summaryrefslogtreecommitdiff
path: root/compiler/GHC/Tc/Types/Evidence.hs
blob: 4216613c4a58905d177e7c387dac307e90f82165 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
-- (c) The University of Glasgow 2006

{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE LambdaCase #-}

module GHC.Tc.Types.Evidence (

  -- * HsWrapper
  HsWrapper(..),
  (<.>), mkWpTyApps, mkWpEvApps, mkWpEvVarApps, mkWpTyLams,
  mkWpEvLams, mkWpLet, mkWpFun, mkWpCastN, mkWpCastR, mkWpEta,
  collectHsWrapBinders,
  idHsWrapper, isIdHsWrapper,
  pprHsWrapper, hsWrapDictBinders,

  -- * Evidence bindings
  TcEvBinds(..), EvBindsVar(..),
  EvBindMap(..), emptyEvBindMap, extendEvBinds,
  lookupEvBind, evBindMapBinds,
  foldEvBindMap, nonDetStrictFoldEvBindMap,
  filterEvBindMap,
  isEmptyEvBindMap,
  evBindMapToVarSet,
  varSetMinusEvBindMap,
  EvBindInfo(..), EvBind(..), emptyTcEvBinds, isEmptyTcEvBinds, mkGivenEvBind, mkWantedEvBind,
  evBindVar, isCoEvBindsVar,

  -- * EvTerm (already a CoreExpr)
  EvTerm(..), EvExpr,
  evId, evCoercion, evCast, evDFunApp,  evDataConApp, evSelector,
  mkEvCast, evVarsOfTerm, mkEvScSelectors, evTypeable, findNeededEvVars,

  evTermCoercion, evTermCoercion_maybe,
  EvCallStack(..),
  EvTypeable(..),

  -- * HoleExprRef
  HoleExprRef(..),

  -- * TcCoercion
  TcCoercion, TcCoercionR, TcCoercionN, TcCoercionP, CoercionHole,
  TcMCoercion, TcMCoercionN, TcMCoercionR,
  Role(..), LeftOrRight(..), pickLR,
  maybeSymCo,
  unwrapIP, wrapIP,

  -- * QuoteWrapper
  QuoteWrapper(..), applyQuoteWrapper, quoteWrapperTyVarTy
  ) where

import GHC.Prelude

import GHC.Types.Unique.DFM
import GHC.Types.Unique.FM
import GHC.Types.Var
import GHC.Types.Id( idScaledType )
import GHC.Core.Coercion.Axiom
import GHC.Core.Coercion
import GHC.Core.Ppr ()   -- Instance OutputableBndr TyVar
import GHC.Tc.Utils.TcType
import GHC.Core.Type
import GHC.Core.TyCon
import GHC.Core.DataCon ( DataCon, dataConWrapId )
import GHC.Builtin.Names
import GHC.Types.Var.Env
import GHC.Types.Var.Set
import GHC.Core.Predicate
import GHC.Types.Basic

import GHC.Core
import GHC.Core.Class (Class, classSCSelId )
import GHC.Core.FVs   ( exprSomeFreeVars )
import GHC.Core.InstEnv ( Coherence(..) )

import GHC.Utils.Misc
import GHC.Utils.Panic
import GHC.Utils.Outputable

import GHC.Data.Bag
import GHC.Data.FastString

import qualified Data.Data as Data
import GHC.Types.SrcLoc
import Data.IORef( IORef )
import GHC.Types.Unique.Set
import GHC.Core.Multiplicity

