summaryrefslogtreecommitdiff
path: root/compiler/GHC/Tc/Types/Constraint.hs
blob: 78c1134475737e061f0963c5a999d9ca0eb3fab9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564

{-# LANGUAGE DerivingStrategies #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE TypeApplications #-}

-- | This module defines types and simple operations over constraints, as used
-- in the type-checker and constraint solver.
module GHC.Tc.Types.Constraint (
        -- QCInst
        QCInst(..), pendingScInst_maybe,

        -- Canonical constraints
        Xi, Ct(..), Cts,
        singleCt, listToCts, ctsElts, consCts, snocCts, extendCtsList,
        isEmptyCts, emptyCts, andCts, ctsPreds,
        isPendingScDict, pendingScDict_maybe,
        superClassesMightHelp, getPendingWantedScs,
        isWantedCt, isGivenCt,
        isTopLevelUserTypeError, containsUserTypeError, getUserTypeErrorMsg,
        isUnsatisfiableCt_maybe,
        ctEvidence, ctLoc, ctPred, ctFlavour, ctEqRel, ctOrigin,
        ctRewriters,
        ctEvId, wantedEvId_maybe, mkTcEqPredLikeEv,
        mkNonCanonical, mkNonCanonicalCt, mkGivens,
        mkIrredCt,
        ctEvPred, ctEvLoc, ctEvOrigin, ctEvEqRel,
        ctEvExpr, ctEvTerm, ctEvCoercion, ctEvEvId,
        ctEvRewriters,
        tyCoVarsOfCt, tyCoVarsOfCts,
        tyCoVarsOfCtList, tyCoVarsOfCtsList,

        ExpansionFuel, doNotExpand, consumeFuel, pendingFuel,
        assertFuelPrecondition, assertFuelPreconditionStrict,

        CtIrredReason(..), isInsolubleReason,

        CheckTyEqResult, CheckTyEqProblem, cteProblem, cterClearOccursCheck,
        cteOK, cteImpredicative, cteTypeFamily, cteCoercionHole,
        cteInsolubleOccurs, cteSolubleOccurs, cterSetOccursCheckSoluble,
        cteConcrete, cteSkolemEscape,
        impredicativeProblem, insolubleOccursProblem, solubleOccursProblem,

        cterHasNoProblem, cterHasProblem, cterHasOnlyProblem, cterHasOnlyProblems,
        cterRemoveProblem, cterHasOccursCheck, cterFromKind,


        EqCt(..), eqCtLHS, eqCtEvidence,
        CanEqLHS(..), canEqLHS_maybe, canTyFamEqLHS_maybe,
        canEqLHSKind, canEqLHSType, eqCanEqLHS,

        Hole(..), HoleSort(..), isOutOfScopeHole,
        DelayedError(..), NotConcreteError(..),
        NotConcreteReason(..),

        WantedConstraints(..), insolubleWC, emptyWC, isEmptyWC,
        isSolvedWC, andWC, unionsWC, mkSimpleWC, mkImplicWC,
        addInsols, dropMisleading, addSimples, addImplics, addHoles,
        addNotConcreteError, addDelayedErrors,
        tyCoVarsOfWC,
        tyCoVarsOfWCList, insolubleWantedCt, insolubleEqCt, insolubleCt,
        insolubleImplic, nonDefaultableTyVarsOfWC,

        Implication(..), implicationPrototype, checkTelescopeSkol,
        ImplicStatus(..), isInsolubleStatus, isSolvedStatus,
        UserGiven, getUserGivensFromImplics,
        HasGivenEqs(..), checkImplicationInvariants,
        SubGoalDepth, initialSubGoalDepth, maxSubGoalDepth,
        bumpSubGoalDepth, subGoalDepthExceeded,
        CtLoc(..), ctLocSpan, ctLocEnv, ctLocLevel, ctLocOrigin,
        ctLocTypeOrKind_maybe,
        ctLocDepth, bumpCtLocDepth, isGivenLoc,
        setCtLocOrigin, updateCtLocOrigin, setCtLocEnv, setCtLocSpan,
        pprCtLoc, adjustCtLoc, adjustCtLocTyConBinder,

        -- CtEvidence
        CtEvidence(..), TcEvDest(..),
        mkKindEqLoc, toKindLoc, toInvisibleLoc, mkGivenLoc,
        isWanted, isGiven,
        ctEvRole, setCtEvPredType, setCtEvLoc, arisesFromGivens,
        tyCoVarsOfCtEvList, tyCoVarsOfCtEv, tyCoVarsOfCtEvsList,
        ctEvUnique, tcEvDestUnique,

        RewriterSet(..), emptyRewriterSet, isEmptyRewriterSet,
           -- exported concretely only for anyUnfilledCoercionHoles
        addRewriter, unitRewriterSet, unionRewriterSet, rewriterSetFromCts,

        wrapType,

        CtFlavour(..), ctEvFlavour,
        CtFlavourRole, ctEvFlavourRole, ctFlavourRole, eqCtFlavourRole,
        eqCanRewrite, eqCanRewriteFR,

        -- Pretty printing
        pprEvVarTheta,
        pprEvVars, pprEvVarWithType,

  )
  where

import GHC.Prelude

import {-# SOURCE #-} GHC.Tc.Types ( TcLclEnv, setLclEnvTcLevel, getLclEnvTcLevel
                                   , setLclEnvLoc, getLclEnvLoc )

import GHC.Core.Predicate
import GHC.Core.Type
import GHC.Core.Coercion
import GHC.Core.Class
import GHC.Core.TyCon
import GHC.Types.Name
import GHC.Types.Var

import GHC.Tc.Utils.TcType
import GHC.Tc.Types.Evidence
import GHC.Tc.Types.Origin

import GHC.Core

import GHC.Core.TyCo.Ppr
import GHC.Utils.FV
import GHC.Types.Var.Set
import GHC.Driver.Session (DynFlags(reductionDepth))
import GHC.Builtin.Names
import GHC.Types.Basic
import GHC.Types.Unique.Set

import GHC.Utils.Outputable
import GHC.Types.SrcLoc
import GHC.Data.Bag
import GHC.Utils.Misc
import GHC.Utils.Panic
import GHC.Utils.Constants (debugIsOn)
import GHC.Types.Name.Reader

import Data.Coerce
import qualified Data.Semigroup as S
import Control.Monad ( msum, when )
import Data.Maybe ( mapMaybe, isJust )
import Data.List.NonEmpty ( NonEmpty )

-- these are for CheckTyEqResult
import Data.Word  ( Word8 )
import Data.List  ( intersperse )


{-
************************************************************************
*                                                                      *
*                       Canonical constraints                          *
*                                                                      *
*   These are the constraints the low-level simplifier works with      *
*                                                                      *
************************************************************************
-}

-- | A 'Xi'-type is one that has been fully rewritten with respect
-- to the inert set; that is, it has been rewritten by the algorithm
-- in GHC.Tc.Solver.Rewrite. (Historical note: 'Xi', for years and years,
-- meant that a type was type-family-free. It does *not* mean this
-- any more.)
type Xi = TcType

type Cts = Bag Ct

-- | Says how many layers of superclasses can we expand.
--   Invariant: ExpansionFuel should always be >= 0
-- see Note [Expanding Recursive Superclasses and ExpansionFuel]
type ExpansionFuel = Int

-- | Do not expand superclasses any further
doNotExpand :: ExpansionFuel
doNotExpand = 0

-- | Consumes one unit of fuel.
--   Precondition: fuel > 0
consumeFuel :: ExpansionFuel -> ExpansionFuel
consumeFuel fuel = assertFuelPreconditionStrict fuel $ fuel - 1

-- | Returns True if we have any fuel left for superclass expansion
pendingFuel :: ExpansionFuel -> Bool
pendingFuel n = n > 0

insufficientFuelError :: SDoc
insufficientFuelError = text "Superclass expansion fuel should be > 0"

-- | asserts if fuel is non-negative
assertFuelPrecondition :: ExpansionFuel -> a -> a
{-# INLINE assertFuelPrecondition #-}
assertFuelPrecondition fuel = assertPpr (fuel >= 0) insufficientFuelError

-- | asserts if fuel is strictly greater than 0
assertFuelPreconditionStrict :: ExpansionFuel -> a -> a
{-# INLINE assertFuelPreconditionStrict #-}
assertFuelPreconditionStrict fuel = assertPpr (pendingFuel fuel) insufficientFuelError

data Ct
  -- Atomic canonical constraints
  = CDictCan {  -- e.g.  Num ty
      cc_ev     :: CtEvidence, -- See Note [Ct/evidence invariant]

      cc_class  :: Class,
      cc_tyargs :: [Xi],   -- cc_tyargs are rewritten w.r.t. inerts, so Xi

      cc_pend_sc :: ExpansionFuel
          -- See Note [The superclass story] in GHC.Tc.Solver.Canonical
          -- See Note [Expanding Recursive Superclasses and ExpansionFuel] in GHC.Tc.Solver
          -- Invariants: cc_pend_sc > 0 <=>
          --                    (a) cc_class has superclasses
          --                    (b) those superclasses are not yet explored
    }

  | CIrredCan {  -- These stand for yet-unusable predicates
      cc_ev     :: CtEvidence,   -- See Note [Ct/evidence invariant]
      cc_reason :: CtIrredReason

        -- For the might-be-soluble case, the ctev_pred of the evidence is
        -- of form   (tv xi1 xi2 ... xin)   with a tyvar at the head
        --      or   (lhs1 ~ ty2)  where the CEqCan    kind invariant (TyEq:K) fails
        -- See Note [CIrredCan constraints]

        -- The definitely-insoluble case is for things like
        --    Int ~ Bool      tycons don't match
        --    a ~ [a]         occurs check
    }

  | CNonCanonical {        -- See Note [NonCanonical Semantics] in GHC.Tc.Solver.Monad
      cc_ev  :: CtEvidence
    }

  | CEqCan EqCt         -- A canonical equality constraint

  | CQuantCan QCInst       -- A quantified constraint
      -- NB: I expect to make more of the cases in Ct
      --     look like this, with the payload in an
      --     auxiliary type

{- Note [Canonical equalities]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
An EqCt is a canonical equality constraint, one that can live in the inert set,
and that can be used to rewrite other constrtaints. It satisfies these invariants:
  * (TyEq:OC) lhs does not occur in rhs (occurs check)
              Note [EqCt occurs check]
  * (TyEq:F) rhs has no foralls
      (this avoids substituting a forall for the tyvar in other types)
  * (TyEq:K) typeKind lhs `tcEqKind` typeKind rhs; Note [Ct kind invariant]
  * (TyEq:N) If the equality is representational, rhs is not headed by a saturated
    application of a newtype TyCon. See GHC.Tc.Solver.Equality
    Note [No top-level newtypes on RHS of representational equalities].
    (Applies only when constructor of newtype is in scope.)
  * (TyEq:U) An EqCt is not immediately unifiable. If we can unify a:=ty, we
    will not form an EqCt (a ~ ty).
  * (TyEq:CH) rhs does not mention any coercion holes that resulted from fixing up
    a hetero-kinded equality.  See Note [Equalities with incompatible kinds] in
    GHC.Tc.Solver.Equality, wrinkle (EIK2)

These invariants ensure that the EqCts in inert_eqs constitute a terminating
generalised substitution. See Note [inert_eqs: the inert equalities]
in GHC.Tc.Solver.InertSet for what these words mean!

