind and g's kind have been unified to 'k1'. We say
that k1 is the "representative" of k in C's decl, and of j in D's decl.
Now when quantifying, we'd like to end up with
C :: forall {k2}. forall k. k -> k2 -> Constraint
T :: forall k. k -> Type
D :: forall j. j -> Type -> Constraint
That is, we want to swizzle the representative to have the Name given
by the user. Partly this is to improve error messages and the output of
:info in GHCi. But it is /also/ important because the code for a
default method may mention the class variable(s), but at that point
(tcClassDecl2), we only have the final class tyvars available.
(Alternatively, we could record the scoped type variables in the
TyCon, but it's a nuisance to do so.)
Notes:
* On the input to generaliseTyClDecl, the mapping between the
user-specified Name and the representative TyVar is recorded in the
tyConScopedTyVars of the TcTyCon. NB: you first need to zonk to see
this representative TyVar.
* The swizzling is actually performed by swizzleTcTyConBndrs
* We must do the swizzling across the whole class decl. Consider
class C f where
type S (f :: k)
type T f
Here f's kind k is a parameter of C, and its identity is shared
with S and T. So if we swizzle the representative k at all, we
must do so consistently for the entire declaration.
Hence the call to check_duplicate_tc_binders is in generaliseTyClDecl,
rather than in generaliseTcTyCon.
There are errors to catch here. Suppose we had
class E (f :: j) (g :: k) where
op :: SameKind f g -> blah
Then, just before generalisation we will have the (unquantified)
E :: k1 -> k1 -> Constraint
That's bad! Two distinctly-named tyvars (j and k) have ended up with
the same representative k1. So when swizzling, we check (in
check_duplicate_tc_binders) that two distinct source names map
to the same representative.
Here's an interesting case:
class C1 f where
type S (f :: k1)
type T (f :: k2)
Here k1 and k2 are different Names, but they end up mapped to the
same representative TyVar. To make the swizzling consistent (remember
we must have a single k across C1, S and T) we reject the program.
Another interesting case
class C2 f where
type S (f :: k) (p::Type)
type T (f :: k) (p::Type->Type)
Here the two k's (and the two p's) get distinct Uniques, because they
are seen by the renamer as locally bound in S and T resp. But again
the two (distinct) k's end up bound to the same representative TyVar.
You might argue that this should be accepted, but it's definitely
rejected (via an entirely different code path) if you add a kind sig:
type C2' :: j -> Constraint
class C2' f where
type S (f :: k) (p::Type)
We get
• Expected kind ‘j’, but ‘f’ has kind ‘k’
• In the associated type family declaration for ‘S’
So we reject C2 too, even without the kind signature. We have
to do a bit of work to get a good error message, since both k's
look the same to the user.
Another case
class C3 (f :: k1) where
type S (f :: k2)
This will be rejected too.
Note [Type environment evolution]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
As we typecheck a group of declarations the type environment evolves.
Consider for example:
data B (a :: Type) = MkB (Proxy 'MkB)
We do the following steps:
1. Start of tcTyClDecls: use mkPromotionErrorEnv to initialise the
type env with promotion errors
B :-> TyConPE
MkB :-> DataConPE
2. kcTyCLGroup
- Do inferInitialKinds, which will signal a promotion
error if B is used in any of the kinds needed to initialise
B's kind (e.g. (a :: Type)) here
- Extend the type env with these initial kinds (monomorphic for
decls that lack a CUSK)
B :-> TcTyCon <initial kind>
(thereby overriding the B :-> TyConPE binding)
and do kcLTyClDecl on each decl to get equality constraints on
all those initial kinds
- Generalise the initial kind, making a poly-kinded TcTyCon
3. Back in tcTyDecls, extend the envt with bindings of the poly-kinded
TcTyCons, again overriding the promotion-error bindings.
But note that the data constructor promotion errors are still in place
so that (in our example) a use of MkB will still be signalled as
an error.
4. Typecheck the decls.
5. In tcTyClGroup, extend the envt with bindings for TyCon and DataCons
Note [Missed opportunity to retain higher-rank kinds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In 'kcTyClGroup', there is a missed opportunity to make kind
inference work in a few more cases. The idea is analogous
to Note [Single function non-recursive binding special-case]:
* If we have an SCC with a single decl, which is non-recursive,
instead of creating a unification variable representing the
kind of the decl and unifying it with the rhs, we can just
read the type directly of the rhs.
* Furthermore, we can update our SCC analysis to ignore
dependencies on declarations which have CUSKs: we don't
have to kind-check these all at once, since we can use
the CUSK to initialize the kind environment.
Unfortunately this requires reworking a bit of the code in
'kcLTyClDecl' so I've decided to punt unless someone shouts about it.
Note [Don't process associated types in getInitialKind]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Previously, we processed associated types in the thing_inside in getInitialKind,
but this was wrong -- we want to do ATs sepearately.
The consequence for not doing it this way is #15142:
class ListTuple (tuple :: Type) (as :: [(k, Type)]) where
type ListToTuple as :: Type
We assign k a kind kappa[1]. When checking the tuple (k, Type), we try to unify
kappa ~ Type, but this gets deferred because we bumped the TcLevel as we bring
`tuple` into scope. Thus, when we check ListToTuple, kappa[1] still hasn't
unified with Type. And then, when we generalize the kind of ListToTuple (which
indeed has a CUSK, according to the rules), we skolemize the free metavariable
kappa. Note that we wouldn't skolemize kappa when generalizing the kind of ListTuple,
because the solveEqualities in kcInferDeclHeader is at TcLevel 1 and so kappa[1]
will unify with Type.
Bottom line: as associated types should have no effect on a CUSK enclosing class,
we move processing them to a separate action, run after the outer kind has
been generalized.
-}
kcTyClGroup :: KindSigEnv -> [LTyClDecl GhcRn] -> TcM [TcTyCon]
-- Kind check this group, kind generalize, and return the resulting local env
-- This binds the TyCons and Classes of the group, but not the DataCons
-- See Note [Kind checking for type and class decls]
-- and Note [Inferring kinds for type declarations]
kcTyClGroup kisig_env decls
= do { mod <- getModule
; traceTc "---- kcTyClGroup ---- {"
(text "module" <+> ppr mod $$ vcat (map ppr decls))
-- Kind checking;
-- 1. Bind kind variables for decls
-- 2. Kind-check decls
-- 3. Generalise the inferred kinds
-- See Note [Kind checking for type and class decls]
; cusks_enabled <- xoptM LangExt.CUSKs <&&> xoptM LangExt.PolyKinds
-- See Note [CUSKs and PolyKinds]
; let (kindless_decls, kinded_decls) = partitionWith get_kind decls
get_kind d
| Just ki <- lookupNameEnv kisig_env (tcdName (unLoc d))
= Right (d, SAKS ki)
| cusks_enabled && hsDeclHasCusk (unLoc d)
= Right (d, CUSK)
| otherwise = Left d
; checked_tcs <- checkInitialKinds kinded_decls
; inferred_tcs
<- tcExtendKindEnvWithTyCons checked_tcs $
pushTcLevelM_ $ -- We are going to kind-generalise, so
-- unification variables in here must
-- be one level in
solveEqualities $
do { -- Step 1: Bind kind variables for all decls
mono_tcs <- inferInitialKinds kindless_decls
; traceTc "kcTyClGroup: initial kinds" $
ppr_tc_kinds mono_tcs
-- Step 2: Set extended envt, kind-check the decls
-- NB: the environment extension overrides the tycon
-- promotion-errors bindings
-- See Note [Type environment evolution]
; tcExtendKindEnvWithTyCons mono_tcs $
mapM_ kcLTyClDecl kindless_decls
; return mono_tcs }
-- Step 3: generalisation
-- Finally, go through each tycon and give it its final kind,
-- with all the required, specified, and inferred variables
-- in order.
; let inferred_tc_env = mkNameEnv $
map (\tc -> (tyConName tc, tc)) inferred_tcs
; generalized_tcs <- concatMapM (generaliseTyClDecl inferred_tc_env)
kindless_decls
; let poly_tcs = checked_tcs ++ generalized_tcs
; traceTc "---- kcTyClGroup end ---- }" (ppr_tc_kinds poly_tcs)
; return poly_tcs }
where
ppr_tc_kinds tcs = vcat (map pp_tc tcs)
pp_tc tc = ppr (tyConName tc) <+> dcolon <+> ppr (tyConKind tc)
type ScopedPairs = [(Name, TcTyVar)]
-- The ScopedPairs for a TcTyCon are precisely
-- specified-tvs ++ required-tvs
-- You can distinguish them because there are tyConArity required-tvs
generaliseTyClDecl :: NameEnv TcTyCon -> LTyClDecl GhcRn -> TcM [TcTyCon]
-- See Note [Swizzling the tyvars before generaliseTcTyCon]
generaliseTyClDecl inferred_tc_env (L _ decl)
= do { let names_in_this_decl :: [Name]
names_in_this_decl = tycld_names decl
-- Extract the specified/required binders and skolemise them
; tc_with_tvs <- mapM skolemise_tc_tycon names_in_this_decl
-- Zonk, to manifest the side-effects of skolemisation to the swizzler
-- NB: it's important to skolemise them all before this step. E.g.
-- class C f where { type T (f :: k) }
-- We only skolemise k when looking at T's binders,
-- but k appears in f's kind in C's binders.
; tc_infos <- mapM zonk_tc_tycon tc_with_tvs
-- Swizzle
; swizzled_infos <- tcAddDeclCtxt decl (swizzleTcTyConBndrs tc_infos)
-- And finally generalise
; mapAndReportM generaliseTcTyCon swizzled_infos }
where
tycld_names :: TyClDecl GhcRn -> [Name]
tycld_names decl = tcdName decl : at_names decl
at_names :: TyClDecl GhcRn -> [Name]
at_names (ClassDecl { tcdATs = ats }) = map (familyDeclName . unLoc) ats
at_names _ = [] -- Only class decls have associated types
skolemise_tc_tycon :: Name -> TcM (TcTyCon, ScopedPairs)
-- Zonk and skolemise the Specified and Required binders
skolemise_tc_tycon tc_name
= do { let tc = lookupNameEnv_NF inferred_tc_env tc_name
-- This lookup should not fail
; scoped_prs <- mapSndM zonkAndSkolemise (tcTyConScopedTyVars tc)
; return (tc, scoped_prs) }
zonk_tc_tycon :: (TcTyCon, ScopedPairs) -> TcM (TcTyCon, ScopedPairs, TcKind)
zonk_tc_tycon (tc, scoped_prs)
= do { scoped_prs <- mapSndM zonkTcTyVarToTyVar scoped_prs
-- We really have to do this again, even though
-- we have just done zonkAndSkolemise
; res_kind <- zonkTcType (tyConResKind tc)
; return (tc, scoped_prs, res_kind) }
swizzleTcTyConBndrs :: [(TcTyCon, ScopedPairs, TcKind)]
-> TcM [(TcTyCon, ScopedPairs, TcKind)]
swizzleTcTyConBndrs tc_infos
| all no_swizzle swizzle_prs
-- This fast path happens almost all the time
-- See Note [Non-cloning for tyvar binders] in GHC.Tc.Gen.HsType
= do { traceTc "Skipping swizzleTcTyConBndrs for" (ppr (map fstOf3 tc_infos))
; return tc_infos }
| otherwise
= do { check_duplicate_tc_binders
; traceTc "swizzleTcTyConBndrs" $
vcat [ text "before" <+> ppr_infos tc_infos
, text "swizzle_prs" <+> ppr swizzle_prs
, text "after" <+> ppr_infos swizzled_infos ]
; return swizzled_infos }
where
swizzled_infos = [ (tc, mapSnd swizzle_var scoped_prs, swizzle_ty kind)
| (tc, scoped_prs, kind) <- tc_infos ]
swizzle_prs :: [(Name,TyVar)]
-- Pairs the user-specifed Name with its representative TyVar
-- See Note [Swizzling the tyvars before generaliseTcTyCon]
swizzle_prs = [ pr | (_, prs, _) <- tc_infos, pr <- prs ]
no_swizzle :: (Name,TyVar) -> Bool
no_swizzle (nm, tv) = nm == tyVarName tv
ppr_infos infos = vcat [ ppr tc <+> pprTyVars (map snd prs)
| (tc, prs, _) <- infos ]
-- Check for duplicates
-- E.g. data SameKind (a::k) (b::k)
-- data T (a::k1) (b::k2) = MkT (SameKind a b)
-- Here k1 and k2 start as TyVarTvs, and get unified with each other
-- If this happens, things get very confused later, so fail fast
check_duplicate_tc_binders :: TcM ()
check_duplicate_tc_binders = unless (null err_prs) $
do { mapM_ report_dup err_prs; failM }
-------------- Error reporting ------------
err_prs :: [(Name,Name)]
err_prs = [ (n1,n2)
| pr :| prs <- findDupsEq ((==) `on` snd) swizzle_prs
, (n1,_):(n2,_):_ <- [nubBy ((==) `on` fst) (pr:prs)] ]
-- This nubBy avoids bogus error reports when we have
-- [("f", f), ..., ("f",f)....] in swizzle_prs
-- which happens with class C f where { type T f }
report_dup :: (Name,Name) -> TcM ()
report_dup (n1,n2)
= setSrcSpan (getSrcSpan n2) $ addErrTc $
hang (text "Different names for the same type variable:") 2 info
where
info | nameOccName n1 /= nameOccName n2
= quotes (ppr n1) <+> text "and" <+> quotes (ppr n2)
| otherwise -- Same OccNames! See C2 in
-- Note [Swizzling the tyvars before generaliseTcTyCon]
= vcat [ quotes (ppr n1) <+> text "bound at" <+> ppr (getSrcLoc n1)
, quotes (ppr n2) <+> text "bound at" <+> ppr (getSrcLoc n2) ]
-------------- The swizzler ------------
-- This does a deep traverse, simply doing a
-- Name-to-Name change, governed by swizzle_env
-- The 'swap' is what gets from the representative TyVar
-- back to the original user-specified Name
swizzle_env = mkVarEnv (map swap swizzle_prs)
swizzleMapper :: TyCoMapper () Identity
swizzleMapper = TyCoMapper { tcm_tyvar = swizzle_tv
, tcm_covar = swizzle_cv
, tcm_hole = swizzle_hole
, tcm_tycobinder = swizzle_bndr
, tcm_tycon = swizzle_tycon }
swizzle_hole _ hole = pprPanic "swizzle_hole" (ppr hole)
-- These types are pre-zonked
swizzle_tycon tc = pprPanic "swizzle_tc" (ppr tc)
-- TcTyCons can't appear in kinds (yet)
swizzle_tv _ tv = return (mkTyVarTy (swizzle_var tv))
swizzle_cv _ cv = return (mkCoVarCo (swizzle_var cv))
swizzle_bndr _ tcv _
= return ((), swizzle_var tcv)
swizzle_var :: Var -> Var
swizzle_var v
| Just nm <- lookupVarEnv swizzle_env v
= updateVarType swizzle_ty (v `setVarName` nm)
| otherwise
= updateVarType swizzle_ty v
(map_type, _, _, _) = mapTyCo swizzleMapper
swizzle_ty ty = runIdentity (map_type ty)
generaliseTcTyCon :: (TcTyCon, ScopedPairs, TcKind) -> TcM TcTyCon
generaliseTcTyCon (tc, scoped_prs, tc_res_kind)
-- See Note [Required, Specified, and Inferred for types]
= setSrcSpan (getSrcSpan tc) $
addTyConCtxt tc $
do { -- Step 1: Separate Specified from Required variables
-- NB: spec_req_tvs = spec_tvs ++ req_tvs
-- And req_tvs is 1-1 with tyConTyVars
-- See Note [Scoped tyvars in a TcTyCon] in GHC.Core.TyCon
; let spec_req_tvs = map snd scoped_prs
n_spec = length spec_req_tvs - tyConArity tc
(spec_tvs, req_tvs) = splitAt n_spec spec_req_tvs
sorted_spec_tvs = scopedSort spec_tvs
-- NB: We can't do the sort until we've zonked
-- Maintain the L-R order of scoped_tvs
-- Step 2a: find all the Inferred variables we want to quantify over
; dvs1 <- candidateQTyVarsOfKinds $
(tc_res_kind : map tyVarKind spec_req_tvs)
; let dvs2 = dvs1 `delCandidates` spec_req_tvs
-- Step 2b: quantify, mainly meaning skolemise the free variables
-- Returned 'inferred' are scope-sorted and skolemised
; inferred <- quantifyTyVars dvs2
; traceTc "generaliseTcTyCon: pre zonk"
(vcat [ text "tycon =" <+> ppr tc
, text "spec_req_tvs =" <+> pprTyVars spec_req_tvs
, text "tc_res_kind =" <+> ppr tc_res_kind
, text "dvs1 =" <+> ppr dvs1
, text "inferred =" <+> pprTyVars inferred ])
-- Step 3: Final zonk (following kind generalisation)
-- See Note [Swizzling the tyvars before generaliseTcTyCon]
; ze <- emptyZonkEnv
; (ze, inferred) <- zonkTyBndrsX ze inferred
; (ze, sorted_spec_tvs) <- zonkTyBndrsX ze sorted_spec_tvs
; (ze, req_tvs) <- zonkTyBndrsX ze req_tvs
; tc_res_kind <- zonkTcTypeToTypeX ze tc_res_kind
; traceTc "generaliseTcTyCon: post zonk" $
vcat [ text "tycon =" <+> ppr tc
, text "inferred =" <+> pprTyVars inferred
, text "spec_req_tvs =" <+> pprTyVars spec_req_tvs
, text "sorted_spec_tvs =" <+> pprTyVars sorted_spec_tvs
, text "req_tvs =" <+> ppr req_tvs
, text "zonk-env =" <+> ppr ze ]
-- Step 4: Make the TyConBinders.
; let dep_fv_set = candidateKindVars dvs1
inferred_tcbs = mkNamedTyConBinders Inferred inferred
specified_tcbs = mkNamedTyConBinders Specified sorted_spec_tvs
required_tcbs = map (mkRequiredTyConBinder dep_fv_set) req_tvs
-- Step 5: Assemble the final list.
final_tcbs = concat [ inferred_tcbs
, specified_tcbs
, required_tcbs ]
-- Step 6: Make the result TcTyCon
tycon = mkTcTyCon (tyConName tc) final_tcbs tc_res_kind
(mkTyVarNamePairs (sorted_spec_tvs ++ req_tvs))
True {- it's generalised now -}
(tyConFlavour tc)
; traceTc "generaliseTcTyCon done" $
vcat [ text "tycon =" <+> ppr tc
, text "tc_res_kind =" <+> ppr tc_res_kind
, text "dep_fv_set =" <+> ppr dep_fv_set
, text "inferred_tcbs =" <+> ppr inferred_tcbs
, text "specified_tcbs =" <+> ppr specified_tcbs
, text "required_tcbs =" <+> ppr required_tcbs
, text "final_tcbs =" <+> ppr final_tcbs ]
-- Step 7: Check for validity.
-- We do this here because we're about to put the tycon into the
-- the environment, and we don't want anything malformed there
; checkTyConTelescope tycon
; return tycon }
{- Note [Required, Specified, and Inferred for types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Each forall'd type variable in a type or kind is one of
* Required: an argument must be provided at every call site
* Specified: the argument can be inferred at call sites, but
may be instantiated with visible type/kind application
* Inferred: the must be inferred at call sites; it
is unavailable for use with visible type/kind application.
Why have Inferred at all? Because we just can't make user-facing
promises about the ordering of some variables. These might swizzle
around even between minor released. By forbidding visible type
application, we ensure users aren't caught unawares.
Go read Note [VarBndrs, TyCoVarBinders, TyConBinders, and visibility] in GHC.Core.TyCo.Rep.
The question for this Note is this:
given a TyClDecl, how are its quantified type variables classified?
Much of the debate is memorialized in #15743.
Here is our design choice. When inferring the ordering of variables
for a TyCl declaration (that is, for those variables that he user
has not specified the order with an explicit `forall`), we use the
following order:
1. Inferred variables
2. Specified variables; in the left-to-right order in which
the user wrote them, modified by scopedSort (see below)
to put them in depdendency order.
3. Required variables before a top-level ::
4. All variables after a top-level ::
If this ordering does not make a valid telescope, we reject the definition.
Example:
data SameKind :: k -> k -> *
data Bad a (c :: Proxy b) (d :: Proxy a) (x :: SameKind b d)
For Bad:
- a, c, d, x are Required; they are explicitly listed by the user
as the positional arguments of Bad
- b is Specified; it appears explicitly in a kind signature
- k, the kind of a, is Inferred; it is not mentioned explicitly at all
Putting variables in the order Inferred, Specified, Required
gives us this telescope:
Inferred: k
Specified: b : Proxy a
Required : (a : k) (c : Proxy b) (d : Proxy a) (x : SameKind b d)
But this order is ill-scoped, because b's kind mentions a, which occurs
after b in the telescope. So we reject Bad.
Associated types
~~~~~~~~~~~~~~~~
For associated types everything above is determined by the
associated-type declaration alone, ignoring the class header.
Here is an example (#15592)
class C (a :: k) b where
type F (x :: b a)
In the kind of C, 'k' is Specified. But what about F?
In the kind of F,
* Should k be Inferred or Specified? It's Specified for C,
but not mentioned in F's declaration.
* In which order should the Specified variables a and b occur?
It's clearly 'a' then 'b' in C's declaration, but the L-R ordering
in F's declaration is 'b' then 'a'.
In both cases we make the choice by looking at F's declaration alone,
so it gets the kind
F :: forall {k}. forall b a. b a -> Type
How it works
~~~~~~~~~~~~
These design choices are implemented by two completely different code
paths for
* Declarations with a standalone kind signature or a complete user-specified
kind signature (CUSK). Handled by the kcCheckDeclHeader.
* Declarations without a kind signature (standalone or CUSK) are handled by
kcInferDeclHeader; see Note [Inferring kinds for type declarations].
Note that neither code path worries about point (4) above, as this
is nicely handled by not mangling the res_kind. (Mangling res_kinds is done
*after* all this stuff, in tcDataDefn's call to etaExpandAlgTyCon.)
We can tell Inferred apart from Specified by looking at the scoped
tyvars; Specified are always included there.
Design alternatives
~~~~~~~~~~~~~~~~~~~
* For associated types we considered putting the class variables
before the local variables, in a nod to the treatment for class
methods. But it got too compilicated; see #15592, comment:21ff.
* We rigidly require the ordering above, even though we could be much more
permissive. Relevant musings are at
https://gitlab.haskell.org/ghc/ghc/issues/15743#note_161623
The bottom line conclusion is that, if the user wants a different ordering,
then can specify it themselves, and it is better to be predictable and dumb
than clever and capricious.
