summaryrefslogtreecommitdiff
path: root/compiler/GHC/Tc/Utils/TcMType.hs
blob: 7db80cfccb4be62b975ea63e9281db12a1635128 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
{-# LANGUAGE MultiWayIf      #-}
{-# LANGUAGE RecursiveDo     #-}
{-# LANGUAGE TupleSections   #-}

{-# OPTIONS_GHC -Wno-incomplete-record-updates #-}
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998

-}

-- | Monadic type operations
--
-- This module contains monadic operations over types that contain mutable type
-- variables.
module GHC.Tc.Utils.TcMType (
  TcTyVar, TcKind, TcType, TcTauType, TcThetaType, TcTyVarSet,

  --------------------------------
  -- Creating new mutable type variables
  newFlexiTyVar,
  newNamedFlexiTyVar,
  newFlexiTyVarTy,              -- Kind -> TcM TcType
  newFlexiTyVarTys,             -- Int -> Kind -> TcM [TcType]
  newOpenFlexiTyVar, newOpenFlexiTyVarTy, newOpenTypeKind,
  newOpenBoxedTypeKind,
  newMetaKindVar, newMetaKindVars,
  newMetaTyVarTyAtLevel, newConcreteTyVarTyAtLevel,
  newAnonMetaTyVar, newConcreteTyVar,
  cloneMetaTyVar, cloneMetaTyVarWithInfo,
  newCycleBreakerTyVar,

  newMultiplicityVar,
  readMetaTyVar, writeMetaTyVar, writeMetaTyVarRef,
  newTauTvDetailsAtLevel, newMetaDetails, newMetaTyVarName,
  isFilledMetaTyVar_maybe, isFilledMetaTyVar, isUnfilledMetaTyVar,

  --------------------------------
  -- Creating new evidence variables
  newEvVar, newEvVars, newDict,
  newWantedWithLoc, newWanted, newWanteds, cloneWanted, cloneWC, cloneWantedCtEv,
  emitWanted, emitWantedEq, emitWantedEvVar, emitWantedEvVars,
  emitWantedEqs,
  newTcEvBinds, newNoTcEvBinds, addTcEvBind,
  emitNewExprHole,

  newCoercionHole, newCoercionHoleO, newVanillaCoercionHole,
  fillCoercionHole, isFilledCoercionHole,
  unpackCoercionHole, unpackCoercionHole_maybe,
  checkCoercionHole,

  newImplication,

  --------------------------------
  -- Instantiation
  newMetaTyVars, newMetaTyVarX, newMetaTyVarsX,
  newMetaTyVarTyVarX,
  newTyVarTyVar, cloneTyVarTyVar,
  newPatSigTyVar, newSkolemTyVar, newWildCardX,

  --------------------------------
  -- Expected types
  ExpType(..), ExpSigmaType, ExpRhoType,
  mkCheckExpType, newInferExpType, newInferExpTypeFRR,
  tcInfer, tcInferFRR,
  readExpType, readExpType_maybe, readScaledExpType,
  expTypeToType, scaledExpTypeToType,
  checkingExpType_maybe, checkingExpType,
  inferResultToType, ensureMonoType, promoteTcType,

  --------------------------------
  -- Zonking and tidying
  zonkTidyTcType, zonkTidyTcTypes, zonkTidyOrigin, zonkTidyOrigins,
  zonkTidyFRRInfos,
  tidyEvVar, tidyCt, tidyHole, tidyDelayedError,
    zonkTcTyVar, zonkTcTyVars,
  zonkTcTyVarToTcTyVar, zonkTcTyVarsToTcTyVars,
  zonkInvisTVBinder,
  zonkTyCoVarsAndFV, zonkTcTypeAndFV, zonkDTyCoVarSetAndFV,
  zonkTyCoVarsAndFVList,

  zonkTcType, zonkTcTypes, zonkCo,
  zonkTyCoVarKind,
  zonkEvVar, zonkWC, zonkImplication, zonkSimples,
  zonkId, zonkCoVar,
  zonkCt, zonkSkolemInfo, zonkSkolemInfoAnon,

  ---------------------------------
  -- Promotion, defaulting, skolemisation
  defaultTyVar, promoteMetaTyVarTo, promoteTyVarSet,
  quantifyTyVars, isQuantifiableTv,
  zonkAndSkolemise, skolemiseQuantifiedTyVar,
  doNotQuantifyTyVars,

  candidateQTyVarsOfType,  candidateQTyVarsOfKind,
  candidateQTyVarsOfTypes, candidateQTyVarsOfKinds,
  candidateQTyVarsWithBinders,
  CandidatesQTvs(..), delCandidates,
  candidateKindVars, partitionCandidates,

  ------------------------------
  -- Representation polymorphism
  checkTypeHasFixedRuntimeRep,

  ------------------------------
  -- Other
  zonkRewriterSet, zonkCtRewriterSet, zonkCtEvRewriterSet
  ) where

import GHC.Prelude

import GHC.Driver.Session
import qualified GHC.LanguageExtensions as LangExt

import {-# SOURCE #-} GHC.Tc.Utils.Unify( unifyInvisibleType )
import GHC.Tc.Types.Origin
import GHC.Tc.Types.Constraint
import GHC.Tc.Types.Evidence
import GHC.Tc.Utils.Monad        -- TcType, amongst others
import GHC.Tc.Utils.TcType
import GHC.Tc.Errors.Types
import GHC.Tc.Errors.Ppr

import GHC.Core.TyCo.Rep
import GHC.Core.TyCo.Ppr
import GHC.Core.Type
import GHC.Core.TyCon
import GHC.Core.Coercion
import GHC.Core.Class
import GHC.Core.Predicate
import GHC.Core.InstEnv (ClsInst(is_tys))

import GHC.Types.Var
import GHC.Types.Id as Id
import GHC.Types.Name
import GHC.Types.Var.Set

import GHC.Builtin.Types
import GHC.Types.Var.Env
import GHC.Types.Unique.Set
import GHC.Types.Basic ( TypeOrKind(..)
                       , NonStandardDefaultingStrategy(..)
                       , DefaultingStrategy(..), defaultNonStandardTyVars )

import GHC.Data.FastString
import GHC.Data.Bag
import GHC.Data.Pair

import GHC.Utils.Misc
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Utils.Panic.Plain
import GHC.Utils.Constants (debugIsOn)

import Control.Monad
import GHC.Data.Maybe
import qualified Data.Semigroup as Semi
import GHC.Types.Name.Reader