import qualified Data.Semigroup as S

{-
Note [TcCoercions]
~~~~~~~~~~~~~~~~~~
| TcCoercions are a hack used by the typechecker. Normally,
Coercions have free variables of type (a ~# b): we call these
CoVars. However, the type checker passes around equality evidence
(boxed up) at type (a ~ b).

An TcCoercion is simply a Coercion whose free variables have may be either
boxed or unboxed. After we are done with typechecking the desugarer finds the
boxed free variables, unboxes them, and creates a resulting real Coercion with
kosher free variables.

-}

type TcCoercion   = Coercion
type TcCoercionN  = CoercionN    -- A Nominal          coercion ~N
type TcCoercionR  = CoercionR    -- A Representational coercion ~R
type TcCoercionP  = CoercionP    -- a phantom coercion
type TcMCoercion  = MCoercion
type TcMCoercionN = MCoercionN  -- nominal
type TcMCoercionR = MCoercionR  -- representational

-- | If a 'SwapFlag' is 'IsSwapped', flip the orientation of a coercion
maybeSymCo :: SwapFlag -> TcCoercion -> TcCoercion
maybeSymCo IsSwapped  co = mkSymCo co
maybeSymCo NotSwapped co = co

{-
%************************************************************************
%*                                                                      *
                  HsWrapper
*                                                                      *
************************************************************************
-}

-- We write    wrap :: t1 ~> t2
-- if       wrap[ e::t1 ] :: t2
data HsWrapper
  = WpHole                      -- The identity coercion

  | WpCompose HsWrapper HsWrapper
       -- (wrap1 `WpCompose` wrap2)[e] = wrap1[ wrap2[ e ]]
       --
       -- Hence  (\a. []) `WpCompose` (\b. []) = (\a b. [])
       -- But    ([] a)   `WpCompose` ([] b)   = ([] b a)
       --
       -- If wrap1 :: t2 ~> t3
       --    wrap2 :: t1 ~> t2
       --- Then (wrap1 `WpCompose` wrap2) :: t1 ~> t3

  | WpFun HsWrapper HsWrapper (Scaled TcTypeFRR)
       -- (WpFun wrap1 wrap2 (w, t1))[e] = \(x:_w exp_arg). wrap2[ e wrap1[x] ]
       -- So note that if  e     :: act_arg -> act_res
       --                  wrap1 :: exp_arg ~> act_arg
       --                  wrap2 :: act_res ~> exp_res
       --           then   WpFun wrap1 wrap2 : (act_arg -> arg_res) ~> (exp_arg -> exp_res)
       -- This isn't the same as for mkFunCo, but it has to be this way
       -- because we can't use 'sym' to flip around these HsWrappers
       -- The TcType is the "from" type of the first wrapper;
       --     it always a Type, not a Constraint
       --
       -- NB: a WpFun is always for a (->) function arrow
       --
       -- Use 'mkWpFun' to construct such a wrapper.

  | WpCast TcCoercionR        -- A cast:  [] `cast` co
                              -- Guaranteed not the identity coercion
                              -- At role Representational

        -- Evidence abstraction and application
        -- (both dictionaries and coercions)
        -- Both WpEvLam and WpEvApp abstract and apply values
        --      of kind CONSTRAINT rep
  | WpEvLam EvVar               -- \d. []       the 'd' is an evidence variable
  | WpEvApp EvTerm              -- [] d         the 'd' is evidence for a constraint

        -- Kind and Type abstraction and application
  | WpTyLam TyVar       -- \a. []  the 'a' is a type/kind variable (not coercion var)
  | WpTyApp KindOrType  -- [] t    the 't' is a type (not coercion)


  | WpLet TcEvBinds             -- Non-empty (or possibly non-empty) evidence bindings,
                                -- so that the identity coercion is always exactly WpHole

  | WpMultCoercion Coercion     -- Require that a Coercion be reflexive; otherwise,
                                -- error in the desugarer. See GHC.Tc.Utils.Unify
                                -- Note [Wrapper returned from tcSubMult]
  deriving Data.Data

-- | The Semigroup instance is a bit fishy, since @WpCompose@, as a data
-- constructor, is "syntactic" and not associative. Concretely, if @a@, @b@,
-- and @c@ aren't @WpHole@:
--
-- > (a <> b) <> c ?= a <> (b <> c)
--
-- ==>
--
-- > (a `WpCompose` b) `WpCompose` c /= @ a `WpCompose` (b `WpCompose` c)
--
-- However these two associations are are "semantically equal" in the sense
-- that they produce equal functions when passed to
-- @GHC.HsToCore.Binds.dsHsWrapper@.
instance S.Semigroup HsWrapper where
  (<>) = (<.>)

instance Monoid HsWrapper where
  mempty = WpHole

(<.>) :: HsWrapper -> HsWrapper -> HsWrapper
WpHole <.> c = c
c <.> WpHole = c
c1 <.> c2    = c1 `WpCompose` c2

-- | Smart constructor to create a 'WpFun' 'HsWrapper'.
--
-- PRECONDITION: the "from" type of the first wrapper must have a syntactically
-- fixed RuntimeRep (see Note [Fixed RuntimeRep] in GHC.Tc.Utils.Concrete).
mkWpFun :: HsWrapper -> HsWrapper
        -> Scaled TcTypeFRR -- ^ the "from" type of the first wrapper
                            -- MUST have a fixed RuntimeRep
        -> TcType           -- ^ Either "from" type or "to" type of the second wrapper
                            --   (used only when the second wrapper is the identity)
        -> HsWrapper