I (Richard) conjecture we could be fully permissive, allowing all classes
of variables to intermix. We would have to augment ScopedSort to refuse to
reorder Required variables (or check that it wouldn't have). But this would
allow more programs. See #15743 for examples. Interestingly, Idris seems
to allow this intermixing. The intermixing would be fully specified, in that
we can be sure that inference wouldn't change between versions. However,
would users be able to predict it? That I cannot answer.
Test cases (and tickets) relevant to these design decisions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
T15591*
T15592*
T15743*
Note [Inferring kinds for type declarations]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This note deals with /inference/ for type declarations
that do not have a CUSK. Consider
data T (a :: k1) k2 (x :: k2) = MkT (S a k2 x)
data S (b :: k3) k4 (y :: k4) = MkS (T b k4 y)
We do kind inference as follows:
* Step 1: inferInitialKinds, and in particular kcInferDeclHeader.
Make a unification variable for each of the Required and Specified
type variables in the header.
Record the connection between the Names the user wrote and the
fresh unification variables in the tcTyConScopedTyVars field
of the TcTyCon we are making
[ (a, aa)
, (k1, kk1)
, (k2, kk2)
, (x, xx) ]
(I'm using the convention that double letter like 'aa' or 'kk'
mean a unification variable.)
These unification variables
- Are TyVarTvs: that is, unification variables that can
unify only with other type variables.
See Note [Signature skolems] in GHC.Tc.Utils.TcType
- Have complete fresh Names; see GHC.Tc.Utils.TcMType
Note [Unification variables need fresh Names]
Assign initial monomorphic kinds to S, T
T :: kk1 -> * -> kk2 -> *
S :: kk3 -> * -> kk4 -> *
* Step 2: kcTyClDecl. Extend the environment with a TcTyCon for S and
T, with these monomorphic kinds. Now kind-check the declarations,
and solve the resulting equalities. The goal here is to discover
constraints on all these unification variables.
Here we find that kk1 := kk3, and kk2 := kk4.
This is why we can't use skolems for kk1 etc; they have to
unify with each other.
* Step 3: generaliseTcTyCon. Generalise each TyCon in turn.
We find the free variables of the kind, skolemise them,
sort them out into Inferred/Required/Specified (see the above
Note [Required, Specified, and Inferred for types]),
and perform some validity checks.
This makes the utterly-final TyConBinders for the TyCon.
All this is very similar at the level of terms: see GHC.Tc.Gen.Bind
Note [Quantified variables in partial type signatures]
But there some tricky corners: Note [Tricky scoping in generaliseTcTyCon]
* Step 4. Extend the type environment with a TcTyCon for S and T, now
with their utterly-final polymorphic kinds (needed for recursive
occurrences of S, T). Now typecheck the declarations, and build the
final AlgTyCon for S and T resp.
The first three steps are in kcTyClGroup; the fourth is in
tcTyClDecls.
There are some wrinkles
* Do not default TyVarTvs. We always want to kind-generalise over
TyVarTvs, and /not/ default them to Type. By definition a TyVarTv is
not allowed to unify with a type; it must stand for a type
variable. Hence the check in GHC.Tc.Solver.defaultTyVarTcS, and
GHC.Tc.Utils.TcMType.defaultTyVar. Here's another example (#14555):
data Exp :: [TYPE rep] -> TYPE rep -> Type where
Lam :: Exp (a:xs) b -> Exp xs (a -> b)
We want to kind-generalise over the 'rep' variable.
#14563 is another example.
* Duplicate type variables. Consider #11203
data SameKind :: k -> k -> *
data Q (a :: k1) (b :: k2) c = MkQ (SameKind a b)
Here we will unify k1 with k2, but this time doing so is an error,
because k1 and k2 are bound in the same declaration.
We spot this during validity checking (findDupTyVarTvs),
in generaliseTcTyCon.
* Required arguments. Even the Required arguments should be made
into TyVarTvs, not skolems. Consider
data T k (a :: k)
Here, k is a Required, dependent variable. For uniformity, it is helpful
to have k be a TyVarTv, in parallel with other dependent variables.
* Duplicate skolemisation is expected. When generalising in Step 3,
we may find that one of the variables we want to quantify has
already been skolemised. For example, suppose we have already
generalise S. When we come to T we'll find that kk1 (now the same as
kk3) has already been skolemised.
That's fine -- but it means that
a) when collecting quantification candidates, in
candidateQTyVarsOfKind, we must collect skolems
b) quantifyTyVars should be a no-op on such a skolem
Note [Tricky scoping in generaliseTcTyCon]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider #16342
class C (a::ka) x where
cop :: D a x => x -> Proxy a -> Proxy a
cop _ x = x :: Proxy (a::ka)
class D (b::kb) y where
dop :: C b y => y -> Proxy b -> Proxy b
dop _ x = x :: Proxy (b::kb)
C and D are mutually recursive, by the time we get to
generaliseTcTyCon we'll have unified kka := kkb.
But when typechecking the default declarations for 'cop' and 'dop' in
tcDlassDecl2 we need {a, ka} and {b, kb} respectively to be in scope.
But at that point all we have is the utterly-final Class itself.
Conclusion: the classTyVars of a class must have the same Name as
that originally assigned by the user. In our example, C must have
classTyVars {a, ka, x} while D has classTyVars {a, kb, y}. Despite
the fact that kka and kkb got unified!
We achieve this sleight of hand in generaliseTcTyCon, using
the specialised function zonkRecTyVarBndrs. We make the call
zonkRecTyVarBndrs [ka,a,x] [kkb,aa,xxx]
where the [ka,a,x] are the Names originally assigned by the user, and
[kkb,aa,xx] are the corresponding (post-zonking, skolemised) TcTyVars.
zonkRecTyVarBndrs builds a recursive ZonkEnv that binds
kkb :-> (ka :: <zonked kind of kkb>)
aa :-> (a :: <konked kind of aa>)
etc
That is, it maps each skolemised TcTyVars to the utterly-final
TyVar to put in the class, with its correct user-specified name.
When generalising D we'll do the same thing, but the ZonkEnv will map
kkb :-> (kb :: <zonked kind of kkb>)
bb :-> (b :: <konked kind of bb>)
etc
Note that 'kkb' again appears in the domain of the mapping, but this
time mapped to 'kb'. That's how C and D end up with differently-named
final TyVars despite the fact that we unified kka:=kkb
zonkRecTyVarBndrs we need to do knot-tying because of the need to
apply this same substitution to the kind of each.
Note [Inferring visible dependent quantification]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
data T k :: k -> Type where
MkT1 :: T Type Int
MkT2 :: T (Type -> Type) Maybe
This looks like it should work. However, it is polymorphically recursive,
as the uses of T in the constructor types specialize the k in the kind
of T. This trips up our dear users (#17131, #17541), and so we add
a "landmark" context (which cannot be suppressed) whenever we
spot inferred visible dependent quantification (VDQ).
It's hard to know when we've actually been tripped up by polymorphic recursion
specifically, so we just include a note to users whenever we infer VDQ. The
testsuite did not show up a single spurious inclusion of this message.
The context is added in addVDQNote, which looks for a visible TyConBinder
that also appears in the TyCon's kind. (I first looked at the kind for
a visible, dependent quantifier, but Note [No polymorphic recursion] in
GHC.Tc.Gen.HsType defeats that approach.) addVDQNote is used in kcTyClDecl,
which is used only when inferring the kind of a tycon (never with a CUSK or
SAK).
Once upon a time, I (Richard E) thought that the tycon-kind could
not be a forall-type. But this is wrong: data T :: forall k. k -> Type
(with -XNoCUSKs) could end up here. And this is all OK.
-}
--------------
tcExtendKindEnvWithTyCons :: [TcTyCon] -> TcM a -> TcM a
tcExtendKindEnvWithTyCons tcs
= tcExtendKindEnvList [ (tyConName tc, ATcTyCon tc) | tc <- tcs ]
--------------
mkPromotionErrorEnv :: [LTyClDecl GhcRn] -> TcTypeEnv
-- Maps each tycon/datacon to a suitable promotion error
-- tc :-> APromotionErr TyConPE
-- dc :-> APromotionErr RecDataConPE
-- See Note [Recursion and promoting data constructors]
mkPromotionErrorEnv decls
= foldr (plusNameEnv . mk_prom_err_env . unLoc)
emptyNameEnv decls
mk_prom_err_env :: TyClDecl GhcRn -> TcTypeEnv
mk_prom_err_env (ClassDecl { tcdLName = L _ nm, tcdATs = ats })
= unitNameEnv nm (APromotionErr ClassPE)
`plusNameEnv`
mkNameEnv [ (familyDeclName at, APromotionErr TyConPE)
| L _ at <- ats ]
mk_prom_err_env (DataDecl { tcdLName = L _ name
, tcdDataDefn = HsDataDefn { dd_cons = cons } })
= unitNameEnv name (APromotionErr TyConPE)
`plusNameEnv`
mkNameEnv [ (con, APromotionErr RecDataConPE)
| L _ con' <- cons
, L _ con <- getConNames con' ]
mk_prom_err_env decl
= unitNameEnv (tcdName decl) (APromotionErr TyConPE)
-- Works for family declarations too
--------------
inferInitialKinds :: [LTyClDecl GhcRn] -> TcM [TcTyCon]
-- Returns a TcTyCon for each TyCon bound by the decls,
-- each with its initial kind
inferInitialKinds decls
= do { traceTc "inferInitialKinds {" $ ppr (map (tcdName . unLoc) decls)
; tcs <- concatMapM infer_initial_kind decls
; traceTc "inferInitialKinds done }" empty
; return tcs }
where
infer_initial_kind = addLocM (getInitialKind InitialKindInfer)
-- Check type/class declarations against their standalone kind signatures or
-- CUSKs, producing a generalized TcTyCon for each.
checkInitialKinds :: [(LTyClDecl GhcRn, SAKS_or_CUSK)] -> TcM [TcTyCon]
checkInitialKinds decls
= do { traceTc "checkInitialKinds {" $ ppr (mapFst (tcdName . unLoc) decls)
; tcs <- concatMapM check_initial_kind decls
; traceTc "checkInitialKinds done }" empty
; return tcs }
where
check_initial_kind (ldecl, msig) =
addLocM (getInitialKind (InitialKindCheck msig)) ldecl
-- | Get the initial kind of a TyClDecl, either generalized or non-generalized,
-- depending on the 'InitialKindStrategy'.
getInitialKind :: InitialKindStrategy -> TyClDecl GhcRn -> TcM [TcTyCon]
-- Allocate a fresh kind variable for each TyCon and Class
-- For each tycon, return a TcTyCon with kind k
-- where k is the kind of tc, derived from the LHS
-- of the definition (and probably including
-- kind unification variables)
-- Example: data T a b = ...
-- return (T, kv1 -> kv2 -> kv3)
--
-- This pass deals with (ie incorporates into the kind it produces)
-- * The kind signatures on type-variable binders
-- * The result kinds signature on a TyClDecl
--
-- No family instances are passed to checkInitialKinds/inferInitialKinds
getInitialKind strategy
(ClassDecl { tcdLName = L _ name
, tcdTyVars = ktvs
, tcdATs = ats })
= do { cls <- kcDeclHeader strategy name ClassFlavour ktvs $
return (TheKind constraintKind)
; let parent_tv_prs = tcTyConScopedTyVars cls
-- See Note [Don't process associated types in getInitialKind]
; inner_tcs <-
tcExtendNameTyVarEnv parent_tv_prs $
mapM (addLocM (getAssocFamInitialKind cls)) ats
; return (cls : inner_tcs) }
where
getAssocFamInitialKind cls =
case strategy of
InitialKindInfer -> get_fam_decl_initial_kind (Just cls)
InitialKindCheck _ -> check_initial_kind_assoc_fam cls
getInitialKind strategy
(DataDecl { tcdLName = L _ name
, tcdTyVars = ktvs
, tcdDataDefn = HsDataDefn { dd_kindSig = m_sig
, dd_ND = new_or_data } })
= do { let flav = newOrDataToFlavour new_or_data
ctxt = DataKindCtxt name
; tc <- kcDeclHeader strategy name flav ktvs $
case m_sig of
Just ksig -> TheKind <$> tcLHsKindSig ctxt ksig
Nothing -> return $ dataDeclDefaultResultKind new_or_data
; return [tc] }
getInitialKind InitialKindInfer (FamDecl { tcdFam = decl })
= do { tc <- get_fam_decl_initial_kind Nothing decl
; return [tc] }
getInitialKind (InitialKindCheck msig) (FamDecl { tcdFam =
FamilyDecl { fdLName = unLoc -> name
, fdTyVars = ktvs
, fdResultSig = unLoc -> resultSig
, fdInfo = info } } )
= do { let flav = getFamFlav Nothing info
ctxt = TyFamResKindCtxt name
; tc <- kcDeclHeader (InitialKindCheck msig) name flav ktvs $
case famResultKindSignature resultSig of
Just ksig -> TheKind <$> tcLHsKindSig ctxt ksig
Nothing ->
case msig of
CUSK -> return (TheKind liftedTypeKind)
SAKS _ -> return AnyKind
; return [tc] }
getInitialKind strategy
(SynDecl { tcdLName = L _ name
, tcdTyVars = ktvs
, tcdRhs = rhs })
= do { let ctxt = TySynKindCtxt name
; tc <- kcDeclHeader strategy name TypeSynonymFlavour ktvs $
case hsTyKindSig rhs of
Just rhs_sig -> TheKind <$> tcLHsKindSig ctxt rhs_sig
Nothing -> return AnyKind
; return [tc] }
get_fam_decl_initial_kind
:: Maybe TcTyCon -- ^ Just cls <=> this is an associated family of class cls
-> FamilyDecl GhcRn
-> TcM TcTyCon
get_fam_decl_initial_kind mb_parent_tycon
FamilyDecl { fdLName = L _ name
, fdTyVars = ktvs
, fdResultSig = L _ resultSig
, fdInfo = info }
= kcDeclHeader InitialKindInfer name flav ktvs $
case resultSig of
KindSig _ ki -> TheKind <$> tcLHsKindSig ctxt ki
TyVarSig _ (L _ (KindedTyVar _ _ _ ki)) -> TheKind <$> tcLHsKindSig ctxt ki
_ -- open type families have * return kind by default
| tcFlavourIsOpen flav -> return (TheKind liftedTypeKind)
-- closed type families have their return kind inferred
-- by default
| otherwise -> return AnyKind
where
flav = getFamFlav mb_parent_tycon info
ctxt = TyFamResKindCtxt name
-- See Note [Standalone kind signatures for associated types]
check_initial_kind_assoc_fam
:: TcTyCon -- parent class
-> FamilyDecl GhcRn
-> TcM TcTyCon
check_initial_kind_assoc_fam cls
FamilyDecl
{ fdLName = unLoc -> name
, fdTyVars = ktvs
, fdResultSig = unLoc -> resultSig
, fdInfo = info }
= kcDeclHeader (InitialKindCheck CUSK) name flav ktvs $
case famResultKindSignature resultSig of
Just ksig -> TheKind <$> tcLHsKindSig ctxt ksig
Nothing -> return (TheKind liftedTypeKind)
where
ctxt = TyFamResKindCtxt name
flav = getFamFlav (Just cls) info
{- Note [Standalone kind signatures for associated types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If associated types had standalone kind signatures, would they wear them
---------------------------+------------------------------
like this? (OUT) | or like this? (IN)
---------------------------+------------------------------
type T :: Type -> Type | class C a where
class C a where | type T :: Type -> Type
type T a | type T a
The (IN) variant is syntactically ambiguous:
class C a where
type T :: a -- standalone kind signature?
type T :: a -- declaration header?
The (OUT) variant does not suffer from this issue, but it might not be the
direction in which we want to take Haskell: we seek to unify type families and
functions, and, by extension, associated types with class methods. And yet we
give class methods their signatures inside the class, not outside. Neither do
we have the counterpart of InstanceSigs for StandaloneKindSignatures.
For now, we dodge the question by using CUSKs for associated types instead of
standalone kind signatures. This is a simple addition to the rule we used to
have before standalone kind signatures:
old rule: associated type has a CUSK iff its parent class has a CUSK
new rule: associated type has a CUSK iff its parent class has a CUSK or a standalone kind signature
-}
-- See Note [Data declaration default result kind]
dataDeclDefaultResultKind :: NewOrData -> ContextKind
dataDeclDefaultResultKind NewType = OpenKind
-- See Note [Implementation of UnliftedNewtypes], point <Error Messages>.
dataDeclDefaultResultKind DataType = TheKind liftedTypeKind
{- Note [Data declaration default result kind]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When the user has not written an inline result kind annotation on a data
declaration, we assume it to be 'Type'. That is, the following declarations
D1 and D2 are considered equivalent:
data D1 where ...
data D2 :: Type where ...
The consequence of this assumption is that we reject D3 even though we
accept D4:
data D3 where
MkD3 :: ... -> D3 param
data D4 :: Type -> Type where
MkD4 :: ... -> D4 param
However, there's a twist: for newtypes, we must relax
the assumed result kind to (TYPE r):
newtype D5 where
MkD5 :: Int# -> D5
See Note [Implementation of UnliftedNewtypes], STEP 1 and it's sub-note
<Error Messages>.
-}
---------------------------------
getFamFlav
:: Maybe TcTyCon -- ^ Just cls <=> this is an associated family of class cls
-> FamilyInfo pass
-> TyConFlavour
getFamFlav mb_parent_tycon info =
case info of
DataFamily -> DataFamilyFlavour mb_parent_tycon
OpenTypeFamily -> OpenTypeFamilyFlavour mb_parent_tycon
ClosedTypeFamily _ -> ASSERT( isNothing mb_parent_tycon ) -- See Note [Closed type family mb_parent_tycon]
ClosedTypeFamilyFlavour
{- Note [Closed type family mb_parent_tycon]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There's no way to write a closed type family inside a class declaration:
class C a where
type family F a where -- error: parse error on input ‘where’
In fact, it is not clear what the meaning of such a declaration would be.
Therefore, 'mb_parent_tycon' of any closed type family has to be Nothing.
-}
------------------------------------------------------------------------
kcLTyClDecl :: LTyClDecl GhcRn -> TcM ()
-- See Note [Kind checking for type and class decls]
-- Called only for declarations without a signature (no CUSKs or SAKs here)
kcLTyClDecl (L loc decl)
= setSrcSpan loc $
do { tycon <- tcLookupTcTyCon tc_name
; traceTc "kcTyClDecl {" (ppr tc_name)
; addVDQNote tycon $ -- See Note [Inferring visible dependent quantification]
addErrCtxt (tcMkDeclCtxt decl) $
kcTyClDecl decl tycon
; traceTc "kcTyClDecl done }" (ppr tc_name) }
where
tc_name = tcdName decl
kcTyClDecl :: TyClDecl GhcRn -> TcTyCon -> TcM ()
-- This function is used solely for its side effect on kind variables
-- NB kind signatures on the type variables and
-- result kind signature have already been dealt with
-- by inferInitialKind, so we can ignore them here.
kcTyClDecl (DataDecl { tcdLName = (L _ name)
, tcdDataDefn = defn }) tyCon
| HsDataDefn { dd_cons = cons@((L _ (ConDeclGADT {})) : _)
, dd_ctxt = (L _ [])
, dd_ND = new_or_data } <- defn
= -- See Note [Implementation of UnliftedNewtypes] STEP 2
kcConDecls new_or_data (tyConResKind tyCon) cons
-- hs_tvs and dd_kindSig already dealt with in inferInitialKind
-- This must be a GADT-style decl,
-- (see invariants of DataDefn declaration)
-- so (a) we don't need to bring the hs_tvs into scope, because the
-- ConDecls bind all their own variables
-- (b) dd_ctxt is not allowed for GADT-style decls, so we can ignore it
| HsDataDefn { dd_ctxt = ctxt
, dd_cons = cons
, dd_ND = new_or_data } <- defn
= bindTyClTyVars name $ \ _ _ _ ->
do { _ <- tcHsContext ctxt
; kcConDecls new_or_data (tyConResKind tyCon) cons
}
kcTyClDecl (SynDecl { tcdLName = L _ name, tcdRhs = rhs }) _tycon
= bindTyClTyVars name $ \ _ _ res_kind ->
discardResult $ tcCheckLHsType rhs (TheKind res_kind)
-- NB: check against the result kind that we allocated
-- in inferInitialKinds.
kcTyClDecl (ClassDecl { tcdLName = L _ name
, tcdCtxt = ctxt, tcdSigs = sigs }) _tycon
= bindTyClTyVars name $ \ _ _ _ ->
do { _ <- tcHsContext ctxt
; mapM_ (wrapLocM_ kc_sig) sigs }
where
kc_sig (ClassOpSig _ _ nms op_ty) = kcClassSigType skol_info nms op_ty
kc_sig _ = return ()
skol_info = TyConSkol ClassFlavour name
kcTyClDecl (FamDecl _ (FamilyDecl { fdInfo = fd_info })) fam_tc
-- closed type families look at their equations, but other families don't
-- do anything here
= case fd_info of
ClosedTypeFamily (Just eqns) -> mapM_ (kcTyFamInstEqn fam_tc) eqns
_ -> return ()
-------------------
-- Type check the types of the arguments to a data constructor.
-- This includes doing kind unification if the type is a newtype.
-- See Note [Implementation of UnliftedNewtypes] for why we need
-- the first two arguments.
kcConArgTys :: NewOrData -> Kind -> [HsScaled GhcRn (LHsType GhcRn)] -> TcM ()
kcConArgTys new_or_data res_kind arg_tys = do
{ let exp_kind = getArgExpKind new_or_data res_kind
; mapM_ (flip tcCheckLHsType exp_kind . getBangType . hsScaledThing) arg_tys
-- See Note [Implementation of UnliftedNewtypes], STEP 2
}
kcConDecls :: NewOrData
-> Kind -- The result kind signature
-> [LConDecl GhcRn] -- The data constructors
-> TcM ()
kcConDecls new_or_data res_kind cons
= mapM_ (wrapLocM_ (kcConDecl new_or_data final_res_kind)) cons
where
(_, final_res_kind) = splitPiTys res_kind
-- See Note [kcConDecls result kind]
-- Kind check a data constructor. In additional to the data constructor,
-- we also need to know about whether or not its corresponding type was
-- declared with data or newtype, and we need to know the result kind of
-- this type. See Note [Implementation of UnliftedNewtypes] for why
-- we need the first two arguments.
kcConDecl :: NewOrData
-> Kind -- Result kind of the type constructor
-- Usually Type but can be TYPE UnliftedRep
-- or even TYPE r, in the case of unlifted newtype
-> ConDecl GhcRn
-> TcM ()
kcConDecl new_or_data res_kind (ConDeclH98
{ con_name = name, con_ex_tvs = ex_tvs
, con_mb_cxt = ex_ctxt, con_args = args })
= addErrCtxt (dataConCtxtName [name]) $
discardResult $
bindExplicitTKBndrs_Tv ex_tvs $
do { _ <- tcHsMbContext ex_ctxt
; kcConArgTys new_or_data res_kind (hsConDeclArgTys args)
-- We don't need to check the telescope here,
-- because that's done in tcConDecl
}
kcConDecl new_or_data res_kind (ConDeclGADT
{ con_names = names, con_qvars = explicit_tkv_nms, con_mb_cxt = cxt
, con_args = args, con_res_ty = res_ty, con_g_ext = implicit_tkv_nms })
= -- Even though the GADT-style data constructor's type is closed,
-- we must still kind-check the type, because that may influence
-- the inferred kind of the /type/ constructor. Example:
-- data T f a where
-- MkT :: f a -> T f a
-- If we don't look at MkT we won't get the correct kind
-- for the type constructor T
addErrCtxt (dataConCtxtName names) $
discardResult $
bindImplicitTKBndrs_Tv implicit_tkv_nms $
bindExplicitTKBndrs_Tv explicit_tkv_nms $
-- Why "_Tv"? See Note [Kind-checking for GADTs]
do { _ <- tcHsMbContext cxt
; kcConArgTys new_or_data res_kind (hsConDeclArgTys args)
; _ <- tcHsOpenType res_ty
; return () }
{- Note [kcConDecls result kind]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We might have e.g.
data T a :: Type -> Type where ...
or
newtype instance N a :: Type -> Type where ..
in which case, the 'res_kind' passed to kcConDecls will be
Type->Type
We must look past those arrows, or even foralls, to the Type in the
corner, to pass to kcConDecl c.f. #16828. Hence the splitPiTys here.