{-
************************************************************************
*                                                                      *
        Kind variables
*                                                                      *
************************************************************************
-}

newMetaKindVar :: TcM TcKind
newMetaKindVar
  = do { details <- newMetaDetails TauTv
       ; name    <- newMetaTyVarName (fsLit "k")
                    -- All MetaKindVars are called "k"
                    -- They may be jiggled by tidying
       ; let kv = mkTcTyVar name liftedTypeKind details
       ; traceTc "newMetaKindVar" (ppr kv)
       ; return (mkTyVarTy kv) }

newMetaKindVars :: Int -> TcM [TcKind]
newMetaKindVars n = replicateM n newMetaKindVar

{-
************************************************************************
*                                                                      *
     Evidence variables; range over constraints we can abstract over
*                                                                      *
************************************************************************
-}

newEvVars :: TcThetaType -> TcM [EvVar]
newEvVars theta = mapM newEvVar theta

--------------

newEvVar :: TcPredType -> TcRnIf gbl lcl EvVar
-- Creates new *rigid* variables for predicates
newEvVar ty = do { name <- newSysName (predTypeOccName ty)
                 ; return (mkLocalIdOrCoVar name ManyTy ty) }

-- | Create a new Wanted constraint with the given 'CtLoc'.
newWantedWithLoc :: CtLoc -> PredType -> TcM CtEvidence
newWantedWithLoc loc pty
  = do dst <- case classifyPredType pty of
                EqPred {} -> HoleDest  <$> newCoercionHole loc pty
                _         -> EvVarDest <$> newEvVar pty
       return $ CtWanted { ctev_dest      = dst
                         , ctev_pred      = pty
                         , ctev_loc       = loc
                         , ctev_rewriters = emptyRewriterSet }

-- | Create a new Wanted constraint with the given 'CtOrigin', and
-- location information taken from the 'TcM' environment.
newWanted :: CtOrigin -> Maybe TypeOrKind -> PredType -> TcM CtEvidence
-- Deals with both equality and non-equality predicates
newWanted orig t_or_k pty
  = do loc <- getCtLocM orig t_or_k
       newWantedWithLoc loc pty

-- | Create new Wanted constraints with the given 'CtOrigin',
-- and location information taken from the 'TcM' environment.
newWanteds :: CtOrigin -> ThetaType -> TcM [CtEvidence]
newWanteds orig = mapM (newWanted orig Nothing)

----------------------------------------------
-- Cloning constraints
----------------------------------------------

cloneWantedCtEv :: CtEvidence -> TcM CtEvidence
cloneWantedCtEv ctev@(CtWanted { ctev_pred = pty, ctev_dest = HoleDest _, ctev_loc = loc })
  | isEqPrimPred pty
  = do { co_hole <- newCoercionHole loc pty
       ; return (ctev { ctev_dest = HoleDest co_hole }) }
  | otherwise
  = pprPanic "cloneWantedCtEv" (ppr pty)
cloneWantedCtEv ctev = return ctev

cloneWanted :: Ct -> TcM Ct
cloneWanted ct = mkNonCanonical <$> cloneWantedCtEv (ctEvidence ct)

cloneWC :: WantedConstraints -> TcM WantedConstraints
-- Clone all the evidence bindings in
--   a) the ic_bind field of any implications
--   b) the CoercionHoles of any wanted constraints
-- so that solving the WantedConstraints will not have any visible side
-- effect, /except/ from causing unifications
cloneWC wc@(WC { wc_simple = simples, wc_impl = implics })
  = do { simples' <- mapBagM cloneWanted simples
       ; implics' <- mapBagM cloneImplication implics
       ; return (wc { wc_simple = simples', wc_impl = implics' }) }

cloneImplication :: Implication -> TcM Implication
cloneImplication implic@(Implic { ic_binds = binds, ic_wanted = inner_wanted })
  = do { binds'        <- cloneEvBindsVar binds
       ; inner_wanted' <- cloneWC inner_wanted
       ; return (implic { ic_binds = binds', ic_wanted = inner_wanted' }) }

----------------------------------------------
-- Emitting constraints
----------------------------------------------

-- | Emits a new Wanted. Deals with both equalities and non-equalities.
emitWanted :: CtOrigin -> TcPredType -> TcM EvTerm
emitWanted origin pty
  = do { ev <- newWanted origin Nothing pty
       ; emitSimple $ mkNonCanonical ev
       ; return $ ctEvTerm ev }

emitWantedEqs :: CtOrigin -> [(TcType,TcType)] -> TcM ()
-- Emit some new wanted nominal equalities
emitWantedEqs origin pairs
  | null pairs
  = return ()
  | otherwise
  = mapM_ (uncurry (emitWantedEq origin TypeLevel Nominal)) pairs

-- | Emits a new equality constraint
emitWantedEq :: CtOrigin -> TypeOrKind -> Role -> TcType -> TcType -> TcM Coercion
emitWantedEq origin t_or_k role ty1 ty2
  = do { hole <- newCoercionHoleO origin pty
       ; loc  <- getCtLocM origin (Just t_or_k)
       ; emitSimple $ mkNonCanonical $
         CtWanted { ctev_pred      = pty
                  , ctev_dest      = HoleDest hole
                  , ctev_loc       = loc
                  , ctev_rewriters = emptyRewriterSet }
       ; return (HoleCo hole) }
  where
    pty = mkPrimEqPredRole role ty1 ty2