  -- NB: we can't check that the argument type has a fixed RuntimeRep with an assertion,
  -- because of [Wrinkle: Typed Template Haskell] in Note [hasFixedRuntimeRep]
  -- in GHC.Tc.Utils.Concrete.
mkWpFun WpHole       WpHole       _             _  = WpHole
mkWpFun WpHole       (WpCast co2) (Scaled w t1) _  = WpCast (mk_wp_fun_co w (mkRepReflCo t1) co2)
mkWpFun (WpCast co1) WpHole       (Scaled w _)  t2 = WpCast (mk_wp_fun_co w (mkSymCo co1)    (mkRepReflCo t2))
mkWpFun (WpCast co1) (WpCast co2) (Scaled w _)  _  = WpCast (mk_wp_fun_co w (mkSymCo co1)    co2)
mkWpFun co1          co2          t1            _  = WpFun co1 co2 t1

mkWpEta :: [Id] -> HsWrapper -> HsWrapper
-- (mkWpEta [x1, x2] wrap) [e]
--   = \x1. \x2.  wrap[e x1 x2]
-- Just generates a bunch of WpFuns
mkWpEta xs wrap = foldr eta_one wrap xs
  where
    eta_one x wrap = WpFun idHsWrapper wrap (idScaledType x)

mk_wp_fun_co :: Mult -> TcCoercionR -> TcCoercionR -> TcCoercionR
mk_wp_fun_co mult arg_co res_co
  = mkNakedFunCo Representational FTF_T_T (multToCo mult) arg_co res_co
    -- FTF_T_T: WpFun is always (->)

mkWpCastR :: TcCoercionR -> HsWrapper
mkWpCastR co
  | isReflCo co = WpHole
  | otherwise   = assertPpr (coercionRole co == Representational) (ppr co) $
                  WpCast co

mkWpCastN :: TcCoercionN -> HsWrapper
mkWpCastN co
  | isReflCo co = WpHole
  | otherwise   = assertPpr (coercionRole co == Nominal) (ppr co) $
                  WpCast (mkSubCo co)
    -- The mkTcSubCo converts Nominal to Representational

mkWpTyApps :: [Type] -> HsWrapper
mkWpTyApps tys = mk_co_app_fn WpTyApp tys

mkWpEvApps :: [EvTerm] -> HsWrapper
mkWpEvApps args = mk_co_app_fn WpEvApp args

mkWpEvVarApps :: [EvVar] -> HsWrapper
mkWpEvVarApps vs = mk_co_app_fn WpEvApp (map (EvExpr . evId) vs)

mkWpTyLams :: [TyVar] -> HsWrapper
mkWpTyLams ids = mk_co_lam_fn WpTyLam ids

mkWpEvLams :: [Var] -> HsWrapper
mkWpEvLams ids = mk_co_lam_fn WpEvLam ids

mkWpLet :: TcEvBinds -> HsWrapper
-- This no-op is a quite a common case
mkWpLet (EvBinds b) | isEmptyBag b = WpHole
mkWpLet ev_binds                   = WpLet ev_binds

mk_co_lam_fn :: (a -> HsWrapper) -> [a] -> HsWrapper
mk_co_lam_fn f as = foldr (\x wrap -> f x <.> wrap) WpHole as

mk_co_app_fn :: (a -> HsWrapper) -> [a] -> HsWrapper
-- For applications, the *first* argument must
-- come *last* in the composition sequence
mk_co_app_fn f as = foldr (\x wrap -> wrap <.> f x) WpHole as

idHsWrapper :: HsWrapper
idHsWrapper = WpHole

isIdHsWrapper :: HsWrapper -> Bool
isIdHsWrapper WpHole = True
isIdHsWrapper _      = False

hsWrapDictBinders :: HsWrapper -> Bag DictId
-- ^ Identifies the /lambda-bound/ dictionaries of an 'HsWrapper'. This is used
-- (only) to allow the pattern-match overlap checker to know what Given
-- dictionaries are in scope.
--
-- We specifically do not collect dictionaries bound in a 'WpLet'. These are
-- either superclasses of lambda-bound ones, or (extremely numerous) results of
-- binding Wanted dictionaries.  We definitely don't want all those cluttering
-- up the Given dictionaries for pattern-match overlap checking!
hsWrapDictBinders wrap = go wrap
 where
   go (WpEvLam dict_id)   = unitBag dict_id
   go (w1 `WpCompose` w2) = go w1 `unionBags` go w2
   go (WpFun _ w _)       = go w
   go WpHole              = emptyBag
   go (WpCast  {})        = emptyBag
   go (WpEvApp {})        = emptyBag
   go (WpTyLam {})        = emptyBag
   go (WpTyApp {})        = emptyBag
   go (WpLet   {})        = emptyBag
   go (WpMultCoercion {}) = emptyBag

collectHsWrapBinders :: HsWrapper -> ([Var], HsWrapper)
-- Collect the outer lambda binders of a HsWrapper,
-- stopping as soon as you get to a non-lambda binder
collectHsWrapBinders wrap = go wrap []
  where
    -- go w ws = collectHsWrapBinders (w <.> w1 <.> ... <.> wn)
    go :: HsWrapper -> [HsWrapper] -> ([Var], HsWrapper)
    go (WpEvLam v)       wraps = add_lam v (gos wraps)
    go (WpTyLam v)       wraps = add_lam v (gos wraps)
    go (WpCompose w1 w2) wraps = go w1 (w2:wraps)
    go wrap              wraps = ([], foldl' (<.>) wrap wraps)

    gos []     = ([], WpHole)
    gos (w:ws) = go w ws

    add_lam v (vs,w) = (v:vs, w)

{-
************************************************************************
*                                                                      *
                  Evidence bindings
*                                                                      *
************************************************************************
-}

data TcEvBinds
  = TcEvBinds           -- Mutable evidence bindings
       EvBindsVar       -- Mutable because they are updated "later"
                        --    when an implication constraint is solved

  | EvBinds             -- Immutable after zonking
       (Bag EvBind)

data EvBindsVar
  = EvBindsVar {
      ebv_uniq :: Unique,
         -- The Unique is for debug printing only

      ebv_binds :: IORef EvBindMap,
      -- The main payload: the value-level evidence bindings
      --     (dictionaries etc)
      -- Some Given, some Wanted

      ebv_tcvs :: IORef CoVarSet
      -- The free Given coercion vars needed by Wanted coercions that