Note [EqCt occurs check]
~~~~~~~~~~~~~~~~~~~~~~~~~~
A CEqCan relates a CanEqLHS (a type variable or type family applications) on
its left to an arbitrary type on its right. It is used for rewriting.
Because it is used for rewriting, it would be disastrous if the RHS
were to mention the LHS: this would cause a loop in rewriting.

We thus perform an occurs-check. There is, of course, some subtlety:

* For type variables, the occurs-check looks deeply. This is because
  a CEqCan over a meta-variable is also used to inform unification,
  in GHC.Tc.Solver.Interact.solveByUnification. If the LHS appears
  anywhere, at all, in the RHS, unification will create an infinite
  structure, which is bad.

* For type family applications, the occurs-check is shallow; it looks
  only in places where we might rewrite. (Specifically, it does not
  look in kinds or coercions.) An occurrence of the LHS in, say, an
  RHS coercion is OK, as we do not rewrite in coercions. No loop to
  be found.

  You might also worry about the possibility that a type family
  application LHS doesn't exactly appear in the RHS, but something
  that reduces to the LHS does. Yet that can't happen: the RHS is
  already inert, with all type family redexes reduced. So a simple
  syntactic check is just fine.

The occurs check is performed in GHC.Tc.Utils.Unify.checkTyEqRhs
and forms condition T3 in Note [Extending the inert equalities]
in GHC.Tc.Solver.InertSet.
-}

data EqCt -- An equality constraint; see Note [Canonical equalities]
  = EqCt {  -- CanEqLHS ~ rhs
      eq_ev     :: CtEvidence, -- See Note [Ct/evidence invariant]
      eq_lhs    :: CanEqLHS,
      eq_rhs    :: Xi,         -- See invariants above
      eq_eq_rel :: EqRel       -- INVARIANT: cc_eq_rel = ctEvEqRel cc_ev
    }

eqCtEvidence :: EqCt -> CtEvidence
eqCtEvidence = eq_ev

eqCtLHS :: EqCt -> CanEqLHS
eqCtLHS = eq_lhs

------------
-- | A 'CanEqLHS' is a type that can appear on the left of a canonical
-- equality: a type variable or /exactly-saturated/ type family application.
data CanEqLHS
  = TyVarLHS TcTyVar
  | TyFamLHS TyCon  -- ^ TyCon of the family
             [Xi]   -- ^ Arguments, /exactly saturating/ the family

instance Outputable CanEqLHS where
  ppr (TyVarLHS tv)              = ppr tv
  ppr (TyFamLHS fam_tc fam_args) = ppr (mkTyConApp fam_tc fam_args)

------------
data QCInst  -- A much simplified version of ClsInst
             -- See Note [Quantified constraints] in GHC.Tc.Solver.Canonical
  = QCI { qci_ev   :: CtEvidence -- Always of type forall tvs. context => ty
                                 -- Always Given
        , qci_tvs  :: [TcTyVar]  -- The tvs
        , qci_pred :: TcPredType -- The ty
        , qci_pend_sc :: ExpansionFuel
             -- Invariants: qci_pend_sc > 0 =>
             --       (a) qci_pred is a ClassPred
             --       (b) this class has superclass(es), and
             --       (c) the superclass(es) are not explored yet
             -- Same as cc_pend_sc flag in CDictCan
             -- See Note [Expanding Recursive Superclasses and ExpansionFuel] in GHC.Tc.Solver
    }

instance Outputable QCInst where
  ppr (QCI { qci_ev = ev }) = ppr ev

------------------------------------------------------------------------------
--
-- Holes and other delayed errors
--
------------------------------------------------------------------------------

-- | A delayed error, to be reported after constraint solving, in order to benefit
-- from deferred unifications.
data DelayedError
  = DE_Hole Hole
    -- ^ A hole (in a type or in a term).
    --
    -- See Note [Holes].
  | DE_NotConcrete NotConcreteError
    -- ^ A type could not be ensured to be concrete.
    --
    -- See Note [The Concrete mechanism] in GHC.Tc.Utils.Concrete.

instance Outputable DelayedError where
  ppr (DE_Hole hole) = ppr hole
  ppr (DE_NotConcrete err) = ppr err

-- | A hole stores the information needed to report diagnostics
-- about holes in terms (unbound identifiers or underscores) or
-- in types (also called wildcards, as used in partial type
-- signatures). See Note [Holes].
data Hole
  = Hole { hole_sort :: HoleSort -- ^ What flavour of hole is this?
         , hole_occ  :: RdrName  -- ^ The name of this hole
         , hole_ty   :: TcType   -- ^ Type to be printed to the user
                                 -- For expression holes: type of expr
                                 -- For type holes: the missing type
         , hole_loc  :: CtLoc    -- ^ Where hole was written
         }
           -- For the hole_loc, we usually only want the TcLclEnv stored within.
           -- Except when we rewrite, where we need a whole location. And this
           -- might get reported to the user if reducing type families in a
           -- hole type loops.


-- | Used to indicate which sort of hole we have.
data HoleSort = ExprHole HoleExprRef
                 -- ^ Either an out-of-scope variable or a "true" hole in an
                 -- expression (TypedHoles).
                 -- The HoleExprRef says where to write the
                 -- the erroring expression for -fdefer-type-errors.
              | TypeHole
                 -- ^ A hole in a type (PartialTypeSignatures)
              | ConstraintHole
                 -- ^ A hole in a constraint, like @f :: (_, Eq a) => ...
                 -- Differentiated from TypeHole because a ConstraintHole
                 -- is simplified differently. See
                 -- Note [Do not simplify ConstraintHoles] in GHC.Tc.Solver.

instance Outputable Hole where
  ppr (Hole { hole_sort = ExprHole ref
            , hole_occ  = occ
            , hole_ty   = ty })
    = parens $ (braces $ ppr occ <> colon <> ppr ref) <+> dcolon <+> ppr ty
  ppr (Hole { hole_sort = _other
            , hole_occ  = occ
            , hole_ty   = ty })
    = braces $ ppr occ <> colon <> ppr ty

instance Outputable HoleSort where
  ppr (ExprHole ref) = text "ExprHole:" <+> ppr ref
  ppr TypeHole       = text "TypeHole"
  ppr ConstraintHole = text "ConstraintHole"

-- | Why did we require that a certain type be concrete?
data NotConcreteError
  -- | Concreteness was required by a representation-polymorphism
  -- check.
  --
  -- See Note [The Concrete mechanism] in GHC.Tc.Utils.Concrete.
  = NCE_FRR
    { nce_loc        :: CtLoc
      -- ^ Where did this check take place?
    , nce_frr_origin :: FixedRuntimeRepOrigin
      -- ^ Which representation-polymorphism check did we perform?
    , nce_reasons    :: NonEmpty NotConcreteReason
      -- ^ Why did the check fail?
    }

-- | Why did we decide that a type was not concrete?
data NotConcreteReason
  -- | The type contains a 'TyConApp' of a non-concrete 'TyCon'.
  --
  -- See Note [Concrete types] in GHC.Tc.Utils.Concrete.
  = NonConcreteTyCon TyCon [TcType]

  -- | The type contains a type variable that could not be made
  -- concrete (e.g. a skolem type variable).
  | NonConcretisableTyVar TyVar

  -- | The type contains a cast.
  | ContainsCast TcType TcCoercionN

  -- | The type contains a forall.
  | ContainsForall ForAllTyBinder TcType

  -- | The type contains a 'CoercionTy'.
  | ContainsCoercionTy TcCoercion

instance Outputable NotConcreteError where
  ppr (NCE_FRR { nce_frr_origin = frr_orig })
    = text "NCE_FRR" <+> parens (ppr (frr_type frr_orig))

------------
-- | Used to indicate extra information about why a CIrredCan is irreducible
data CtIrredReason
  = IrredShapeReason
      -- ^ this constraint has a non-canonical shape (e.g. @c Int@, for a variable @c@)

  | NonCanonicalReason CheckTyEqResult
   -- ^ an equality where some invariant other than (TyEq:H) of 'CEqCan' is not satisfied;
   -- the 'CheckTyEqResult' states exactly why

  | ReprEqReason
    -- ^ an equality that cannot be decomposed because it is representational.
    -- Example: @a b ~R# Int@.
    -- These might still be solved later.
    -- INVARIANT: The constraint is a representational equality constraint

  | ShapeMismatchReason
    -- ^ a nominal equality that relates two wholly different types,
    -- like @Int ~# Bool@ or @a b ~# 3@.
    -- INVARIANT: The constraint is a nominal equality constraint

  | AbstractTyConReason
    -- ^ an equality like @T a b c ~ Q d e@ where either @T@ or @Q@
    -- is an abstract type constructor. See Note [Skolem abstract data]
    -- in GHC.Core.TyCon.
    -- INVARIANT: The constraint is an equality constraint between two TyConApps

instance Outputable CtIrredReason where
  ppr IrredShapeReason          = text "(irred)"
  ppr (NonCanonicalReason cter) = ppr cter
  ppr ReprEqReason              = text "(repr)"
  ppr ShapeMismatchReason       = text "(shape)"
  ppr AbstractTyConReason       = text "(abstc)"

-- | Are we sure that more solving will never solve this constraint?
isInsolubleReason :: CtIrredReason -> Bool
isInsolubleReason IrredShapeReason          = False
isInsolubleReason (NonCanonicalReason cter) = cterIsInsoluble cter
isInsolubleReason ReprEqReason              = False
isInsolubleReason ShapeMismatchReason       = True
isInsolubleReason AbstractTyConReason       = True

------------------------------------------------------------------------------
--
-- CheckTyEqResult, defined here because it is stored in a CtIrredReason
--
------------------------------------------------------------------------------

-- | A /set/ of problems in checking the validity of a type equality.
-- See 'checkTypeEq'.
newtype CheckTyEqResult = CTER Word8

-- | No problems in checking the validity of a type equality.
cteOK :: CheckTyEqResult
cteOK = CTER zeroBits

-- | Check whether a 'CheckTyEqResult' is marked successful.
cterHasNoProblem :: CheckTyEqResult -> Bool
cterHasNoProblem (CTER 0) = True
cterHasNoProblem _        = False

-- | An /individual/ problem that might be logged in a 'CheckTyEqResult'
newtype CheckTyEqProblem = CTEP Word8

cteImpredicative, cteTypeFamily, cteInsolubleOccurs,
  cteSolubleOccurs, cteCoercionHole, cteConcrete,
  cteSkolemEscape :: CheckTyEqProblem
cteImpredicative   = CTEP (bit 0)   -- Forall or (=>) encountered
cteTypeFamily      = CTEP (bit 1)   -- Type family encountered

cteInsolubleOccurs = CTEP (bit 2)   -- Occurs-check
cteSolubleOccurs   = CTEP (bit 3)   -- Occurs-check under a type function, or in a coercion,
                                    -- or in a representational equality; see
   -- See Note [Occurs check and representational equality]
   -- cteSolubleOccurs must be one bit to the left of cteInsolubleOccurs
   -- See also Note [Insoluble occurs check] in GHC.Tc.Errors

cteCoercionHole    = CTEP (bit 4)   -- Coercion hole encountered
cteConcrete        = CTEP (bit 5)   -- Type variable that can't be made concrete
                                    --    e.g. alpha[conc] ~ Maybe beta[tv]
cteSkolemEscape    = CTEP (bit 6)   -- Skolem escape e.g.  alpha[2] ~ b[sk,4]

cteProblem :: CheckTyEqProblem -> CheckTyEqResult
cteProblem (CTEP mask) = CTER mask

impredicativeProblem, insolubleOccursProblem, solubleOccursProblem :: CheckTyEqResult
impredicativeProblem   = cteProblem cteImpredicative
insolubleOccursProblem = cteProblem cteInsolubleOccurs
solubleOccursProblem   = cteProblem cteSolubleOccurs

occurs_mask :: Word8
occurs_mask = insoluble_mask .|. soluble_mask
  where
    CTEP insoluble_mask = cteInsolubleOccurs
    CTEP soluble_mask   = cteSolubleOccurs

-- | Check whether a 'CheckTyEqResult' has a 'CheckTyEqProblem'
cterHasProblem :: CheckTyEqResult -> CheckTyEqProblem -> Bool
CTER bits `cterHasProblem` CTEP mask = (bits .&. mask) /= 0

-- | Check whether a 'CheckTyEqResult' has one 'CheckTyEqProblem' and no other
cterHasOnlyProblem :: CheckTyEqResult -> CheckTyEqProblem -> Bool
CTER bits `cterHasOnlyProblem` CTEP mask = bits == mask

cterHasOnlyProblems :: CheckTyEqResult -> CheckTyEqResult -> Bool
CTER bits `cterHasOnlyProblems` CTER mask = (bits .&. complement mask) == 0

cterRemoveProblem :: CheckTyEqResult -> CheckTyEqProblem -> CheckTyEqResult
cterRemoveProblem (CTER bits) (CTEP mask) = CTER (bits .&. complement mask)

cterHasOccursCheck :: CheckTyEqResult -> Bool
cterHasOccursCheck (CTER bits) = (bits .&. occurs_mask) /= 0

cterClearOccursCheck :: CheckTyEqResult -> CheckTyEqResult
cterClearOccursCheck (CTER bits) = CTER (bits .&. complement occurs_mask)

-- | Mark a 'CheckTyEqResult' as not having an insoluble occurs-check: any occurs
-- check under a type family or in a representation equality is soluble.
cterSetOccursCheckSoluble :: CheckTyEqResult -> CheckTyEqResult
cterSetOccursCheckSoluble (CTER bits)
  = CTER $ ((bits .&. insoluble_mask) `shift` 1) .|. (bits .&. complement insoluble_mask)
  where
    CTEP insoluble_mask = cteInsolubleOccurs

-- | Retain only information about occurs-check failures, because only that
-- matters after recurring into a kind.
cterFromKind :: CheckTyEqResult -> CheckTyEqResult
cterFromKind (CTER bits)
  = CTER (bits .&. occurs_mask)

cterIsInsoluble :: CheckTyEqResult -> Bool
cterIsInsoluble (CTER bits) = (bits .&. mask) /= 0
  where
    mask = impredicative_mask .|. insoluble_occurs_mask

    CTEP impredicative_mask    = cteImpredicative
    CTEP insoluble_occurs_mask = cteInsolubleOccurs

instance Semigroup CheckTyEqResult where
  CTER bits1 <> CTER bits2 = CTER (bits1 .|. bits2)
instance Monoid CheckTyEqResult where
  mempty = cteOK

instance Eq CheckTyEqProblem where
  (CTEP b1) == (CTEP b2) = b1==b2

instance Outputable CheckTyEqProblem where
  ppr prob@(CTEP bits) = case lookup prob allBits of
                Just s  -> text s
                Nothing -> text "unknown:" <+> ppr bits

instance Outputable CheckTyEqResult where
  ppr cter | cterHasNoProblem cter
           = text "cteOK"
           | otherwise
           = braces $ fcat $ intersperse vbar $
             [ text str
             | (bitmask, str) <- allBits
             , cter `cterHasProblem` bitmask ]

allBits :: [(CheckTyEqProblem, String)]
allBits = [ (cteImpredicative,   "cteImpredicative")
          , (cteTypeFamily,      "cteTypeFamily")
          , (cteInsolubleOccurs, "cteInsolubleOccurs")
          , (cteSolubleOccurs,   "cteSolubleOccurs")
          , (cteConcrete,        "cteConcrete")
          , (cteSkolemEscape,    "cteSkolemEscape")
          , (cteCoercionHole,    "cteCoercionHole") ]

{- Note [CIrredCan constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
CIrredCan constraints are used for constraints that are "stuck"
   - we can't solve them (yet)
   - we can't use them to solve other constraints
   - but they may become soluble if we substitute for some
     of the type variables in the constraint

Example 1:  (c Int), where c :: * -> Constraint.  We can't do anything
            with this yet, but if later c := Num, *then* we can solve it

Example 2:  a ~ b, where a :: *, b :: k, where k is a kind variable
            We don't want to use this to substitute 'b' for 'a', in case
            'k' is subsequently unified with (say) *->*, because then
            we'd have ill-kinded types floating about.  Rather we want
            to defer using the equality altogether until 'k' get resolved.

Note [Ct/evidence invariant]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If  ct :: Ct, then extra fields of 'ct' cache precisely the ctev_pred field
of (cc_ev ct), and is fully rewritten wrt the substitution.   Eg for CDictCan,
   ctev_pred (cc_ev ct) = (cc_class ct) (cc_tyargs ct)
This holds by construction; look at the unique place where CDictCan is
built (in GHC.Tc.Solver.Canonical).

Note [Ct kind invariant]
~~~~~~~~~~~~~~~~~~~~~~~~
CEqCan requires that the kind of the lhs matches the kind
of the rhs. This is necessary because these constraints are used for substitutions
during solving. If the kinds differed, then the substitution would take a well-kinded
type to an ill-kinded one.