I am a bit concerned about tycons with a declaration like
data T a :: Type -> forall k. k -> Type where ...
It does not have a CUSK, so kcInferDeclHeader will make a TcTyCon
with tyConResKind of Type -> forall k. k -> Type. Even that is fine:
the splitPiTys will look past the forall. But I'm bothered about
what if the type "in the corner" mentions k? This is incredibly
obscure but something like this could be bad:
data T a :: Type -> foral k. k -> TYPE (F k) where ...
I bet we are not quite right here, but my brain suffered a buffer
overflow and I thought it best to nail the common cases right now.
Note [Recursion and promoting data constructors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We don't want to allow promotion in a strongly connected component
when kind checking.
Consider:
data T f = K (f (K Any))
When kind checking the `data T' declaration the local env contains the
mappings:
T -> ATcTyCon <some initial kind>
K -> APromotionErr
APromotionErr is only used for DataCons, and only used during type checking
in tcTyClGroup.
Note [Kind-checking for GADTs]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
data Proxy a where
MkProxy1 :: forall k (b :: k). Proxy b
MkProxy2 :: forall j (c :: j). Proxy c
It seems reasonable that this should be accepted. But something very strange
is going on here: when we're kind-checking this declaration, we need to unify
the kind of `a` with k and j -- even though k and j's scopes are local to the type of
MkProxy{1,2}. The best approach we've come up with is to use TyVarTvs during
the kind-checking pass. First off, note that it's OK if the kind-checking pass
is too permissive: we'll snag the problems in the type-checking pass later.
(This extra permissiveness might happen with something like
data SameKind :: k -> k -> Type
data Bad a where
MkBad :: forall k1 k2 (a :: k1) (b :: k2). Bad (SameKind a b)
which would be accepted if k1 and k2 were TyVarTvs. This is correctly rejected
in the second pass, though. Test case: polykinds/TyVarTvKinds3)
Recall that the kind-checking pass exists solely to collect constraints
on the kinds and to power unification.
To achieve the use of TyVarTvs, we must be careful to use specialized functions
that produce TyVarTvs, not ordinary skolems. This is why we need
kcExplicitTKBndrs and kcImplicitTKBndrs in GHC.Tc.Gen.HsType, separate from their
tc... variants.
The drawback of this approach is sometimes it will accept a definition that
a (hypothetical) declarative specification would likely reject. As a general
rule, we don't want to allow polymorphic recursion without a CUSK. Indeed,
the whole point of CUSKs is to allow polymorphic recursion. Yet, the TyVarTvs
approach allows a limited form of polymorphic recursion *without* a CUSK.
To wit:
data T a = forall k (b :: k). MkT (T b) Int
(test case: dependent/should_compile/T14066a)
Note that this is polymorphically recursive, with the recursive occurrence
of T used at a kind other than a's kind. The approach outlined here accepts
this definition, because this kind is still a kind variable (and so the
TyVarTvs unify). Stepping back, I (Richard) have a hard time envisioning a
way to describe exactly what declarations will be accepted and which will
be rejected (without a CUSK). However, the accepted definitions are indeed
well-kinded and any rejected definitions would be accepted with a CUSK,
and so this wrinkle need not cause anyone to lose sleep.
************************************************************************
* *
\subsection{Type checking}
* *
************************************************************************
Note [Type checking recursive type and class declarations]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
At this point we have completed *kind-checking* of a mutually
recursive group of type/class decls (done in kcTyClGroup). However,
we discarded the kind-checked types (eg RHSs of data type decls);
note that kcTyClDecl returns (). There are two reasons:
* It's convenient, because we don't have to rebuild a
kinded HsDecl (a fairly elaborate type)
* It's necessary, because after kind-generalisation, the
TyCons/Classes may now be kind-polymorphic, and hence need
to be given kind arguments.
Example:
data T f a = MkT (f a) (T f a)
During kind-checking, we give T the kind T :: k1 -> k2 -> *
and figure out constraints on k1, k2 etc. Then we generalise
to get T :: forall k. (k->*) -> k -> *
So now the (T f a) in the RHS must be elaborated to (T k f a).
However, during tcTyClDecl of T (above) we will be in a recursive
"knot". So we aren't allowed to look at the TyCon T itself; we are only
allowed to put it (lazily) in the returned structures. But when
kind-checking the RHS of T's decl, we *do* need to know T's kind (so
that we can correctly elaboarate (T k f a). How can we get T's kind
without looking at T? Delicate answer: during tcTyClDecl, we extend
*Global* env with T -> ATyCon (the (not yet built) final TyCon for T)
*Local* env with T -> ATcTyCon (TcTyCon with the polymorphic kind of T)
Then:
* During GHC.Tc.Gen.HsType.tcTyVar we look in the *local* env, to get the
fully-known, not knot-tied TcTyCon for T.
* Then, in GHC.Tc.Utils.Zonk.zonkTcTypeToType (and zonkTcTyCon in particular)
we look in the *global* env to get the TyCon.
This fancy footwork (with two bindings for T) is only necessary for the
TyCons or Classes of this recursive group. Earlier, finished groups,
live in the global env only.
See also Note [Kind checking recursive type and class declarations]
Note [Kind checking recursive type and class declarations]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Before we can type-check the decls, we must kind check them. This
is done by establishing an "initial kind", which is a rather uninformed
guess at a tycon's kind (by counting arguments, mainly) and then
using this initial kind for recursive occurrences.
The initial kind is stored in exactly the same way during
kind-checking as it is during type-checking (Note [Type checking
recursive type and class declarations]): in the *local* environment,
with ATcTyCon. But we still must store *something* in the *global*
environment. Even though we discard the result of kind-checking, we
sometimes need to produce error messages. These error messages will
want to refer to the tycons being checked, except that they don't
exist yet, and it would be Terribly Annoying to get the error messages
to refer back to HsSyn. So we create a TcTyCon and put it in the
global env. This tycon can print out its name and knows its kind, but
any other action taken on it will panic. Note that TcTyCons are *not*
knot-tied, unlike the rather valid but knot-tied ones that occur
during type-checking.
Note [Declarations for wired-in things]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For wired-in things we simply ignore the declaration
and take the wired-in information. That avoids complications.
e.g. the need to make the data constructor worker name for
a constraint tuple match the wired-in one
Note [Datatype return kinds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There are several poorly lit corners around datatype/newtype return kinds.
This Note explains these. We cover data/newtype families and instances
in Note [Data family/instance return kinds].
data T a :: <kind> where ... -- See Point DT4
newtype T a :: <kind> where ... -- See Point DT5
DT1 Where this applies: Only GADT syntax for data/newtype/instance declarations
can have declared return kinds. This Note does not apply to Haskell98
syntax.
DT2 Where these kinds come from: The return kind is part of the TyCon kind, gotten either
by checkInitialKind (standalone kind signature / CUSK) or
inferInitialKind. It is extracted by bindTyClTyVars in tcTyClDecl1. It is
then passed to tcDataDefn.
DT3 Eta-expansion: Any forall-bound variables and function arguments in a result kind
become parameters to the type. That is, when we say
data T a :: Type -> Type where ...
we really mean for T to have two parameters. The second parameter
is produced by processing the return kind in etaExpandAlgTyCon,
called in tcDataDefn.
See also Note [TyConBinders for the result kind signatures of a data type]
in GHC.Tc.Gen.HsType.
DT4 Datatype return kind restriction: A data type return kind must end
in a type that, after type-synonym expansion, yields `TYPE LiftedRep`. By
"end in", we mean we strip any foralls and function arguments off before
checking.
Examples:
data T1 :: Type -- good
data T2 :: Bool -> Type -- good
data T3 :: Bool -> forall k. Type -- strange, but still accepted
data T4 :: forall k. k -> Type -- good
data T5 :: Bool -- bad
data T6 :: Type -> Bool -- bad
Exactly the same applies to data instance (but not data family)
declarations. Examples
data instance D1 :: Type -- good
data instance D2 :: Bool -> Type -- good
We can "look through" type synonyms
type Star = Type
data T7 :: Bool -> Star -- good (synonym expansion ok)
type Arrow = (->)
data T8 :: Arrow Bool Type -- good (ditto)
But we specifically do *not* do type family reduction here.
type family ARROW where
ARROW = (->)
data T9 :: ARROW Bool Type -- bad
type family F a where
F Int = Bool
F Bool = Type
data T10 :: Bool -> F Bool -- bad
The /principle/ here is that in the TyCon for a data type or data instance,
we must be able to lay out all the type-variable binders, one by one, until
we reach (TYPE xx). There is no place for a cast here. We could add one,
but let's not!
This check is done in checkDataKindSig. For data declarations, this
call is in tcDataDefn; for data instances, this call is in tcDataFamInstDecl.
DT5 Newtype return kind restriction.
If -XUnliftedNewtypes is not on, then newtypes are treated just
like datatypes --- see (4) above.
If -XUnliftedNewtypes is on, then a newtype return kind must end in
TYPE xyz, for some xyz (after type synonym expansion). The "xyz"
may include type families, but the TYPE part must be visible
/without/ expanding type families (only synonyms).
This kind is unified with the kind of the representation type (the
type of the one argument to the one constructor). See also steps
(2) and (3) of Note [Implementation of UnliftedNewtypes].
The checks are done in the same places as for datatypes.
Examples (assume -XUnliftedNewtypes):
newtype N1 :: Type -- good
newtype N2 :: Bool -> Type -- good
newtype N3 :: forall r. Bool -> TYPE r -- good
type family F (t :: Type) :: RuntimeRep
newtype N4 :: forall t -> TYPE (F t) -- good
type family STAR where
STAR = Type
newtype N5 :: Bool -> STAR -- bad
Note [Data family/instance return kinds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Within this note, understand "instance" to mean data or newtype
instance, and understand "family" to mean data family. No type
families or classes here. Some examples:
data family T a :: <kind> -- See Point DF56
data instance T [a] :: <kind> where ... -- See Point DF2
newtype instance T [a] :: <kind> where ... -- See Point DF2
Here is the Plan for Data Families:
DF0 Where these kinds come from:
Families: The return kind is either written in a standalone signature
or extracted from a family declaration in getInitialKind.
If a family declaration is missing a result kind, it is assumed to be
Type. This assumption is in getInitialKind for CUSKs or
get_fam_decl_initial_kind for non-signature & non-CUSK cases.
Instances: The data family already has a known kind. The return kind
of an instance is then calculated by applying the data family tycon
to the patterns provided, as computed by the typeKind lhs_ty in the
end of tcDataFamInstHeader. In the case of an instance written in GADT
syntax, there are potentially *two* return kinds: the one computed from
applying the data family tycon to the patterns, and the one given by
the user. This second kind is checked by the tc_kind_sig function within
tcDataFamInstHeader. See also DF3, below.
DF1 In a data/newtype instance, we treat the kind of the /data family/,
once instantiated, as the "master kind" for the representation
TyCon. For example:
data family T1 :: Type -> Type -> Type
data instance T1 Int :: F Bool -> Type where ...
The "master kind" for the representation TyCon R:T1Int comes
from T1, not from the signature on the data instance. It is as
if we declared
data R:T1Int :: Type -> Type where ...
See Note [Liberalising data family return kinds] for an alternative
plan. But this current plan is simple, and ensures that all instances
are simple instantiations of the master, without strange casts.
An example with non-trivial instantiation:
data family T2 :: forall k. Type -> k
data instance T2 :: Type -> Type -> Type where ...
Here 'k' gets instantiated with (Type -> Type), driven by
the signature on the 'data instance'. (See also DT3 of
Note [Datatype return kinds] about eta-expansion, which applies here,
too; see tcDataFamInstDecl's call of etaExpandAlgTyCon.)
A newtype example:
data Color = Red | Blue
type family Interpret (x :: Color) :: RuntimeRep where
Interpret 'Red = 'IntRep
Interpret 'Blue = 'WordRep
data family Foo (x :: Color) :: TYPE (Interpret x)
newtype instance Foo 'Red :: TYPE IntRep where
FooRedC :: Int# -> Foo 'Red
Here we get that Foo 'Red :: TYPE (Interpret Red), and our
representation newtype looks like
newtype R:FooRed :: TYPE (Interpret Red) where
FooRedC :: Int# -> R:FooRed
Remember: the master kind comes from the /family/ tycon.
DF2 /After/ this instantiation, the return kind of the master kind
must obey the usual rules for data/newtype return kinds (DT4, DT5)
of Note [Datatype return kinds]. Examples:
data family T3 k :: k
data instance T3 Type where ... -- OK
data instance T3 (Type->Type) where ... -- OK
data instance T3 (F Int) where ... -- Not OK
DF3 Any kind signatures on the data/newtype instance are checked for
equality with the master kind (and hence may guide instantiation)
but are otherwise ignored. So in the T1 example above, we check
that (F Int ~ Type) by unification; but otherwise ignore the
user-supplied signature from the /family/ not the /instance/.
We must be sure to instantiate any trailing invisible binders
before doing this unification. See the call to tcInstInvisibleBinders
in tcDataFamInstHeader. For example:
data family D :: forall k. k
data instance D :: Type -- forall k. k <: Type
data instance D :: Type -> Type -- forall k. k <: Type -> Type
-- NB: these do not overlap
we must instantiate D before unifying with the signature in the
data instance declaration
DF4 We also (redundantly) check that any user-specified return kind
signature in the data instance also obeys DT4/DT5. For example we
reject
data family T1 :: Type -> Type -> Type
data instance T1 Int :: Type -> F Int
even if (F Int ~ Type). We could omit this check, because we
use the master kind; but it seems more uniform to check it, again
with checkDataKindSig.
DF5 Data /family/ return kind restrictions. Consider
data family D8 a :: F a
where F is a type family. No data/newtype instance can instantiate
this so that it obeys the rules of DT4 or DT5. So GHC proactively
rejects the data /family/ declaration if it can never satisfy (DT4)/(DT5).
Remember that a data family supports both data and newtype instances.
More precisely, the return kind of a data family must be either
* TYPE xyz (for some type xyz) or
* a kind variable
Only in these cases can a data/newtype instance possibly satisfy (DT4)/(DT5).
This is checked by the call to checkDataKindSig in tcFamDecl1. Examples:
data family D1 :: Type -- good
data family D2 :: Bool -> Type -- good
data family D3 k :: k -- good
data family D4 :: forall k -> k -- good
data family D5 :: forall k. k -> k -- good
data family D6 :: forall r. TYPE r -- good
data family D7 :: Bool -> STAR -- bad (see STAR from point 5)
DF6 Two return kinds for instances: If an instance has two return kinds,
one from the family declaration and one from the instance declaration
(see point DF3 above), they are unified. More accurately, we make sure
that the kind of the applied data family is a subkind of the user-written
kind. GHC.Tc.Gen.HsType.checkExpectedKind normally does this check for types, but
that's overkill for our needs here. Instead, we just instantiate any
invisible binders in the (instantiated) kind of the data family
(called lhs_kind in tcDataFamInstHeader) with tcInstInvisibleTyBinders
and then unify the resulting kind with the kind written by the user.
This unification naturally produces a coercion, which we can drop, as
the kind annotation on the instance is redundant (except perhaps for
effects of unification).
This all is Wrinkle (3) in Note [Implementation of UnliftedNewtypes].
Note [Liberalising data family return kinds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Could we allow this?
type family F a where { F Int = Type }
data family T a :: F a
data instance T Int where
MkT :: T Int
In the 'data instance', T Int :: F Int, and F Int = Type, so all seems
well. But there are lots of complications:
* The representation constructor R:TInt presumably has kind Type.
So the axiom connecting the two would have to look like
axTInt :: T Int ~ R:TInt |> sym axFInt
and that doesn't match expectation in DataFamInstTyCon
in AlgTyConFlav
* The wrapper can't have type
$WMkT :: Int -> T Int
because T Int has the wrong kind. It would have to be
$WMkT :: Int -> (T Int) |> axFInt
* The code for $WMkT would also be more complicated, needing
two coherence coercions. Try it!
* Code for pattern matching would be complicated in an
exactly dual way.
So yes, we could allow this, but we currently do not. That's
why we have DF2 in Note [Data family/instance return kinds].
Note [Implementation of UnliftedNewtypes]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Expected behavior of UnliftedNewtypes:
* Proposal: https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0013-unlifted-newtypes.rst
* Discussion: https://github.com/ghc-proposals/ghc-proposals/pull/98
What follows is a high-level overview of the implementation of the
proposal.
STEP 1: Getting the initial kind, as done by inferInitialKind. We have
two sub-cases:
* With a SAK/CUSK: no change in kind-checking; the tycon is given the kind
the user writes, whatever it may be.
* Without a SAK/CUSK: If there is no kind signature, the tycon is given
a kind `TYPE r`, for a fresh unification variable `r`. We do this even
when -XUnliftedNewtypes is not on; see <Error Messages>, below.
STEP 2: Kind-checking, as done by kcTyClDecl. This step is skipped for CUSKs.
The key function here is kcConDecl, which looks at an individual constructor
declaration. When we are processing a newtype (but whether or not -XUnliftedNewtypes
is enabled; see <Error Messages>, below), we generate a correct ContextKind
for the checking argument types: see getArgExpKind.
Examples of newtypes affected by STEP 2, assuming -XUnliftedNewtypes is
enabled (we use r0 to denote a unification variable):
newtype Foo rep = MkFoo (forall (a :: TYPE rep). a)
+ kcConDecl unifies (TYPE r0) with (TYPE rep), where (TYPE r0)
is the kind that inferInitialKind invented for (Foo rep).
data Color = Red | Blue
type family Interpret (x :: Color) :: RuntimeRep where
Interpret 'Red = 'IntRep
Interpret 'Blue = 'WordRep
data family Foo (x :: Color) :: TYPE (Interpret x)
newtype instance Foo 'Red = FooRedC Int#
+ kcConDecl unifies TYPE (Interpret 'Red) with TYPE 'IntRep
Note that, in the GADT case, we might have a kind signature with arrows
(newtype XYZ a b :: Type -> Type where ...). We want only the final
component of the kind for checking in kcConDecl, so we call etaExpandAlgTyCon
in kcTyClDecl.
STEP 3: Type-checking (desugaring), as done by tcTyClDecl. The key function
here is tcConDecl. Once again, we must use getArgExpKind to ensure that the
representation type's kind matches that of the newtype, for two reasons:
A. It is possible that a GADT has a CUSK. (Note that this is *not*
possible for H98 types.) Recall that CUSK types don't go through
kcTyClDecl, so we might not have done this kind check.
B. We need to produce the coercion to put on the argument type
if the kinds are different (for both H98 and GADT).
Example of (B):
type family F a where
F Int = LiftedRep
newtype N :: TYPE (F Int) where
MkN :: Int -> N
We really need to have the argument to MkN be (Int |> TYPE (sym axF)), where
axF :: F Int ~ LiftedRep. That way, the argument kind is the same as the
newtype kind, which is the principal correctness condition for newtypes.
Wrinkle: Consider (#17021, typecheck/should_fail/T17021)
type family Id (x :: a) :: a where
Id x = x
newtype T :: TYPE (Id LiftedRep) where
MkT :: Int -> T
In the type of MkT, we must end with (Int |> TYPE (sym axId)) -> T,
never Int -> (T |> TYPE axId); otherwise, the result type of the
constructor wouldn't match the datatype. However, type-checking the
HsType T might reasonably result in (T |> hole). We thus must ensure
that this cast is dropped, forcing the type-checker to add one to
the Int instead.
Why is it always safe to drop the cast? This result type is type-checked by
tcHsOpenType, so its kind definitely looks like TYPE r, for some r. It is
important that even after dropping the cast, the type's kind has the form
TYPE r. This is guaranteed by restrictions on the kinds of datatypes.
For example, a declaration like `newtype T :: Id Type` is rejected: a
newtype's final kind always has the form TYPE r, just as we want.
Note that this is possible in the H98 case only for a data family, because
the H98 syntax doesn't permit a kind signature on the newtype itself.
There are also some changes for dealing with families:
1. In tcFamDecl1, we suppress a tcIsLiftedTypeKind check if
UnliftedNewtypes is on. This allows us to write things like:
data family Foo :: TYPE 'IntRep
2. In a newtype instance (with -XUnliftedNewtypes), if the user does
not write a kind signature, we want to allow the possibility that
the kind is not Type, so we use newOpenTypeKind instead of liftedTypeKind.
This is done in tcDataFamInstHeader in GHC.Tc.TyCl.Instance. Example:
data family Bar (a :: RuntimeRep) :: TYPE a
newtype instance Bar 'IntRep = BarIntC Int#
newtype instance Bar 'WordRep :: TYPE 'WordRep where
BarWordC :: Word# -> Bar 'WordRep
The data instance corresponding to IntRep does not specify a kind signature,
so tc_kind_sig just returns `TYPE r0` (where `r0` is a fresh metavariable).
The data instance corresponding to WordRep does have a kind signature, so
we use that kind signature.
3. A data family and its newtype instance may be declared with slightly
different kinds. See point DF6 in Note [Data family/instance return kinds]
There's also a change in the renamer:
* In GHC.RenameSource.rnTyClDecl, enabling UnliftedNewtypes changes what is means
for a newtype to have a CUSK. This is necessary since UnliftedNewtypes
means that, for newtypes without kind signatures, we must use the field
inside the data constructor to determine the result kind.
See Note [Unlifted Newtypes and CUSKs] for more detail.
For completeness, it was also necessary to make coerce work on
unlifted types, resolving #13595.
<Error Messages>: It's tempting to think that the expected kind for a newtype
constructor argument when -XUnliftedNewtypes is *not* enabled should just be Type.