      -- are solved by filling in their HoleDest in-place. Since they
      -- don't appear in ebv_binds, we keep track of their free
      -- variables so that we can report unused given constraints
      -- See Note [Tracking redundant constraints] in GHC.Tc.Solver
    }

  | CoEvBindsVar {  -- See Note [Coercion evidence only]

      -- See above for comments on ebv_uniq, ebv_tcvs
      ebv_uniq :: Unique,
      ebv_tcvs :: IORef CoVarSet
    }

instance Data.Data TcEvBinds where
  -- Placeholder; we can't travers into TcEvBinds
  toConstr _   = abstractConstr "TcEvBinds"
  gunfold _ _  = error "gunfold"
  dataTypeOf _ = Data.mkNoRepType "TcEvBinds"

{- Note [Coercion evidence only]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Class constraints etc give rise to /term/ bindings for evidence, and
we have nowhere to put term bindings in /types/.  So in some places we
use CoEvBindsVar (see newCoTcEvBinds) to signal that no term-level
evidence bindings are allowed.  Notably ():

  - Places in types where we are solving kind constraints (all of which
    are equalities); see solveEqualities

  - When unifying forall-types
-}

isCoEvBindsVar :: EvBindsVar -> Bool
isCoEvBindsVar (CoEvBindsVar {}) = True
isCoEvBindsVar (EvBindsVar {})   = False

-----------------
newtype EvBindMap
  = EvBindMap {
       ev_bind_varenv :: DVarEnv EvBind
    }       -- Map from evidence variables to evidence terms
            -- We use @DVarEnv@ here to get deterministic ordering when we
            -- turn it into a Bag.
            -- If we don't do that, when we generate let bindings for
            -- dictionaries in dsTcEvBinds they will be generated in random
            -- order.
            --
            -- For example:
            --
            -- let $dEq = GHC.Classes.$fEqInt in
            -- let $$dNum = GHC.Num.$fNumInt in ...
            --
            -- vs
            --
            -- let $dNum = GHC.Num.$fNumInt in
            -- let $dEq = GHC.Classes.$fEqInt in ...
            --
            -- See Note [Deterministic UniqFM] in GHC.Types.Unique.DFM for explanation why
            -- @UniqFM@ can lead to nondeterministic order.

emptyEvBindMap :: EvBindMap
emptyEvBindMap = EvBindMap { ev_bind_varenv = emptyDVarEnv }

extendEvBinds :: EvBindMap -> EvBind -> EvBindMap
extendEvBinds bs ev_bind
  = EvBindMap { ev_bind_varenv = extendDVarEnv (ev_bind_varenv bs)
                                               (eb_lhs ev_bind)
                                               ev_bind }

isEmptyEvBindMap :: EvBindMap -> Bool
isEmptyEvBindMap (EvBindMap m) = isEmptyDVarEnv m

lookupEvBind :: EvBindMap -> EvVar -> Maybe EvBind
lookupEvBind bs = lookupDVarEnv (ev_bind_varenv bs)

evBindMapBinds :: EvBindMap -> Bag EvBind
evBindMapBinds = foldEvBindMap consBag emptyBag

foldEvBindMap :: (EvBind -> a -> a) -> a -> EvBindMap -> a
foldEvBindMap k z bs = foldDVarEnv k z (ev_bind_varenv bs)

-- See Note [Deterministic UniqFM] to learn about nondeterminism.
-- If you use this please provide a justification why it doesn't introduce
-- nondeterminism.
nonDetStrictFoldEvBindMap :: (EvBind -> a -> a) -> a -> EvBindMap -> a
nonDetStrictFoldEvBindMap k z bs = nonDetStrictFoldDVarEnv k z (ev_bind_varenv bs)

filterEvBindMap :: (EvBind -> Bool) -> EvBindMap -> EvBindMap
filterEvBindMap k (EvBindMap { ev_bind_varenv = env })
  = EvBindMap { ev_bind_varenv = filterDVarEnv k env }

evBindMapToVarSet :: EvBindMap -> VarSet
evBindMapToVarSet (EvBindMap dve) = unsafeUFMToUniqSet (mapUFM evBindVar (udfmToUfm dve))

varSetMinusEvBindMap :: VarSet -> EvBindMap -> VarSet
varSetMinusEvBindMap vs (EvBindMap dve) = vs `uniqSetMinusUDFM` dve

instance Outputable EvBindMap where
  ppr (EvBindMap m) = ppr m

data EvBindInfo
  = EvBindGiven { -- See Note [Tracking redundant constraints] in GHC.Tc.Solver
    }
  | EvBindWanted { ebi_coherence :: Coherence -- See Note [Desugaring incoherent evidence]
    }

-----------------
-- All evidence is bound by EvBinds; no side effects
data EvBind
  = EvBind { eb_lhs  :: EvVar
           , eb_rhs  :: EvTerm
           , eb_info :: EvBindInfo
    }

evBindVar :: EvBind -> EvVar
evBindVar = eb_lhs

mkWantedEvBind :: EvVar -> Coherence -> EvTerm -> EvBind
mkWantedEvBind ev c tm = EvBind { eb_info = EvBindWanted c, eb_lhs = ev, eb_rhs = tm }

-- EvTypeable are never given, so we can work with EvExpr here instead of EvTerm
mkGivenEvBind :: EvVar -> EvTerm -> EvBind
mkGivenEvBind ev tm = EvBind { eb_info = EvBindGiven, eb_lhs = ev, eb_rhs = tm }


-- An EvTerm is, conceptually, a CoreExpr that implements the constraint.
-- Unfortunately, we cannot just do
--   type EvTerm  = CoreExpr
-- Because of staging problems issues around EvTypeable
data EvTerm
  = EvExpr EvExpr

  | EvTypeable Type EvTypeable   -- Dictionary for (Typeable ty)

  | EvFun     -- /\as \ds. let binds in v
      { et_tvs   :: [TyVar]
      , et_given :: [EvVar]
      , et_binds :: TcEvBinds -- This field is why we need an EvFun
                              -- constructor, and can't just use EvExpr
      , et_body  :: EvVar }

  deriving Data.Data

type EvExpr = CoreExpr

-- An EvTerm is (usually) constructed by any of the constructors here