Note [Holes]
~~~~~~~~~~~~
This Note explains how GHC tracks *holes*.

A hole represents one of two conditions:
 - A missing bit of an expression. Example: foo x = x + _
 - A missing bit of a type. Example: bar :: Int -> _

What these have in common is that both cause GHC to emit a diagnostic to the
user describing the bit that is left out.

When a hole is encountered, a new entry of type Hole is added to the ambient
WantedConstraints. The type (hole_ty) of the hole is then simplified during
solving (with respect to any Givens in surrounding implications). It is
reported with all the other errors in GHC.Tc.Errors.

For expression holes, the user has the option of deferring errors until runtime
with -fdefer-type-errors. In this case, the hole actually has evidence: this
evidence is an erroring expression that prints an error and crashes at runtime.
The ExprHole variant of holes stores an IORef EvTerm that will contain this evidence;
during constraint generation, this IORef was stored in the HsUnboundVar extension
field by the type checker. The desugarer simply dereferences to get the CoreExpr.

Prior to fixing #17812, we used to invent an Id to hold the erroring
expression, and then bind it during type-checking. But this does not support
representation-polymorphic out-of-scope identifiers. See
typecheck/should_compile/T17812. We thus use the mutable-CoreExpr approach
described above.

You might think that the type in the HoleExprRef is the same as the type of the
hole. However, because the hole type (hole_ty) is rewritten with respect to
givens, this might not be the case. That is, the hole_ty is always (~) to the
type of the HoleExprRef, but they might not be `eqType`. We need the type of the generated
evidence to match what is expected in the context of the hole, and so we must
store these types separately.

Type-level holes have no evidence at all.
-}

mkNonCanonical :: CtEvidence -> Ct
mkNonCanonical ev = CNonCanonical { cc_ev = ev }

mkNonCanonicalCt :: Ct -> Ct
mkNonCanonicalCt ct = CNonCanonical { cc_ev = cc_ev ct }

mkIrredCt :: CtIrredReason -> CtEvidence -> Ct
mkIrredCt reason ev = CIrredCan { cc_ev = ev, cc_reason = reason }

mkGivens :: CtLoc -> [EvId] -> [Ct]
mkGivens loc ev_ids
  = map mk ev_ids
  where
    mk ev_id = mkNonCanonical (CtGiven { ctev_evar = ev_id
                                       , ctev_pred = evVarPred ev_id
                                       , ctev_loc = loc })

ctEvidence :: Ct -> CtEvidence
ctEvidence (CQuantCan (QCI { qci_ev = ev })) = ev
ctEvidence (CEqCan (EqCt { eq_ev = ev }))    = ev
ctEvidence ct                                = cc_ev ct

ctLoc :: Ct -> CtLoc
ctLoc = ctEvLoc . ctEvidence

ctOrigin :: Ct -> CtOrigin
ctOrigin = ctLocOrigin . ctLoc

ctPred :: Ct -> PredType
-- See Note [Ct/evidence invariant]
ctPred ct = ctEvPred (ctEvidence ct)

ctRewriters :: Ct -> RewriterSet
ctRewriters = ctEvRewriters . ctEvidence

ctEvId :: HasDebugCallStack => Ct -> EvVar
-- The evidence Id for this Ct
ctEvId ct = ctEvEvId (ctEvidence ct)

-- | Returns the evidence 'Id' for the argument 'Ct'
-- when this 'Ct' is a 'Wanted'.
--
-- Returns 'Nothing' otherwise.
wantedEvId_maybe :: Ct -> Maybe EvVar
wantedEvId_maybe ct
  = case ctEvidence ct of
    ctev@(CtWanted {})
      | otherwise
      -> Just $ ctEvEvId ctev
    CtGiven {}
      -> Nothing

-- | Makes a new equality predicate with the same role as the given
-- evidence.
mkTcEqPredLikeEv :: CtEvidence -> TcType -> TcType -> TcType
mkTcEqPredLikeEv ev
  = case predTypeEqRel pred of
      NomEq  -> mkPrimEqPred
      ReprEq -> mkReprPrimEqPred
  where
    pred = ctEvPred ev

-- | Get the flavour of the given 'Ct'
ctFlavour :: Ct -> CtFlavour
ctFlavour = ctEvFlavour . ctEvidence

-- | Get the equality relation for the given 'Ct'
ctEqRel :: Ct -> EqRel
ctEqRel = ctEvEqRel . ctEvidence

instance Outputable Ct where
  ppr ct = ppr (ctEvidence ct) <+> parens pp_sort
    where
      pp_sort = case ct of
         CEqCan {}        -> text "CEqCan"
         CNonCanonical {} -> text "CNonCanonical"
         CDictCan { cc_pend_sc = psc }
            | psc > 0       -> text "CDictCan" <> parens (text "psc" <+> ppr psc)
            | otherwise     -> text "CDictCan"
         CIrredCan { cc_reason = reason } -> text "CIrredCan" <> ppr reason
         CQuantCan (QCI { qci_pend_sc = psc })
            | psc > 0  -> text "CQuantCan"  <> parens (text "psc" <+> ppr psc)
            | otherwise -> text "CQuantCan"

instance Outputable EqCt where
  ppr (EqCt { eq_ev = ev }) = ppr ev

-----------------------------------
-- | Is a type a canonical LHS? That is, is it a tyvar or an exactly-saturated
-- type family application?
-- Does not look through type synonyms.
canEqLHS_maybe :: Xi -> Maybe CanEqLHS
canEqLHS_maybe xi
  | Just tv <- getTyVar_maybe xi
  = Just $ TyVarLHS tv

  | otherwise
  = canTyFamEqLHS_maybe xi

canTyFamEqLHS_maybe :: Xi -> Maybe CanEqLHS
canTyFamEqLHS_maybe xi
  | Just (tc, args) <- tcSplitTyConApp_maybe xi
  , isTypeFamilyTyCon tc
  , args `lengthIs` tyConArity tc
  = Just $ TyFamLHS tc args

  | otherwise
  = Nothing

-- | Convert a 'CanEqLHS' back into a 'Type'
canEqLHSType :: CanEqLHS -> TcType
canEqLHSType (TyVarLHS tv) = mkTyVarTy tv
canEqLHSType (TyFamLHS fam_tc fam_args) = mkTyConApp fam_tc fam_args

-- | Retrieve the kind of a 'CanEqLHS'
canEqLHSKind :: CanEqLHS -> TcKind
canEqLHSKind (TyVarLHS tv) = tyVarKind tv
canEqLHSKind (TyFamLHS fam_tc fam_args) = piResultTys (tyConKind fam_tc) fam_args

-- | Are two 'CanEqLHS's equal?
eqCanEqLHS :: CanEqLHS -> CanEqLHS -> Bool
eqCanEqLHS (TyVarLHS tv1) (TyVarLHS tv2) = tv1 == tv2
eqCanEqLHS (TyFamLHS fam_tc1 fam_args1) (TyFamLHS fam_tc2 fam_args2)
  = tcEqTyConApps fam_tc1 fam_args1 fam_tc2 fam_args2
eqCanEqLHS _ _ = False

{-
************************************************************************
*                                                                      *
        Simple functions over evidence variables
*                                                                      *
************************************************************************
-}

---------------- Getting free tyvars -------------------------

-- | Returns free variables of constraints as a non-deterministic set
tyCoVarsOfCt :: Ct -> TcTyCoVarSet
tyCoVarsOfCt = fvVarSet . tyCoFVsOfCt

-- | Returns free variables of constraints as a non-deterministic set
tyCoVarsOfCtEv :: CtEvidence -> TcTyCoVarSet
tyCoVarsOfCtEv = fvVarSet . tyCoFVsOfCtEv

-- | Returns free variables of constraints as a deterministically ordered
-- list. See Note [Deterministic FV] in GHC.Utils.FV.
tyCoVarsOfCtList :: Ct -> [TcTyCoVar]
tyCoVarsOfCtList = fvVarList . tyCoFVsOfCt

-- | Returns free variables of constraints as a deterministically ordered
-- list. See Note [Deterministic FV] in GHC.Utils.FV.
tyCoVarsOfCtEvList :: CtEvidence -> [TcTyCoVar]
tyCoVarsOfCtEvList = fvVarList . tyCoFVsOfType . ctEvPred

-- | Returns free variables of constraints as a composable FV computation.
-- See Note [Deterministic FV] in "GHC.Utils.FV".
tyCoFVsOfCt :: Ct -> FV
tyCoFVsOfCt ct = tyCoFVsOfType (ctPred ct)
  -- This must consult only the ctPred, so that it gets *tidied* fvs if the
  -- constraint has been tidied. Tidying a constraint does not tidy the
  -- fields of the Ct, only the predicate in the CtEvidence.

-- | Returns free variables of constraints as a composable FV computation.
-- See Note [Deterministic FV] in GHC.Utils.FV.
tyCoFVsOfCtEv :: CtEvidence -> FV
tyCoFVsOfCtEv ct = tyCoFVsOfType (ctEvPred ct)

-- | Returns free variables of a bag of constraints as a non-deterministic
-- set. See Note [Deterministic FV] in "GHC.Utils.FV".
tyCoVarsOfCts :: Cts -> TcTyCoVarSet
tyCoVarsOfCts = fvVarSet . tyCoFVsOfCts

-- | Returns free variables of a bag of constraints as a deterministically
-- ordered list. See Note [Deterministic FV] in "GHC.Utils.FV".
tyCoVarsOfCtsList :: Cts -> [TcTyCoVar]
tyCoVarsOfCtsList = fvVarList . tyCoFVsOfCts

-- | Returns free variables of a bag of constraints as a deterministically
-- ordered list. See Note [Deterministic FV] in GHC.Utils.FV.
tyCoVarsOfCtEvsList :: [CtEvidence] -> [TcTyCoVar]
tyCoVarsOfCtEvsList = fvVarList . tyCoFVsOfCtEvs

-- | Returns free variables of a bag of constraints as a composable FV
-- computation. See Note [Deterministic FV] in "GHC.Utils.FV".
tyCoFVsOfCts :: Cts -> FV
tyCoFVsOfCts = foldr (unionFV . tyCoFVsOfCt) emptyFV

-- | Returns free variables of a bag of constraints as a composable FV
-- computation. See Note [Deterministic FV] in GHC.Utils.FV.
tyCoFVsOfCtEvs :: [CtEvidence] -> FV
tyCoFVsOfCtEvs = foldr (unionFV . tyCoFVsOfCtEv) emptyFV

-- | Returns free variables of WantedConstraints as a non-deterministic
-- set. See Note [Deterministic FV] in "GHC.Utils.FV".
tyCoVarsOfWC :: WantedConstraints -> TyCoVarSet
-- Only called on *zonked* things
tyCoVarsOfWC = fvVarSet . tyCoFVsOfWC

-- | Returns free variables of WantedConstraints as a deterministically
-- ordered list. See Note [Deterministic FV] in "GHC.Utils.FV".
tyCoVarsOfWCList :: WantedConstraints -> [TyCoVar]
-- Only called on *zonked* things
tyCoVarsOfWCList = fvVarList . tyCoFVsOfWC

-- | Returns free variables of WantedConstraints as a composable FV
-- computation. See Note [Deterministic FV] in "GHC.Utils.FV".
tyCoFVsOfWC :: WantedConstraints -> FV
-- Only called on *zonked* things
tyCoFVsOfWC (WC { wc_simple = simple, wc_impl = implic, wc_errors = errors })
  = tyCoFVsOfCts simple `unionFV`
    tyCoFVsOfBag tyCoFVsOfImplic implic `unionFV`
    tyCoFVsOfBag tyCoFVsOfDelayedError errors

-- | Returns free variables of Implication as a composable FV computation.
-- See Note [Deterministic FV] in "GHC.Utils.FV".
tyCoFVsOfImplic :: Implication -> FV
-- Only called on *zonked* things
tyCoFVsOfImplic (Implic { ic_skols = skols
                        , ic_given = givens
                        , ic_wanted = wanted })
  | isEmptyWC wanted
  = emptyFV
  | otherwise
  = tyCoFVsVarBndrs skols  $
    tyCoFVsVarBndrs givens $
    tyCoFVsOfWC wanted

tyCoFVsOfDelayedError :: DelayedError -> FV
tyCoFVsOfDelayedError (DE_Hole hole) = tyCoFVsOfHole hole
tyCoFVsOfDelayedError (DE_NotConcrete {}) = emptyFV

tyCoFVsOfHole :: Hole -> FV
tyCoFVsOfHole (Hole { hole_ty = ty }) = tyCoFVsOfType ty

tyCoFVsOfBag :: (a -> FV) -> Bag a -> FV
tyCoFVsOfBag tvs_of = foldr (unionFV . tvs_of) emptyFV

isGivenLoc :: CtLoc -> Bool
isGivenLoc loc = isGivenOrigin (ctLocOrigin loc)

{-
************************************************************************
*                                                                      *
                    CtEvidence
         The "flavor" of a canonical constraint
*                                                                      *
************************************************************************
-}

isWantedCt :: Ct -> Bool
isWantedCt = isWanted . ctEvidence

isGivenCt :: Ct -> Bool
isGivenCt = isGiven . ctEvidence

{- Note [Custom type errors in constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

When GHC reports a type-error about an unsolved-constraint, we check
to see if the constraint contains any custom-type errors, and if so
we report them.  Here are some examples of constraints containing type
errors:

TypeError msg           -- The actual constraint is a type error

TypError msg ~ Int      -- Some type was supposed to be Int, but ended up
                        -- being a type error instead

Eq (TypeError msg)      -- A class constraint is stuck due to a type error

F (TypeError msg) ~ a   -- A type function failed to evaluate due to a type err

It is also possible to have constraints where the type error is nested deeper,
for example see #11990, and also:

Eq (F (TypeError msg))  -- Here the type error is nested under a type-function
                        -- call, which failed to evaluate because of it,
                        -- and so the `Eq` constraint was unsolved.
                        -- This may happen when one function calls another
                        -- and the called function produced a custom type error.
-}

-- | A constraint is considered to be a custom type error, if it contains
-- custom type errors anywhere in it.
-- See Note [Custom type errors in constraints]
getUserTypeErrorMsg :: PredType -> Maybe ErrorMsgType
getUserTypeErrorMsg pred = msum $ userTypeError_maybe pred
                                  : map getUserTypeErrorMsg (subTys pred)
  where
   -- Richard thinks this function is very broken. What is subTys
   -- supposed to be doing? Why are exactly-saturated tyconapps special?
   -- What stops this from accidentally ripping apart a call to TypeError?
    subTys t = case splitAppTys t of
                 (t,[]) ->
                   case splitTyConApp_maybe t of
                              Nothing     -> []
                              Just (_,ts) -> ts
                 (t,ts) -> t : ts

-- | Is this an user error message type, i.e. either the form @TypeError err@ or
-- @Unsatisfiable err@?
isTopLevelUserTypeError :: PredType -> Bool
isTopLevelUserTypeError pred =
  isJust (userTypeError_maybe pred) || isJust (isUnsatisfiableCt_maybe pred)

-- | Does this constraint contain an user error message?
--
-- That is, the type is either of the form @Unsatisfiable err@, or it contains
-- a type of the form @TypeError msg@, either at the top level or nested inside
-- the type.
containsUserTypeError :: PredType -> Bool
containsUserTypeError pred =
  isJust (getUserTypeErrorMsg pred) || isJust (isUnsatisfiableCt_maybe pred)

-- | Is this type an unsatisfiable constraint?
-- If so, return the error message.
isUnsatisfiableCt_maybe :: Type -> Maybe ErrorMsgType
isUnsatisfiableCt_maybe t
  | Just (tc, [msg]) <- splitTyConApp_maybe t
  , tc `hasKey` unsatisfiableClassNameKey
  = Just msg
  | otherwise
  = Nothing

isPendingScDict :: Ct -> Bool
isPendingScDict (CDictCan { cc_pend_sc = f }) = pendingFuel f
-- Says whether this is a CDictCan with cc_pend_sc has positive fuel;
-- i.e. pending un-expanded superclasses
isPendingScDict _ = False

pendingScDict_maybe :: Ct -> Maybe Ct
-- Says whether this is a CDictCan with cc_pend_sc has fuel left,
-- AND if so exhausts the fuel so that they are not expanded again
pendingScDict_maybe ct@(CDictCan { cc_pend_sc = f })
  | pendingFuel f = Just (ct { cc_pend_sc = doNotExpand })
  | otherwise     = Nothing
pendingScDict_maybe _ = Nothing

pendingScInst_maybe :: QCInst -> Maybe QCInst
-- Same as isPendingScDict, but for QCInsts
pendingScInst_maybe qci@(QCI { qci_pend_sc = f })
  | pendingFuel f = Just (qci { qci_pend_sc = doNotExpand })