But this leads to difficulty in suggesting to enable UnliftedNewtypes. Here is
an example:
newtype A = MkA Int#
If we expect the argument to MkA to have kind Type, then we get a kind-mismatch
error. The problem is that there is no way to connect this mismatch error to
-XUnliftedNewtypes, and suggest enabling the extension. So, instead, we allow
the A to type-check, but then find the problem when doing validity checking (and
where we get make a suitable error message). One potential worry is
{-# LANGUAGE PolyKinds #-}
newtype B a = MkB a
This turns out OK, because unconstrained RuntimeReps default to LiftedRep, just
as we would like. Another potential problem comes in a case like
-- no UnliftedNewtypes
data family D :: k
newtype instance D = MkD Any
Here, we want inference to tell us that k should be instantiated to Type in
the instance. With the approach described here (checking for Type only in
the validity checker), that will not happen. But I cannot think of a non-contrived
example that will notice this lack of inference, so it seems better to improve
error messages than be able to infer this instantiation.
-}
tcTyClDecl :: RolesInfo -> LTyClDecl GhcRn -> TcM (TyCon, [DerivInfo])
tcTyClDecl roles_info (L loc decl)
| Just thing <- wiredInNameTyThing_maybe (tcdName decl)
= case thing of -- See Note [Declarations for wired-in things]
ATyCon tc -> return (tc, wiredInDerivInfo tc decl)
_ -> pprPanic "tcTyClDecl" (ppr thing)
| otherwise
= setSrcSpan loc $ tcAddDeclCtxt decl $
do { traceTc "---- tcTyClDecl ---- {" (ppr decl)
; (tc, deriv_infos) <- tcTyClDecl1 Nothing roles_info decl
; traceTc "---- tcTyClDecl end ---- }" (ppr tc)
; return (tc, deriv_infos) }
noDerivInfos :: a -> (a, [DerivInfo])
noDerivInfos a = (a, [])
wiredInDerivInfo :: TyCon -> TyClDecl GhcRn -> [DerivInfo]
wiredInDerivInfo tycon decl
| DataDecl { tcdDataDefn = dataDefn } <- decl
, HsDataDefn { dd_derivs = derivs } <- dataDefn
= [ DerivInfo { di_rep_tc = tycon
, di_scoped_tvs =
if isFunTyCon tycon || isPrimTyCon tycon
then [] -- no tyConTyVars
else mkTyVarNamePairs (tyConTyVars tycon)
, di_clauses = unLoc derivs
, di_ctxt = tcMkDeclCtxt decl } ]
wiredInDerivInfo _ _ = []
-- "type family" declarations
tcTyClDecl1 :: Maybe Class -> RolesInfo -> TyClDecl GhcRn -> TcM (TyCon, [DerivInfo])
tcTyClDecl1 parent _roles_info (FamDecl { tcdFam = fd })
= fmap noDerivInfos $
tcFamDecl1 parent fd
-- "type" synonym declaration
tcTyClDecl1 _parent roles_info
(SynDecl { tcdLName = L _ tc_name
, tcdRhs = rhs })
= ASSERT( isNothing _parent )
fmap noDerivInfos $
tcTySynRhs roles_info tc_name rhs
-- "data/newtype" declaration
tcTyClDecl1 _parent roles_info
decl@(DataDecl { tcdLName = L _ tc_name
, tcdDataDefn = defn })
= ASSERT( isNothing _parent )
tcDataDefn (tcMkDeclCtxt decl) roles_info tc_name defn
tcTyClDecl1 _parent roles_info
(ClassDecl { tcdLName = L _ class_name
, tcdCtxt = hs_ctxt
, tcdMeths = meths
, tcdFDs = fundeps
, tcdSigs = sigs
, tcdATs = ats
, tcdATDefs = at_defs })
= ASSERT( isNothing _parent )
do { clas <- tcClassDecl1 roles_info class_name hs_ctxt
meths fundeps sigs ats at_defs
; return (noDerivInfos (classTyCon clas)) }
{- *********************************************************************
* *
Class declarations
* *
********************************************************************* -}
tcClassDecl1 :: RolesInfo -> Name -> LHsContext GhcRn
-> LHsBinds GhcRn -> [LHsFunDep GhcRn] -> [LSig GhcRn]
-> [LFamilyDecl GhcRn] -> [LTyFamDefltDecl GhcRn]
-> TcM Class
tcClassDecl1 roles_info class_name hs_ctxt meths fundeps sigs ats at_defs
= fixM $ \ clas ->
-- We need the knot because 'clas' is passed into tcClassATs
bindTyClTyVars class_name $ \ _ binders res_kind ->
do { checkClassKindSig res_kind
; traceTc "tcClassDecl 1" (ppr class_name $$ ppr binders)
; let tycon_name = class_name -- We use the same name
roles = roles_info tycon_name -- for TyCon and Class
; (ctxt, fds, sig_stuff, at_stuff)
<- pushTcLevelM_ $
solveEqualities $
checkTvConstraints skol_info (binderVars binders) $
-- The checkTvConstraints is needed bring into scope the
-- skolems bound by the class decl header (#17841)
do { ctxt <- tcHsContext hs_ctxt
; fds <- mapM (addLocM tc_fundep) fundeps
; sig_stuff <- tcClassSigs class_name sigs meths
; at_stuff <- tcClassATs class_name clas ats at_defs
; return (ctxt, fds, sig_stuff, at_stuff) }
-- The solveEqualities will report errors for any
-- unsolved equalities, so these zonks should not encounter
-- any unfilled coercion variables unless there is such an error
-- The zonk also squeeze out the TcTyCons, and converts
-- Skolems to tyvars.
; ze <- emptyZonkEnv
; ctxt <- zonkTcTypesToTypesX ze ctxt
; sig_stuff <- mapM (zonkTcMethInfoToMethInfoX ze) sig_stuff
-- ToDo: do we need to zonk at_stuff?
-- TODO: Allow us to distinguish between abstract class,
-- and concrete class with no methods (maybe by
-- specifying a trailing where or not
; mindef <- tcClassMinimalDef class_name sigs sig_stuff
; is_boot <- tcIsHsBootOrSig
; let body | is_boot, null ctxt, null at_stuff, null sig_stuff
= Nothing
| otherwise
= Just (ctxt, at_stuff, sig_stuff, mindef)
; clas <- buildClass class_name binders roles fds body
; traceTc "tcClassDecl" (ppr fundeps $$ ppr binders $$
ppr fds)
; return clas }
where
skol_info = TyConSkol ClassFlavour class_name
tc_fundep (tvs1, tvs2) = do { tvs1' <- mapM (tcLookupTyVar . unLoc) tvs1 ;
; tvs2' <- mapM (tcLookupTyVar . unLoc) tvs2 ;
; return (tvs1', tvs2') }
{- Note [Associated type defaults]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The following is an example of associated type defaults:
class C a where
data D a
type F a b :: *
type F a b = [a] -- Default
Note that we can get default definitions only for type families, not data
families.
-}
tcClassATs :: Name -- The class name (not knot-tied)
-> Class -- The class parent of this associated type
-> [LFamilyDecl GhcRn] -- Associated types.
-> [LTyFamDefltDecl GhcRn] -- Associated type defaults.
-> TcM [ClassATItem]
tcClassATs class_name cls ats at_defs
= do { -- Complain about associated type defaults for non associated-types
sequence_ [ failWithTc (badATErr class_name n)
| n <- map at_def_tycon at_defs
, not (n `elemNameSet` at_names) ]
; mapM tc_at ats }
where
at_def_tycon :: LTyFamDefltDecl GhcRn -> Name
at_def_tycon = tyFamInstDeclName . unLoc
at_fam_name :: LFamilyDecl GhcRn -> Name
at_fam_name = familyDeclName . unLoc
at_names = mkNameSet (map at_fam_name ats)
at_defs_map :: NameEnv [LTyFamDefltDecl GhcRn]
-- Maps an AT in 'ats' to a list of all its default defs in 'at_defs'
at_defs_map = foldr (\at_def nenv -> extendNameEnv_C (++) nenv
(at_def_tycon at_def) [at_def])
emptyNameEnv at_defs
tc_at at = do { fam_tc <- addLocM (tcFamDecl1 (Just cls)) at
; let at_defs = lookupNameEnv at_defs_map (at_fam_name at)
`orElse` []
; atd <- tcDefaultAssocDecl fam_tc at_defs
; return (ATI fam_tc atd) }
-------------------------
tcDefaultAssocDecl ::
TyCon -- ^ Family TyCon (not knot-tied)
-> [LTyFamDefltDecl GhcRn] -- ^ Defaults
-> TcM (Maybe (KnotTied Type, ATValidityInfo)) -- ^ Type checked RHS
tcDefaultAssocDecl _ []
= return Nothing -- No default declaration
tcDefaultAssocDecl _ (d1:_:_)
= failWithTc (text "More than one default declaration for"
<+> ppr (tyFamInstDeclName (unLoc d1)))
tcDefaultAssocDecl fam_tc
[L loc (TyFamInstDecl { tfid_eqn =
HsIB { hsib_ext = imp_vars
, hsib_body = FamEqn { feqn_tycon = L _ tc_name
, feqn_bndrs = mb_expl_bndrs
, feqn_pats = hs_pats
, feqn_rhs = hs_rhs_ty }}})]
= -- See Note [Type-checking default assoc decls]
setSrcSpan loc $
tcAddFamInstCtxt (text "default type instance") tc_name $
do { traceTc "tcDefaultAssocDecl 1" (ppr tc_name)
; let fam_tc_name = tyConName fam_tc
vis_arity = length (tyConVisibleTyVars fam_tc)
vis_pats = numVisibleArgs hs_pats
-- Kind of family check
; ASSERT( fam_tc_name == tc_name )
checkTc (isTypeFamilyTyCon fam_tc) (wrongKindOfFamily fam_tc)
-- Arity check
; checkTc (vis_pats == vis_arity)
(wrongNumberOfParmsErr vis_arity)
-- Typecheck RHS
--
-- You might think we should pass in some AssocInstInfo, as we're looking
-- at an associated type. But this would be wrong, because an associated
-- type default LHS can mention *different* type variables than the
-- enclosing class. So it's treated more as a freestanding beast.
; (qtvs, pats, rhs_ty) <- tcTyFamInstEqnGuts fam_tc NotAssociated
imp_vars (mb_expl_bndrs `orElse` [])
hs_pats hs_rhs_ty
; let fam_tvs = tyConTyVars fam_tc
; traceTc "tcDefaultAssocDecl 2" (vcat
[ text "hs_pats" <+> ppr hs_pats
, text "hs_rhs_ty" <+> ppr hs_rhs_ty
, text "fam_tvs" <+> ppr fam_tvs
, text "qtvs" <+> ppr qtvs
-- NB: Do *not* print `pats` or rhs_ty here, as they can mention
-- knot-tied TyCons. See #18648.
])
; let subst = case traverse getTyVar_maybe pats of
Just cpt_tvs -> zipTvSubst cpt_tvs (mkTyVarTys fam_tvs)
Nothing -> emptyTCvSubst
-- The Nothing case can only be reached in invalid
-- associated type family defaults. In such cases, we
-- simply create an empty substitution and let GHC fall
-- over later, in GHC.Tc.Validity.checkValidAssocTyFamDeflt.
-- See Note [Type-checking default assoc decls].
; pure $ Just (substTyUnchecked subst rhs_ty, ATVI loc pats)
-- We perform checks for well-formedness and validity later, in
-- GHC.Tc.Validity.checkValidAssocTyFamDeflt.
}
{- Note [Type-checking default assoc decls]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this default declaration for an associated type
class C a where
type F (a :: k) b :: Type
type F (x :: j) y = Proxy x -> y
Note that the class variable 'a' doesn't scope over the default assoc
decl, nor do the type variables `k` and `b`. Instead, the default decl is
treated more like a top-level type instance. However, we store the default rhs
(Proxy x -> y) in F's TyCon, using F's own type variables, so we need to
convert it to (Proxy a -> b). We do this in the tcDefaultAssocDecl function by
creating a substitution [j |-> k, x |-> a, b |-> y] and applying this
substitution to the RHS.
In order to create this substitution, we must first ensure that all of
the arguments in the default instance consist of distinct type variables.
Checking for this property proves surprisingly tricky. Three potential places
where GHC could check for this property include:
1. Before typechecking (in the parser or renamer)
2. During typechecking (in tcDefaultAssocDecl)
3. After typechecking (using GHC.Tc.Validity)
Currently, GHC picks option (3) and implements this check using
GHC.Tc.Validity.checkValidAssocTyFamDeflt. GHC previously used options (1) and
(2), but neither option quite worked out for reasons that we will explain
shortly.
The first thing that checkValidAssocTyFamDeflt does is check that all arguments
in an associated type family default are type variables. As a motivating
example, consider this erroneous program (inspired by #11361):
class C a where
type F (a :: k) b :: Type
type F x b = x
If you squint, you'll notice that the kind of `x` is actually Type. However,
we cannot substitute from [Type |-> k], so we reject this default. This also
explains why GHC no longer implements option (1) above, since figuring out that
`x`'s kind is Type would be much more difficult without the knowledge that the
typechecker provides.
Next, checkValidAssocTyFamDeflt checks that all arguments are distinct. Here is
another offending example, this time taken from #13971:
class C2 (a :: j) where
type F2 (a :: j) (b :: k)
type F2 (x :: z) y = SameKind x y
data SameKind :: k -> k -> Type
All of the arguments in the default equation for `F2` are type variables, so
that passes the first check. However, if we were to build this substitution,
then both `j` and `k` map to `z`! In terms of visible kind application, it's as
if we had written `type F2 @z @z x y = SameKind @z x y`, which makes it clear
that we have duplicated a use of `z` on the LHS. Therefore, `F2`'s default is
also rejected.
There is one more design consideration in play here: what error message should
checkValidAssocTyFamDeflt produce if one of its checks fails? Ideally, it would
be something like this:
Illegal duplicate variable ‘z’ in:
‘type F2 @z @z x y = ...’
The arguments to ‘F2’ must all be distinct type variables
This requires printing out the arguments to the associated type family. This
can be dangerous, however. Consider this example, adapted from #18648:
class C3 a where
type F3 a
type F3 (F3 a) = a
F3's default is illegal, since its argument is not a bare type variable. But
note that when we typecheck F3's default, the F3 type constructor is knot-tied.
Therefore, if we print the type `F3 a` in an error message, GHC will diverge!
This is the reason why GHC no longer implements option (2) above and instead
waits until /after/ typechecking has finished, at which point the typechecker
knot has been worked out.
As one final point, one might worry that the typechecker knot could cause the
substitution that tcDefaultAssocDecl creates to diverge, but this is not the
case. Since the LHS of a valid associated type family default is always just
variables, it won't contain any tycons. Accordingly, the patterns used in the
substitution won't actually be knot-tied, even though we're in the knot. (This
is too delicate for my taste, but it works.) If we're dealing with /invalid/
default, such as F3's above, then we simply create an empty substitution and
rely on checkValidAssocTyFamDeflt throwing an error message afterwards before
any damage is done.
-}
{- *********************************************************************
* *
Type family declarations
* *
********************************************************************* -}
tcFamDecl1 :: Maybe Class -> FamilyDecl GhcRn -> TcM TyCon
tcFamDecl1 parent (FamilyDecl { fdInfo = fam_info
, fdLName = tc_lname@(L _ tc_name)
, fdResultSig = L _ sig
, fdInjectivityAnn = inj })
| DataFamily <- fam_info
= bindTyClTyVars tc_name $ \ _ binders res_kind -> do
{ traceTc "data family:" (ppr tc_name)
; checkFamFlag tc_name
-- Check that the result kind is OK
-- We allow things like
-- data family T (a :: Type) :: forall k. k -> Type
-- We treat T as having arity 1, but result kind forall k. k -> Type
-- But we want to check that the result kind finishes in
-- Type or a kind-variable
-- For the latter, consider
-- data family D a :: forall k. Type -> k
-- When UnliftedNewtypes is enabled, we loosen this restriction
-- on the return kind. See Note [Implementation of UnliftedNewtypes], wrinkle (1).
-- See also Note [Datatype return kinds]
; checkDataKindSig DataFamilySort res_kind
; tc_rep_name <- newTyConRepName tc_name
; let inj = Injective $ replicate (length binders) True
tycon = mkFamilyTyCon tc_name binders
res_kind
(resultVariableName sig)
(DataFamilyTyCon tc_rep_name)
parent inj
; return tycon }
| OpenTypeFamily <- fam_info
= bindTyClTyVars tc_name $ \ _ binders res_kind -> do
{ traceTc "open type family:" (ppr tc_name)
; checkFamFlag tc_name
; inj' <- tcInjectivity binders inj
; checkResultSigFlag tc_name sig -- check after injectivity for better errors
; let tycon = mkFamilyTyCon tc_name binders res_kind
(resultVariableName sig) OpenSynFamilyTyCon
parent inj'
; return tycon }
| ClosedTypeFamily mb_eqns <- fam_info
= -- Closed type families are a little tricky, because they contain the definition
-- of both the type family and the equations for a CoAxiom.
do { traceTc "Closed type family:" (ppr tc_name)
-- the variables in the header scope only over the injectivity
-- declaration but this is not involved here
; (inj', binders, res_kind)
<- bindTyClTyVars tc_name $ \ _ binders res_kind ->
do { inj' <- tcInjectivity binders inj
; return (inj', binders, res_kind) }
; checkFamFlag tc_name -- make sure we have -XTypeFamilies
; checkResultSigFlag tc_name sig
-- If Nothing, this is an abstract family in a hs-boot file;
-- but eqns might be empty in the Just case as well
; case mb_eqns of
Nothing ->
return $ mkFamilyTyCon tc_name binders res_kind
(resultVariableName sig)
AbstractClosedSynFamilyTyCon parent
inj'
Just eqns -> do {
-- Process the equations, creating CoAxBranches
; let tc_fam_tc = mkTcTyCon tc_name binders res_kind
noTcTyConScopedTyVars
False {- this doesn't matter here -}
ClosedTypeFamilyFlavour
; branches <- mapAndReportM (tcTyFamInstEqn tc_fam_tc NotAssociated) eqns
-- Do not attempt to drop equations dominated by earlier
-- ones here; in the case of mutual recursion with a data
-- type, we get a knot-tying failure. Instead we check
-- for this afterwards, in GHC.Tc.Validity.checkValidCoAxiom
-- Example: tc265
-- Create a CoAxiom, with the correct src location.
; co_ax_name <- newFamInstAxiomName tc_lname []
; let mb_co_ax
| null eqns = Nothing -- mkBranchedCoAxiom fails on empty list
| otherwise = Just (mkBranchedCoAxiom co_ax_name fam_tc branches)
fam_tc = mkFamilyTyCon tc_name binders res_kind (resultVariableName sig)
(ClosedSynFamilyTyCon mb_co_ax) parent inj'
-- We check for instance validity later, when doing validity
-- checking for the tycon. Exception: checking equations
-- overlap done by dropDominatedAxioms
; return fam_tc } }
#if __GLASGOW_HASKELL__ <= 810
| otherwise = panic "tcFamInst1" -- Silence pattern-exhaustiveness checker
#endif
-- | Maybe return a list of Bools that say whether a type family was declared
-- injective in the corresponding type arguments. Length of the list is equal to
-- the number of arguments (including implicit kind/coercion arguments).
-- True on position
-- N means that a function is injective in its Nth argument. False means it is
-- not.
tcInjectivity :: [TyConBinder] -> Maybe (LInjectivityAnn GhcRn)
-> TcM Injectivity
tcInjectivity _ Nothing
= return NotInjective
-- User provided an injectivity annotation, so for each tyvar argument we
-- check whether a type family was declared injective in that argument. We
-- return a list of Bools, where True means that corresponding type variable
-- was mentioned in lInjNames (type family is injective in that argument) and
-- False means that it was not mentioned in lInjNames (type family is not
-- injective in that type variable). We also extend injectivity information to
-- kind variables, so if a user declares:
--
-- type family F (a :: k1) (b :: k2) = (r :: k3) | r -> a
--
-- then we mark both `a` and `k1` as injective.
-- NB: the return kind is considered to be *input* argument to a type family.
-- Since injectivity allows to infer input arguments from the result in theory
-- we should always mark the result kind variable (`k3` in this example) as
-- injective. The reason is that result type has always an assigned kind and
-- therefore we can always infer the result kind if we know the result type.
-- But this does not seem to be useful in any way so we don't do it. (Another
-- reason is that the implementation would not be straightforward.)
tcInjectivity tcbs (Just (L loc (InjectivityAnn _ lInjNames)))
= setSrcSpan loc $
do { let tvs = binderVars tcbs
; dflags <- getDynFlags
; checkTc (xopt LangExt.TypeFamilyDependencies dflags)
(text "Illegal injectivity annotation" $$
text "Use TypeFamilyDependencies to allow this")
; inj_tvs <- mapM (tcLookupTyVar . unLoc) lInjNames
; inj_tvs <- mapM zonkTcTyVarToTyVar inj_tvs -- zonk the kinds
; let inj_ktvs = filterVarSet isTyVar $ -- no injective coercion vars
closeOverKinds (mkVarSet inj_tvs)
; let inj_bools = map (`elemVarSet` inj_ktvs) tvs
; traceTc "tcInjectivity" (vcat [ ppr tvs, ppr lInjNames, ppr inj_tvs
, ppr inj_ktvs, ppr inj_bools ])
; return $ Injective inj_bools }
tcTySynRhs :: RolesInfo -> Name
-> LHsType GhcRn -> TcM TyCon
tcTySynRhs roles_info tc_name hs_ty
= bindTyClTyVars tc_name $ \ _ binders res_kind ->
do { env <- getLclEnv
; traceTc "tc-syn" (ppr tc_name $$ ppr (tcl_env env))
; rhs_ty <- pushTcLevelM_ $
solveEqualities $
tcCheckLHsType hs_ty (TheKind res_kind)
; rhs_ty <- zonkTcTypeToType rhs_ty
; let roles = roles_info tc_name
tycon = buildSynTyCon tc_name binders res_kind roles rhs_ty
; return tycon }
tcDataDefn :: SDoc -> RolesInfo -> Name
-> HsDataDefn GhcRn -> TcM (TyCon, [DerivInfo])
-- NB: not used for newtype/data instances (whether associated or not)
tcDataDefn err_ctxt roles_info tc_name
(HsDataDefn { dd_ND = new_or_data, dd_cType = cType
, dd_ctxt = ctxt
, dd_kindSig = mb_ksig -- Already in tc's kind
-- via inferInitialKinds
, dd_cons = cons
, dd_derivs = derivs })
= bindTyClTyVars tc_name $ \ tctc tycon_binders res_kind ->
-- 'tctc' is a 'TcTyCon' and has the 'tcTyConScopedTyVars' that we need
-- unlike the finalized 'tycon' defined above which is an 'AlgTyCon'
--
-- The TyCon tyvars must scope over
-- - the stupid theta (dd_ctxt)
-- - for H98 constructors only, the ConDecl
-- But it does no harm to bring them into scope
-- over GADT ConDecls as well; and it's awkward not to
do { gadt_syntax <- dataDeclChecks tc_name new_or_data ctxt cons
-- see Note [Datatype return kinds]
; (extra_bndrs, final_res_kind) <- etaExpandAlgTyCon tycon_binders res_kind
; tcg_env <- getGblEnv
; let hsc_src = tcg_src tcg_env
; unless (mk_permissive_kind hsc_src cons) $
checkDataKindSig (DataDeclSort new_or_data) final_res_kind
; stupid_tc_theta <- pushTcLevelM_ $ solveEqualities $ tcHsContext ctxt
; stupid_theta <- zonkTcTypesToTypes stupid_tc_theta
; kind_signatures <- xoptM LangExt.KindSignatures
-- Check that we don't use kind signatures without Glasgow extensions
; when (isJust mb_ksig) $
checkTc (kind_signatures) (badSigTyDecl tc_name)
; tycon <- fixM $ \ tycon -> do
{ let final_bndrs = tycon_binders `chkAppend` extra_bndrs
res_ty = mkTyConApp tycon (mkTyVarTys (binderVars final_bndrs))
roles = roles_info tc_name
; data_cons <- tcConDecls
tycon
new_or_data
final_bndrs
final_res_kind
res_ty
cons
; tc_rhs <- mk_tc_rhs hsc_src tycon data_cons
; tc_rep_nm <- newTyConRepName tc_name
; return (mkAlgTyCon tc_name
final_bndrs
final_res_kind
roles
(fmap unLoc cType)
stupid_theta tc_rhs
(VanillaAlgTyCon tc_rep_nm)
gadt_syntax) }
; let deriv_info = DerivInfo { di_rep_tc = tycon
, di_scoped_tvs = tcTyConScopedTyVars tctc
, di_clauses = unLoc derivs
, di_ctxt = err_ctxt }
; traceTc "tcDataDefn" (ppr tc_name $$ ppr tycon_binders $$ ppr extra_bndrs)
; return (tycon, [deriv_info]) }
where
-- Abstract data types in hsig files can have arbitrary kinds,
-- because they may be implemented by type synonyms
-- (which themselves can have arbitrary kinds, not just *). See #13955.