-- | Creates a new EvVar and immediately emits it as a Wanted.
-- No equality predicates here.
emitWantedEvVar :: CtOrigin -> TcPredType -> TcM EvVar
emitWantedEvVar origin ty
  = do { new_cv <- newEvVar ty
       ; loc <- getCtLocM origin Nothing
       ; let ctev = CtWanted { ctev_pred      = ty
                             , ctev_dest      = EvVarDest new_cv
                             , ctev_loc       = loc
                             , ctev_rewriters = emptyRewriterSet }
       ; emitSimple $ mkNonCanonical ctev
       ; return new_cv }

emitWantedEvVars :: CtOrigin -> [TcPredType] -> TcM [EvVar]
emitWantedEvVars orig = mapM (emitWantedEvVar orig)

-- | Emit a new wanted expression hole
emitNewExprHole :: RdrName         -- of the hole
                -> Type -> TcM HoleExprRef
emitNewExprHole occ ty
  = do { u <- newUnique
       ; ref <- newTcRef (pprPanic "unfilled unbound-variable evidence" (ppr u))
       ; let her = HER ref ty u

       ; loc <- getCtLocM (ExprHoleOrigin (Just occ)) (Just TypeLevel)

       ; let hole = Hole { hole_sort = ExprHole her
                         , hole_occ  = occ
                         , hole_ty   = ty
                         , hole_loc  = loc }
       ; emitHole hole
       ; return her }

newDict :: Class -> [TcType] -> TcM DictId
newDict cls tys
  = do { name <- newSysName (mkDictOcc (getOccName cls))
       ; return (mkLocalId name ManyTy (mkClassPred cls tys)) }

predTypeOccName :: PredType -> OccName
predTypeOccName ty = case classifyPredType ty of
    ClassPred cls _ -> mkDictOcc (getOccName cls)
    EqPred {}       -> mkVarOccFS (fsLit "co")
    IrredPred {}    -> mkVarOccFS (fsLit "irred")
    ForAllPred {}   -> mkVarOccFS (fsLit "df")

-- | Create a new 'Implication' with as many sensible defaults for its fields
-- as possible. Note that the 'ic_tclvl', 'ic_binds', and 'ic_info' fields do
-- /not/ have sensible defaults, so they are initialized with lazy thunks that
-- will 'panic' if forced, so one should take care to initialize these fields
-- after creation.
--
-- This is monadic to look up the 'TcLclEnv', which is used to initialize
-- 'ic_env', and to set the -Winaccessible-code flag. See
-- Note [Avoid -Winaccessible-code when deriving] in "GHC.Tc.TyCl.Instance".
newImplication :: TcM Implication
newImplication
  = do env <- getLclEnv
       warn_inaccessible <- woptM Opt_WarnInaccessibleCode
       return (implicationPrototype { ic_env = env
                                    , ic_warn_inaccessible = warn_inaccessible })

{-
************************************************************************
*                                                                      *
        Coercion holes
*                                                                      *
************************************************************************
-}

newVanillaCoercionHole :: TcPredType -> TcM CoercionHole
newVanillaCoercionHole = new_coercion_hole False

newCoercionHole :: CtLoc -> TcPredType -> TcM CoercionHole
newCoercionHole loc = newCoercionHoleO (ctLocOrigin loc)

newCoercionHoleO :: CtOrigin -> TcPredType -> TcM CoercionHole
newCoercionHoleO (KindEqOrigin {}) = new_coercion_hole True
newCoercionHoleO _                 = new_coercion_hole False

new_coercion_hole :: Bool -> TcPredType -> TcM CoercionHole
new_coercion_hole hetero_kind pred_ty
  = do { co_var <- newEvVar pred_ty
       ; traceTc "New coercion hole:" (ppr co_var <+> dcolon <+> ppr pred_ty)
       ; ref <- newMutVar Nothing
       ; return $ CoercionHole { ch_co_var = co_var, ch_ref = ref
                               , ch_hetero_kind = hetero_kind } }

-- | Put a value in a coercion hole
fillCoercionHole :: CoercionHole -> Coercion -> TcM ()
fillCoercionHole (CoercionHole { ch_ref = ref, ch_co_var = cv }) co = do
  when debugIsOn $ do
    cts <- readTcRef ref
    whenIsJust cts $ \old_co ->
      pprPanic "Filling a filled coercion hole" (ppr cv $$ ppr co $$ ppr old_co)
  traceTc "Filling coercion hole" (ppr cv <+> text ":=" <+> ppr co)
  writeTcRef ref (Just co)

-- | Is a coercion hole filled in?
isFilledCoercionHole :: CoercionHole -> TcM Bool
isFilledCoercionHole (CoercionHole { ch_ref = ref }) = isJust <$> readTcRef ref

-- | Retrieve the contents of a coercion hole. Panics if the hole
-- is unfilled
unpackCoercionHole :: CoercionHole -> TcM Coercion
unpackCoercionHole hole
  = do { contents <- unpackCoercionHole_maybe hole
       ; case contents of
           Just co -> return co
           Nothing -> pprPanic "Unfilled coercion hole" (ppr hole) }

-- | Retrieve the contents of a coercion hole, if it is filled
unpackCoercionHole_maybe :: CoercionHole -> TcM (Maybe Coercion)
unpackCoercionHole_maybe (CoercionHole { ch_ref = ref }) = readTcRef ref

-- | Check that a coercion is appropriate for filling a hole. (The hole
-- itself is needed only for printing.)
-- Always returns the checked coercion, but this return value is necessary
-- so that the input coercion is forced only when the output is forced.
checkCoercionHole :: CoVar -> Coercion -> TcM Coercion
checkCoercionHole cv co
  | debugIsOn
  = do { cv_ty <- zonkTcType (varType cv)
                  -- co is already zonked, but cv might not be
       ; return $
         assertPpr (ok cv_ty)
                   (text "Bad coercion hole" <+>
                    ppr cv <> colon <+> vcat [ ppr t1, ppr t2, ppr role
                                             , ppr cv_ty ])
         co }
  | otherwise
  = return co

  where
    (Pair t1 t2, role) = coercionKindRole co
    ok cv_ty | EqPred cv_rel cv_t1 cv_t2 <- classifyPredType cv_ty
             =  t1 `eqType` cv_t1
             && t2 `eqType` cv_t2
             && role == eqRelRole cv_rel
             | otherwise
             = False