  | otherwise     = Nothing

superClassesMightHelp :: WantedConstraints -> Bool
-- ^ True if taking superclasses of givens, or of wanteds (to perhaps
-- expose more equalities or functional dependencies) might help to
-- solve this constraint.  See Note [When superclasses help]
superClassesMightHelp (WC { wc_simple = simples, wc_impl = implics })
  = anyBag might_help_ct simples || anyBag might_help_implic implics
  where
    might_help_implic ic
       | IC_Unsolved <- ic_status ic = superClassesMightHelp (ic_wanted ic)
       | otherwise                   = False

    might_help_ct ct = not (is_ip ct)

    is_ip (CDictCan { cc_class = cls }) = isIPClass cls
    is_ip _                             = False

getPendingWantedScs :: Cts -> ([Ct], Cts)
-- in the return values [Ct] has original fuel while Cts has fuel exhausted
getPendingWantedScs simples
  = mapAccumBagL get [] simples
  where
    get acc ct | Just ct_exhausted <- pendingScDict_maybe ct
               = (ct:acc, ct_exhausted)
               | otherwise
               = (acc,     ct)

{- Note [When superclasses help]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
First read Note [The superclass story] in GHC.Tc.Solver.Canonical.

We expand superclasses and iterate only if there is at unsolved wanted
for which expansion of superclasses (e.g. from given constraints)
might actually help. The function superClassesMightHelp tells if
doing this superclass expansion might help solve this constraint.
Note that

  * We look inside implications; maybe it'll help to expand the Givens
    at level 2 to help solve an unsolved Wanted buried inside an
    implication.  E.g.
        forall a. Ord a => forall b. [W] Eq a

  * We say "no" for implicit parameters.
    we have [W] ?x::ty, expanding superclasses won't help:
      - Superclasses can't be implicit parameters
      - If we have a [G] ?x:ty2, then we'll have another unsolved
        [W] ty ~ ty2 (from the functional dependency)
        which will trigger superclass expansion.

    It's a bit of a special case, but it's easy to do.  The runtime cost
    is low because the unsolved set is usually empty anyway (errors
    aside), and the first non-implicit-parameter will terminate the search.

    The special case is worth it (#11480, comment:2) because it
    applies to CallStack constraints, which aren't type errors. If we have
       f :: (C a) => blah
       f x = ...undefined...
    we'll get a CallStack constraint.  If that's the only unsolved
    constraint it'll eventually be solved by defaulting.  So we don't
    want to emit warnings about hitting the simplifier's iteration
    limit.  A CallStack constraint really isn't an unsolved
    constraint; it can always be solved by defaulting.
-}

singleCt :: Ct -> Cts
singleCt = unitBag

andCts :: Cts -> Cts -> Cts
andCts = unionBags

listToCts :: [Ct] -> Cts
listToCts = listToBag

ctsElts :: Cts -> [Ct]
ctsElts = bagToList

consCts :: Ct -> Cts -> Cts
consCts = consBag

snocCts :: Cts -> Ct -> Cts
snocCts = snocBag

extendCtsList :: Cts -> [Ct] -> Cts
extendCtsList cts xs | null xs   = cts
                     | otherwise = cts `unionBags` listToBag xs

emptyCts :: Cts
emptyCts = emptyBag

isEmptyCts :: Cts -> Bool
isEmptyCts = isEmptyBag

ctsPreds :: Cts -> [PredType]
ctsPreds cts = foldr ((:) . ctPred) [] cts

{-
************************************************************************
*                                                                      *
                Wanted constraints
*                                                                      *
************************************************************************
-}

data WantedConstraints
  = WC { wc_simple :: Cts              -- Unsolved constraints, all wanted
       , wc_impl   :: Bag Implication
       , wc_errors :: Bag DelayedError
    }

emptyWC :: WantedConstraints
emptyWC = WC { wc_simple = emptyBag
             , wc_impl   = emptyBag
             , wc_errors = emptyBag }

mkSimpleWC :: [CtEvidence] -> WantedConstraints
mkSimpleWC cts
  = emptyWC { wc_simple = listToBag (map mkNonCanonical cts) }

mkImplicWC :: Bag Implication -> WantedConstraints
mkImplicWC implic
  = emptyWC { wc_impl = implic }

isEmptyWC :: WantedConstraints -> Bool
isEmptyWC (WC { wc_simple = f, wc_impl = i, wc_errors = errors })
  = isEmptyBag f && isEmptyBag i && isEmptyBag errors

-- | Checks whether a the given wanted constraints are solved, i.e.
-- that there are no simple constraints left and all the implications
-- are solved.
isSolvedWC :: WantedConstraints -> Bool
isSolvedWC WC {wc_simple = wc_simple, wc_impl = wc_impl, wc_errors = errors} =
  isEmptyBag wc_simple && allBag (isSolvedStatus . ic_status) wc_impl && isEmptyBag errors

andWC :: WantedConstraints -> WantedConstraints -> WantedConstraints
andWC (WC { wc_simple = f1, wc_impl = i1, wc_errors = e1 })
      (WC { wc_simple = f2, wc_impl = i2, wc_errors = e2 })
  = WC { wc_simple = f1 `unionBags` f2
       , wc_impl   = i1 `unionBags` i2
       , wc_errors = e1 `unionBags` e2 }

unionsWC :: [WantedConstraints] -> WantedConstraints
unionsWC = foldr andWC emptyWC

addSimples :: WantedConstraints -> Bag Ct -> WantedConstraints
addSimples wc cts
  = wc { wc_simple = wc_simple wc `unionBags` cts }
    -- Consider: Put the new constraints at the front, so they get solved first

addImplics :: WantedConstraints -> Bag Implication -> WantedConstraints
addImplics wc implic = wc { wc_impl = wc_impl wc `unionBags` implic }

addInsols :: WantedConstraints -> Bag Ct -> WantedConstraints
addInsols wc cts
  = wc { wc_simple = wc_simple wc `unionBags` cts }

addHoles :: WantedConstraints -> Bag Hole -> WantedConstraints
addHoles wc holes
  = wc { wc_errors = mapBag DE_Hole holes `unionBags` wc_errors wc }

addNotConcreteError :: WantedConstraints -> NotConcreteError -> WantedConstraints
addNotConcreteError wc err
  = wc { wc_errors = unitBag (DE_NotConcrete err) `unionBags` wc_errors wc }

addDelayedErrors :: WantedConstraints -> Bag DelayedError -> WantedConstraints
addDelayedErrors wc errs
  = wc { wc_errors = errs `unionBags` wc_errors wc }

dropMisleading :: WantedConstraints -> WantedConstraints
-- Drop misleading constraints; really just class constraints
-- See Note [Constraints and errors] in GHC.Tc.Utils.Monad
--   for why this function is so strange, treating the 'simples'
--   and the implications differently.  Sigh.
dropMisleading (WC { wc_simple = simples, wc_impl = implics, wc_errors = errors })
  = WC { wc_simple = filterBag insolubleWantedCt simples
       , wc_impl   = mapBag drop_implic implics
       , wc_errors = filterBag keep_delayed_error errors }
  where
    drop_implic implic
      = implic { ic_wanted = drop_wanted (ic_wanted implic) }
    drop_wanted (WC { wc_simple = simples, wc_impl = implics, wc_errors = errors })
      = WC { wc_simple = filterBag keep_ct simples
           , wc_impl   = mapBag drop_implic implics
           , wc_errors  = filterBag keep_delayed_error errors }

    keep_ct ct = case classifyPredType (ctPred ct) of
                    ClassPred {} -> False
                    _ -> True

    keep_delayed_error (DE_Hole hole) = isOutOfScopeHole hole
    keep_delayed_error (DE_NotConcrete {}) = True

isSolvedStatus :: ImplicStatus -> Bool
isSolvedStatus (IC_Solved {}) = True
isSolvedStatus _              = False

isInsolubleStatus :: ImplicStatus -> Bool
isInsolubleStatus IC_Insoluble    = True
isInsolubleStatus IC_BadTelescope = True
isInsolubleStatus _               = False

insolubleImplic :: Implication -> Bool
insolubleImplic ic = isInsolubleStatus (ic_status ic)

-- | Gather all the type variables from 'WantedConstraints'
-- that it would be unhelpful to default. For the moment,
-- these are only 'ConcreteTv' metavariables participating
-- in a nominal equality whose other side is not concrete;
-- it's usually better to report those as errors instead of
-- defaulting.
nonDefaultableTyVarsOfWC :: WantedConstraints -> TyCoVarSet
-- Currently used in simplifyTop and in tcRule.
-- TODO: should we also use this in decideQuantifiedTyVars, kindGeneralize{All,Some}?
nonDefaultableTyVarsOfWC (WC { wc_simple = simples, wc_impl = implics, wc_errors = errs })
  =             concatMapBag non_defaultable_tvs_of_ct simples
  `unionVarSet` concatMapBag (nonDefaultableTyVarsOfWC . ic_wanted) implics
  `unionVarSet` concatMapBag non_defaultable_tvs_of_err errs
    where

      concatMapBag :: (a -> TyVarSet) -> Bag a -> TyCoVarSet
      concatMapBag f = foldr (\ r acc -> f r `unionVarSet` acc) emptyVarSet

      -- Don't default ConcreteTv metavariables involved
      -- in an equality with something non-concrete: it's usually
      -- better to report the unsolved Wanted.
      --
      -- Example: alpha[conc] ~# rr[sk].
      non_defaultable_tvs_of_ct :: Ct -> TyCoVarSet
      non_defaultable_tvs_of_ct ct =
        -- NB: using classifyPredType instead of inspecting the Ct
        -- so that we deal uniformly with CNonCanonical (which come up in tcRule),
        -- CEqCan (unsolved but potentially soluble, e.g. @alpha[conc] ~# RR@)
        -- and CIrredCan.
        case classifyPredType $ ctPred ct of
          EqPred NomEq lhs rhs
            | Just tv <- getTyVar_maybe lhs
            , isConcreteTyVar tv
            , not (isConcreteType rhs)
            -> unitVarSet tv
            | Just tv <- getTyVar_maybe rhs
            , isConcreteTyVar tv
            , not (isConcreteType lhs)
            -> unitVarSet tv
          _ -> emptyVarSet

      -- Make sure to apply the same logic as above to delayed errors.
      non_defaultable_tvs_of_err (DE_NotConcrete err)
        = case err of
            NCE_FRR { nce_frr_origin = frr } -> tyCoVarsOfType (frr_type frr)
      non_defaultable_tvs_of_err (DE_Hole {}) = emptyVarSet

insolubleWC :: WantedConstraints -> Bool
insolubleWC (WC { wc_impl = implics, wc_simple = simples, wc_errors = errors })
  =  anyBag insolubleWantedCt simples
  || anyBag insolubleImplic implics
  || anyBag is_insoluble errors

    where
      is_insoluble (DE_Hole hole) = isOutOfScopeHole hole -- See Note [Insoluble holes]
      is_insoluble (DE_NotConcrete {}) = True

insolubleWantedCt :: Ct -> Bool
-- Definitely insoluble, in particular /excluding/ type-hole constraints
-- Namely:
--   a) an insoluble constraint as per 'insolubleCt', i.e. either
--        - an insoluble equality constraint (e.g. Int ~ Bool), or
--        - a custom type error constraint, TypeError msg :: Constraint
--   b) that does not arise from a Given or a Wanted/Wanted fundep interaction
--
-- See Note [Given insolubles].
insolubleWantedCt ct = insolubleCt ct &&
                       not (arisesFromGivens ct) &&
                       not (isWantedWantedFunDepOrigin (ctOrigin ct))

insolubleEqCt :: Ct -> Bool
-- Returns True of /equality/ constraints
-- that are /definitely/ insoluble
-- It won't detect some definite errors like
--       F a ~ T (F a)
-- where F is a type family, which actually has an occurs check
--
-- The function is tuned for application /after/ constraint solving
--       i.e. assuming canonicalisation has been done
-- E.g.  It'll reply True  for     a ~ [a]
--               but False for   [a] ~ a
-- and
--                   True for  Int ~ F a Int
--               but False for  Maybe Int ~ F a Int Int
--               (where F is an arity-1 type function)
insolubleEqCt (CIrredCan { cc_reason = reason }) = isInsolubleReason reason
insolubleEqCt _                                  = False

-- | Returns True of equality constraints that are definitely insoluble,
-- as well as TypeError constraints.
-- Can return 'True' for Given constraints, unlike 'insolubleWantedCt'.
--
-- This function is critical for accurate pattern-match overlap warnings.
-- See Note [Pattern match warnings with insoluble Givens] in GHC.Tc.Solver
--
-- Note that this does not traverse through the constraint to find
-- nested custom type errors: it only detects @TypeError msg :: Constraint@,
-- and not e.g. @Eq (TypeError msg)@.
insolubleCt :: Ct -> Bool
insolubleCt ct = isTopLevelUserTypeError (ctPred ct) || insolubleEqCt ct
  where
  -- NB: 'isTopLevelUserTypeError' detects constraints of the form "TypeError msg"
  -- and "Unsatisfiable msg". It deliberately does not detect TypeError
  -- nested in a type (e.g. it does not use "containsUserTypeError"), as that
  -- would be too eager: the TypeError might appear inside a type family
  -- application which might later reduce, but we only want to return 'True'
  -- for constraints that are definitely insoluble.
  --
  -- For example: Num (F Int (TypeError "msg")), where F is a type family.
  --
  -- Test case: T11503, with the 'Assert' type family:
  --
  -- > type Assert :: Bool -> Constraint -> Constraint
  -- > type family Assert check errMsg where
  -- >   Assert 'True  _errMsg = ()
  -- >   Assert _check errMsg  = errMsg

-- | Does this hole represent an "out of scope" error?
-- See Note [Insoluble holes]
isOutOfScopeHole :: Hole -> Bool
isOutOfScopeHole (Hole { hole_occ = occ }) = not (startsWithUnderscore (occName occ))

instance Outputable WantedConstraints where
  ppr (WC {wc_simple = s, wc_impl = i, wc_errors = e})
   = text "WC" <+> braces (vcat
        [ ppr_bag (text "wc_simple") s
        , ppr_bag (text "wc_impl") i
        , ppr_bag (text "wc_errors") e ])

ppr_bag :: Outputable a => SDoc -> Bag a -> SDoc
ppr_bag doc bag
 | isEmptyBag bag = empty
 | otherwise      = hang (doc <+> equals)
                       2 (foldr (($$) . ppr) empty bag)

{- Note [Given insolubles]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider (#14325, comment:)
    class (a~b) => C a b

    foo :: C a c => a -> c
    foo x = x

    hm3 :: C (f b) b => b -> f b
    hm3 x = foo x

In the RHS of hm3, from the [G] C (f b) b we get the insoluble
[G] f b ~# b.  Then we also get an unsolved [W] C b (f b).
Residual implication looks like
    forall b. C (f b) b => [G] f b ~# b
                           [W] C f (f b)

We do /not/ want to set the implication status to IC_Insoluble,
because that'll suppress reports of [W] C b (f b).  But we
may not report the insoluble [G] f b ~# b either (see Note [Given errors]
in GHC.Tc.Errors), so we may fail to report anything at all!  Yikes.

Bottom line: insolubleWC (called in GHC.Tc.Solver.setImplicationStatus)
             should ignore givens even if they are insoluble.

Note [Insoluble holes]
~~~~~~~~~~~~~~~~~~~~~~
Hole constraints that ARE NOT treated as truly insoluble:
  a) type holes, arising from PartialTypeSignatures,
  b) "true" expression holes arising from TypedHoles