--
-- Note that this is only a property that data type declarations possess,
-- so one could not have, say, a data family instance in an hsig file that
-- has kind `Bool`. Therefore, this check need only occur in the code that
-- typechecks data type declarations.
mk_permissive_kind HsigFile [] = True
mk_permissive_kind _ _ = False
-- In hs-boot, a 'data' declaration with no constructors
-- indicates a nominally distinct abstract data type.
mk_tc_rhs HsBootFile _ []
= return AbstractTyCon
mk_tc_rhs HsigFile _ [] -- ditto
= return AbstractTyCon
mk_tc_rhs _ tycon data_cons
= case new_or_data of
DataType -> return (mkDataTyConRhs data_cons)
NewType -> ASSERT( not (null data_cons) )
mkNewTyConRhs tc_name tycon (head data_cons)
-------------------------
kcTyFamInstEqn :: TcTyCon -> LTyFamInstEqn GhcRn -> TcM ()
-- Used for the equations of a closed type family only
-- Not used for data/type instances
kcTyFamInstEqn tc_fam_tc
(L loc (HsIB { hsib_ext = imp_vars
, hsib_body = FamEqn { feqn_tycon = L _ eqn_tc_name
, feqn_bndrs = mb_expl_bndrs
, feqn_pats = hs_pats
, feqn_rhs = hs_rhs_ty }}))
= setSrcSpan loc $
do { traceTc "kcTyFamInstEqn" (vcat
[ text "tc_name =" <+> ppr eqn_tc_name
, text "fam_tc =" <+> ppr tc_fam_tc <+> dcolon <+> ppr (tyConKind tc_fam_tc)
, text "hsib_vars =" <+> ppr imp_vars
, text "feqn_bndrs =" <+> ppr mb_expl_bndrs
, text "feqn_pats =" <+> ppr hs_pats ])
-- this check reports an arity error instead of a kind error; easier for user
; let vis_pats = numVisibleArgs hs_pats
-- First, check if we're dealing with a closed type family equation, and
-- if so, ensure that each equation's type constructor is for the right
-- type family. E.g. barf on
-- type family F a where { G Int = Bool }
; checkTc (tc_fam_tc_name == eqn_tc_name) $
wrongTyFamName tc_fam_tc_name eqn_tc_name
; checkTc (vis_pats == vis_arity) $
wrongNumberOfParmsErr vis_arity
; discardResult $
bindImplicitTKBndrs_Q_Tv imp_vars $
bindExplicitTKBndrs_Q_Tv AnyKind (mb_expl_bndrs `orElse` []) $
do { (_fam_app, res_kind) <- tcFamTyPats tc_fam_tc hs_pats
; tcCheckLHsType hs_rhs_ty (TheKind res_kind) }
-- Why "_Tv" here? Consider (#14066
-- type family Bar x y where
-- Bar (x :: a) (y :: b) = Int
-- Bar (x :: c) (y :: d) = Bool
-- During kind-checking, a,b,c,d should be TyVarTvs and unify appropriately
}
where
vis_arity = length (tyConVisibleTyVars tc_fam_tc)
tc_fam_tc_name = getName tc_fam_tc
--------------------------
tcTyFamInstEqn :: TcTyCon -> AssocInstInfo -> LTyFamInstEqn GhcRn
-> TcM (KnotTied CoAxBranch)
-- Needs to be here, not in GHC.Tc.TyCl.Instance, because closed families
-- (typechecked here) have TyFamInstEqns
tcTyFamInstEqn fam_tc mb_clsinfo
(L loc (HsIB { hsib_ext = imp_vars
, hsib_body = FamEqn { feqn_bndrs = mb_expl_bndrs
, feqn_pats = hs_pats
, feqn_rhs = hs_rhs_ty }}))
= setSrcSpan loc $
do { traceTc "tcTyFamInstEqn" $
vcat [ ppr fam_tc <+> ppr hs_pats
, text "fam tc bndrs" <+> pprTyVars (tyConTyVars fam_tc)
, case mb_clsinfo of
NotAssociated {} -> empty
InClsInst { ai_class = cls } -> text "class" <+> ppr cls <+> pprTyVars (classTyVars cls) ]
-- First, check the arity of visible arguments
-- If we wait until validity checking, we'll get kind errors
-- below when an arity error will be much easier to understand.
-- Note that for closed type families, kcTyFamInstEqn has already
-- checked the arity previously.
; let vis_arity = length (tyConVisibleTyVars fam_tc)
vis_pats = numVisibleArgs hs_pats
; checkTc (vis_pats == vis_arity) $
wrongNumberOfParmsErr vis_arity
; (qtvs, pats, rhs_ty) <- tcTyFamInstEqnGuts fam_tc mb_clsinfo
imp_vars (mb_expl_bndrs `orElse` [])
hs_pats hs_rhs_ty
-- Don't print results they may be knot-tied
-- (tcFamInstEqnGuts zonks to Type)
; return (mkCoAxBranch qtvs [] [] pats rhs_ty
(map (const Nominal) qtvs)
loc) }
{-
Kind check type patterns and kind annotate the embedded type variables.
type instance F [a] = rhs
* Here we check that a type instance matches its kind signature, but we do
not check whether there is a pattern for each type index; the latter
check is only required for type synonym instances.
Note [Instantiating a family tycon]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's possible that kind-checking the result of a family tycon applied to
its patterns will instantiate the tycon further. For example, we might
have
type family F :: k where
F = Int
F = Maybe
After checking (F :: forall k. k) (with no visible patterns), we still need
to instantiate the k. With data family instances, this problem can be even
more intricate, due to Note [Arity of data families] in GHC.Core.FamInstEnv. See
indexed-types/should_compile/T12369 for an example.
So, the kind-checker must return the new skolems and args (that is, Type
or (Type -> Type) for the equations above) and the instantiated kind.
Note [Generalising in tcTyFamInstEqnGuts]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have something like
type instance forall (a::k) b. F t1 t2 = rhs
Then imp_vars = [k], exp_bndrs = [a::k, b]
We want to quantify over
* k, a, and b (all user-specified)
* and any inferred free kind vars from
- the kinds of k, a, b
- the types t1, t2
However, unlike a type signature like
f :: forall (a::k). blah
we do /not/ care about the Inferred/Specified designation
or order for the final quantified tyvars. Type-family
instances are not invoked directly in Haskell source code,
so visible type application etc plays no role.
So, the simple thing is
- gather candidates from [k, a, b] and pats
- quantify over them
Hence the slightly mysterious call:
candidateQTyVarsOfTypes (pats ++ mkTyVarTys scoped_tvs)
Simple, neat, but a little non-obvious!
See also Note [Re-quantify type variables in rules] in GHC.Tc.Gen.Rule, which explains
a very similar design when generalising over the type of a rewrite rule.
-}
--------------------------
tcTyFamInstEqnGuts :: TyCon -> AssocInstInfo
-> [Name] -> [LHsTyVarBndr () GhcRn] -- Implicit and explicicit binder
-> HsTyPats GhcRn -- Patterns
-> LHsType GhcRn -- RHS
-> TcM ([TyVar], [TcType], TcType) -- (tyvars, pats, rhs)
-- Used only for type families, not data families
tcTyFamInstEqnGuts fam_tc mb_clsinfo imp_vars exp_bndrs hs_pats hs_rhs_ty
= do { traceTc "tcTyFamInstEqnGuts {" (ppr fam_tc)
-- By now, for type families (but not data families) we should
-- have checked that the number of patterns matches tyConArity
-- This code is closely related to the code
-- in GHC.Tc.Gen.HsType.kcCheckDeclHeader_cusk
; (imp_tvs, (exp_tvs, (lhs_ty, rhs_ty)))
<- pushTcLevelM_ $
solveEqualities $
bindImplicitTKBndrs_Q_Skol imp_vars $
bindExplicitTKBndrs_Q_Skol AnyKind exp_bndrs $
do { (lhs_ty, rhs_kind) <- tcFamTyPats fam_tc hs_pats
-- Ensure that the instance is consistent with its
-- parent class (#16008)
; addConsistencyConstraints mb_clsinfo lhs_ty
; rhs_ty <- tcCheckLHsType hs_rhs_ty (TheKind rhs_kind)
; return (lhs_ty, rhs_ty) }
-- See Note [Generalising in tcTyFamInstEqnGuts]
-- This code (and the stuff immediately above) is very similar
-- to that in tcDataFamInstHeader. Maybe we should abstract the
-- common code; but for the moment I concluded that it's
-- clearer to duplicate it. Still, if you fix a bug here,
-- check there too!
; let scoped_tvs = imp_tvs ++ exp_tvs
; dvs <- candidateQTyVarsOfTypes (lhs_ty : mkTyVarTys scoped_tvs)
; qtvs <- quantifyTyVars dvs
; traceTc "tcTyFamInstEqnGuts 2" $
vcat [ ppr fam_tc
, text "scoped_tvs" <+> pprTyVars scoped_tvs
, text "lhs_ty" <+> ppr lhs_ty
, text "dvs" <+> ppr dvs
, text "qtvs" <+> pprTyVars qtvs ]
; (ze, qtvs) <- zonkTyBndrs qtvs
; lhs_ty <- zonkTcTypeToTypeX ze lhs_ty
; rhs_ty <- zonkTcTypeToTypeX ze rhs_ty
; let pats = unravelFamInstPats lhs_ty
-- Note that we do this after solveEqualities
-- so that any strange coercions inside lhs_ty
-- have been solved before we attempt to unravel it
; traceTc "tcTyFamInstEqnGuts }" (ppr fam_tc <+> pprTyVars qtvs)
; return (qtvs, pats, rhs_ty) }
-----------------
unravelFamInstPats :: TcType -> [TcType]
-- Decompose fam_app to get the argument patterns
--
-- We expect fam_app to look like (F t1 .. tn)
-- tcFamTyPats is capable of returning ((F ty1 |> co) ty2),
-- but that can't happen here because we already checked the
-- arity of F matches the number of pattern
unravelFamInstPats fam_app
= case splitTyConApp_maybe fam_app of
Just (_, pats) -> pats
Nothing -> panic "unravelFamInstPats: Ill-typed LHS of family instance"
-- The Nothing case cannot happen for type families, because
-- we don't call unravelFamInstPats until we've solved the
-- equalities. For data families, it shouldn't happen either,
-- we need to fail hard and early if it does. See trac issue #15905
-- for an example of this happening.
addConsistencyConstraints :: AssocInstInfo -> TcType -> TcM ()
-- In the corresponding positions of the class and type-family,
-- ensure the family argument is the same as the class argument
-- E.g class C a b c d where
-- F c x y a :: Type
-- Here the first arg of F should be the same as the third of C
-- and the fourth arg of F should be the same as the first of C
--
-- We emit /Derived/ constraints (a bit like fundeps) to encourage
-- unification to happen, but without actually reporting errors.
-- If, despite the efforts, corresponding positions do not match,
-- checkConsistentFamInst will complain
addConsistencyConstraints mb_clsinfo fam_app
| InClsInst { ai_inst_env = inst_env } <- mb_clsinfo
, Just (fam_tc, pats) <- tcSplitTyConApp_maybe fam_app
= do { let eqs = [ (cls_ty, pat)
| (fam_tc_tv, pat) <- tyConTyVars fam_tc `zip` pats
, Just cls_ty <- [lookupVarEnv inst_env fam_tc_tv] ]
; traceTc "addConsistencyConstraints" (ppr eqs)
; emitDerivedEqs AssocFamPatOrigin eqs }
-- Improve inference
-- Any mis-match is reports by checkConsistentFamInst
| otherwise
= return ()
{- Note [Constraints in patterns]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
NB: This isn't the whole story. See comment in tcFamTyPats.
At first glance, it seems there is a complicated story to tell in tcFamTyPats
around constraint solving. After all, type family patterns can now do
GADT pattern-matching, which is jolly complicated. But, there's a key fact
which makes this all simple: everything is at top level! There cannot
be untouchable type variables. There can't be weird interaction between
case branches. There can't be global skolems.
This means that the semantics of type-level GADT matching is a little
different than term level. If we have
data G a where
MkGBool :: G Bool
And then
type family F (a :: G k) :: k
type instance F MkGBool = True
we get
axF : F Bool (MkGBool <Bool>) ~ True
Simple! No casting on the RHS, because we can affect the kind parameter
to F.
If we ever introduce local type families, this all gets a lot more
complicated, and will end up looking awfully like term-level GADT
pattern-matching.
** The new story **
Here is really what we want:
The matcher really can't deal with covars in arbitrary spots in coercions.
But it can deal with covars that are arguments to GADT data constructors.
So we somehow want to allow covars only in precisely those spots, then use
them as givens when checking the RHS. TODO (RAE): Implement plan.
Note [Quantified kind variables of a family pattern]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider type family KindFam (p :: k1) (q :: k1)
data T :: Maybe k1 -> k2 -> *
type instance KindFam (a :: Maybe k) b = T a b -> Int
The HsBSig for the family patterns will be ([k], [a])
Then in the family instance we want to
* Bring into scope [ "k" -> k:*, "a" -> a:k ]
* Kind-check the RHS
* Quantify the type instance over k and k', as well as a,b, thus
type instance [k, k', a:Maybe k, b:k']
KindFam (Maybe k) k' a b = T k k' a b -> Int
Notice that in the third step we quantify over all the visibly-mentioned
type variables (a,b), but also over the implicitly mentioned kind variables
(k, k'). In this case one is bound explicitly but often there will be
none. The role of the kind signature (a :: Maybe k) is to add a constraint
that 'a' must have that kind, and to bring 'k' into scope.
************************************************************************
* *
Data types
* *
************************************************************************
-}
dataDeclChecks :: Name -> NewOrData
-> LHsContext GhcRn -> [LConDecl GhcRn]
-> TcM Bool
dataDeclChecks tc_name new_or_data (L _ stupid_theta) cons
= do { -- Check that we don't use GADT syntax in H98 world
gadtSyntax_ok <- xoptM LangExt.GADTSyntax
; let gadt_syntax = consUseGadtSyntax cons
; checkTc (gadtSyntax_ok || not gadt_syntax) (badGadtDecl tc_name)
-- Check that the stupid theta is empty for a GADT-style declaration
; checkTc (null stupid_theta || not gadt_syntax) (badStupidTheta tc_name)
-- Check that a newtype has exactly one constructor
-- Do this before checking for empty data decls, so that
-- we don't suggest -XEmptyDataDecls for newtypes
; checkTc (new_or_data == DataType || isSingleton cons)
(newtypeConError tc_name (length cons))
-- Check that there's at least one condecl,
-- or else we're reading an hs-boot file, or -XEmptyDataDecls
; empty_data_decls <- xoptM LangExt.EmptyDataDecls
; is_boot <- tcIsHsBootOrSig -- Are we compiling an hs-boot file?
; checkTc (not (null cons) || empty_data_decls || is_boot)
(emptyConDeclsErr tc_name)
; return gadt_syntax }
-----------------------------------
consUseGadtSyntax :: [LConDecl GhcRn] -> Bool
consUseGadtSyntax (L _ (ConDeclGADT {}) : _) = True
consUseGadtSyntax _ = False
-- All constructors have same shape
-----------------------------------
tcConDecls :: KnotTied TyCon -> NewOrData
-> [TyConBinder] -> TcKind -- binders and result kind of tycon
-> KnotTied Type -> [LConDecl GhcRn] -> TcM [DataCon]
tcConDecls rep_tycon new_or_data tmpl_bndrs res_kind res_tmpl
= concatMapM $ addLocM $
tcConDecl rep_tycon (mkTyConTagMap rep_tycon)
tmpl_bndrs res_kind res_tmpl new_or_data
-- It's important that we pay for tag allocation here, once per TyCon,
-- See Note [Constructor tag allocation], fixes #14657
tcConDecl :: KnotTied TyCon -- Representation tycon. Knot-tied!
-> NameEnv ConTag
-> [TyConBinder] -> TcKind -- tycon binders and result kind
-> KnotTied Type
-- Return type template (T tys), where T is the family TyCon
-> NewOrData
-> ConDecl GhcRn
-> TcM [DataCon]
tcConDecl rep_tycon tag_map tmpl_bndrs res_kind res_tmpl new_or_data
(ConDeclH98 { con_name = name
, con_ex_tvs = explicit_tkv_nms
, con_mb_cxt = hs_ctxt
, con_args = hs_args })
= addErrCtxt (dataConCtxtName [name]) $
do { -- NB: the tyvars from the declaration header are in scope
-- Get hold of the existential type variables
-- e.g. data T a = forall k (b::k) f. MkT a (f b)
-- Here tmpl_bndrs = {a}
-- hs_qvars = HsQTvs { hsq_implicit = {k}
-- , hsq_explicit = {f,b} }
; traceTc "tcConDecl 1" (vcat [ ppr name, ppr explicit_tkv_nms ])
; (exp_tvbndrs, (ctxt, arg_tys, field_lbls, stricts))
<- pushTcLevelM_ $
solveEqualities $
bindExplicitTKBndrs_Skol explicit_tkv_nms $
do { ctxt <- tcHsMbContext hs_ctxt
; let exp_kind = getArgExpKind new_or_data res_kind
; btys <- tcConArgs exp_kind hs_args
; field_lbls <- lookupConstructorFields (unLoc name)
; let (arg_tys, stricts) = unzip btys
; return (ctxt, arg_tys, field_lbls, stricts)
}
; let tmpl_tvs = binderVars tmpl_bndrs
-- exp_tvs have explicit, user-written binding sites
-- the kvs below are those kind variables entirely unmentioned by the user
-- and discovered only by generalization
; kvs <- kindGeneralizeAll (mkSpecForAllTys tmpl_tvs $
mkInvisForAllTys exp_tvbndrs $
mkPhiTy ctxt $
mkVisFunTys arg_tys $
unitTy)
-- That type is a lie, of course. (It shouldn't end in ()!)
-- And we could construct a proper result type from the info
-- at hand. But the result would mention only the tmpl_tvs,
-- and so it just creates more work to do it right. Really,
-- we're only doing this to find the right kind variables to
-- quantify over, and this type is fine for that purpose.
-- Zonk to Types
; (ze, qkvs) <- zonkTyBndrs kvs
; (ze, user_qtvbndrs) <- zonkTyVarBindersX ze exp_tvbndrs
; let user_qtvs = binderVars user_qtvbndrs
; arg_tys <- zonkScaledTcTypesToTypesX ze arg_tys
; ctxt <- zonkTcTypesToTypesX ze ctxt
; fam_envs <- tcGetFamInstEnvs
-- Can't print univ_tvs, arg_tys etc, because we are inside the knot here
; traceTc "tcConDecl 2" (ppr name $$ ppr field_lbls)
; let
univ_tvbs = tyConInvisTVBinders tmpl_bndrs
univ_tvs = binderVars univ_tvbs
ex_tvbs = mkTyVarBinders InferredSpec qkvs ++
user_qtvbndrs
ex_tvs = qkvs ++ user_qtvs
-- For H98 datatypes, the user-written tyvar binders are precisely
-- the universals followed by the existentials.
-- See Note [DataCon user type variable binders] in GHC.Core.DataCon.
user_tvbs = univ_tvbs ++ ex_tvbs
buildOneDataCon (L _ name) = do
{ is_infix <- tcConIsInfixH98 name hs_args
; rep_nm <- newTyConRepName name
; buildDataCon fam_envs name is_infix rep_nm
stricts Nothing field_lbls
univ_tvs ex_tvs user_tvbs
[{- no eq_preds -}] ctxt arg_tys
res_tmpl rep_tycon tag_map
-- NB: we put data_tc, the type constructor gotten from the
-- constructor type signature into the data constructor;
-- that way checkValidDataCon can complain if it's wrong.
}
; traceTc "tcConDecl 2" (ppr name)
; mapM buildOneDataCon [name]
}
tcConDecl rep_tycon tag_map tmpl_bndrs _res_kind res_tmpl new_or_data
-- NB: don't use res_kind here, as it's ill-scoped. Instead,
-- we get the res_kind by typechecking the result type.