{- **********************************************************************
*
                      ExpType functions
*
********************************************************************** -}

{- Note [ExpType]
~~~~~~~~~~~~~~~~~
An ExpType is used as the "expected type" when type-checking an expression.
An ExpType can hold a "hole" that can be filled in by the type-checker.
This allows us to have one tcExpr that works in both checking mode and
synthesis mode (that is, bidirectional type-checking). Previously, this
was achieved by using ordinary unification variables, but we don't need
or want that generality. (For example, #11397 was caused by doing the
wrong thing with unification variables.) Instead, we observe that these
holes should

1. never be nested
2. never appear as the type of a variable
3. be used linearly (never be duplicated)

By defining ExpType, separately from Type, we can achieve goals 1 and 2
statically.

See also [wiki:typechecking]

Note [TcLevel of ExpType]
~~~~~~~~~~~~~~~~~~~~~~~~~
Consider

  data G a where
    MkG :: G Bool

  foo MkG = True

This is a classic untouchable-variable / ambiguous GADT return type
scenario. But, with ExpTypes, we'll be inferring the type of the RHS.
We thus must track a TcLevel in an Inferring ExpType. If we try to
fill the ExpType and find that the TcLevels don't work out, we fill
the ExpType with a tau-tv at the low TcLevel, hopefully to be worked
out later by some means -- see fillInferResult, and Note [fillInferResult]

This behaviour triggered in test gadt/gadt-escape1.

Note [FixedRuntimeRep context in ExpType]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Sometimes, we want to be sure that we fill an ExpType with a type
that has a syntactically fixed RuntimeRep (in the sense of
Note [Fixed RuntimeRep] in GHC.Tc.Utils.Concrete).

Example:

  pattern S a = (a :: (T :: TYPE R))

We have to infer a type for `a` which has a syntactically fixed RuntimeRep.
When it comes time to filling in the inferred type, we do the appropriate
representation-polymorphism check, much like we do a level check
as explained in Note [TcLevel of ExpType].

See test case T21325.
-}

-- actual data definition is in GHC.Tc.Utils.TcType

newInferExpType :: TcM ExpType
newInferExpType = new_inferExpType Nothing

newInferExpTypeFRR :: FixedRuntimeRepContext -> TcM ExpTypeFRR
newInferExpTypeFRR frr_orig
  = do { th_stage <- getStage
       ; if
          -- See [Wrinkle: Typed Template Haskell]
          -- in Note [hasFixedRuntimeRep] in GHC.Tc.Utils.Concrete.
          | Brack _ (TcPending {}) <- th_stage
          -> new_inferExpType Nothing

          | otherwise
          -> new_inferExpType (Just frr_orig) }

new_inferExpType :: Maybe FixedRuntimeRepContext -> TcM ExpType
new_inferExpType mb_frr_orig
  = do { u <- newUnique
       ; tclvl <- getTcLevel
       ; traceTc "newInferExpType" (ppr u <+> ppr tclvl)
       ; ref <- newMutVar Nothing
       ; return (Infer (IR { ir_uniq = u, ir_lvl = tclvl
                           , ir_ref = ref
                           , ir_frr = mb_frr_orig })) }

-- | Extract a type out of an ExpType, if one exists. But one should always
-- exist. Unless you're quite sure you know what you're doing.
readExpType_maybe :: ExpType -> TcM (Maybe TcType)
readExpType_maybe (Check ty)                   = return (Just ty)
readExpType_maybe (Infer (IR { ir_ref = ref})) = readMutVar ref

-- | Same as readExpType, but for Scaled ExpTypes
readScaledExpType :: Scaled ExpType -> TcM (Scaled Type)
readScaledExpType (Scaled m exp_ty)
  = do { ty <- readExpType exp_ty
       ; return (Scaled m ty) }

-- | Extract a type out of an ExpType. Otherwise, panics.
readExpType :: ExpType -> TcM TcType
readExpType exp_ty
  = do { mb_ty <- readExpType_maybe exp_ty
       ; case mb_ty of
           Just ty -> return ty
           Nothing -> pprPanic "Unknown expected type" (ppr exp_ty) }

-- | Returns the expected type when in checking mode.
checkingExpType_maybe :: ExpType -> Maybe TcType
checkingExpType_maybe (Check ty) = Just ty
checkingExpType_maybe (Infer {}) = Nothing

-- | Returns the expected type when in checking mode. Panics if in inference
-- mode.
checkingExpType :: String -> ExpType -> TcType
checkingExpType _   (Check ty) = ty
checkingExpType err et         = pprPanic "checkingExpType" (text err $$ ppr et)

scaledExpTypeToType :: Scaled ExpType -> TcM (Scaled TcType)
scaledExpTypeToType (Scaled m exp_ty)
  = do { ty <- expTypeToType exp_ty
       ; return (Scaled m ty) }