An "expression hole" or "type hole" isn't really an error
at all; it's a report saying "_ :: Int" here.  But an out-of-scope
variable masquerading as expression holes IS treated as truly
insoluble, so that it trumps other errors during error reporting.
Yuk!

************************************************************************
*                                                                      *
                Implication constraints
*                                                                      *
************************************************************************
-}

data Implication
  = Implic {   -- Invariants for a tree of implications:
               -- see TcType Note [TcLevel invariants]

      ic_tclvl :: TcLevel,       -- TcLevel of unification variables
                                 -- allocated /inside/ this implication

      ic_info  :: SkolemInfoAnon,    -- See Note [Skolems in an implication]
                                     -- See Note [Shadowing in a constraint]

      ic_skols :: [TcTyVar],     -- Introduced skolems; always skolem TcTyVars
                                 -- Their level numbers should be precisely ic_tclvl
                                 -- Their SkolemInfo should be precisely ic_info (almost)
                                 --       See Note [Implication invariants]

      ic_given  :: [EvVar],      -- Given evidence variables
                                 --   (order does not matter)
                                 -- See Invariant (GivenInv) in GHC.Tc.Utils.TcType

      ic_given_eqs :: HasGivenEqs,  -- Are there Given equalities here?

      ic_warn_inaccessible :: Bool,
                                 -- True  <=> -Winaccessible-code is enabled
                                 -- at construction. See
                                 -- Note [Avoid -Winaccessible-code when deriving]
                                 -- in GHC.Tc.TyCl.Instance

      ic_env   :: TcLclEnv,
                                 -- Records the TcLClEnv at the time of creation.
                                 --
                                 -- The TcLclEnv gives the source location
                                 -- and error context for the implication, and
                                 -- hence for all the given evidence variables.

      ic_wanted :: WantedConstraints,  -- The wanteds
                                       -- See Invariant (WantedInf) in GHC.Tc.Utils.TcType

      ic_binds  :: EvBindsVar,    -- Points to the place to fill in the
                                  -- abstraction and bindings.

      -- The ic_need fields keep track of which Given evidence
      -- is used by this implication or its children
      -- NB: including stuff used by nested implications that have since
      --     been discarded
      -- See Note [Needed evidence variables]
      ic_need_inner :: VarSet,    -- Includes all used Given evidence
      ic_need_outer :: VarSet,    -- Includes only the free Given evidence
                                  --  i.e. ic_need_inner after deleting
                                  --       (a) givens (b) binders of ic_binds

      ic_status   :: ImplicStatus
    }

implicationPrototype :: Implication
implicationPrototype
   = Implic { -- These fields must be initialised
              ic_tclvl      = panic "newImplic:tclvl"
            , ic_binds      = panic "newImplic:binds"
            , ic_info       = panic "newImplic:info"
            , ic_env        = panic "newImplic:env"
            , ic_warn_inaccessible = panic "newImplic:warn_inaccessible"

              -- The rest have sensible default values
            , ic_skols      = []
            , ic_given      = []
            , ic_wanted     = emptyWC
            , ic_given_eqs  = MaybeGivenEqs
            , ic_status     = IC_Unsolved
            , ic_need_inner = emptyVarSet
            , ic_need_outer = emptyVarSet }

data ImplicStatus
  = IC_Solved     -- All wanteds in the tree are solved, all the way down
       { ics_dead :: [EvVar] }  -- Subset of ic_given that are not needed
         -- See Note [Tracking redundant constraints] in GHC.Tc.Solver

  | IC_Insoluble  -- At least one insoluble constraint in the tree

  | IC_BadTelescope  -- Solved, but the skolems in the telescope are out of
                     -- dependency order. See Note [Checking telescopes]

  | IC_Unsolved   -- Neither of the above; might go either way

data HasGivenEqs -- See Note [HasGivenEqs]
  = NoGivenEqs      -- Definitely no given equalities,
                    --   except by Note [Let-bound skolems] in GHC.Tc.Solver.InertSet
  | LocalGivenEqs   -- Might have Given equalities, but only ones that affect only
                    --   local skolems e.g. forall a b. (a ~ F b) => ...
  | MaybeGivenEqs   -- Might have any kind of Given equalities; no floating out
                    --   is possible.
  deriving Eq

type UserGiven = Implication

getUserGivensFromImplics :: [Implication] -> [UserGiven]
getUserGivensFromImplics implics
  = reverse (filterOut (null . ic_given) implics)