-- and those more complicated ones who were moved to module GHC.Tc.Types.EvTerm

-- | Any sort of evidence Id, including coercions
evId ::  EvId -> EvExpr
evId = Var

-- coercion bindings
-- See Note [Coercion evidence terms]
evCoercion :: TcCoercion -> EvTerm
evCoercion co = EvExpr (Coercion co)

-- | d |> co
evCast :: EvExpr -> TcCoercion -> EvTerm
evCast et tc | isReflCo tc = EvExpr et
             | otherwise   = EvExpr (Cast et tc)

-- Dictionary instance application
evDFunApp :: DFunId -> [Type] -> [EvExpr] -> EvTerm
evDFunApp df tys ets = EvExpr $ Var df `mkTyApps` tys `mkApps` ets

evDataConApp :: DataCon -> [Type] -> [EvExpr] -> EvTerm
evDataConApp dc tys ets = evDFunApp (dataConWrapId dc) tys ets

-- Selector id plus the types at which it
-- should be instantiated, used for HasField
-- dictionaries; see Note [HasField instances]
-- in TcInterface
evSelector :: Id -> [Type] -> [EvExpr] -> EvExpr
evSelector sel_id tys tms = Var sel_id `mkTyApps` tys `mkApps` tms

-- Dictionary for (Typeable ty)
evTypeable :: Type -> EvTypeable -> EvTerm
evTypeable = EvTypeable

-- | Instructions on how to make a 'Typeable' dictionary.
-- See Note [Typeable evidence terms]
data EvTypeable
  = EvTypeableTyCon TyCon [EvTerm]
    -- ^ Dictionary for @Typeable T@ where @T@ is a type constructor with all of
    -- its kind variables saturated. The @[EvTerm]@ is @Typeable@ evidence for
    -- the applied kinds..

  | EvTypeableTyApp EvTerm EvTerm
    -- ^ Dictionary for @Typeable (s t)@,
    -- given a dictionaries for @s@ and @t@.

  | EvTypeableTrFun EvTerm EvTerm EvTerm
    -- ^ Dictionary for @Typeable (s % w -> t)@,
    -- given a dictionaries for @w@, @s@, and @t@.

  | EvTypeableTyLit EvTerm
    -- ^ Dictionary for a type literal,
    -- e.g. @Typeable "foo"@ or @Typeable 3@
    -- The 'EvTerm' is evidence of, e.g., @KnownNat 3@
    -- (see #10348)
  deriving Data.Data

-- | Evidence for @CallStack@ implicit parameters.
data EvCallStack
  -- See Note [Overview of implicit CallStacks]
  = EvCsEmpty
  | EvCsPushCall
        FastString   -- Usually the name of the function being called
                     --   but can also be "the literal 42"
                     --   or "an if-then-else expression", etc
        RealSrcSpan  -- Location of the call
        EvExpr       -- Rest of the stack
    -- ^ @EvCsPushCall origin loc stk@ represents a call from @origin@,
    --  occurring at @loc@, in a calling context @stk@.
  deriving Data.Data

{-
************************************************************************
*                                                                      *
         Evidence for holes
*                                                                      *
************************************************************************
-}

-- | Where to store evidence for expression holes
-- See Note [Holes] in GHC.Tc.Types.Constraint
data HoleExprRef = HER (IORef EvTerm)   -- ^ where to write the erroring expression
                       TcType           -- ^ expected type of that expression
                       Unique           -- ^ for debug output only

instance Outputable HoleExprRef where
  ppr (HER _ _ u) = ppr u

instance Data.Data HoleExprRef where
  -- Placeholder; we can't traverse into HoleExprRef
  toConstr _   = abstractConstr "HoleExprRef"
  gunfold _ _  = error "gunfold"
  dataTypeOf _ = Data.mkNoRepType "HoleExprRef"

{-
Note [Typeable evidence terms]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The EvTypeable data type looks isomorphic to Type, but the EvTerms
inside can be EvIds.  Eg
    f :: forall a. Typeable a => a -> TypeRep
    f x = typeRep (undefined :: Proxy [a])
Here for the (Typeable [a]) dictionary passed to typeRep we make
evidence
    dl :: Typeable [a] = EvTypeable [a]
                            (EvTypeableTyApp (EvTypeableTyCon []) (EvId d))
where
    d :: Typeable a
is the lambda-bound dictionary passed into f.

Note [Coercion evidence terms]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A "coercion evidence term" takes one of these forms
   co_tm ::= EvId v           where v :: t1 ~# t2
           | EvCoercion co
           | EvCast co_tm co

We do quite often need to get a TcCoercion from an EvTerm; see
'evTermCoercion'.

INVARIANT: The evidence for any constraint with type (t1 ~# t2) is
a coercion evidence term.  Consider for example
    [G] d :: F Int a
If we have
    ax7 a :: F Int a ~ (a ~ Bool)
then we do NOT generate the constraint
    [G] (d |> ax7 a) :: a ~ Bool
because that does not satisfy the invariant (d is not a coercion variable).
Instead we make a binding
    g1 :: a~Bool = g |> ax7 a
and the constraint
    [G] g1 :: a~Bool
See #7238 and Note [Bind new Givens immediately] in GHC.Tc.Types.Constraint

Note [EvBinds/EvTerm]
~~~~~~~~~~~~~~~~~~~~~
How evidence is created and updated. Bindings for dictionaries,
and coercions and implicit parameters are carried around in TcEvBinds
which during constraint generation and simplification is always of the
form (TcEvBinds ref). After constraint simplification is finished it
will be transformed to t an (EvBinds ev_bag).