-- | Extracts the expected type if there is one, or generates a new
-- TauTv if there isn't.
expTypeToType :: ExpType -> TcM TcType
expTypeToType (Check ty)      = return ty
expTypeToType (Infer inf_res) = inferResultToType inf_res

inferResultToType :: InferResult -> TcM Type
inferResultToType (IR { ir_uniq = u, ir_lvl = tc_lvl
                      , ir_ref = ref
                      , ir_frr = mb_frr })
  = do { mb_inferred_ty <- readTcRef ref
       ; tau <- case mb_inferred_ty of
            Just ty -> do { ensureMonoType ty
                            -- See Note [inferResultToType]
                          ; return ty }
            Nothing -> do { tau <- new_meta
                          ; writeMutVar ref (Just tau)
                          ; return tau }
       ; traceTc "Forcing ExpType to be monomorphic:"
                 (ppr u <+> text ":=" <+> ppr tau)
       ; return tau }
  where
    -- See Note [TcLevel of ExpType]
    new_meta = case mb_frr of
      Nothing  ->  do { rr  <- newMetaTyVarTyAtLevel tc_lvl runtimeRepTy
                      ; newMetaTyVarTyAtLevel tc_lvl (mkTYPEapp rr) }
      Just frr -> mdo { rr  <- newConcreteTyVarTyAtLevel conc_orig tc_lvl runtimeRepTy
                      ; tau <- newMetaTyVarTyAtLevel tc_lvl (mkTYPEapp rr)
                      ; let conc_orig = ConcreteFRR $ FixedRuntimeRepOrigin tau frr
                      ; return tau }

{- Note [inferResultToType]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
expTypeToType and inferResultType convert an InferResult to a monotype.
It must be a monotype because if the InferResult isn't already filled in,
we fill it in with a unification variable (hence monotype).  So to preserve
order-independence we check for mono-type-ness even if it *is* filled in
already.

See also Note [TcLevel of ExpType] above, and
Note [fillInferResult] in GHC.Tc.Utils.Unify.
-}

-- | Infer a type using a fresh ExpType
-- See also Note [ExpType] in "GHC.Tc.Utils.TcMType"
--
-- Use 'tcInferFRR' if you require the type to have a fixed
-- runtime representation.
tcInfer :: (ExpSigmaType -> TcM a) -> TcM (a, TcSigmaType)
tcInfer = tc_infer Nothing

-- | Like 'tcInfer', except it ensures that the resulting type
-- has a syntactically fixed RuntimeRep as per Note [Fixed RuntimeRep] in
-- GHC.Tc.Utils.Concrete.
tcInferFRR :: FixedRuntimeRepContext -> (ExpSigmaTypeFRR -> TcM a) -> TcM (a, TcSigmaTypeFRR)
tcInferFRR frr_orig = tc_infer (Just frr_orig)

tc_infer :: Maybe FixedRuntimeRepContext -> (ExpSigmaType -> TcM a) -> TcM (a, TcSigmaType)
tc_infer mb_frr tc_check
  = do { res_ty <- new_inferExpType mb_frr
       ; result <- tc_check res_ty
       ; res_ty <- readExpType res_ty
       ; return (result, res_ty) }

{- *********************************************************************
*                                                                      *
              Promoting types
*                                                                      *
********************************************************************* -}

ensureMonoType :: TcType -> TcM ()
-- Assuming that the argument type is of kind (TYPE r),
-- ensure that it is a /monotype/
-- If it is not a monotype we can see right away (since unification
-- variables and type-function applications stand for monotypes), but
-- we emit a Wanted equality just to delay the error message until later
ensureMonoType res_ty
  | isTauTy res_ty   -- isTauTy doesn't need zonking or anything
  = return ()
  | otherwise
  = do { mono_ty <- newOpenFlexiTyVarTy
       ; _co <- unifyInvisibleType res_ty mono_ty
       ; return () }

promoteTcType :: TcLevel -> TcType -> TcM (TcCoercionN, TcType)
-- See Note [Promoting a type]
-- See also Note [fillInferResult]
-- promoteTcType level ty = (co, ty')
--   * Returns ty'  whose max level is just 'level'
--             and  whose kind is ~# to the kind of 'ty'
--             and  whose kind has form TYPE rr
--   * and co :: ty ~ ty'
--   * and emits constraints to justify the coercion
--
-- NB: we expect that 'ty' has already kind (TYPE rr) for
--     some rr::RuntimeRep.  It is, after all, the type of a term.
promoteTcType dest_lvl ty
  = do { cur_lvl <- getTcLevel
       ; if (cur_lvl `sameDepthAs` dest_lvl)
         then return (mkNomReflCo ty, ty)
         else promote_it }
  where
    promote_it :: TcM (TcCoercion, TcType)
    promote_it  -- Emit a constraint  (alpha :: TYPE rr) ~ ty
                -- where alpha and rr are fresh and from level dest_lvl
      = do { rr      <- newMetaTyVarTyAtLevel dest_lvl runtimeRepTy
           ; prom_ty <- newMetaTyVarTyAtLevel dest_lvl (mkTYPEapp rr)
           ; co <- unifyInvisibleType ty prom_ty
           ; return (co, prom_ty) }

{- Note [Promoting a type]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider (#12427)

  data T where
    MkT :: (Int -> Int) -> a -> T

  h y = case y of MkT v w -> v

We'll infer the RHS type with an expected type ExpType of
  (IR { ir_lvl = l, ir_ref = ref, ... )
where 'l' is the TcLevel of the RHS of 'h'.  Then the MkT pattern
match will increase the level, so we'll end up in tcSubType, trying to
unify the type of v,
  v :: Int -> Int
with the expected type.  But this attempt takes place at level (l+1),
rightly so, since v's type could have mentioned existential variables,
(like w's does) and we want to catch that.

So we
  - create a new meta-var alpha[l+1]
  - fill in the InferRes ref cell 'ref' with alpha
  - emit an equality constraint, thus
        [W] alpha[l+1] ~ (Int -> Int)

That constraint will float outwards, as it should, unless v's
type mentions a skolem-captured variable.

This approach fails if v has a higher rank type; see
Note [Promotion and higher rank types]


Note [Promotion and higher rank types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If v had a higher-rank type, say v :: (forall a. a->a) -> Int,
then we'd emit an equality
        [W] alpha[l+1] ~ ((forall a. a->a) -> Int)
which will sadly fail because we can't unify a unification variable
with a polytype.  But there is nothing really wrong with the program
here.