(ConDeclGADT { con_g_ext = implicit_tkv_nms
, con_names = names
, con_qvars = explicit_tkv_nms
, con_mb_cxt = cxt, con_args = hs_args
, con_res_ty = hs_res_ty })
= addErrCtxt (dataConCtxtName names) $
do { traceTc "tcConDecl 1 gadt" (ppr names)
; let (L _ name : _) = names
; (imp_tvs, (exp_tvbndrs, (ctxt, arg_tys, res_ty, field_lbls, stricts)))
<- pushTcLevelM_ $ -- We are going to generalise
solveEqualities $ -- We won't get another crack, and we don't
-- want an error cascade
bindImplicitTKBndrs_Skol implicit_tkv_nms $
bindExplicitTKBndrs_Skol explicit_tkv_nms $
do { ctxt <- tcHsMbContext cxt
; (res_ty, res_kind) <- tcInferLHsTypeKind hs_res_ty
-- See Note [GADT return kinds]
-- See Note [Datatype return kinds]
; let exp_kind = getArgExpKind new_or_data res_kind
; btys <- tcConArgs exp_kind hs_args
; let (arg_tys, stricts) = unzip btys
; field_lbls <- lookupConstructorFields name
; return (ctxt, arg_tys, res_ty, field_lbls, stricts)
}
; imp_tvs <- zonkAndScopedSort imp_tvs
; tkvs <- kindGeneralizeAll (mkSpecForAllTys imp_tvs $
mkInvisForAllTys exp_tvbndrs $
mkPhiTy ctxt $
mkVisFunTys arg_tys $
res_ty)
; let tvbndrs = (mkTyVarBinders InferredSpec tkvs)
++ (mkTyVarBinders SpecifiedSpec imp_tvs)
++ exp_tvbndrs
-- Zonk to Types
; (ze, tvbndrs) <- zonkTyVarBinders tvbndrs
; arg_tys <- zonkScaledTcTypesToTypesX ze arg_tys
; ctxt <- zonkTcTypesToTypesX ze ctxt
; res_ty <- zonkTcTypeToTypeX ze res_ty
; let (univ_tvs, ex_tvs, tvbndrs', eq_preds, arg_subst)
= rejigConRes tmpl_bndrs res_tmpl tvbndrs res_ty
-- See Note [Checking GADT return types]
ctxt' = substTys arg_subst ctxt
arg_tys' = substScaledTys arg_subst arg_tys
res_ty' = substTy arg_subst res_ty
; fam_envs <- tcGetFamInstEnvs
-- Can't print univ_tvs, arg_tys etc, because we are inside the knot here
; traceTc "tcConDecl 2" (ppr names $$ ppr field_lbls)
; let
buildOneDataCon (L _ name) = do
{ is_infix <- tcConIsInfixGADT name hs_args
; rep_nm <- newTyConRepName name
; buildDataCon fam_envs name is_infix
rep_nm
stricts Nothing field_lbls
univ_tvs ex_tvs tvbndrs' eq_preds
ctxt' arg_tys' res_ty' rep_tycon tag_map
-- NB: we put data_tc, the type constructor gotten from the
-- constructor type signature into the data constructor;
-- that way checkValidDataCon can complain if it's wrong.
}
; traceTc "tcConDecl 2" (ppr names)
; mapM buildOneDataCon names
}
{- Note [GADT return kinds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
type family Star where Star = Type
data T :: Type where
MkT :: Int -> T
If, for some stupid reason, tcInferLHsTypeKind on the return type of
MkT returned (T |> ax, Star), then the return-type check in
checkValidDataCon would reject the decl (although of course there is
nothing wrong with it). We are implicitly requiring tha
tcInferLHsTypeKind doesn't any gratuitous top-level casts.
-}
-- | Produce an "expected kind" for the arguments of a data/newtype.
-- If the declaration is indeed for a newtype,
-- then this expected kind will be the kind provided. Otherwise,
-- it is OpenKind for datatypes and liftedTypeKind.
-- Why do we not check for -XUnliftedNewtypes? See point <Error Messages>
-- in Note [Implementation of UnliftedNewtypes]
getArgExpKind :: NewOrData -> Kind -> ContextKind
getArgExpKind NewType res_ki = TheKind res_ki
getArgExpKind DataType _ = OpenKind
tcConIsInfixH98 :: Name
-> HsConDetails a b
-> TcM Bool
tcConIsInfixH98 _ details
= case details of
InfixCon {} -> return True
_ -> return False
tcConIsInfixGADT :: Name
-> HsConDetails (HsScaled GhcRn (LHsType GhcRn)) r
-> TcM Bool
tcConIsInfixGADT con details
= case details of
InfixCon {} -> return True
RecCon {} -> return False
PrefixCon arg_tys -- See Note [Infix GADT constructors]
| isSymOcc (getOccName con)
, [_ty1,_ty2] <- map hsScaledThing arg_tys
-> do { fix_env <- getFixityEnv
; return (con `elemNameEnv` fix_env) }
| otherwise -> return False
tcConArgs :: ContextKind -- expected kind of arguments
-- always OpenKind for datatypes, but unlifted newtypes
-- might have a specific kind
-> HsConDeclDetails GhcRn
-> TcM [(Scaled TcType, HsSrcBang)]
tcConArgs exp_kind (PrefixCon btys)
= mapM (tcConArg exp_kind) btys
tcConArgs exp_kind (InfixCon bty1 bty2)
= do { bty1' <- tcConArg exp_kind bty1
; bty2' <- tcConArg exp_kind bty2
; return [bty1', bty2'] }
tcConArgs exp_kind (RecCon fields)
= mapM (tcConArg exp_kind) btys
where
-- We need a one-to-one mapping from field_names to btys
combined = map (\(L _ f) -> (cd_fld_names f,hsLinear (cd_fld_type f)))
(unLoc fields)
explode (ns,ty) = zip ns (repeat ty)
exploded = concatMap explode combined
(_,btys) = unzip exploded
tcConArg :: ContextKind -- expected kind for args; always OpenKind for datatypes,
-- but might be an unlifted type with UnliftedNewtypes
-> HsScaled GhcRn (LHsType GhcRn) -> TcM (Scaled TcType, HsSrcBang)
tcConArg exp_kind (HsScaled w bty)
= do { traceTc "tcConArg 1" (ppr bty)
; arg_ty <- tcCheckLHsType (getBangType bty) exp_kind
; w' <- tcMult w
; traceTc "tcConArg 2" (ppr bty)
; return (Scaled w' arg_ty, getBangStrictness bty) }
{-
Note [Infix GADT constructors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We do not currently have syntax to declare an infix constructor in GADT syntax,
but it makes a (small) difference to the Show instance. So as a slightly
ad-hoc solution, we regard a GADT data constructor as infix if
a) it is an operator symbol
b) it has two arguments
c) there is a fixity declaration for it
For example:
infix 6 (:--:)
data T a where
(:--:) :: t1 -> t2 -> T Int
Note [Checking GADT return types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There is a delicacy around checking the return types of a datacon. The
central problem is dealing with a declaration like
data T a where
MkT :: T a -> Q a
Note that the return type of MkT is totally bogus. When creating the T
tycon, we also need to create the MkT datacon, which must have a "rejigged"
return type. That is, the MkT datacon's type must be transformed to have
a uniform return type with explicit coercions for GADT-like type parameters.
This rejigging is what rejigConRes does. The problem is, though, that checking
that the return type is appropriate is much easier when done over *Type*,
not *HsType*, and doing a call to tcMatchTy will loop because T isn't fully
defined yet.
So, we want to make rejigConRes lazy and then check the validity of
the return type in checkValidDataCon. To do this we /always/ return a
6-tuple from rejigConRes (so that we can compute the return type from it, which
checkValidDataCon needs), but the first three fields may be bogus if
the return type isn't valid (the last equation for rejigConRes).
This is better than an earlier solution which reduced the number of
errors reported in one pass. See #7175, and #10836.
-}
-- Example
-- data instance T (b,c) where
-- TI :: forall e. e -> T (e,e)
--
-- The representation tycon looks like this:
-- data :R7T b c where
-- TI :: forall b1 c1. (b1 ~ c1) => b1 -> :R7T b1 c1
-- In this case orig_res_ty = T (e,e)
rejigConRes :: [KnotTied TyConBinder] -> KnotTied Type -- Template for result type; e.g.
-- data instance T [a] b c ...
-- gives template ([a,b,c], T [a] b c)
-> [InvisTVBinder] -- The constructor's type variables (both inferred and user-written)
-> KnotTied Type -- res_ty
-> ([TyVar], -- Universal
[TyVar], -- Existential (distinct OccNames from univs)
[InvisTVBinder], -- The constructor's rejigged, user-written
-- type variables
[EqSpec], -- Equality predicates
TCvSubst) -- Substitution to apply to argument types
-- We don't check that the TyCon given in the ResTy is
-- the same as the parent tycon, because checkValidDataCon will do it
-- NB: All arguments may potentially be knot-tied
rejigConRes tmpl_bndrs res_tmpl dc_tvbndrs res_ty
-- E.g. data T [a] b c where
-- MkT :: forall x y z. T [(x,y)] z z
-- The {a,b,c} are the tmpl_tvs, and the {x,y,z} are the dc_tvs
-- (NB: unlike the H98 case, the dc_tvs are not all existential)
-- Then we generate
-- Univ tyvars Eq-spec
-- a a~(x,y)
-- b b~z
-- z
-- Existentials are the leftover type vars: [x,y]
-- The user-written type variables are what is listed in the forall:
-- [x, y, z] (all specified). We must rejig these as well.
-- See Note [DataCon user type variable binders] in GHC.Core.DataCon.
-- So we return ( [a,b,z], [x,y]
-- , [], [x,y,z]
-- , [a~(x,y),b~z], <arg-subst> )
| Just subst <- tcMatchTy res_tmpl res_ty
= let (univ_tvs, raw_eqs, kind_subst) = mkGADTVars tmpl_tvs dc_tvs subst
raw_ex_tvs = dc_tvs `minusList` univ_tvs
(arg_subst, substed_ex_tvs) = substTyVarBndrs kind_subst raw_ex_tvs
-- After rejigging the existential tyvars, the resulting substitution
-- gives us exactly what we need to rejig the user-written tyvars,
-- since the dcUserTyVarBinders invariant guarantees that the
-- substitution has *all* the tyvars in its domain.
-- See Note [DataCon user type variable binders] in GHC.Core.DataCon.
subst_user_tvs = mapVarBndrs (getTyVar "rejigConRes" . substTyVar arg_subst)
substed_tvbndrs = subst_user_tvs dc_tvbndrs
substed_eqs = map (substEqSpec arg_subst) raw_eqs
in
(univ_tvs, substed_ex_tvs, substed_tvbndrs, substed_eqs, arg_subst)
| otherwise
-- If the return type of the data constructor doesn't match the parent
-- type constructor, or the arity is wrong, the tcMatchTy will fail
-- e.g data T a b where
-- T1 :: Maybe a -- Wrong tycon
-- T2 :: T [a] -- Wrong arity
-- We are detect that later, in checkValidDataCon, but meanwhile
-- we must do *something*, not just crash. So we do something simple
-- albeit bogus, relying on checkValidDataCon to check the
-- bad-result-type error before seeing that the other fields look odd
-- See Note [Checking GADT return types]
= (tmpl_tvs, dc_tvs `minusList` tmpl_tvs, dc_tvbndrs, [], emptyTCvSubst)
where
dc_tvs = binderVars dc_tvbndrs
tmpl_tvs = binderVars tmpl_bndrs
{- Note [mkGADTVars]
~~~~~~~~~~~~~~~~~~~~
Running example:
data T (k1 :: *) (k2 :: *) (a :: k2) (b :: k2) where
MkT :: forall (x1 : *) (y :: x1) (z :: *).
T x1 * (Proxy (y :: x1), z) z
We need the rejigged type to be
MkT :: forall (x1 :: *) (k2 :: *) (a :: k2) (b :: k2).
forall (y :: x1) (z :: *).
(k2 ~ *, a ~ (Proxy x1 y, z), b ~ z)
=> T x1 k2 a b
You might naively expect that z should become a universal tyvar,
not an existential. (After all, x1 becomes a universal tyvar.)
But z has kind * while b has kind k2, so the return type
T x1 k2 a z
is ill-kinded. Another way to say it is this: the universal
tyvars must have exactly the same kinds as the tyConTyVars.
So we need an existential tyvar and a heterogeneous equality
constraint. (The b ~ z is a bit redundant with the k2 ~ * that
comes before in that b ~ z implies k2 ~ *. I'm sure we could do
some analysis that could eliminate k2 ~ *. But we don't do this
yet.)
The data con signature has already been fully kind-checked.
The return type
T x1 * (Proxy (y :: x1), z) z
becomes
qtkvs = [x1 :: *, y :: x1, z :: *]
res_tmpl = T x1 * (Proxy x1 y, z) z
We start off by matching (T k1 k2 a b) with (T x1 * (Proxy x1 y, z) z). We
know this match will succeed because of the validity check (actually done
later, but laziness saves us -- see Note [Checking GADT return types]).
Thus, we get
subst := { k1 |-> x1, k2 |-> *, a |-> (Proxy x1 y, z), b |-> z }
Now, we need to figure out what the GADT equalities should be. In this case,
we *don't* want (k1 ~ x1) to be a GADT equality: it should just be a
renaming. The others should be GADT equalities. We also need to make
sure that the universally-quantified variables of the datacon match up
with the tyvars of the tycon, as required for Core context well-formedness.
(This last bit is why we have to rejig at all!)
`choose` walks down the tycon tyvars, figuring out what to do with each one.
It carries two substitutions:
- t_sub's domain is *template* or *tycon* tyvars, mapping them to variables
mentioned in the datacon signature.
- r_sub's domain is *result* tyvars, names written by the programmer in
the datacon signature. The final rejigged type will use these names, but
the subst is still needed because sometimes the printed name of these variables
is different. (See choose_tv_name, below.)
Before explaining the details of `choose`, let's just look at its operation
on our example:
choose [] [] {} {} [k1, k2, a, b]
--> -- first branch of `case` statement
choose
univs: [x1 :: *]
eq_spec: []
t_sub: {k1 |-> x1}
r_sub: {x1 |-> x1}
t_tvs: [k2, a, b]
--> -- second branch of `case` statement
choose
univs: [k2 :: *, x1 :: *]
eq_spec: [k2 ~ *]
t_sub: {k1 |-> x1, k2 |-> k2}
r_sub: {x1 |-> x1}
t_tvs: [a, b]
--> -- second branch of `case` statement
choose
univs: [a :: k2, k2 :: *, x1 :: *]
eq_spec: [ a ~ (Proxy x1 y, z)
, k2 ~ * ]
t_sub: {k1 |-> x1, k2 |-> k2, a |-> a}
r_sub: {x1 |-> x1}
t_tvs: [b]
--> -- second branch of `case` statement
choose
univs: [b :: k2, a :: k2, k2 :: *, x1 :: *]
eq_spec: [ b ~ z
, a ~ (Proxy x1 y, z)
, k2 ~ * ]
t_sub: {k1 |-> x1, k2 |-> k2, a |-> a, b |-> z}
r_sub: {x1 |-> x1}
t_tvs: []
--> -- end of recursion
( [x1 :: *, k2 :: *, a :: k2, b :: k2]
, [k2 ~ *, a ~ (Proxy x1 y, z), b ~ z]
, {x1 |-> x1} )
`choose` looks up each tycon tyvar in the matching (it *must* be matched!).
* If it finds a bare result tyvar (the first branch of the `case`
statement), it checks to make sure that the result tyvar isn't yet
in the list of univ_tvs. If it is in that list, then we have a
repeated variable in the return type, and we in fact need a GADT
equality.
* It then checks to make sure that the kind of the result tyvar
matches the kind of the template tyvar. This check is what forces
`z` to be existential, as it should be, explained above.
* Assuming no repeated variables or kind-changing, we wish to use the
variable name given in the datacon signature (that is, `x1` not
`k1`), not the tycon signature (which may have been made up by
GHC). So, we add a mapping from the tycon tyvar to the result tyvar
to t_sub.
* If we discover that a mapping in `subst` gives us a non-tyvar (the
second branch of the `case` statement), then we have a GADT equality
to create. We create a fresh equality, but we don't extend any
substitutions. The template variable substitution is meant for use
in universal tyvar kinds, and these shouldn't be affected by any
GADT equalities.
This whole algorithm is quite delicate, indeed. I (Richard E.) see two ways
of simplifying it:
1) The first branch of the `case` statement is really an optimization, used
in order to get fewer GADT equalities. It might be possible to make a GADT
equality for *every* univ. tyvar, even if the equality is trivial, and then
either deal with the bigger type or somehow reduce it later.
2) This algorithm strives to use the names for type variables as specified
by the user in the datacon signature. If we always used the tycon tyvar
names, for example, this would be simplified. This change would almost
certainly degrade error messages a bit, though.
-}
-- ^ From information about a source datacon definition, extract out
-- what the universal variables and the GADT equalities should be.
-- See Note [mkGADTVars].
mkGADTVars :: [TyVar] -- ^ The tycon vars
-> [TyVar] -- ^ The datacon vars
-> TCvSubst -- ^ The matching between the template result type
-- and the actual result type
-> ( [TyVar]
, [EqSpec]
, TCvSubst ) -- ^ The univ. variables, the GADT equalities,
-- and a subst to apply to the GADT equalities
-- and existentials.
mkGADTVars tmpl_tvs dc_tvs subst
= choose [] [] empty_subst empty_subst tmpl_tvs
where
in_scope = mkInScopeSet (mkVarSet tmpl_tvs `unionVarSet` mkVarSet dc_tvs)
`unionInScope` getTCvInScope subst
empty_subst = mkEmptyTCvSubst in_scope
choose :: [TyVar] -- accumulator of univ tvs, reversed
-> [EqSpec] -- accumulator of GADT equalities, reversed
-> TCvSubst -- template substitution
-> TCvSubst -- res. substitution
-> [TyVar] -- template tvs (the univ tvs passed in)
-> ( [TyVar] -- the univ_tvs
, [EqSpec] -- GADT equalities
, TCvSubst ) -- a substitution to fix kinds in ex_tvs
choose univs eqs _t_sub r_sub []
= (reverse univs, reverse eqs, r_sub)
choose univs eqs t_sub r_sub (t_tv:t_tvs)
| Just r_ty <- lookupTyVar subst t_tv
= case getTyVar_maybe r_ty of
Just r_tv
| not (r_tv `elem` univs)
, tyVarKind r_tv `eqType` (substTy t_sub (tyVarKind t_tv))
-> -- simple, well-kinded variable substitution.
choose (r_tv:univs) eqs
(extendTvSubst t_sub t_tv r_ty')
(extendTvSubst r_sub r_tv r_ty')
t_tvs
where
r_tv1 = setTyVarName r_tv (choose_tv_name r_tv t_tv)
r_ty' = mkTyVarTy r_tv1
-- Not a simple substitution: make an equality predicate
_ -> choose (t_tv':univs) (mkEqSpec t_tv' r_ty : eqs)
(extendTvSubst t_sub t_tv (mkTyVarTy t_tv'))
-- We've updated the kind of t_tv,
-- so add it to t_sub (#14162)
r_sub t_tvs
where
t_tv' = updateTyVarKind (substTy t_sub) t_tv
| otherwise
= pprPanic "mkGADTVars" (ppr tmpl_tvs $$ ppr subst)
-- choose an appropriate name for a univ tyvar.
-- This *must* preserve the Unique of the result tv, so that we
-- can detect repeated variables. It prefers user-specified names
-- over system names. A result variable with a system name can
-- happen with GHC-generated implicit kind variables.
choose_tv_name :: TyVar -> TyVar -> Name
choose_tv_name r_tv t_tv
| isSystemName r_tv_name
= setNameUnique t_tv_name (getUnique r_tv_name)
| otherwise
= r_tv_name
where
r_tv_name = getName r_tv
t_tv_name = getName t_tv
{-
Note [Substitution in template variables kinds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
data G (a :: Maybe k) where
MkG :: G Nothing
With explicit kind variables
data G k (a :: Maybe k) where
MkG :: G k1 (Nothing k1)
Note how k1 is distinct from k. So, when we match the template
`G k a` against `G k1 (Nothing k1)`, we get a subst
[ k |-> k1, a |-> Nothing k1 ]. Even though this subst has two
mappings, we surely don't want to add (k, k1) to the list of
GADT equalities -- that would be overly complex and would create
more untouchable variables than we need. So, when figuring out
which tyvars are GADT-like and which aren't (the fundamental
job of `choose`), we want to treat `k` as *not* GADT-like.
Instead, we wish to substitute in `a`'s kind, to get (a :: Maybe k1)
instead of (a :: Maybe k). This is the reason for dealing
with a substitution in here.
However, we do not *always* want to substitute. Consider
data H (a :: k) where
MkH :: H Int
With explicit kind variables:
data H k (a :: k) where
MkH :: H * Int
Here, we have a kind-indexed GADT. The subst in question is
[ k |-> *, a |-> Int ]. Now, we *don't* want to substitute in `a`'s
kind, because that would give a constructor with the type
MkH :: forall (k :: *) (a :: *). (k ~ *) -> (a ~ Int) -> H k a
The problem here is that a's kind is wrong -- it needs to be k, not *!
So, if the matching for a variable is anything but another bare variable,
we drop the mapping from the substitution before proceeding. This
was not an issue before kind-indexed GADTs because this case could
never happen.
************************************************************************
* *
Validity checking
* *
************************************************************************
Validity checking is done once the mutually-recursive knot has been
tied, so we can look at things freely.
-}
checkValidTyCl :: TyCon -> TcM [TyCon]
-- The returned list is either a singleton (if valid)
-- or a list of "fake tycons" (if not); the fake tycons
-- include any implicits, like promoted data constructors
-- See Note [Recover from validity error]
checkValidTyCl tc
= setSrcSpan (getSrcSpan tc) $
addTyConCtxt tc $
recoverM recovery_code $
do { traceTc "Starting validity for tycon" (ppr tc)
; checkValidTyCon tc
; traceTc "Done validity for tycon" (ppr tc)
; return [tc] }
where
recovery_code -- See Note [Recover from validity error]
= do { traceTc "Aborted validity for tycon" (ppr tc)
; return (map mk_fake_tc $
tc : child_tycons tc) }
mk_fake_tc tc
| isClassTyCon tc = tc -- Ugh! Note [Recover from validity error]
| otherwise = makeRecoveryTyCon tc
child_tycons tc = tyConATs tc ++ map promoteDataCon (tyConDataCons tc)
{- Note [Recover from validity error]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We recover from a validity error in a type or class, which allows us
to report multiple validity errors. In the failure case we return a
TyCon of the right kind, but with no interesting behaviour
(makeRecoveryTyCon). Why? Suppose we have
type T a = Fun
where Fun is a type family of arity 1. The RHS is invalid, but we
want to go on checking validity of subsequent type declarations.
So we replace T with an abstract TyCon which will do no harm.
See indexed-types/should_fail/BadSock and #10896
Some notes:
* We must make fakes for promoted DataCons too. Consider (#15215)
data T a = MkT ...
data S a = ...T...MkT....
If there is an error in the definition of 'T' we add a "fake type
constructor" to the type environment, so that we can continue to
typecheck 'S'. But we /were not/ adding a fake anything for 'MkT'
and so there was an internal error when we met 'MkT' in the body of
'S'.
Similarly for associated types.
* Painfully, we *don't* want to do this for classes.