Evidence for coercions *SHOULD* be filled in using the TcEvBinds
However, all EvVars that correspond to *wanted* coercion terms in
an EvBind must be mutable variables so that they can be readily
inlined (by zonking) after constraint simplification is finished.

Conclusion: a new wanted coercion variable should be made mutable.
[Notice though that evidence variables that bind coercion terms
 from super classes will be "given" and hence rigid]


Note [Overview of implicit CallStacks]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(See https://gitlab.haskell.org/ghc/ghc/wikis/explicit-call-stack/implicit-locations)

The goal of CallStack evidence terms is to reify locations
in the program source as runtime values, without any support
from the RTS. We accomplish this by assigning a special meaning
to constraints of type GHC.Stack.Types.HasCallStack, an alias

  type HasCallStack = (?callStack :: CallStack)

Implicit parameters of type GHC.Stack.Types.CallStack (the name is not
important) are solved in three steps:

1. Explicit, user-written occurrences of `?stk :: CallStack`
   which have IPOccOrigin, are solved directly from the given IP,
   just like a regular IP; see GHC.Tc.Solver.Interact.interactDict.

   For example, the occurrence of `?stk` in

     error :: (?stk :: CallStack) => String -> a
     error s = raise (ErrorCall (s ++ prettyCallStack ?stk))

   will be solved for the `?stk` in `error`s context as before.

2. In a function call, instead of simply passing the given IP, we first
   append the current call-site to it. For example, consider a
   call to the callstack-aware `error` above.

     foo :: (?stk :: CallStack) => a
     foo = error "undefined!"

   Here we want to take the given `?stk` and append the current
   call-site, before passing it to `error`. In essence, we want to
   rewrite `foo "undefined!"` to

     let ?stk = pushCallStack <foo's location> ?stk
     in foo "undefined!"

   We achieve this as follows:

   * At a call of foo :: (?stk :: CallStack) => blah
     we emit a Wanted
        [W] d1 : IP "stk" CallStack
     with CtOrigin = OccurrenceOf "foo"

   * We /solve/ this constraint, in GHC.Tc.Solver.Canonical.canClassNC
     by emitting a NEW Wanted
        [W] d2 :: IP "stk" CallStack
     with CtOrigin = IPOccOrigin

     and solve d1 = EvCsPushCall "foo" <foo's location> (EvId d1)

   * The new Wanted, for `d2` will be solved per rule (1), ie as a regular IP.

3. We use the predicate isPushCallStackOrigin to identify whether we
   want to do (1) solve directly, or (2) push and then solve directly.
   Key point (see #19918): the CtOrigin where we want to push an item on the
   call stack can include IfThenElseOrigin etc, when RebindableSyntax is
   involved.  See the defn of fun_orig in GHC.Tc.Gen.App.tcInstFun; it is
   this CtOrigin that is pinned on the constraints generated by functions
   in the "expansion" for rebindable syntax. c.f. GHC.Rename.Expr
   Note [Handling overloaded and rebindable constructs]

4. We default any insoluble CallStacks to the empty CallStack. Suppose
   `undefined` did not request a CallStack, ie

     undefinedNoStk :: a
     undefinedNoStk = error "undefined!"

   Under the usual IP rules, the new wanted from rule (2) would be
   insoluble as there's no given IP from which to solve it, so we
   would get an "unbound implicit parameter" error.

   We don't ever want to emit an insoluble CallStack IP, so we add a
   defaulting pass to default any remaining wanted CallStacks to the
   empty CallStack with the evidence term

     EvCsEmpty

   (see GHC.Tc.Solver.simplifyTopWanteds and GHC.Tc.Solver.defaultCallStacks)

This provides a lightweight mechanism for building up call-stacks
explicitly, but is notably limited by the fact that the stack will
stop at the first function whose type does not include a CallStack IP.
For example, using the above definition of `undefined`:

  head :: [a] -> a
  head []    = undefined
  head (x:_) = x

  g = head []

the resulting CallStack will include the call to `undefined` in `head`
and the call to `error` in `undefined`, but *not* the call to `head`
in `g`, because `head` did not explicitly request a CallStack.


Important Details:
- GHC should NEVER report an insoluble CallStack constraint.

- GHC should NEVER infer a CallStack constraint unless one was requested
  with a partial type signature (See GHC.Tc.Solver..pickQuantifiablePreds).

- A CallStack (defined in GHC.Stack.Types) is a [(String, SrcLoc)],
  where the String is the name of the binder that is used at the
  SrcLoc. SrcLoc is also defined in GHC.Stack.Types and contains the
  package/module/file name, as well as the full source-span. Both
  CallStack and SrcLoc are kept abstract so only GHC can construct new
  values.

- We will automatically solve any wanted CallStack regardless of the
  name of the IP, i.e.

    f = show (?stk :: CallStack)
    g = show (?loc :: CallStack)

  are both valid. However, we will only push new SrcLocs onto existing
  CallStacks when the IP names match, e.g. in

    head :: (?loc :: CallStack) => [a] -> a
    head [] = error (show (?stk :: CallStack))

  the printed CallStack will NOT include head's call-site. This reflects the
  standard scoping rules of implicit-parameters.

- An EvCallStack term desugars to a CoreExpr of type `IP "some str" CallStack`.
  The desugarer will need to unwrap the IP newtype before pushing a new
  call-site onto a given stack (See GHC.HsToCore.Binds.dsEvCallStack)

- When we emit a new wanted CallStack from rule (2) we set its origin to
  `IPOccOrigin ip_name` instead of the original `OccurrenceOf func`
  (see GHC.Tc.Solver.Interact.interactDict).

  This is a bit shady, but is how we ensure that the new wanted is
  solved like a regular IP.