We could just about solve this by "promote the type" of v, to expose
its polymorphic "shape" while still leaving constraints that will
prevent existential escape.  But we must be careful!  Exposing
the "shape" of the type is precisely what we must NOT do under
a GADT pattern match!  So in this case we might promote the type
to
        (forall a. a->a) -> alpha[l+1]
and emit the constraint
        [W] alpha[l+1] ~ Int
Now the promoted type can fill the ref cell, while the emitted
equality can float or not, according to the usual rules.

But that's not quite right!  We are exposing the arrow! We could
deal with that too:
        (forall a. mu[l+1] a a) -> alpha[l+1]
with constraints
        [W] alpha[l+1] ~ Int
        [W] mu[l+1] ~ (->)
Here we abstract over the '->' inside the forall, in case that
is subject to an equality constraint from a GADT match.

Note that we kept the outer (->) because that's part of
the polymorphic "shape".  And because of impredicativity,
GADT matches can't give equalities that affect polymorphic
shape.

This reasoning just seems too complicated, so I decided not
to do it.  These higher-rank notes are just here to record
the thinking.
-}


{- *********************************************************************
*                                                                      *
        MetaTvs (meta type variables; mutable)
*                                                                      *
********************************************************************* -}

{- Note [TyVarTv]
~~~~~~~~~~~~~~~~~
A TyVarTv can unify with type *variables* only, including other TyVarTvs and
skolems.  They are used in two places:

1. In kind signatures, see GHC.Tc.TyCl
      Note [Inferring kinds for type declarations]
   and Note [Using TyVarTvs for kind-checking GADTs]

2. In partial type signatures.  See GHC.Tc.Types
   Note [Quantified variables in partial type signatures]

Sometimes, they can unify with type variables that the user would
rather keep distinct; see #11203 for an example.  So, any client of
this function needs to either allow the TyVarTvs to unify with each
other or check that they don't. In the case of (1) the check is done
in GHC.Tc.TyCl.swizzleTcTyConBndrs.  In case of (2) it's done by
findDupTyVarTvs in GHC.Tc.Gen.Bind.chooseInferredQuantifiers.

Historical note: Before #15050 this (under the name SigTv) was also
used for ScopedTypeVariables in patterns, to make sure these type
variables only refer to other type variables, but this restriction was
dropped, and ScopedTypeVariables can now refer to full types (GHC
Proposal 29).
-}

newMetaTyVarName :: FastString -> TcM Name
-- Makes a /System/ Name, which is eagerly eliminated by
-- the unifier; see GHC.Tc.Utils.Unify.nicer_to_update_tv1, and
-- GHC.Tc.Solver.Canonical.canEqTyVarTyVar (nicer_to_update_tv2)
newMetaTyVarName str
  = newSysName (mkTyVarOccFS str)

cloneMetaTyVarName :: Name -> TcM Name
cloneMetaTyVarName name
  = newSysName (nameOccName name)
         -- See Note [Name of an instantiated type variable]

{- Note [Name of an instantiated type variable]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
At the moment we give a unification variable a System Name, which
influences the way it is tidied; see TypeRep.tidyTyVarBndr.
-}

metaInfoToTyVarName :: MetaInfo -> FastString
metaInfoToTyVarName  meta_info =
  case meta_info of
       TauTv          -> fsLit "t"
       TyVarTv        -> fsLit "a"
       RuntimeUnkTv   -> fsLit "r"
       CycleBreakerTv -> fsLit "b"
       ConcreteTv {}  -> fsLit "c"

newAnonMetaTyVar :: MetaInfo -> Kind -> TcM TcTyVar
newAnonMetaTyVar mi = newNamedAnonMetaTyVar (metaInfoToTyVarName mi) mi

newNamedAnonMetaTyVar :: FastString -> MetaInfo -> Kind -> TcM TcTyVar
-- Make a new meta tyvar out of thin air
newNamedAnonMetaTyVar tyvar_name meta_info kind

  = do  { name    <- newMetaTyVarName tyvar_name
        ; details <- newMetaDetails meta_info
        ; let tyvar = mkTcTyVar name kind details
        ; traceTc "newAnonMetaTyVar" (ppr tyvar)
        ; return tyvar }

-- makes a new skolem tv
newSkolemTyVar :: SkolemInfo -> Name -> Kind -> TcM TcTyVar
newSkolemTyVar skol_info name kind
  = do { lvl <- getTcLevel
       ; return (mkTcTyVar name kind (SkolemTv skol_info lvl False)) }

newTyVarTyVar :: Name -> Kind -> TcM TcTyVar
-- See Note [TyVarTv]
-- Does not clone a fresh unique
newTyVarTyVar name kind
  = do { details <- newMetaDetails TyVarTv
       ; let tyvar = mkTcTyVar name kind details
       ; traceTc "newTyVarTyVar" (ppr tyvar)
       ; return tyvar }

cloneTyVarTyVar :: Name -> Kind -> TcM TcTyVar
-- See Note [TyVarTv]
-- Clones a fresh unique
cloneTyVarTyVar name kind
  = do { details <- newMetaDetails TyVarTv
       ; uniq <- newUnique
       ; let name' = name `setNameUnique` uniq
             tyvar = mkTcTyVar name' kind details
         -- Don't use cloneMetaTyVar, which makes a SystemName
         -- We want to keep the original more user-friendly Name
         -- In practical terms that means that in error messages,
         -- when the Name is tidied we get 'a' rather than 'a0'