Consider tcfail041:
class (?x::Int) => C a where ...
instance C Int
The class is invalid because of the superclass constraint. But
we still want it to look like a /class/, else the instance bleats
that the instance is mal-formed because it hasn't got a class in
the head.
This is really bogus; now we have in scope a Class that is invalid
in some way, with unknown downstream consequences. A better
alternative might be to make a fake class TyCon. A job for another day.
* Previously, we used implicitTyConThings to snaffle out the parts
to add to the context. The problem is that this also grabs data con
wrapper Ids. These could be filtered out. But, painfully, getting
the wrapper Ids checks the DataConRep, and forcing the DataConRep
can panic if there is a levity-polymorphic argument. This is #18534.
We don't need the wrapper Ids here anyway. So the code just takes what
it needs, via child_tycons.
-}
-------------------------
-- For data types declared with record syntax, we require
-- that each constructor that has a field 'f'
-- (a) has the same result type
-- (b) has the same type for 'f'
-- module alpha conversion of the quantified type variables
-- of the constructor.
--
-- Note that we allow existentials to match because the
-- fields can never meet. E.g
-- data T where
-- T1 { f1 :: b, f2 :: a, f3 ::Int } :: T
-- T2 { f1 :: c, f2 :: c, f3 ::Int } :: T
-- Here we do not complain about f1,f2 because they are existential
checkValidTyCon :: TyCon -> TcM ()
checkValidTyCon tc
| isPrimTyCon tc -- Happens when Haddock'ing GHC.Prim
= return ()
| isWiredIn tc -- validity-checking wired-in tycons is a waste of
-- time. More importantly, a wired-in tycon might
-- violate assumptions. Example: (~) has a superclass
-- mentioning (~#), which is ill-kinded in source Haskell
= traceTc "Skipping validity check for wired-in" (ppr tc)
| otherwise
= do { traceTc "checkValidTyCon" (ppr tc $$ ppr (tyConClass_maybe tc))
; if | Just cl <- tyConClass_maybe tc
-> checkValidClass cl
| Just syn_rhs <- synTyConRhs_maybe tc
-> do { checkValidType syn_ctxt syn_rhs
; checkTySynRhs syn_ctxt syn_rhs }
| Just fam_flav <- famTyConFlav_maybe tc
-> case fam_flav of
{ ClosedSynFamilyTyCon (Just ax)
-> tcAddClosedTypeFamilyDeclCtxt tc $
checkValidCoAxiom ax
; ClosedSynFamilyTyCon Nothing -> return ()
; AbstractClosedSynFamilyTyCon ->
do { hsBoot <- tcIsHsBootOrSig
; checkTc hsBoot $
text "You may define an abstract closed type family" $$
text "only in a .hs-boot file" }
; DataFamilyTyCon {} -> return ()
; OpenSynFamilyTyCon -> return ()
; BuiltInSynFamTyCon _ -> return () }
| otherwise -> do
{ -- Check the context on the data decl
traceTc "cvtc1" (ppr tc)
; checkValidTheta (DataTyCtxt name) (tyConStupidTheta tc)
; traceTc "cvtc2" (ppr tc)
; dflags <- getDynFlags
; existential_ok <- xoptM LangExt.ExistentialQuantification
; gadt_ok <- xoptM LangExt.GADTs
; let ex_ok = existential_ok || gadt_ok
-- Data cons can have existential context
; mapM_ (checkValidDataCon dflags ex_ok tc) data_cons
; mapM_ (checkPartialRecordField data_cons) (tyConFieldLabels tc)
-- Check that fields with the same name share a type
; mapM_ check_fields groups }}
where
syn_ctxt = TySynCtxt name
name = tyConName tc
data_cons = tyConDataCons tc
groups = equivClasses cmp_fld (concatMap get_fields data_cons)
cmp_fld (f1,_) (f2,_) = flLabel f1 `uniqCompareFS` flLabel f2
get_fields con = dataConFieldLabels con `zip` repeat con
-- dataConFieldLabels may return the empty list, which is fine
-- See Note [GADT record selectors] in GHC.Tc.TyCl.Utils
-- We must check (a) that the named field has the same
-- type in each constructor
-- (b) that those constructors have the same result type
--
-- However, the constructors may have differently named type variable
-- and (worse) we don't know how the correspond to each other. E.g.
-- C1 :: forall a b. { f :: a, g :: b } -> T a b
-- C2 :: forall d c. { f :: c, g :: c } -> T c d
--
-- So what we do is to ust Unify.tcMatchTys to compare the first candidate's
-- result type against other candidates' types BOTH WAYS ROUND.
-- If they magically agrees, take the substitution and
-- apply them to the latter ones, and see if they match perfectly.
check_fields ((label, con1) :| other_fields)
-- These fields all have the same name, but are from
-- different constructors in the data type
= recoverM (return ()) $ mapM_ checkOne other_fields
-- Check that all the fields in the group have the same type
-- NB: this check assumes that all the constructors of a given
-- data type use the same type variables
where
res1 = dataConOrigResTy con1
fty1 = dataConFieldType con1 lbl
lbl = flLabel label
checkOne (_, con2) -- Do it both ways to ensure they are structurally identical
= do { checkFieldCompat lbl con1 con2 res1 res2 fty1 fty2
; checkFieldCompat lbl con2 con1 res2 res1 fty2 fty1 }
where
res2 = dataConOrigResTy con2
fty2 = dataConFieldType con2 lbl
checkPartialRecordField :: [DataCon] -> FieldLabel -> TcM ()
-- Checks the partial record field selector, and warns.
-- See Note [Checking partial record field]
checkPartialRecordField all_cons fld
= setSrcSpan loc $
warnIfFlag Opt_WarnPartialFields
(not is_exhaustive && not (startsWithUnderscore occ_name))
(sep [text "Use of partial record field selector" <> colon,
nest 2 $ quotes (ppr occ_name)])
where
sel_name = flSelector fld
loc = getSrcSpan sel_name
occ_name = getOccName sel_name
(cons_with_field, cons_without_field) = partition has_field all_cons
has_field con = fld `elem` (dataConFieldLabels con)
is_exhaustive = all (dataConCannotMatch inst_tys) cons_without_field
con1 = ASSERT( not (null cons_with_field) ) head cons_with_field
(univ_tvs, _, eq_spec, _, _, _) = dataConFullSig con1
eq_subst = mkTvSubstPrs (map eqSpecPair eq_spec)
inst_tys = substTyVars eq_subst univ_tvs
checkFieldCompat :: FieldLabelString -> DataCon -> DataCon
-> Type -> Type -> Type -> Type -> TcM ()
checkFieldCompat fld con1 con2 res1 res2 fty1 fty2
= do { checkTc (isJust mb_subst1) (resultTypeMisMatch fld con1 con2)
; checkTc (isJust mb_subst2) (fieldTypeMisMatch fld con1 con2) }
where
mb_subst1 = tcMatchTy res1 res2
mb_subst2 = tcMatchTyX (expectJust "checkFieldCompat" mb_subst1) fty1 fty2
-------------------------------
checkValidDataCon :: DynFlags -> Bool -> TyCon -> DataCon -> TcM ()
checkValidDataCon dflags existential_ok tc con
= setSrcSpan (getSrcSpan con) $
addErrCtxt (dataConCtxt con) $
do { -- Check that the return type of the data constructor
-- matches the type constructor; eg reject this:
-- data T a where { MkT :: Bogus a }
-- It's important to do this first:
-- see Note [Checking GADT return types]
-- and c.f. Note [Check role annotations in a second pass]
let tc_tvs = tyConTyVars tc
res_ty_tmpl = mkFamilyTyConApp tc (mkTyVarTys tc_tvs)
orig_res_ty = dataConOrigResTy con
; traceTc "checkValidDataCon" (vcat
[ ppr con, ppr tc, ppr tc_tvs
, ppr res_ty_tmpl <+> dcolon <+> ppr (tcTypeKind res_ty_tmpl)
, ppr orig_res_ty <+> dcolon <+> ppr (tcTypeKind orig_res_ty)])
; checkTc (isJust (tcMatchTyKi res_ty_tmpl orig_res_ty))
(badDataConTyCon con res_ty_tmpl)
-- Note that checkTc aborts if it finds an error. This is
-- critical to avoid panicking when we call dataConDisplayType
-- on an un-rejiggable datacon!
-- Also NB that we match the *kind* as well as the *type* (#18357)
-- However, if the kind is the only thing that doesn't match, the
-- error message is terrible. E.g. test T18357b
-- type family Star where Star = Type
-- newtype T :: Type where MkT :: Int -> (T :: Star)
; traceTc "checkValidDataCon 2" (ppr data_con_display_type)
-- Check that the result type is a *monotype*
-- e.g. reject this: MkT :: T (forall a. a->a)
-- Reason: it's really the argument of an equality constraint
; checkValidMonoType orig_res_ty
-- If we are dealing with a newtype, we allow levity polymorphism
-- regardless of whether or not UnliftedNewtypes is enabled. A
-- later check in checkNewDataCon handles this, producing a
-- better error message than checkForLevPoly would.
; unless (isNewTyCon tc) $
checkNoErrs $
mapM_ (checkForLevPoly empty) (map scaledThing $ dataConOrigArgTys con)
-- the checkNoErrs is to prevent a panic in isVanillaDataCon
-- (called a a few lines down), which can fall over if there is a
-- bang on a levity-polymorphic argument. This is #18534,
-- typecheck/should_fail/T18534
-- Extra checks for newtype data constructors. Importantly, these
-- checks /must/ come before the call to checkValidType below. This
-- is because checkValidType invokes the constraint solver, and
-- invoking the solver on an ill formed newtype constructor can
-- confuse GHC to the point of panicking. See #17955 for an example.
; when (isNewTyCon tc) (checkNewDataCon con)
-- Check all argument types for validity
; checkValidType ctxt data_con_display_type
-- Check that existentials are allowed if they are used
; checkTc (existential_ok || isVanillaDataCon con)
(badExistential con)
-- Check that UNPACK pragmas and bangs work out
-- E.g. reject data T = MkT {-# UNPACK #-} Int -- No "!"
-- data T = MkT {-# UNPACK #-} !a -- Can't unpack
; zipWith3M_ check_bang (dataConSrcBangs con) (dataConImplBangs con) [1..]
-- Check the dcUserTyVarBinders invariant
-- See Note [DataCon user type variable binders] in GHC.Core.DataCon
-- checked here because we sometimes build invalid DataCons before
-- erroring above here
; when debugIsOn $
do { let (univs, exs, eq_spec, _, _, _) = dataConFullSig con
user_tvs = dataConUserTyVars con
user_tvbs_invariant
= Set.fromList (filterEqSpec eq_spec univs ++ exs)
== Set.fromList user_tvs
; MASSERT2( user_tvbs_invariant
, vcat ([ ppr con
, ppr univs
, ppr exs
, ppr eq_spec
, ppr user_tvs ])) }
; traceTc "Done validity of data con" $
vcat [ ppr con
, text "Datacon wrapper type:" <+> ppr (dataConWrapperType con)
, text "Datacon rep type:" <+> ppr (dataConRepType con)
, text "Datacon display type:" <+> ppr data_con_display_type
, text "Rep typcon binders:" <+> ppr (tyConBinders (dataConTyCon con))
, case tyConFamInst_maybe (dataConTyCon con) of
Nothing -> text "not family"
Just (f, _) -> ppr (tyConBinders f) ]
}
where
ctxt = ConArgCtxt (dataConName con)
check_bang :: HsSrcBang -> HsImplBang -> Int -> TcM ()
check_bang (HsSrcBang _ _ SrcLazy) _ n
| not (xopt LangExt.StrictData dflags)
= addErrTc
(bad_bang n (text "Lazy annotation (~) without StrictData"))
check_bang (HsSrcBang _ want_unpack strict_mark) rep_bang n
| isSrcUnpacked want_unpack, not is_strict
= addWarnTc NoReason (bad_bang n (text "UNPACK pragma lacks '!'"))
| isSrcUnpacked want_unpack
, case rep_bang of { HsUnpack {} -> False; _ -> True }
-- If not optimising, we don't unpack (rep_bang is never
-- HsUnpack), so don't complain! This happens, e.g., in Haddock.
-- See dataConSrcToImplBang.
, not (gopt Opt_OmitInterfacePragmas dflags)
-- When typechecking an indefinite package in Backpack, we
-- may attempt to UNPACK an abstract type. The test here will
-- conclude that this is unusable, but it might become usable
-- when we actually fill in the abstract type. As such, don't
-- warn in this case (it gives users the wrong idea about whether
-- or not UNPACK on abstract types is supported; it is!)
, isHomeUnitDefinite (mkHomeUnitFromFlags dflags)
= addWarnTc NoReason (bad_bang n (text "Ignoring unusable UNPACK pragma"))
where
is_strict = case strict_mark of
NoSrcStrict -> xopt LangExt.StrictData dflags
bang -> isSrcStrict bang
check_bang _ _ _
= return ()
bad_bang n herald
= hang herald 2 (text "on the" <+> speakNth n
<+> text "argument of" <+> quotes (ppr con))
show_linear_types = xopt LangExt.LinearTypes dflags
data_con_display_type = dataConDisplayType show_linear_types con
-------------------------------
checkNewDataCon :: DataCon -> TcM ()
-- Further checks for the data constructor of a newtype
checkNewDataCon con
= do { checkTc (isSingleton arg_tys) (newtypeFieldErr con (length arg_tys))
-- One argument
; unlifted_newtypes <- xoptM LangExt.UnliftedNewtypes
; let allowedArgType =
unlifted_newtypes || isLiftedType_maybe (scaledThing arg_ty1) == Just True
; checkTc allowedArgType $ vcat
[ text "A newtype cannot have an unlifted argument type"
, text "Perhaps you intended to use UnliftedNewtypes"
]
; show_linear_types <- xopt LangExt.LinearTypes <$> getDynFlags
; let check_con what msg =
checkTc what (msg $$ ppr con <+> dcolon <+> ppr (dataConDisplayType show_linear_types con))
; checkTc (ok_mult (scaledMult arg_ty1)) $
text "A newtype constructor must be linear"
; check_con (null eq_spec) $
text "A newtype constructor must have a return type of form T a1 ... an"
-- Return type is (T a b c)
; check_con (null theta) $
text "A newtype constructor cannot have a context in its type"
; check_con (null ex_tvs) $
text "A newtype constructor cannot have existential type variables"
-- No existentials
; checkTc (all ok_bang (dataConSrcBangs con))
(newtypeStrictError con)
-- No strictness annotations
}
where
(_univ_tvs, ex_tvs, eq_spec, theta, arg_tys, _res_ty)
= dataConFullSig con
(arg_ty1 : _) = arg_tys
ok_bang (HsSrcBang _ _ SrcStrict) = False
ok_bang (HsSrcBang _ _ SrcLazy) = False
ok_bang _ = True
ok_mult One = True
ok_mult _ = False
-------------------------------
checkValidClass :: Class -> TcM ()
checkValidClass cls
= do { constrained_class_methods <- xoptM LangExt.ConstrainedClassMethods
; multi_param_type_classes <- xoptM LangExt.MultiParamTypeClasses
; nullary_type_classes <- xoptM LangExt.NullaryTypeClasses
; fundep_classes <- xoptM LangExt.FunctionalDependencies
; undecidable_super_classes <- xoptM LangExt.UndecidableSuperClasses
-- Check that the class is unary, unless multiparameter type classes
-- are enabled; also recognize deprecated nullary type classes
-- extension (subsumed by multiparameter type classes, #8993)
; checkTc (multi_param_type_classes || cls_arity == 1 ||
(nullary_type_classes && cls_arity == 0))
(classArityErr cls_arity cls)
; checkTc (fundep_classes || null fundeps) (classFunDepsErr cls)
-- Check the super-classes
; checkValidTheta (ClassSCCtxt (className cls)) theta
-- Now check for cyclic superclasses
-- If there are superclass cycles, checkClassCycleErrs bails.
; unless undecidable_super_classes $
case checkClassCycles cls of
Just err -> setSrcSpan (getSrcSpan cls) $
addErrTc err
Nothing -> return ()
-- Check the class operations.
-- But only if there have been no earlier errors
-- See Note [Abort when superclass cycle is detected]
; whenNoErrs $
mapM_ (check_op constrained_class_methods) op_stuff
-- Check the associated type defaults are well-formed and instantiated
; mapM_ check_at at_stuff }
where
(tyvars, fundeps, theta, _, at_stuff, op_stuff) = classExtraBigSig cls
cls_arity = length (tyConVisibleTyVars (classTyCon cls))
-- Ignore invisible variables
cls_tv_set = mkVarSet tyvars
check_op constrained_class_methods (sel_id, dm)
= setSrcSpan (getSrcSpan sel_id) $
addErrCtxt (classOpCtxt sel_id op_ty) $ do
{ traceTc "class op type" (ppr op_ty)
; checkValidType ctxt op_ty
-- This implements the ambiguity check, among other things
-- Example: tc223
-- class Error e => Game b mv e | b -> mv e where
-- newBoard :: MonadState b m => m ()
-- Here, MonadState has a fundep m->b, so newBoard is fine
-- a method cannot be levity polymorphic, as we have to store the
-- method in a dictionary
-- example of what this prevents:
-- class BoundedX (a :: TYPE r) where minBound :: a
-- See Note [Levity polymorphism checking] in GHC.HsToCore.Monad
; checkForLevPoly empty tau1
; unless constrained_class_methods $
mapM_ check_constraint (tail (cls_pred:op_theta))
; check_dm ctxt sel_id cls_pred tau2 dm
}
where
ctxt = FunSigCtxt op_name True -- Report redundant class constraints
op_name = idName sel_id
op_ty = idType sel_id
(_,cls_pred,tau1) = tcSplitMethodTy op_ty
-- See Note [Splitting nested sigma types in class type signatures]
(_,op_theta,tau2) = tcSplitNestedSigmaTys tau1
check_constraint :: TcPredType -> TcM ()
check_constraint pred -- See Note [Class method constraints]
= when (not (isEmptyVarSet pred_tvs) &&
pred_tvs `subVarSet` cls_tv_set)
(addErrTc (badMethPred sel_id pred))
where
pred_tvs = tyCoVarsOfType pred
check_at (ATI fam_tc m_dflt_rhs)
= do { checkTc (cls_arity == 0 || any (`elemVarSet` cls_tv_set) fam_tvs)
(noClassTyVarErr cls fam_tc)
-- Check that the associated type mentions at least
-- one of the class type variables
-- The check is disabled for nullary type classes,
-- since there is no possible ambiguity (#10020)
-- Check that any default declarations for associated types are valid
; whenIsJust m_dflt_rhs $ \ (rhs, at_validity_info) ->
case at_validity_info of
NoATVI -> pure ()
ATVI loc pats ->
setSrcSpan loc $
tcAddFamInstCtxt (text "default type instance") (getName fam_tc) $
do { checkValidAssocTyFamDeflt fam_tc pats
; checkValidTyFamEqn fam_tc fam_tvs (mkTyVarTys fam_tvs) rhs }}
where
fam_tvs = tyConTyVars fam_tc
check_dm :: UserTypeCtxt -> Id -> PredType -> Type -> DefMethInfo -> TcM ()
-- Check validity of the /top-level/ generic-default type
-- E.g for class C a where
-- default op :: forall b. (a~b) => blah
-- we do not want to do an ambiguity check on a type with
-- a free TyVar 'a' (#11608). See TcType
-- Note [TyVars and TcTyVars during type checking] in GHC.Tc.Utils.TcType
-- Hence the mkDefaultMethodType to close the type.
check_dm ctxt sel_id vanilla_cls_pred vanilla_tau
(Just (dm_name, dm_spec@(GenericDM dm_ty)))
= setSrcSpan (getSrcSpan dm_name) $ do
-- We have carefully set the SrcSpan on the generic
-- default-method Name to be that of the generic
-- default type signature
-- First, we check that the method's default type signature
-- aligns with the non-default type signature.
-- See Note [Default method type signatures must align]
let cls_pred = mkClassPred cls $ mkTyVarTys $ classTyVars cls
-- Note that the second field of this tuple contains the context
-- of the default type signature, making it apparent that we
-- ignore method contexts completely when validity-checking
-- default type signatures. See the end of
-- Note [Default method type signatures must align]
-- to learn why this is OK.
--
-- See also
-- Note [Splitting nested sigma types in class type signatures]
-- for an explanation of why we don't use tcSplitSigmaTy here.
(_, _, dm_tau) = tcSplitNestedSigmaTys dm_ty
-- Given this class definition:
--
-- class C a b where
-- op :: forall p q. (Ord a, D p q)
-- => a -> b -> p -> (a, b)
-- default op :: forall r s. E r
-- => a -> b -> s -> (a, b)
--
-- We want to match up two types of the form:
--
-- Vanilla type sig: C aa bb => aa -> bb -> p -> (aa, bb)
-- Default type sig: C a b => a -> b -> s -> (a, b)
--
-- Notice that the two type signatures can be quantified over
-- different class type variables! Therefore, it's important that
-- we include the class predicate parts to match up a with aa and
-- b with bb.
vanilla_phi_ty = mkPhiTy [vanilla_cls_pred] vanilla_tau
dm_phi_ty = mkPhiTy [cls_pred] dm_tau
traceTc "check_dm" $ vcat
[ text "vanilla_phi_ty" <+> ppr vanilla_phi_ty
, text "dm_phi_ty" <+> ppr dm_phi_ty ]
-- Actually checking that the types align is done with a call to
-- tcMatchTys. We need to get a match in both directions to rule
-- out degenerate cases like these:
--
-- class Foo a where
-- foo1 :: a -> b
-- default foo1 :: a -> Int
--
-- foo2 :: a -> Int
-- default foo2 :: a -> b
unless (isJust $ tcMatchTys [dm_phi_ty, vanilla_phi_ty]
[vanilla_phi_ty, dm_phi_ty]) $ addErrTc $
hang (text "The default type signature for"
<+> ppr sel_id <> colon)
2 (ppr dm_ty)
$$ (text "does not match its corresponding"
<+> text "non-default type signature")
-- Now do an ambiguity check on the default type signature.
checkValidType ctxt (mkDefaultMethodType cls sel_id dm_spec)
check_dm _ _ _ _ _ = return ()
checkFamFlag :: Name -> TcM ()
-- Check that we don't use families without -XTypeFamilies
-- The parser won't even parse them, but I suppose a GHC API
-- client might have a go!
checkFamFlag tc_name
= do { idx_tys <- xoptM LangExt.TypeFamilies
; checkTc idx_tys err_msg }
where
err_msg = hang (text "Illegal family declaration for" <+> quotes (ppr tc_name))
2 (text "Enable TypeFamilies to allow indexed type families")
checkResultSigFlag :: Name -> FamilyResultSig GhcRn -> TcM ()
checkResultSigFlag tc_name (TyVarSig _ tvb)
= do { ty_fam_deps <- xoptM LangExt.TypeFamilyDependencies
; checkTc ty_fam_deps $
hang (text "Illegal result type variable" <+> ppr tvb <+> text "for" <+> quotes (ppr tc_name))
2 (text "Enable TypeFamilyDependencies to allow result variable names") }
checkResultSigFlag _ _ = return () -- other cases OK
{- Note [Class method constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Haskell 2010 is supposed to reject
class C a where
op :: Eq a => a -> a
where the method type constrains only the class variable(s). (The extension
-XConstrainedClassMethods switches off this check.) But regardless
we should not reject
class C a where
op :: (?x::Int) => a -> a
as pointed out in #11793. So the test here rejects the program if
* -XConstrainedClassMethods is off
* the tyvars of the constraint are non-empty
* all the tyvars are class tyvars, none are locally quantified
Note [Abort when superclass cycle is detected]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We must avoid doing the ambiguity check for the methods (in
checkValidClass.check_op) when there are already errors accumulated.