-}

mkEvCast :: EvExpr -> TcCoercion -> EvTerm
mkEvCast ev lco
  | assertPpr (coercionRole lco == Representational)
              (vcat [text "Coercion of wrong role passed to mkEvCast:", ppr ev, ppr lco]) $
    isReflCo lco = EvExpr ev
  | otherwise    = evCast ev lco


mkEvScSelectors         -- Assume   class (..., D ty, ...) => C a b
  :: Class -> [TcType]  -- C ty1 ty2
  -> [(TcPredType,      -- D ty[ty1/a,ty2/b]
       EvExpr)          -- :: C ty1 ty2 -> D ty[ty1/a,ty2/b]
     ]
mkEvScSelectors cls tys
   = zipWith mk_pr (immSuperClasses cls tys) [0..]
  where
    mk_pr pred i = (pred, Var sc_sel_id `mkTyApps` tys)
      where
        sc_sel_id  = classSCSelId cls i -- Zero-indexed

emptyTcEvBinds :: TcEvBinds
emptyTcEvBinds = EvBinds emptyBag

isEmptyTcEvBinds :: TcEvBinds -> Bool
isEmptyTcEvBinds (EvBinds b)    = isEmptyBag b
isEmptyTcEvBinds (TcEvBinds {}) = panic "isEmptyTcEvBinds"

evTermCoercion_maybe :: EvTerm -> Maybe TcCoercion
-- Applied only to EvTerms of type (s~t)
-- See Note [Coercion evidence terms]
evTermCoercion_maybe ev_term
  | EvExpr e <- ev_term = go e
  | otherwise           = Nothing
  where
    go :: EvExpr -> Maybe TcCoercion
    go (Var v)       = return (mkCoVarCo v)
    go (Coercion co) = return co
    go (Cast tm co)  = do { co' <- go tm
                          ; return (mkCoCast co' co) }
    go _             = Nothing

evTermCoercion :: EvTerm -> TcCoercion
evTermCoercion tm = case evTermCoercion_maybe tm of
                      Just co -> co
                      Nothing -> pprPanic "evTermCoercion" (ppr tm)


{- *********************************************************************
*                                                                      *
                  Free variables
*                                                                      *
********************************************************************* -}

findNeededEvVars :: EvBindMap -> VarSet -> VarSet
-- Find all the Given evidence needed by seeds,
-- looking transitively through binds
findNeededEvVars ev_binds seeds
  = transCloVarSet also_needs seeds
  where
   also_needs :: VarSet -> VarSet
   also_needs needs = nonDetStrictFoldUniqSet add emptyVarSet needs
     -- It's OK to use a non-deterministic fold here because we immediately
     -- forget about the ordering by creating a set

   add :: Var -> VarSet -> VarSet
   add v needs
     | Just ev_bind <- lookupEvBind ev_binds v
     , EvBind { eb_info = EvBindGiven, eb_rhs = rhs } <- ev_bind
     = evVarsOfTerm rhs `unionVarSet` needs
     | otherwise
     = needs

evVarsOfTerm :: EvTerm -> VarSet
evVarsOfTerm (EvExpr e)         = exprSomeFreeVars isEvVar e
evVarsOfTerm (EvTypeable _ ev)  = evVarsOfTypeable ev
evVarsOfTerm (EvFun {})         = emptyVarSet -- See Note [Free vars of EvFun]

evVarsOfTerms :: [EvTerm] -> VarSet
evVarsOfTerms = mapUnionVarSet evVarsOfTerm

evVarsOfTypeable :: EvTypeable -> VarSet
evVarsOfTypeable ev =
  case ev of
    EvTypeableTyCon _ e      -> mapUnionVarSet evVarsOfTerm e
    EvTypeableTyApp e1 e2    -> evVarsOfTerms [e1,e2]
    EvTypeableTrFun em e1 e2 -> evVarsOfTerms [em,e1,e2]
    EvTypeableTyLit e        -> evVarsOfTerm e


{- Note [Free vars of EvFun]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Finding the free vars of an EvFun is made tricky by the fact the
bindings et_binds may be a mutable variable.  Fortunately, we
can just squeeze by.  Here's how.

* evVarsOfTerm is used only by GHC.Tc.Solver.neededEvVars.
* Each EvBindsVar in an et_binds field of an EvFun is /also/ in the
  ic_binds field of an Implication
* So we can track usage via the processing for that implication,
  (see Note [Tracking redundant constraints] in GHC.Tc.Solver).
  We can ignore usage from the EvFun altogether.

************************************************************************
*                                                                      *
                  Pretty printing
*                                                                      *
************************************************************************
-}

instance Outputable HsWrapper where
  ppr co_fn = pprHsWrapper co_fn (no_parens (text "<>"))