{- Note [HasGivenEqs]
~~~~~~~~~~~~~~~~~~~~~
The GivenEqs data type describes the Given constraints of an implication constraint:

* NoGivenEqs: definitely no Given equalities, except perhaps let-bound skolems
  which don't count: see Note [Let-bound skolems] in GHC.Tc.Solver.InertSet
  Examples: forall a. Eq a => ...
            forall a. (Show a, Num a) => ...
            forall a. a ~ Either Int Bool => ...  -- Let-bound skolem

* LocalGivenEqs: definitely no Given equalities that would affect principal
  types.  But may have equalities that affect only skolems of this implication
  (and hence do not affect principal types)
  Examples: forall a. F a ~ Int => ...
            forall a b. F a ~ G b => ...

* MaybeGivenEqs: may have Given equalities that would affect principal
  types
  Examples: forall. (a ~ b) => ...
            forall a. F a ~ b => ...
            forall a. c a => ...       -- The 'c' might be instantiated to (b ~)
            forall a. C a b => ....
               where class x~y => C a b
               so there is an equality in the superclass of a Given

The HasGivenEqs classifications affect two things:

* Suppressing redundant givens during error reporting; see GHC.Tc.Errors
  Note [Suppress redundant givens during error reporting]

* Floating in approximateWC.

Specifically, here's how it goes:

                 Stops floating    |   Suppresses Givens in errors
                 in approximateWC  |
                 -----------------------------------------------
 NoGivenEqs         NO             |         YES
 LocalGivenEqs      NO             |         NO
 MaybeGivenEqs      YES            |         NO
-}

instance Outputable Implication where
  ppr (Implic { ic_tclvl = tclvl, ic_skols = skols
              , ic_given = given, ic_given_eqs = given_eqs
              , ic_wanted = wanted, ic_status = status
              , ic_binds = binds
              , ic_need_inner = need_in, ic_need_outer = need_out
              , ic_info = info })
   = hang (text "Implic" <+> lbrace)
        2 (sep [ text "TcLevel =" <+> ppr tclvl
               , text "Skolems =" <+> pprTyVars skols
               , text "Given-eqs =" <+> ppr given_eqs
               , text "Status =" <+> ppr status
               , hang (text "Given =")  2 (pprEvVars given)
               , hang (text "Wanted =") 2 (ppr wanted)
               , text "Binds =" <+> ppr binds
               , whenPprDebug (text "Needed inner =" <+> ppr need_in)
               , whenPprDebug (text "Needed outer =" <+> ppr need_out)
               , pprSkolInfo info ] <+> rbrace)

instance Outputable ImplicStatus where
  ppr IC_Insoluble    = text "Insoluble"
  ppr IC_BadTelescope = text "Bad telescope"
  ppr IC_Unsolved     = text "Unsolved"
  ppr (IC_Solved { ics_dead = dead })
    = text "Solved" <+> (braces (text "Dead givens =" <+> ppr dead))

checkTelescopeSkol :: SkolemInfoAnon -> Bool
-- See Note [Checking telescopes]
checkTelescopeSkol (ForAllSkol {}) = True
checkTelescopeSkol _               = False

instance Outputable HasGivenEqs where
  ppr NoGivenEqs    = text "NoGivenEqs"
  ppr LocalGivenEqs = text "LocalGivenEqs"
  ppr MaybeGivenEqs = text "MaybeGivenEqs"

-- Used in GHC.Tc.Solver.Monad.getHasGivenEqs
instance Semigroup HasGivenEqs where
  NoGivenEqs <> other = other
  other <> NoGivenEqs = other

  MaybeGivenEqs <> _other = MaybeGivenEqs
  _other <> MaybeGivenEqs = MaybeGivenEqs

  LocalGivenEqs <> LocalGivenEqs = LocalGivenEqs

-- Used in GHC.Tc.Solver.Monad.getHasGivenEqs
instance Monoid HasGivenEqs where
  mempty = NoGivenEqs

{- Note [Checking telescopes]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When kind-checking a /user-written/ type, we might have a "bad telescope"
like this one:
  data SameKind :: forall k. k -> k -> Type
  type Foo :: forall a k (b :: k). SameKind a b -> Type

The kind of 'a' mentions 'k' which is bound after 'a'.  Oops.

One approach to doing this would be to bring each of a, k, and b into
scope, one at a time, creating a separate implication constraint for
each one, and bumping the TcLevel. This would work, because the kind
of, say, a would be untouchable when k is in scope (and the constraint
couldn't float out because k blocks it). However, it leads to terrible
error messages, complaining about skolem escape. While it is indeed a
problem of skolem escape, we can do better.

Instead, our approach is to bring the block of variables into scope
all at once, creating one implication constraint for the lot:

* We make a single implication constraint when kind-checking
  the 'forall' in Foo's kind, something like
      forall a k (b::k). { wanted constraints }

* Having solved {wanted}, before discarding the now-solved implication,
  the constraint solver checks the dependency order of the skolem
  variables (ic_skols).  This is done in setImplicationStatus.

* This check is only necessary if the implication was born from a
  'forall' in a user-written signature (the HsForAllTy case in
  GHC.Tc.Gen.HsType.  If, say, it comes from checking a pattern match
  that binds existentials, where the type of the data constructor is
  known to be valid (it in tcConPat), no need for the check.

  So the check is done /if and only if/ ic_info is ForAllSkol.

* If ic_info is (ForAllSkol dt dvs), the dvs::SDoc displays the
  original, user-written type variables.

* Be careful /NOT/ to discard an implication with a ForAllSkol
  ic_info, even if ic_wanted is empty.  We must give the
  constraint solver a chance to make that bad-telescope test!  Hence
  the extra guard in emitResidualTvConstraint; see #16247

* Don't mix up inferred and explicit variables in the same implication
  constraint.  E.g.
      foo :: forall a kx (b :: kx). SameKind a b
  We want an implication
      Implic { ic_skol = [(a::kx), kx, (b::kx)], ... }
  but GHC will attempt to quantify over kx, since it is free in (a::kx),
  and it's hopelessly confusing to report an error about quantified
  variables   kx (a::kx) kx (b::kx).
  Instead, the outer quantification over kx should be in a separate
  implication. TL;DR: an explicit forall should generate an implication
  quantified only over those explicitly quantified variables.

Note [Needed evidence variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Th ic_need_evs field holds the free vars of ic_binds, and all the
ic_binds in nested implications.

  * Main purpose: if one of the ic_givens is not mentioned in here, it
    is redundant.

  * solveImplication may drop an implication altogether if it has no
    remaining 'wanteds'. But we still track the free vars of its
    evidence binds, even though it has now disappeared.

Note [Shadowing in a constraint]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We assume NO SHADOWING in a constraint.  Specifically
 * The unification variables are all implicitly quantified at top
   level, and are all unique
 * The skolem variables bound in ic_skols are all fresh when the
   implication is created.
So we can safely substitute. For example, if we have
   forall a.  a~Int => ...(forall b. ...a...)...
we can push the (a~Int) constraint inwards in the "givens" without
worrying that 'b' might clash.

Note [Skolems in an implication]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The skolems in an implication are used:

* When considering floating a constraint outside the implication in
  GHC.Tc.Solver.floatEqualities or GHC.Tc.Solver.approximateImplications
  For this, we can treat ic_skols as a set.

* When checking that a /user-specified/ forall (ic_info = ForAllSkol tvs)
  has its variables in the correct order; see Note [Checking telescopes].
  Only for these implications does ic_skols need to be a list.

Nota bene: Although ic_skols is a list, it is not necessarily
in dependency order:
- In the ic_info=ForAllSkol case, the user might have written them
  in the wrong order
- In the case of a type signature like
      f :: [a] -> [b]
  the renamer gathers the implicit "outer" forall'd variables {a,b}, but
  does not know what order to put them in.  The type checker can sort them
  into dependency order, but only after solving all the kind constraints;
  and to do that it's convenient to create the Implication!

So we accept that ic_skols may be out of order.  Think of it as a set or
(in the case of ic_info=ForAllSkol, a list in user-specified, and possibly
wrong, order.

Note [Insoluble constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Some of the errors that we get during canonicalization are best
reported when all constraints have been simplified as much as
possible. For instance, assume that during simplification the
following constraints arise:

 [Wanted]   F alpha ~  uf1
 [Wanted]   beta ~ uf1 beta

When canonicalizing the wanted (beta ~ uf1 beta), if we eagerly fail
we will simply see a message:
    'Can't construct the infinite type  beta ~ uf1 beta'
and the user has no idea what the uf1 variable is.

Instead our plan is that we will NOT fail immediately, but:
    (1) Record the "frozen" error in the ic_insols field
    (2) Isolate the offending constraint from the rest of the inerts
    (3) Keep on simplifying/canonicalizing

At the end, we will hopefully have substituted uf1 := F alpha, and we
will be able to report a more informative error:
    'Can't construct the infinite type beta ~ F alpha beta'

************************************************************************
*                                                                      *
            Invariant checking (debug only)
*                                                                      *
************************************************************************

Note [Implication invariants]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The skolems of an implication have the following invariants, which are checked
by checkImplicationInvariants:

a) They are all SkolemTv TcTyVars; no TyVars, no unification variables
b) Their TcLevel matches the ic_lvl for the implication
c) Their SkolemInfo matches the implication.

Actually (c) is not quite true.  Consider
   data T a = forall b. MkT a b

In tcConDecl for MkT we'll create an implication with ic_info of
DataConSkol; but the type variable 'a' will have a SkolemInfo of
TyConSkol.  So we allow the tyvar to have a SkolemInfo of TyConFlav if
the implication SkolemInfo is DataConSkol.
-}

checkImplicationInvariants, check_implic :: (HasCallStack, Applicative m) => Implication -> m ()
{-# INLINE checkImplicationInvariants #-}
-- Nothing => OK, Just doc => doc gives info
checkImplicationInvariants implic = when debugIsOn (check_implic implic)

check_implic implic@(Implic { ic_tclvl = lvl
                            , ic_info = skol_info
                            , ic_skols = skols })
  | null bads = pure ()
  | otherwise = massertPpr False (vcat [ text "checkImplicationInvariants failure"
                                       , nest 2 (vcat bads)
                                       , ppr implic ])
  where
    bads = mapMaybe check skols

    check :: TcTyVar -> Maybe SDoc
    check tv | not (isTcTyVar tv)
             = Just (ppr tv <+> text "is not a TcTyVar")
             | otherwise
             = check_details tv (tcTyVarDetails tv)

    check_details :: TcTyVar -> TcTyVarDetails -> Maybe SDoc
    check_details tv (SkolemTv tv_skol_info tv_lvl _)
      | not (tv_lvl == lvl)
      = Just (vcat [ ppr tv <+> text "has level" <+> ppr tv_lvl
                   , text "ic_lvl" <+> ppr lvl ])
      | not (skol_info `checkSkolInfoAnon` skol_info_anon)
      = Just (vcat [ ppr tv <+> text "has skol info" <+> ppr skol_info_anon
                   , text "ic_info" <+> ppr skol_info ])
      | otherwise
      = Nothing
      where
        skol_info_anon = getSkolemInfo tv_skol_info
    check_details tv details
      = Just (ppr tv <+> text "is not a SkolemTv" <+> ppr details)

checkSkolInfoAnon :: SkolemInfoAnon   -- From the implication
                  -> SkolemInfoAnon   -- From the type variable
                  -> Bool             -- True <=> ok
-- Used only for debug-checking; checkImplicationInvariants
-- So it doesn't matter much if its's incomplete
checkSkolInfoAnon sk1 sk2 = go sk1 sk2
  where
    go (SigSkol c1 t1 s1)   (SigSkol c2 t2 s2)   = c1==c2 && t1 `tcEqType` t2 && s1==s2
    go (SigTypeSkol cx1)    (SigTypeSkol cx2)    = cx1==cx2

    go (ForAllSkol _)       (ForAllSkol _)       = True

    go (IPSkol ips1)        (IPSkol ips2)        = ips1 == ips2
    go (DerivSkol pred1)    (DerivSkol pred2)    = pred1 `tcEqType` pred2
    go (TyConSkol f1 n1)    (TyConSkol f2 n2)    = f1==f2 && n1==n2
    go (DataConSkol n1)     (DataConSkol n2)     = n1==n2
    go (InstSkol {})        (InstSkol {})        = True
    go FamInstSkol          FamInstSkol          = True
    go BracketSkol          BracketSkol          = True
    go (RuleSkol n1)        (RuleSkol n2)        = n1==n2
    go (PatSkol c1 _)       (PatSkol c2 _)       = getName c1 == getName c2
       -- Too tedious to compare the HsMatchContexts
    go (InferSkol ids1)     (InferSkol ids2)     = equalLength ids1 ids2 &&
                                                   and (zipWith eq_pr ids1 ids2)
    go (UnifyForAllSkol t1) (UnifyForAllSkol t2) = t1 `tcEqType` t2
    go ReifySkol            ReifySkol            = True
    go RuntimeUnkSkol       RuntimeUnkSkol       = True
    go ArrowReboundIfSkol   ArrowReboundIfSkol   = True
    go (UnkSkol _)          (UnkSkol _)          = True

    -------- Three slightly strange special cases --------
    go (DataConSkol _)      (TyConSkol f _)      = h98_data_decl f
    -- In the H98 declaration  data T a = forall b. MkT a b
    -- in tcConDecl for MkT we'll have a SkolemInfo in the implication of
    -- DataConSkol, but the type variable 'a' will have a SkolemInfo of TyConSkol

    go (DataConSkol _)      FamInstSkol          = True
    -- In  data/newtype instance T a = MkT (a -> a),
    -- in tcConDecl for MkT we'll have a SkolemInfo in the implication of
    -- DataConSkol, but 'a' will have SkolemInfo of FamInstSkol

    go FamInstSkol          (InstSkol {})         = True
    -- In instance C (T a) where { type F (T a) b = ... }
    -- we have 'a' with SkolemInfo InstSkol, but we make an implication wi
    -- SkolemInfo of FamInstSkol.  Very like the ConDecl/TyConSkol case

    go (ForAllSkol _)       _                    = True
    -- Telescope tests: we need a ForAllSkol to force the telescope
    -- test, but the skolems might come from (say) a family instance decl
    --    type instance forall a. F [a] = a->a

    go (SigTypeSkol DerivClauseCtxt) (TyConSkol f _) = h98_data_decl f
    -- e.g.   newtype T a = MkT ... deriving blah
    -- We use the skolems from T (TyConSkol) when typechecking
    -- the deriving clauses (SigTypeSkol DerivClauseCtxt)

    go _ _ = False

    eq_pr :: (Name,TcType) -> (Name,TcType) -> Bool
    eq_pr (i1,_) (i2,_) = i1==i2 -- Types may be differently zonked

    h98_data_decl DataTypeFlavour = True
    h98_data_decl NewtypeFlavour  = True
    h98_data_decl _               = False


{- *********************************************************************
*                                                                      *
            Pretty printing
*                                                                      *
********************************************************************* -}

pprEvVars :: [EvVar] -> SDoc    -- Print with their types
pprEvVars ev_vars = vcat (map pprEvVarWithType ev_vars)

pprEvVarTheta :: [EvVar] -> SDoc
pprEvVarTheta ev_vars = pprTheta (map evVarPred ev_vars)

pprEvVarWithType :: EvVar -> SDoc
pprEvVarWithType v = ppr v <+> dcolon <+> pprType (evVarPred v)



wrapType :: Type -> [TyVar] -> [PredType] -> Type
wrapType ty skols givens = mkSpecForAllTys skols $ mkPhiTy givens ty


{-
************************************************************************
*                                                                      *
            CtEvidence
*                                                                      *
************************************************************************

Note [CtEvidence invariants]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The `ctev_pred` field of a `CtEvidence` is a just a cache for the type
of the evidence. More precisely:

* For Givens, `ctev_pred` = `varType ctev_evar`
* For Wanteds, `ctev_pred` = `evDestType ctev_dest`

where

  evDestType :: TcEvDest -> TcType
  evDestType (EvVarDest evVar)       = varType evVar
  evDestType (HoleDest coercionHole) = varType (coHoleCoVar coercionHole)

The invariant is maintained by `setCtEvPredType`, the only function that
updates the `ctev_pred` field of a `CtEvidence`.

Why is the invariant important? Because when the evidence is a coercion, it may
be used in (CastTy ty co); and then we may call `typeKind` on that type (e.g.
in the kind-check of `eqType`); and expect to see a fully zonked kind.
(This came up in test T13333, in the MR that fixed #20641, namely !6942.)

Historical Note [Evidence field of CtEvidence]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In the past we tried leaving the `ctev_evar`/`ctev_dest` field of a
constraint untouched (and hence un-zonked) on the grounds that it is
never looked at.  But in fact it is: the evidence can become part of a
type (via `CastTy ty kco`) and we may later ask the kind of that type
and expect a zonked result.  (For example, in the kind-check
of `eqType`.)

The safest thing is simply to keep `ctev_evar`/`ctev_dest` in sync
with `ctev_pref`, as stated in `Note [CtEvidence invariants]`.

Note [Bind new Givens immediately]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For Givens we make new EvVars and bind them immediately. Two main reasons:
  * Gain sharing.  E.g. suppose we start with g :: C a b, where
       class D a => C a b
       class (E a, F a) => D a
    If we generate all g's superclasses as separate EvTerms we might
    get    selD1 (selC1 g) :: E a
           selD2 (selC1 g) :: F a
           selC1 g :: D a
    which we could do more economically as:
           g1 :: D a = selC1 g
           g2 :: E a = selD1 g1
           g3 :: F a = selD2 g1

  * For *coercion* evidence we *must* bind each given:
      class (a~b) => C a b where ....
      f :: C a b => ....
    Then in f's Givens we have g:(C a b) and the superclass sc(g,0):a~b.
    But that superclass selector can't (yet) appear in a coercion
    (see evTermCoercion), so the easy thing is to bind it to an Id.

So a Given has EvVar inside it rather than (as previously) an EvTerm.

-}

-- | A place for type-checking evidence to go after it is generated.
--
--  - Wanted equalities use HoleDest,
--  - other Wanteds use EvVarDest.
data TcEvDest
  = EvVarDest EvVar         -- ^ bind this var to the evidence
              -- EvVarDest is always used for non-type-equalities
              -- e.g. class constraints

  | HoleDest  CoercionHole  -- ^ fill in this hole with the evidence
              -- HoleDest is always used for type-equalities
              -- See Note [Coercion holes] in GHC.Core.TyCo.Rep

data CtEvidence
  = CtGiven    -- Truly given, not depending on subgoals
      { ctev_pred :: TcPredType      -- See Note [Ct/evidence invariant]
      , ctev_evar :: EvVar           -- See Note [CtEvidence invariants]
      , ctev_loc  :: CtLoc }


  | CtWanted   -- Wanted goal
      { ctev_pred      :: TcPredType     -- See Note [Ct/evidence invariant]
      , ctev_dest      :: TcEvDest       -- See Note [CtEvidence invariants]
      , ctev_loc       :: CtLoc
      , ctev_rewriters :: RewriterSet }  -- See Note [Wanteds rewrite Wanteds]

ctEvPred :: CtEvidence -> TcPredType
-- The predicate of a flavor
ctEvPred = ctev_pred

ctEvLoc :: CtEvidence -> CtLoc
ctEvLoc = ctev_loc

ctEvOrigin :: CtEvidence -> CtOrigin
ctEvOrigin = ctLocOrigin . ctEvLoc

-- | Get the equality relation relevant for a 'CtEvidence'
ctEvEqRel :: CtEvidence -> EqRel
ctEvEqRel = predTypeEqRel . ctEvPred

-- | Get the role relevant for a 'CtEvidence'
ctEvRole :: CtEvidence -> Role
ctEvRole = eqRelRole . ctEvEqRel

ctEvTerm :: CtEvidence -> EvTerm
ctEvTerm ev = EvExpr (ctEvExpr ev)

-- | Extract the set of rewriters from a 'CtEvidence'
-- See Note [Wanteds rewrite Wanteds]
-- If the provided CtEvidence is not for a Wanted, just
-- return an empty set.
ctEvRewriters :: CtEvidence -> RewriterSet
ctEvRewriters (CtWanted { ctev_rewriters = rewriters }) = rewriters
ctEvRewriters _other                                    = emptyRewriterSet

ctEvExpr :: HasDebugCallStack => CtEvidence -> EvExpr
ctEvExpr ev@(CtWanted { ctev_dest = HoleDest _ })
            = Coercion $ ctEvCoercion ev
ctEvExpr ev = evId (ctEvEvId ev)

ctEvCoercion :: HasDebugCallStack => CtEvidence -> TcCoercion
ctEvCoercion (CtGiven { ctev_evar = ev_id })
  = mkCoVarCo ev_id
ctEvCoercion (CtWanted { ctev_dest = dest })
  | HoleDest hole <- dest
  = -- ctEvCoercion is only called on type equalities
    -- and they always have HoleDests
    mkHoleCo hole
ctEvCoercion ev
  = pprPanic "ctEvCoercion" (ppr ev)

ctEvEvId :: CtEvidence -> EvVar
ctEvEvId (CtWanted { ctev_dest = EvVarDest ev }) = ev
ctEvEvId (CtWanted { ctev_dest = HoleDest h })   = coHoleCoVar h
ctEvEvId (CtGiven  { ctev_evar = ev })           = ev

ctEvUnique :: CtEvidence -> Unique
ctEvUnique (CtGiven { ctev_evar = ev })    = varUnique ev
ctEvUnique (CtWanted { ctev_dest = dest }) = tcEvDestUnique dest

tcEvDestUnique :: TcEvDest -> Unique
tcEvDestUnique (EvVarDest ev_var) = varUnique ev_var
tcEvDestUnique (HoleDest co_hole) = varUnique (coHoleCoVar co_hole)

setCtEvLoc :: CtEvidence -> CtLoc -> CtEvidence
setCtEvLoc ctev loc = ctev { ctev_loc = loc }

arisesFromGivens :: Ct -> Bool
arisesFromGivens ct = isGivenCt ct || isGivenLoc (ctLoc ct)

-- | Set the type of CtEvidence.
--
-- This function ensures that the invariants on 'CtEvidence' hold, by updating
-- the evidence and the ctev_pred in sync with each other.
-- See Note [CtEvidence invariants].
setCtEvPredType :: HasDebugCallStack => CtEvidence -> Type -> CtEvidence
setCtEvPredType old_ctev@(CtGiven { ctev_evar = ev }) new_pred
  = old_ctev { ctev_pred = new_pred
             , ctev_evar = setVarType ev new_pred }

setCtEvPredType old_ctev@(CtWanted { ctev_dest = dest }) new_pred
  = old_ctev { ctev_pred = new_pred
             , ctev_dest = new_dest }
  where
    new_dest = case dest of
      EvVarDest ev -> EvVarDest (setVarType ev new_pred)
      HoleDest h   -> HoleDest  (setCoHoleType h new_pred)

instance Outputable TcEvDest where
  ppr (HoleDest h)   = text "hole" <> ppr h
  ppr (EvVarDest ev) = ppr ev

instance Outputable CtEvidence where
  ppr ev = ppr (ctEvFlavour ev)
           <+> pp_ev <+> braces (ppr (ctl_depth (ctEvLoc ev)) <> pp_rewriters)
                         -- Show the sub-goal depth too
               <> dcolon <+> ppr (ctEvPred ev)
    where
      pp_ev = case ev of
             CtGiven { ctev_evar = v } -> ppr v
             CtWanted {ctev_dest = d } -> ppr d

      rewriters = ctEvRewriters ev
      pp_rewriters | isEmptyRewriterSet rewriters = empty
                   | otherwise                    = semi <> ppr rewriters

isWanted :: CtEvidence -> Bool
isWanted (CtWanted {}) = True
isWanted _ = False

isGiven :: CtEvidence -> Bool
isGiven (CtGiven {})  = True
isGiven _ = False

{-
************************************************************************
*                                                                      *
           RewriterSet
*                                                                      *
************************************************************************
-}

-- | Stores a set of CoercionHoles that have been used to rewrite a constraint.
-- See Note [Wanteds rewrite Wanteds].
newtype RewriterSet = RewriterSet (UniqSet CoercionHole)
  deriving newtype (Outputable, Semigroup, Monoid)

emptyRewriterSet :: RewriterSet
emptyRewriterSet = RewriterSet emptyUniqSet

unitRewriterSet :: CoercionHole -> RewriterSet
unitRewriterSet = coerce (unitUniqSet @CoercionHole)

unionRewriterSet :: RewriterSet -> RewriterSet -> RewriterSet
unionRewriterSet = coerce (unionUniqSets @CoercionHole)

isEmptyRewriterSet :: RewriterSet -> Bool
isEmptyRewriterSet = coerce (isEmptyUniqSet @CoercionHole)

addRewriter :: RewriterSet -> CoercionHole -> RewriterSet
addRewriter = coerce (addOneToUniqSet @CoercionHole)

rewriterSetFromCts :: Bag Ct -> RewriterSet
-- Take a bag of Wanted equalities, and collect them as a RewriterSet
rewriterSetFromCts cts
  = foldr add emptyRewriterSet cts
  where
    add ct rw_set = case ctEvidence ct of
         CtWanted { ctev_dest = HoleDest hole } -> rw_set `addRewriter` hole
         _                                      -> rw_set

{-
************************************************************************
*                                                                      *
           CtFlavour
*                                                                      *
************************************************************************
-}

data CtFlavour
  = Given     -- we have evidence
  | Wanted    -- we want evidence
  deriving Eq

instance Outputable CtFlavour where
  ppr Given  = text "[G]"
  ppr Wanted = text "[W]"

ctEvFlavour :: CtEvidence -> CtFlavour
ctEvFlavour (CtWanted {}) = Wanted
ctEvFlavour (CtGiven {})  = Given

-- | Whether or not one 'Ct' can rewrite another is determined by its
-- flavour and its equality relation. See also
-- Note [Flavours with roles] in GHC.Tc.Solver.InertSet
type CtFlavourRole = (CtFlavour, EqRel)

-- | Extract the flavour, role, and boxity from a 'CtEvidence'
ctEvFlavourRole :: CtEvidence -> CtFlavourRole
ctEvFlavourRole ev = (ctEvFlavour ev, ctEvEqRel ev)

-- | Extract the flavour and role from a 'Ct'
eqCtFlavourRole :: EqCt -> CtFlavourRole
eqCtFlavourRole (EqCt { eq_ev = ev, eq_eq_rel = eq_rel })
  = (ctEvFlavour ev, eq_rel)

-- | Extract the flavour and role from a 'Ct'
ctFlavourRole :: Ct -> CtFlavourRole
-- Uses short-cuts to role for special cases
ctFlavourRole (CDictCan { cc_ev = ev }) = (ctEvFlavour ev, NomEq)
ctFlavourRole (CEqCan eq_ct)            = eqCtFlavourRole eq_ct
ctFlavourRole ct                        = ctEvFlavourRole (ctEvidence ct)

{- Note [eqCanRewrite]
~~~~~~~~~~~~~~~~~~~~~~
(eqCanRewrite ct1 ct2) holds if the constraint ct1 (a CEqCan of form
lhs ~ ty) can be used to rewrite ct2.  It must satisfy the properties of
a can-rewrite relation, see Definition [Can-rewrite relation] in
GHC.Tc.Solver.Monad.