This is because one of the errors may be a superclass cycle, and
superclass cycles cause canonicalization to loop. Here is a
representative example:
class D a => C a where
meth :: D a => ()
class C a => D a
This fixes #9415, #9739
Note [Default method type signatures must align]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
GHC enforces the invariant that a class method's default type signature
must "align" with that of the method's non-default type signature, as per
GHC #12918. For instance, if you have:
class Foo a where
bar :: forall b. Context => a -> b
Then a default type signature for bar must be alpha equivalent to
(forall b. a -> b). That is, the types must be the same modulo differences in
contexts. So the following would be acceptable default type signatures:
default bar :: forall b. Context1 => a -> b
default bar :: forall x. Context2 => a -> x
But the following are NOT acceptable default type signatures:
default bar :: forall b. b -> a
default bar :: forall x. x
default bar :: a -> Int
Note that a is bound by the class declaration for Foo itself, so it is
not allowed to differ in the default type signature.
The default type signature (default bar :: a -> Int) deserves special mention,
since (a -> Int) is a straightforward instantiation of (forall b. a -> b). To
write this, you need to declare the default type signature like so:
default bar :: forall b. (b ~ Int). a -> b
As noted in #12918, there are several reasons to do this:
1. It would make no sense to have a type that was flat-out incompatible with
the non-default type signature. For instance, if you had:
class Foo a where
bar :: a -> Int
default bar :: a -> Bool
Then that would always fail in an instance declaration. So this check
nips such cases in the bud before they have the chance to produce
confusing error messages.
2. Internally, GHC uses TypeApplications to instantiate the default method in
an instance. See Note [Default methods in instances] in GHC.Tc.TyCl.Instance.
Thus, GHC needs to know exactly what the universally quantified type
variables are, and when instantiated that way, the default method's type
must match the expected type.
3. Aesthetically, by only allowing the default type signature to differ in its
context, we are making it more explicit the ways in which the default type
signature is less polymorphic than the non-default type signature.
You might be wondering: why are the contexts allowed to be different, but not
the rest of the type signature? That's because default implementations often
rely on assumptions that the more general, non-default type signatures do not.
For instance, in the Enum class declaration:
class Enum a where
enum :: [a]
default enum :: (Generic a, GEnum (Rep a)) => [a]
enum = map to genum
class GEnum f where
genum :: [f a]
The default implementation for enum only works for types that are instances of
Generic, and for which their generic Rep type is an instance of GEnum. But
clearly enum doesn't _have_ to use this implementation, so naturally, the
context for enum is allowed to be different to accommodate this. As a result,
when we validity-check default type signatures, we ignore contexts completely.
Note that when checking whether two type signatures match, we must take care to
split as many foralls as it takes to retrieve the tau types we which to check.
See Note [Splitting nested sigma types in class type signatures].
Note [Splitting nested sigma types in class type signatures]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this type synonym and class definition:
type Traversal s t a b = forall f. Applicative f => (a -> f b) -> s -> f t
class Each s t a b where
each :: Traversal s t a b
default each :: (Traversable g, s ~ g a, t ~ g b) => Traversal s t a b
It might seem obvious that the tau types in both type signatures for `each`
are the same, but actually getting GHC to conclude this is surprisingly tricky.
That is because in general, the form of a class method's non-default type
signature is:
forall a. C a => forall d. D d => E a b
And the general form of a default type signature is:
forall f. F f => E a f -- The variable `a` comes from the class
So it you want to get the tau types in each type signature, you might find it
reasonable to call tcSplitSigmaTy twice on the non-default type signature, and
call it once on the default type signature. For most classes and methods, this
will work, but Each is a bit of an exceptional case. The way `each` is written,
it doesn't quantify any additional type variables besides those of the Each
class itself, so the non-default type signature for `each` is actually this:
forall s t a b. Each s t a b => Traversal s t a b
Notice that there _appears_ to only be one forall. But there's actually another
forall lurking in the Traversal type synonym, so if you call tcSplitSigmaTy
twice, you'll also go under the forall in Traversal! That is, you'll end up
with:
(a -> f b) -> s -> f t
A problem arises because you only call tcSplitSigmaTy once on the default type
signature for `each`, which gives you
Traversal s t a b
Or, equivalently:
forall f. Applicative f => (a -> f b) -> s -> f t
This is _not_ the same thing as (a -> f b) -> s -> f t! So now tcMatchTy will
say that the tau types for `each` are not equal.
A solution to this problem is to use tcSplitNestedSigmaTys instead of
tcSplitSigmaTy. tcSplitNestedSigmaTys will always split any foralls that it
sees until it can't go any further, so if you called it on the default type
signature for `each`, it would return (a -> f b) -> s -> f t like we desired.
Note [Checking partial record field]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This check checks the partial record field selector, and warns (#7169).
For example:
data T a = A { m1 :: a, m2 :: a } | B { m1 :: a }
The function 'm2' is partial record field, and will fail when it is applied to
'B'. The warning identifies such partial fields. The check is performed at the
declaration of T, not at the call-sites of m2.
The warning can be suppressed by prefixing the field-name with an underscore.
For example:
data T a = A { m1 :: a, _m2 :: a } | B { m1 :: a }
************************************************************************
* *
Checking role validity
* *
************************************************************************
-}
checkValidRoleAnnots :: RoleAnnotEnv -> TyCon -> TcM ()
checkValidRoleAnnots role_annots tc
| isTypeSynonymTyCon tc = check_no_roles
| isFamilyTyCon tc = check_no_roles
| isAlgTyCon tc = check_roles
| otherwise = return ()
where
-- Role annotations are given only on *explicit* variables,
-- but a tycon stores roles for all variables.
-- So, we drop the implicit roles (which are all Nominal, anyway).
name = tyConName tc
roles = tyConRoles tc
(vis_roles, vis_vars) = unzip $ mapMaybe pick_vis $
zip roles (tyConBinders tc)
role_annot_decl_maybe = lookupRoleAnnot role_annots name
pick_vis :: (Role, TyConBinder) -> Maybe (Role, TyVar)
pick_vis (role, tvb)
| isVisibleTyConBinder tvb = Just (role, binderVar tvb)
| otherwise = Nothing
check_roles
= whenIsJust role_annot_decl_maybe $
\decl@(L loc (RoleAnnotDecl _ _ the_role_annots)) ->
addRoleAnnotCtxt name $
setSrcSpan loc $ do
{ role_annots_ok <- xoptM LangExt.RoleAnnotations
; checkTc role_annots_ok $ needXRoleAnnotations tc
; checkTc (vis_vars `equalLength` the_role_annots)
(wrongNumberOfRoles vis_vars decl)
; _ <- zipWith3M checkRoleAnnot vis_vars the_role_annots vis_roles
-- Representational or phantom roles for class parameters
-- quickly lead to incoherence. So, we require
-- IncoherentInstances to have them. See #8773, #14292
; incoherent_roles_ok <- xoptM LangExt.IncoherentInstances
; checkTc ( incoherent_roles_ok
|| (not $ isClassTyCon tc)
|| (all (== Nominal) vis_roles))
incoherentRoles
; lint <- goptM Opt_DoCoreLinting
; when lint $ checkValidRoles tc }
check_no_roles
= whenIsJust role_annot_decl_maybe illegalRoleAnnotDecl
checkRoleAnnot :: TyVar -> Located (Maybe Role) -> Role -> TcM ()
checkRoleAnnot _ (L _ Nothing) _ = return ()
checkRoleAnnot tv (L _ (Just r1)) r2
= when (r1 /= r2) $
addErrTc $ badRoleAnnot (tyVarName tv) r1 r2
-- This is a double-check on the role inference algorithm. It is only run when
-- -dcore-lint is enabled. See Note [Role inference] in GHC.Tc.TyCl.Utils
checkValidRoles :: TyCon -> TcM ()
-- If you edit this function, you may need to update the GHC formalism
-- See Note [GHC Formalism] in GHC.Core.Lint
checkValidRoles tc
| isAlgTyCon tc
-- tyConDataCons returns an empty list for data families
= mapM_ check_dc_roles (tyConDataCons tc)
| Just rhs <- synTyConRhs_maybe tc
= check_ty_roles (zipVarEnv (tyConTyVars tc) (tyConRoles tc)) Representational rhs
| otherwise
= return ()
where
check_dc_roles datacon
= do { traceTc "check_dc_roles" (ppr datacon <+> ppr (tyConRoles tc))
; mapM_ (check_ty_roles role_env Representational) $
eqSpecPreds eq_spec ++ theta ++ (map scaledThing arg_tys) }
-- See Note [Role-checking data constructor arguments] in GHC.Tc.TyCl.Utils
where
(univ_tvs, ex_tvs, eq_spec, theta, arg_tys, _res_ty)
= dataConFullSig datacon
univ_roles = zipVarEnv univ_tvs (tyConRoles tc)
-- zipVarEnv uses zipEqual, but we don't want that for ex_tvs
ex_roles = mkVarEnv (map (, Nominal) ex_tvs)
role_env = univ_roles `plusVarEnv` ex_roles
check_ty_roles env role ty
| Just ty' <- coreView ty -- #14101
= check_ty_roles env role ty'
check_ty_roles env role (TyVarTy tv)
= case lookupVarEnv env tv of
Just role' -> unless (role' `ltRole` role || role' == role) $
report_error $ text "type variable" <+> quotes (ppr tv) <+>
text "cannot have role" <+> ppr role <+>
text "because it was assigned role" <+> ppr role'
Nothing -> report_error $ text "type variable" <+> quotes (ppr tv) <+>
text "missing in environment"
check_ty_roles env Representational (TyConApp tc tys)
= let roles' = tyConRoles tc in
zipWithM_ (maybe_check_ty_roles env) roles' tys
check_ty_roles env Nominal (TyConApp _ tys)
= mapM_ (check_ty_roles env Nominal) tys
check_ty_roles _ Phantom ty@(TyConApp {})
= pprPanic "check_ty_roles" (ppr ty)
check_ty_roles env role (AppTy ty1 ty2)
= check_ty_roles env role ty1
>> check_ty_roles env Nominal ty2
check_ty_roles env role (FunTy _ w ty1 ty2)
= check_ty_roles env Nominal w
>> check_ty_roles env role ty1
>> check_ty_roles env role ty2
check_ty_roles env role (ForAllTy (Bndr tv _) ty)
= check_ty_roles env Nominal (tyVarKind tv)
>> check_ty_roles (extendVarEnv env tv Nominal) role ty
check_ty_roles _ _ (LitTy {}) = return ()
check_ty_roles env role (CastTy t _)
= check_ty_roles env role t
check_ty_roles _ role (CoercionTy co)
= unless (role == Phantom) $
report_error $ text "coercion" <+> ppr co <+> text "has bad role" <+> ppr role
maybe_check_ty_roles env role ty
= when (role == Nominal || role == Representational) $
check_ty_roles env role ty
report_error doc
= addErrTc $ vcat [text "Internal error in role inference:",
doc,
text "Please report this as a GHC bug: https://www.haskell.org/ghc/reportabug"]
{-
************************************************************************
* *
Error messages
* *
************************************************************************
-}
tcMkDeclCtxt :: TyClDecl GhcRn -> SDoc
tcMkDeclCtxt decl = hsep [text "In the", pprTyClDeclFlavour decl,
text "declaration for", quotes (ppr (tcdName decl))]
addVDQNote :: TcTyCon -> TcM a -> TcM a
-- See Note [Inferring visible dependent quantification]
-- Only types without a signature (CUSK or SAK) here
addVDQNote tycon thing_inside
| ASSERT2( isTcTyCon tycon, ppr tycon )
ASSERT2( not (tcTyConIsPoly tycon), ppr tycon $$ ppr tc_kind )
has_vdq
= addLandmarkErrCtxt vdq_warning thing_inside
| otherwise
= thing_inside
where
-- Check whether a tycon has visible dependent quantification.
-- This will *always* be a TcTyCon. Furthermore, it will *always*
-- be an ungeneralised TcTyCon, straight out of kcInferDeclHeader.
-- Thus, all the TyConBinders will be anonymous. Thus, the
-- free variables of the tycon's kind will be the same as the free
-- variables from all the binders.
has_vdq = any is_vdq_tcb (tyConBinders tycon)
tc_kind = tyConKind tycon
kind_fvs = tyCoVarsOfType tc_kind
is_vdq_tcb tcb = (binderVar tcb `elemVarSet` kind_fvs) &&
isVisibleTyConBinder tcb
vdq_warning = vcat
[ text "NB: Type" <+> quotes (ppr tycon) <+>
text "was inferred to use visible dependent quantification."
, text "Most types with visible dependent quantification are"
, text "polymorphically recursive and need a standalone kind"
, text "signature. Perhaps supply one, with StandaloneKindSignatures."
]
tcAddDeclCtxt :: TyClDecl GhcRn -> TcM a -> TcM a
tcAddDeclCtxt decl thing_inside
= addErrCtxt (tcMkDeclCtxt decl) thing_inside
tcAddTyFamInstCtxt :: TyFamInstDecl GhcRn -> TcM a -> TcM a
tcAddTyFamInstCtxt decl
= tcAddFamInstCtxt (text "type instance") (tyFamInstDeclName decl)
tcMkDataFamInstCtxt :: DataFamInstDecl GhcRn -> SDoc
tcMkDataFamInstCtxt decl@(DataFamInstDecl { dfid_eqn =
HsIB { hsib_body = eqn }})
= tcMkFamInstCtxt (pprDataFamInstFlavour decl <+> text "instance")
(unLoc (feqn_tycon eqn))
tcAddDataFamInstCtxt :: DataFamInstDecl GhcRn -> TcM a -> TcM a
tcAddDataFamInstCtxt decl
= addErrCtxt (tcMkDataFamInstCtxt decl)
tcMkFamInstCtxt :: SDoc -> Name -> SDoc
tcMkFamInstCtxt flavour tycon
= hsep [ text "In the" <+> flavour <+> text "declaration for"
, quotes (ppr tycon) ]
tcAddFamInstCtxt :: SDoc -> Name -> TcM a -> TcM a
tcAddFamInstCtxt flavour tycon thing_inside
= addErrCtxt (tcMkFamInstCtxt flavour tycon) thing_inside
tcAddClosedTypeFamilyDeclCtxt :: TyCon -> TcM a -> TcM a
tcAddClosedTypeFamilyDeclCtxt tc
= addErrCtxt ctxt
where
ctxt = text "In the equations for closed type family" <+>
quotes (ppr tc)
resultTypeMisMatch :: FieldLabelString -> DataCon -> DataCon -> SDoc
resultTypeMisMatch field_name con1 con2
= vcat [sep [text "Constructors" <+> ppr con1 <+> text "and" <+> ppr con2,
text "have a common field" <+> quotes (ppr field_name) <> comma],
nest 2 $ text "but have different result types"]
fieldTypeMisMatch :: FieldLabelString -> DataCon -> DataCon -> SDoc
fieldTypeMisMatch field_name con1 con2
= sep [text "Constructors" <+> ppr con1 <+> text "and" <+> ppr con2,
text "give different types for field", quotes (ppr field_name)]
dataConCtxtName :: [Located Name] -> SDoc
dataConCtxtName [con]
= text "In the definition of data constructor" <+> quotes (ppr con)
dataConCtxtName con
= text "In the definition of data constructors" <+> interpp'SP con
dataConCtxt :: Outputable a => a -> SDoc
dataConCtxt con = text "In the definition of data constructor" <+> quotes (ppr con)
classOpCtxt :: Var -> Type -> SDoc
classOpCtxt sel_id tau = sep [text "When checking the class method:",
nest 2 (pprPrefixOcc sel_id <+> dcolon <+> ppr tau)]
classArityErr :: Int -> Class -> SDoc
classArityErr n cls
| n == 0 = mkErr "No" "no-parameter"
| otherwise = mkErr "Too many" "multi-parameter"
where
mkErr howMany allowWhat =
vcat [text (howMany ++ " parameters for class") <+> quotes (ppr cls),
parens (text ("Enable MultiParamTypeClasses to allow "
++ allowWhat ++ " classes"))]
classFunDepsErr :: Class -> SDoc
classFunDepsErr cls
= vcat [text "Fundeps in class" <+> quotes (ppr cls),
parens (text "Enable FunctionalDependencies to allow fundeps")]
badMethPred :: Id -> TcPredType -> SDoc
badMethPred sel_id pred
= vcat [ hang (text "Constraint" <+> quotes (ppr pred)
<+> text "in the type of" <+> quotes (ppr sel_id))
2 (text "constrains only the class type variables")
, text "Enable ConstrainedClassMethods to allow it" ]
noClassTyVarErr :: Class -> TyCon -> SDoc
noClassTyVarErr clas fam_tc
= sep [ text "The associated type" <+> quotes (ppr fam_tc <+> hsep (map ppr (tyConTyVars fam_tc)))
, text "mentions none of the type or kind variables of the class" <+>
quotes (ppr clas <+> hsep (map ppr (classTyVars clas)))]
badDataConTyCon :: DataCon -> Type -> SDoc
badDataConTyCon data_con res_ty_tmpl
= hang (text "Data constructor" <+> quotes (ppr data_con) <+>
text "returns type" <+> quotes (ppr actual_res_ty))
2 (text "instead of an instance of its parent type" <+> quotes (ppr res_ty_tmpl))
where
actual_res_ty = dataConOrigResTy data_con
badGadtDecl :: Name -> SDoc
badGadtDecl tc_name
= vcat [ text "Illegal generalised algebraic data declaration for" <+> quotes (ppr tc_name)
, nest 2 (parens $ text "Enable the GADTs extension to allow this") ]
badExistential :: DataCon -> SDoc
badExistential con
= sdocOption sdocLinearTypes (\show_linear_types ->
hang (text "Data constructor" <+> quotes (ppr con) <+>
text "has existential type variables, a context, or a specialised result type")
2 (vcat [ ppr con <+> dcolon <+> ppr (dataConDisplayType show_linear_types con)
, parens $ text "Enable ExistentialQuantification or GADTs to allow this" ]))
badStupidTheta :: Name -> SDoc
badStupidTheta tc_name
= text "A data type declared in GADT style cannot have a context:" <+> quotes (ppr tc_name)
newtypeConError :: Name -> Int -> SDoc
newtypeConError tycon n
= sep [text "A newtype must have exactly one constructor,",
nest 2 $ text "but" <+> quotes (ppr tycon) <+> text "has" <+> speakN n ]
newtypeStrictError :: DataCon -> SDoc
newtypeStrictError con
= sep [text "A newtype constructor cannot have a strictness annotation,",
nest 2 $ text "but" <+> quotes (ppr con) <+> text "does"]
newtypeFieldErr :: DataCon -> Int -> SDoc
newtypeFieldErr con_name n_flds
= sep [text "The constructor of a newtype must have exactly one field",
nest 2 $ text "but" <+> quotes (ppr con_name) <+> text "has" <+> speakN n_flds]
badSigTyDecl :: Name -> SDoc
badSigTyDecl tc_name
= vcat [ text "Illegal kind signature" <+>
quotes (ppr tc_name)
, nest 2 (parens $ text "Use KindSignatures to allow kind signatures") ]
emptyConDeclsErr :: Name -> SDoc
emptyConDeclsErr tycon
= sep [quotes (ppr tycon) <+> text "has no constructors",
nest 2 $ text "(EmptyDataDecls permits this)"]
wrongKindOfFamily :: TyCon -> SDoc
wrongKindOfFamily family
= text "Wrong category of family instance; declaration was for a"
<+> kindOfFamily
where
kindOfFamily | isTypeFamilyTyCon family = text "type family"
| isDataFamilyTyCon family = text "data family"
| otherwise = pprPanic "wrongKindOfFamily" (ppr family)
-- | Produce an error for oversaturated type family equations with too many
-- required arguments.
-- See Note [Oversaturated type family equations] in "GHC.Tc.Validity".
wrongNumberOfParmsErr :: Arity -> SDoc
wrongNumberOfParmsErr max_args
= text "Number of parameters must match family declaration; expected"
<+> ppr max_args
badRoleAnnot :: Name -> Role -> Role -> SDoc
badRoleAnnot var annot inferred
= hang (text "Role mismatch on variable" <+> ppr var <> colon)
2 (sep [ text "Annotation says", ppr annot
, text "but role", ppr inferred
, text "is required" ])
wrongNumberOfRoles :: [a] -> LRoleAnnotDecl GhcRn -> SDoc
wrongNumberOfRoles tyvars d@(L _ (RoleAnnotDecl _ _ annots))
= hang (text "Wrong number of roles listed in role annotation;" $$
text "Expected" <+> (ppr $ length tyvars) <> comma <+>
text "got" <+> (ppr $ length annots) <> colon)
2 (ppr d)
illegalRoleAnnotDecl :: LRoleAnnotDecl GhcRn -> TcM ()
illegalRoleAnnotDecl (L loc (RoleAnnotDecl _ tycon _))
= setErrCtxt [] $
setSrcSpan loc $
addErrTc (text "Illegal role annotation for" <+> ppr tycon <> char ';' $$
text "they are allowed only for datatypes and classes.")
needXRoleAnnotations :: TyCon -> SDoc
needXRoleAnnotations tc
= text "Illegal role annotation for" <+> ppr tc <> char ';' $$
text "did you intend to use RoleAnnotations?"
incoherentRoles :: SDoc
incoherentRoles = (text "Roles other than" <+> quotes (text "nominal") <+>
text "for class parameters can lead to incoherence.") $$
(text "Use IncoherentInstances to allow this; bad role found")
wrongTyFamName :: Name -> Name -> SDoc
wrongTyFamName fam_tc_name eqn_tc_name
= hang (text "Mismatched type name in type family instance.")
2 (vcat [ text "Expected:" <+> ppr fam_tc_name
, text " Actual:" <+> ppr eqn_tc_name ])
addTyConCtxt :: TyCon -> TcM a -> TcM a
addTyConCtxt tc = addTyConFlavCtxt name flav
where
name = getName tc
flav = tyConFlavour tc
addRoleAnnotCtxt :: Name -> TcM a -> TcM a
addRoleAnnotCtxt name
= addErrCtxt $
text "while checking a role annotation for" <+> quotes (ppr name)
|