pprHsWrapper :: HsWrapper -> (Bool -> SDoc) -> SDoc
-- With -fprint-typechecker-elaboration, print the wrapper
--   otherwise just print what's inside
-- The pp_thing_inside function takes Bool to say whether
--    it's in a position that needs parens for a non-atomic thing
pprHsWrapper wrap pp_thing_inside
  = sdocOption sdocPrintTypecheckerElaboration $ \case
      True  -> help pp_thing_inside wrap False
      False -> pp_thing_inside False
  where
    help :: (Bool -> SDoc) -> HsWrapper -> Bool -> SDoc
    -- True  <=> appears in function application position
    -- False <=> appears as body of let or lambda
    help it WpHole             = it
    help it (WpCompose f1 f2)  = help (help it f2) f1
    help it (WpFun f1 f2 (Scaled w t1)) = add_parens $ text "\\(x" <> dcolon <> brackets (ppr w) <> ppr t1 <> text ")." <+>
                                            help (\_ -> it True <+> help (\_ -> text "x") f1 True) f2 False
    help it (WpCast co)   = add_parens $ sep [it False, nest 2 (text "|>"
                                              <+> pprParendCo co)]
    help it (WpEvApp id)  = no_parens  $ sep [it True, nest 2 (ppr id)]
    help it (WpTyApp ty)  = no_parens  $ sep [it True, text "@" <> pprParendType ty]
    help it (WpEvLam id)  = add_parens $ sep [ text "\\" <> pprLamBndr id <> dot, it False]
    help it (WpTyLam tv)  = add_parens $ sep [text "/\\" <> pprLamBndr tv <> dot, it False]
    help it (WpLet binds) = add_parens $ sep [text "let" <+> braces (ppr binds), it False]
    help it (WpMultCoercion co)   = add_parens $ sep [it False, nest 2 (text "<multiplicity coercion>"
                                              <+> pprParendCo co)]

pprLamBndr :: Id -> SDoc
pprLamBndr v = pprBndr LambdaBind v

add_parens, no_parens :: SDoc -> Bool -> SDoc
add_parens d True  = parens d
add_parens d False = d
no_parens d _ = d

instance Outputable TcEvBinds where
  ppr (TcEvBinds v) = ppr v
  ppr (EvBinds bs)  = text "EvBinds" <> braces (vcat (map ppr (bagToList bs)))

instance Outputable EvBindsVar where
  ppr (EvBindsVar { ebv_uniq = u })
     = text "EvBindsVar" <> angleBrackets (ppr u)
  ppr (CoEvBindsVar { ebv_uniq = u })
     = text "CoEvBindsVar" <> angleBrackets (ppr u)

instance Uniquable EvBindsVar where
  getUnique = ebv_uniq

instance Outputable EvBind where
  ppr (EvBind { eb_lhs = v, eb_rhs = e, eb_info = info })
     = sep [ pp_gw <+> ppr v
           , nest 2 $ equals <+> ppr e ]
      -- We cheat a bit and pretend EqVars are CoVars for the purposes of pretty printing
     where
       pp_gw = brackets $ case info of
           EvBindGiven{}  -> char 'G'
           EvBindWanted{} -> char 'W'

instance Outputable EvTerm where
  ppr (EvExpr e)         = ppr e
  ppr (EvTypeable ty ev) = ppr ev <+> dcolon <+> text "Typeable" <+> ppr ty
  ppr (EvFun { et_tvs = tvs, et_given = gs, et_binds = bs, et_body = w })
      = hang (text "\\" <+> sep (map pprLamBndr (tvs ++ gs)) <+> arrow)
           2 (ppr bs $$ ppr w)   -- Not very pretty

instance Outputable EvCallStack where
  ppr EvCsEmpty
    = text "[]"
  ppr (EvCsPushCall orig loc tm)
    = ppr (orig,loc) <+> text ":" <+> ppr tm

instance Outputable EvTypeable where
  ppr (EvTypeableTyCon ts _)     = text "TyCon" <+> ppr ts
  ppr (EvTypeableTyApp t1 t2)    = parens (ppr t1 <+> ppr t2)
  ppr (EvTypeableTyLit t1)       = text "TyLit" <> ppr t1
  ppr (EvTypeableTrFun tm t1 t2) = parens (ppr t1 <+> arr <+> ppr t2)
    where
      arr = pprArrowWithMultiplicity visArgTypeLike (Right (ppr tm))


----------------------------------------------------------------------
-- Helper functions for dealing with IP newtype-dictionaries
----------------------------------------------------------------------

-- | Create a 'Coercion' that unwraps an implicit-parameter
-- dictionary to expose the underlying value.
-- We expect the 'Type' to have the form `IP sym ty`,
-- and return a 'Coercion' `co :: IP sym ty ~ ty`
unwrapIP :: Type -> CoercionR
unwrapIP ty =
  case unwrapNewTyCon_maybe tc of
    Just (_,_,ax) -> mkUnbranchedAxInstCo Representational ax tys []
    Nothing       -> pprPanic "unwrapIP" $
                       text "The dictionary for" <+> quotes (ppr tc)
                         <+> text "is not a newtype!"
  where
  (tc, tys) = splitTyConApp ty

-- | Create a 'Coercion' that wraps a value in an implicit-parameter
-- dictionary. See 'unwrapIP'.
wrapIP :: Type -> CoercionR
wrapIP ty = mkSymCo (unwrapIP ty)

----------------------------------------------------------------------
-- A datatype used to pass information when desugaring quotations
----------------------------------------------------------------------

-- We have to pass a `EvVar` and `Type` into `dsBracket` so that the
-- correct evidence and types are applied to all the TH combinators.
-- This data type bundles them up together with some convenience methods.
--
-- The EvVar is evidence for `Quote m`
-- The Type is a metavariable for `m`
--
data QuoteWrapper = QuoteWrapper EvVar Type deriving Data.Data

quoteWrapperTyVarTy :: QuoteWrapper -> Type
quoteWrapperTyVarTy (QuoteWrapper _ t) = t

-- | Convert the QuoteWrapper into a normal HsWrapper which can be used to
-- apply its contents.
applyQuoteWrapper :: QuoteWrapper -> HsWrapper
applyQuoteWrapper (QuoteWrapper ev_var m_var)
  = mkWpEvVarApps [ev_var] <.> mkWpTyApps [m_var]