       ; traceTc "cloneTyVarTyVar" (ppr tyvar)
       ; return tyvar }

-- | Create a new metavariable, of the given kind, which can only be unified
-- with a concrete type.
--
-- Invariant: the kind must be concrete, as per Note [ConcreteTv].
-- This is checked with an assertion.
newConcreteTyVar :: HasDebugCallStack => ConcreteTvOrigin
                 -> FastString -> TcKind -> TcM TcTyVar
newConcreteTyVar reason fs kind
  = assertPpr (isConcreteType kind) assert_msg $
    newNamedAnonMetaTyVar fs (ConcreteTv reason) kind
  where
    assert_msg = text "newConcreteTyVar: non-concrete kind" <+> ppr kind

newPatSigTyVar :: Name -> Kind -> TcM TcTyVar
newPatSigTyVar name kind
  = do { details <- newMetaDetails TauTv
       ; uniq <- newUnique
       ; let name' = name `setNameUnique` uniq
             tyvar = mkTcTyVar name' kind details
         -- Don't use cloneMetaTyVar;
         -- same reasoning as in newTyVarTyVar
       ; traceTc "newPatSigTyVar" (ppr tyvar)
       ; return tyvar }

cloneAnonMetaTyVar :: MetaInfo -> TyVar -> TcKind -> TcM TcTyVar
-- Make a fresh MetaTyVar, basing the name
-- on that of the supplied TyVar
cloneAnonMetaTyVar info tv kind
  = do  { details <- newMetaDetails info
        ; name    <- cloneMetaTyVarName (tyVarName tv)
        ; let tyvar = mkTcTyVar name kind details
        ; traceTc "cloneAnonMetaTyVar" (ppr tyvar <+> dcolon <+> ppr (tyVarKind tyvar))
        ; return tyvar }

-- Make a new CycleBreakerTv. See Note [Type equality cycles]
-- in GHC.Tc.Solver.Canonical.
newCycleBreakerTyVar :: TcKind -> TcM TcTyVar
newCycleBreakerTyVar kind
  = do { details <- newMetaDetails CycleBreakerTv
       ; name <- newMetaTyVarName (fsLit "cbv")
       ; return (mkTcTyVar name kind details) }

newMetaDetails :: MetaInfo -> TcM TcTyVarDetails
newMetaDetails info
  = do { ref <- newMutVar Flexi
       ; tclvl <- getTcLevel
       ; return (MetaTv { mtv_info = info
                        , mtv_ref = ref
                        , mtv_tclvl = tclvl }) }

newTauTvDetailsAtLevel :: TcLevel -> TcM TcTyVarDetails
newTauTvDetailsAtLevel tclvl
  = do { ref <- newMutVar Flexi
       ; return (MetaTv { mtv_info  = TauTv
                        , mtv_ref   = ref
                        , mtv_tclvl = tclvl }) }

newConcreteTvDetailsAtLevel :: ConcreteTvOrigin -> TcLevel -> TcM TcTyVarDetails
newConcreteTvDetailsAtLevel conc_orig tclvl
  = do { ref <- newMutVar Flexi
       ; return (MetaTv { mtv_info  = ConcreteTv conc_orig
                        , mtv_ref   = ref
                        , mtv_tclvl = tclvl }) }

cloneMetaTyVar :: TcTyVar -> TcM TcTyVar
cloneMetaTyVar tv
  = assert (isTcTyVar tv) $
    do  { ref  <- newMutVar Flexi
        ; name' <- cloneMetaTyVarName (tyVarName tv)
        ; let details' = case tcTyVarDetails tv of
                           details@(MetaTv {}) -> details { mtv_ref = ref }
                           _ -> pprPanic "cloneMetaTyVar" (ppr tv)
              tyvar = mkTcTyVar name' (tyVarKind tv) details'
        ; traceTc "cloneMetaTyVar" (ppr tyvar)
        ; return tyvar }

cloneMetaTyVarWithInfo :: MetaInfo -> TcLevel -> TcTyVar -> TcM TcTyVar
cloneMetaTyVarWithInfo info tc_lvl tv
  = assert (isTcTyVar tv) $
    do  { ref  <- newMutVar Flexi
        ; name' <- cloneMetaTyVarName (tyVarName tv)
        ; let details = MetaTv { mtv_info  = info
                               , mtv_ref   = ref
                               , mtv_tclvl = tc_lvl }
              tyvar = mkTcTyVar name' (tyVarKind tv) details
        ; traceTc "cloneMetaTyVarWithInfo" (ppr tyvar)
        ; return tyvar }

-- Works for both type and kind variables
readMetaTyVar :: TyVar -> TcM MetaDetails
readMetaTyVar tyvar = assertPpr (isMetaTyVar tyvar) (ppr tyvar) $
                      readMutVar (metaTyVarRef tyvar)

isFilledMetaTyVar_maybe :: TcTyVar -> TcM (Maybe Type)
isFilledMetaTyVar_maybe tv
-- TODO: This should be an assertion that tv is definitely a TcTyVar but it fails
-- at the moment (Jan 22)
 | isTcTyVar tv
 , MetaTv { mtv_ref = ref } <- tcTyVarDetails tv
 = do { cts <- readTcRef ref
      ; case cts of
          Indirect ty -> return (Just ty)
          Flexi       -> return Nothing }
 | otherwise
 = return Nothing

isFilledMetaTyVar :: TyVar -> TcM Bool
-- True of a filled-in (Indirect) meta type variable
isFilledMetaTyVar tv = isJust <$> isFilledMetaTyVar_maybe tv

isUnfilledMetaTyVar :: TyVar -> TcM Bool
-- True of a un-filled-in (Flexi) meta type variable
-- NB: Not the opposite of isFilledMetaTyVar
isUnfilledMetaTyVar tv
  | MetaTv { mtv_ref = ref } <- tcTyVarDetails tv
  = do  { details <- readMutVar ref
        ; return (isFlexi details) }
  | otherwise = return False

--------------------
-- Works with both type and kind variables
writeMetaTyVar :: HasDebugCallStack => TcTyVar -> TcType -> TcM ()
-- Write into a currently-empty MetaTyVar

writeMetaTyVar tyvar ty
  | not debugIsOn
  = writeMetaTyVarRef tyvar (metaTyVarRef tyvar) ty

-- Everything from here on only happens if DEBUG is on
  | not (isTcTyVar tyvar)
  = massertPpr False (text "Writing to non-tc tyvar" <+> ppr tyvar)

  | MetaTv { mtv_ref = ref } <- tcTyVarDetails tyvar