With the solver handling Coercible constraints like equality constraints,
the rewrite conditions must take role into account, never allowing
a representational equality to rewrite a nominal one.

Note [Wanteds rewrite Wanteds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Should one Wanted constraint be allowed to rewrite another?

This example (along with #8450) suggests not:
   f :: a -> Bool
   f x = ( [x,'c'], [x,True] ) `seq` True
Here we get
  [W] a ~ Char
  [W] a ~ Bool
but we do not want to complain about Bool ~ Char!

This example suggests yes (indexed-types/should_fail/T4093a):
  type family Foo a
  f :: (Foo e ~ Maybe e) => Foo e
In the ambiguity check, we get
  [G] g1 :: Foo e ~ Maybe e
  [W] w1 :: Foo alpha ~ Foo e
  [W] w2 :: Foo alpha ~ Maybe alpha
w1 gets rewritten by the Given to become
  [W] w3 :: Foo alpha ~ Maybe e
Now, the only way to make progress is to allow Wanteds to rewrite Wanteds.
Rewriting w3 with w2 gives us
  [W] w4 :: Maybe alpha ~ Maybe e
which will soon get us to alpha := e and thence to victory.

TL;DR we want equality saturation.

We thus want Wanteds to rewrite Wanteds in order to accept more programs,
but we don't want Wanteds to rewrite Wanteds because doing so can create
inscrutable error messages. To solve this dilemma:

* We allow Wanteds to rewrite Wanteds, but...

* Each Wanted tracks the set of Wanteds it has been rewritten by, in its
  RewriterSet, stored in the ctev_rewriters field of the CtWanted
  constructor of CtEvidence.  (Only Wanteds have RewriterSets.)

* In error reporting, we simply suppress any errors that have been rewritten
  by /unsolved/ wanteds. This suppression happens in GHC.Tc.Errors.mkErrorItem,
  which uses GHC.Tc.Utils.anyUnfilledCoercionHoles to look through any filled
  coercion holes. The idea is that we wish to report the "root cause" -- the
  error that rewrote all the others.

* We prioritise Wanteds that have an empty RewriterSet:
  see Note [Prioritise Wanteds with empty RewriterSet].

Let's continue our first example above:

  inert: [W] w1 :: a ~ Char
  work:  [W] w2 :: a ~ Bool

Because Wanteds can rewrite Wanteds, w1 will rewrite w2, yielding

  inert: [W] w1 :: a ~ Char
         [W] w2 {w1}:: Char ~ Bool

The {w1} in the second line of output is the RewriterSet of w1.

A RewriterSet is just a set of unfilled CoercionHoles. This is sufficient
because only equalities (evidenced by coercion holes) are used for rewriting;
other (dictionary) constraints cannot ever rewrite. The rewriter (in
e.g. GHC.Tc.Solver.Rewrite.rewrite) tracks and returns a RewriterSet,
consisting of the evidence (a CoercionHole) for any Wanted equalities used in
rewriting.  Then rewriteEvidence and rewriteEqEvidence (in GHC.Tc.Solver.Canonical)
add this RewriterSet to the rewritten constraint's arewriter set.

Note [Prioritise Wanteds with empty RewriterSet]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When extending the WorkList, in GHC.Tc.Solver.InertSet.extendWorkListEq,
we priorities constraints that have no rewriters. Here's why.

Consider this, which came up in T22793:
  inert: {}
  work list: [W] co_ayf : awq ~ awo
  work item: [W] co_ayb : awq ~ awp

  ==> {just put work item in inert set}
  inert: co_ayb : awq ~ awp
  work list: {}
  work: [W] co_ayf : awq ~ awo

  ==> {rewrite ayf with co_ayb}
  work list: {}
  inert: co_ayb : awq ~ awp
         co_aym{co_ayb} : awp ~ awo
                ^ rewritten by ayb

  ----- start again in simplify_loop in Solver.hs -----
  inert: {}
  work list: [W] co_ayb : awq ~ awp
  work: co_aym{co_ayb} : awp ~ awo

  ==> {add to inert set}
  inert: co_aym{co_ayb} : awp ~ awo
  work list: {}
  work: co_ayb : awq ~ awp

  ==> {rewrite co_ayb}
  inert: co_aym{co_ayb} : awp ~ awo
         co_ayp{co_aym} : awq ~ awo
  work list: {}

Now both wanteds have been rewriten by the other! This happened because
in our simplify_loop iteration, we happened to start with co_aym. All would have
been well if we'd started with the (not-rewritten) co_ayb and gotten it into the
inert set.

With that in mind, we /prioritise/ the work-list to put constraints
with no rewriters first.  This prioritisation is done in
GHC.Tc.Solver.InertSet.extendWorkListEq, and extendWorkListEqs.

Wrinkles

(WRW1) Before checking for an empty RewriterSet, we zonk the RewriterSet,
  because some of those CoercionHoles may have been filled in since we last
  looked: see GHC.Tc.Solver.Monad.emitWork.

(WRW2) Despite the prioritisation, it is hard to be /certain/ that we can't end up
  in a situation where all of the Wanteds have rewritten each other. In
  order to report /some/ error in this case, we simply report all the
  Wanteds. The user will get a perhaps-confusing error message, but they've
  written a confusing program!  (T22707 and T22793 were close, but they do
  not exhibit this behaviour.)  So belt and braces: see the `suppress`
  stuff in GHC.Tc.Errors.mkErrorItem.

Note [Avoiding rewriting cycles]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Note [inert_eqs: the inert equalities] in GHC.Tc.Solver.InertSet describes
the can-rewrite relation among CtFlavour/Role pairs, saying which constraints
can rewrite which other constraints. It puts forth (R2):
  (R2) If f1 >= f, and f2 >= f,
       then either f1 >= f2 or f2 >= f1
The naive can-rewrite relation says that (Given, Representational) can rewrite
(Wanted, Representational) and that (Wanted, Nominal) can rewrite
(Wanted, Representational), but neither of (Given, Representational) and
(Wanted, Nominal) can rewrite the other. This would violate (R2). See also
Note [Why R2?] in GHC.Tc.Solver.InertSet.

To keep R2, we do not allow (Wanted, Nominal) to rewrite (Wanted, Representational).
This can, in theory, bite, in this scenario:

  type family F a
  data T a
  type role T nominal

  [G] F a ~N T a
  [W] F alpha ~N T alpha
  [W] F alpha ~R T a

As written, this makes no progress, and GHC errors. But, if we
allowed W/N to rewrite W/R, the first W could rewrite the second:

  [G] F a ~N T a
  [W] F alpha ~N T alpha
  [W] T alpha ~R T a

Now we decompose the second W to get

  [W] alpha ~N a

noting the role annotation on T. This causes (alpha := a), and then
everything else unlocks.

What to do? We could "decompose" nominal equalities into nominal-only
("NO") equalities and representational ones, where a NO equality rewrites
only nominals. That is, when considering whether [W] F alpha ~N T alpha
should rewrite [W] F alpha ~R T a, we could require splitting the first W
into [W] F alpha ~NO T alpha, [W] F alpha ~R T alpha. Then, we use the R
half of the split to rewrite the second W, and off we go. This splitting
would allow the split-off R equality to be rewritten by other equalities,
thus avoiding the problem in Note [Why R2?] in GHC.Tc.Solver.InertSet.

However, note that I said that this bites in theory. That's because no
known program actually gives rise to this scenario. A direct encoding
ends up starting with

  [G] F a ~ T a
  [W] F alpha ~ T alpha
  [W] Coercible (F alpha) (T a)

where ~ and Coercible denote lifted class constraints. The ~s quickly
reduce to ~N: good. But the Coercible constraint gets rewritten to

  [W] Coercible (T alpha) (T a)

by the first Wanted. This is because Coercible is a class, and arguments
in class constraints use *nominal* rewriting, not the representational
rewriting that is restricted due to (R2). Note that reordering the code
doesn't help, because equalities (including lifted ones) are prioritized
over Coercible. Thus, I (Richard E.) see no way to write a program that
is rejected because of this infelicity. I have not proved it impossible,
exactly, but my usual tricks have not yielded results.

In the olden days, when we had Derived constraints, this Note was all
about G/R and D/N both rewriting D/R. Back then, the code in
typecheck/should_compile/T19665 really did get rejected. But now,
according to the rewriting of the Coercible constraint, the program
is accepted.

-}

eqCanRewrite :: EqRel -> EqRel -> Bool
eqCanRewrite NomEq  _      = True
eqCanRewrite ReprEq ReprEq = True
eqCanRewrite ReprEq NomEq  = False

eqCanRewriteFR :: CtFlavourRole -> CtFlavourRole -> Bool
-- Can fr1 actually rewrite fr2?
-- Very important function!
-- See Note [eqCanRewrite]
-- See Note [Wanteds rewrite Wanteds]
-- See Note [Avoiding rewriting cycles]
eqCanRewriteFR (Given,  r1)    (_,      r2)     = eqCanRewrite r1 r2
eqCanRewriteFR (Wanted, NomEq) (Wanted, ReprEq) = False
eqCanRewriteFR (Wanted, r1)    (Wanted, r2)     = eqCanRewrite r1 r2
eqCanRewriteFR (Wanted, _)     (Given, _)       = False

{-
************************************************************************
*                                                                      *
            SubGoalDepth
*                                                                      *
************************************************************************

Note [SubGoalDepth]
~~~~~~~~~~~~~~~~~~~
The 'SubGoalDepth' takes care of stopping the constraint solver from looping.

The counter starts at zero and increases. It includes dictionary constraints,
equality simplification, and type family reduction. (Why combine these? Because
it's actually quite easy to mistake one for another, in sufficiently involved
scenarios, like ConstraintKinds.)

The flag -freduction-depth=n fixes the maximum level.

* The counter includes the depth of type class instance declarations.  Example:
     [W] d{7} : Eq [Int]
  That is d's dictionary-constraint depth is 7.  If we use the instance
     $dfEqList :: Eq a => Eq [a]
  to simplify it, we get
     d{7} = $dfEqList d'{8}
  where d'{8} : Eq Int, and d' has depth 8.

  For civilised (decidable) instance declarations, each increase of
  depth removes a type constructor from the type, so the depth never
  gets big; i.e. is bounded by the structural depth of the type.

* The counter also increments when resolving
equalities involving type functions. Example:
  Assume we have a wanted at depth 7:
    [W] d{7} : F () ~ a
  If there is a type function equation "F () = Int", this would be rewritten to
    [W] d{8} : Int ~ a
  and remembered as having depth 8.

  Again, without UndecidableInstances, this counter is bounded, but without it
  can resolve things ad infinitum. Hence there is a maximum level.

* Lastly, every time an equality is rewritten, the counter increases. Again,
  rewriting an equality constraint normally makes progress, but it's possible
  the "progress" is just the reduction of an infinitely-reducing type family.
  Hence we need to track the rewrites.

When compiling a program requires a greater depth, then GHC recommends turning
off this check entirely by setting -freduction-depth=0. This is because the
exact number that works is highly variable, and is likely to change even between
minor releases. Because this check is solely to prevent infinite compilation
times, it seems safe to disable it when a user has ascertained that their program
doesn't loop at the type level.

-}

-- | See Note [SubGoalDepth]
newtype SubGoalDepth = SubGoalDepth Int
  deriving (Eq, Ord, Outputable)

initialSubGoalDepth :: SubGoalDepth
initialSubGoalDepth = SubGoalDepth 0

bumpSubGoalDepth :: SubGoalDepth -> SubGoalDepth
bumpSubGoalDepth (SubGoalDepth n) = SubGoalDepth (n + 1)

maxSubGoalDepth :: SubGoalDepth -> SubGoalDepth -> SubGoalDepth
maxSubGoalDepth (SubGoalDepth n) (SubGoalDepth m) = SubGoalDepth (n `max` m)

subGoalDepthExceeded :: DynFlags -> SubGoalDepth -> Bool
subGoalDepthExceeded dflags (SubGoalDepth d)
  = mkIntWithInf d > reductionDepth dflags

{-
************************************************************************
*                                                                      *
            CtLoc
*                                                                      *
************************************************************************

The 'CtLoc' gives information about where a constraint came from.
This is important for decent error message reporting because
dictionaries don't appear in the original source code.

-}

data CtLoc
  = CtLoc { ctl_origin   :: CtOrigin
          , ctl_env      :: TcLclEnv
          , ctl_t_or_k   :: Maybe TypeOrKind  -- Used only to improve error messages
          , ctl_depth    :: !SubGoalDepth }

  -- The TcLclEnv includes particularly
  --    source location:  tcl_loc   :: RealSrcSpan
  --    context:          tcl_ctxt  :: [ErrCtxt]
  --    binder stack:     tcl_bndrs :: TcBinderStack
  --    level:            tcl_tclvl :: TcLevel

mkKindEqLoc :: TcType -> TcType   -- original *types* being compared
            -> CtLoc -> CtLoc
mkKindEqLoc s1 s2 ctloc
  | CtLoc { ctl_t_or_k = t_or_k, ctl_origin = origin } <- ctloc
  = ctloc { ctl_origin = KindEqOrigin s1 s2 origin t_or_k
          , ctl_t_or_k = Just KindLevel }

adjustCtLocTyConBinder :: TyConBinder -> CtLoc -> CtLoc
-- Adjust the CtLoc when decomposing a type constructor
adjustCtLocTyConBinder tc_bndr loc
  = adjustCtLoc is_vis is_kind loc
  where
    is_vis  = isVisibleTyConBinder tc_bndr
    is_kind = isNamedTyConBinder tc_bndr

adjustCtLoc :: Bool    -- True <=> A visible argument
            -> Bool    -- True <=> A kind argument
            -> CtLoc -> CtLoc
-- Adjust the CtLoc when decomposing a type constructor, application, etc
adjustCtLoc is_vis is_kind loc
  = loc2
  where
    loc1 | is_kind   = toKindLoc loc
         | otherwise = loc
    loc2 | is_vis    = loc1
         | otherwise = toInvisibleLoc loc1

-- | Take a CtLoc and moves it to the kind level
toKindLoc :: CtLoc -> CtLoc
toKindLoc loc = loc { ctl_t_or_k = Just KindLevel }

toInvisibleLoc :: CtLoc -> CtLoc
toInvisibleLoc loc = updateCtLocOrigin loc toInvisibleOrigin

mkGivenLoc :: TcLevel -> SkolemInfoAnon -> TcLclEnv -> CtLoc
mkGivenLoc tclvl skol_info env
  = CtLoc { ctl_origin   = GivenOrigin skol_info
          , ctl_env      = setLclEnvTcLevel env tclvl
          , ctl_t_or_k   = Nothing    -- this only matters for error msgs
          , ctl_depth    = initialSubGoalDepth }

ctLocEnv :: CtLoc -> TcLclEnv
ctLocEnv = ctl_env

ctLocLevel :: CtLoc -> TcLevel
ctLocLevel loc = getLclEnvTcLevel (ctLocEnv loc)

ctLocDepth :: CtLoc -> SubGoalDepth
ctLocDepth = ctl_depth

ctLocOrigin :: CtLoc -> CtOrigin
ctLocOrigin = ctl_origin

ctLocSpan :: CtLoc -> RealSrcSpan
ctLocSpan (CtLoc { ctl_env = lcl}) = getLclEnvLoc lcl

ctLocTypeOrKind_maybe :: CtLoc -> Maybe TypeOrKind
ctLocTypeOrKind_maybe = ctl_t_or_k

setCtLocSpan :: CtLoc -> RealSrcSpan -> CtLoc
setCtLocSpan ctl@(CtLoc { ctl_env = lcl }) loc = setCtLocEnv ctl (setLclEnvLoc lcl loc)

bumpCtLocDepth :: CtLoc -> CtLoc
bumpCtLocDepth loc@(CtLoc { ctl_depth = d }) = loc { ctl_depth = bumpSubGoalDepth d }

setCtLocOrigin :: CtLoc -> CtOrigin -> CtLoc
setCtLocOrigin ctl orig = ctl { ctl_origin = orig }

updateCtLocOrigin :: CtLoc -> (CtOrigin -> CtOrigin) -> CtLoc
updateCtLocOrigin ctl@(CtLoc { ctl_origin = orig }) upd
  = ctl { ctl_origin = upd orig }

setCtLocEnv :: CtLoc -> TcLclEnv -> CtLoc
setCtLocEnv ctl env = ctl { ctl_env = env }

pprCtLoc :: CtLoc -> SDoc
-- "arising from ... at ..."
-- Not an instance of Outputable because of the "arising from" prefix
pprCtLoc (CtLoc { ctl_origin = o, ctl_env = lcl})
  = sep [ pprCtOrigin o
        , text "at" <+> ppr (getLclEnvLoc lcl)]