  = writeMetaTyVarRef tyvar ref ty

  | otherwise
  = massertPpr False (text "Writing to non-meta tyvar" <+> ppr tyvar)

--------------------
writeMetaTyVarRef :: HasDebugCallStack => TcTyVar -> TcRef MetaDetails -> TcType -> TcM ()
-- Here the tyvar is for error checking only;
-- the ref cell must be for the same tyvar
writeMetaTyVarRef tyvar ref ty
  | not debugIsOn
  = do { traceTc "writeMetaTyVar" (ppr tyvar <+> dcolon <+> ppr (tyVarKind tyvar)
                                   <+> text ":=" <+> ppr ty)
       ; writeTcRef ref (Indirect ty) }

  -- Everything from here on only happens if DEBUG is on
  -- Need to zonk 'ty' because we may only recently have promoted
  -- its free meta-tyvars (see Solver.Interact.tryToSolveByUnification)
  | otherwise
  = do { meta_details <- readMutVar ref;
       -- Zonk kinds to allow the error check to work
       ; zonked_tv_kind <- zonkTcType tv_kind
       ; zonked_ty      <- zonkTcType ty
       ; let zonked_ty_kind = typeKind zonked_ty
             zonked_ty_lvl  = tcTypeLevel zonked_ty
             level_check_ok  = not (zonked_ty_lvl `strictlyDeeperThan` tv_lvl)
             level_check_msg = ppr zonked_ty_lvl $$ ppr tv_lvl $$ ppr tyvar $$ ppr ty $$ ppr zonked_ty
             kind_check_ok = zonked_ty_kind `eqType` zonked_tv_kind
             -- Note [Extra-constraint holes in partial type signatures] in GHC.Tc.Gen.HsType

             kind_msg = hang (text "Ill-kinded update to meta tyvar")
                           2 (    ppr tyvar <+> text "::" <+> (ppr tv_kind $$ ppr zonked_tv_kind)
                              <+> text ":="
                              <+> ppr ty <+> text "::" <+> (ppr zonked_ty_kind) )

       ; traceTc "writeMetaTyVar" (ppr tyvar <+> text ":=" <+> ppr ty)

       -- Check for double updates
       ; massertPpr (isFlexi meta_details) (double_upd_msg meta_details)

       -- Check for level OK
       ; massertPpr level_check_ok level_check_msg

       -- Check Kinds ok
       ; massertPpr kind_check_ok kind_msg

       -- Do the write
       ; writeMutVar ref (Indirect ty) }
  where
    tv_kind = tyVarKind tyvar

    tv_lvl = tcTyVarLevel tyvar


    double_upd_msg details = hang (text "Double update of meta tyvar")
                                2 (ppr tyvar $$ ppr details)

{-
************************************************************************
*                                                                      *
        MetaTvs: TauTvs
*                                                                      *
************************************************************************

Note [Never need to instantiate coercion variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
With coercion variables sloshing around in types, it might seem that we
sometimes need to instantiate coercion variables. This would be problematic,
because coercion variables inhabit unboxed equality (~#), and the constraint
solver thinks in terms only of boxed equality (~). The solution is that
we never need to instantiate coercion variables in the first place.

The tyvars that we need to instantiate come from the types of functions,
data constructors, and patterns. These will never be quantified over
coercion variables, except for the special case of the promoted Eq#. But,
that can't ever appear in user code, so we're safe!
-}


newMultiplicityVar :: TcM TcType
newMultiplicityVar = newFlexiTyVarTy multiplicityTy

newFlexiTyVar :: Kind -> TcM TcTyVar
newFlexiTyVar kind = newAnonMetaTyVar TauTv kind

-- | Create a new flexi ty var with a specific name
newNamedFlexiTyVar :: FastString -> Kind -> TcM TcTyVar
newNamedFlexiTyVar fs kind = newNamedAnonMetaTyVar fs TauTv kind

newFlexiTyVarTy :: Kind -> TcM TcType
newFlexiTyVarTy kind = do
    tc_tyvar <- newFlexiTyVar kind
    return (mkTyVarTy tc_tyvar)

newFlexiTyVarTys :: Int -> Kind -> TcM [TcType]
newFlexiTyVarTys n kind = replicateM n (newFlexiTyVarTy kind)

newOpenTypeKind :: TcM TcKind
newOpenTypeKind
  = do { rr <- newFlexiTyVarTy runtimeRepTy
       ; return (mkTYPEapp rr) }

-- | Create a tyvar that can be a lifted or unlifted type.
-- Returns alpha :: TYPE kappa, where both alpha and kappa are fresh
newOpenFlexiTyVarTy :: TcM TcType
newOpenFlexiTyVarTy
  = do { tv <- newOpenFlexiTyVar
       ; return (mkTyVarTy tv) }

newOpenFlexiTyVar :: TcM TcTyVar
newOpenFlexiTyVar
  = do { kind <- newOpenTypeKind
       ; newFlexiTyVar kind }

newOpenBoxedTypeKind :: TcM TcKind
newOpenBoxedTypeKind
  = do { lev <- newFlexiTyVarTy (mkTyConTy levityTyCon)
       ; let rr = mkTyConApp boxedRepDataConTyCon [lev]
       ; return (mkTYPEapp rr) }

newMetaTyVars :: [TyVar] -> TcM (Subst, [TcTyVar])
-- Instantiate with META type variables
-- Note that this works for a sequence of kind, type, and coercion variables
-- variables.  Eg    [ (k:*), (a:k->k) ]
--             Gives [ (k7:*), (a8:k7->k7) ]
newMetaTyVars = newMetaTyVarsX emptySubst
    -- emptySubst has an empty in-scope set, but that's fine here
    -- Since the tyvars are freshly made, they cannot possibly be
    -- captured by any existing for-alls.

newMetaTyVarsX :: Subst -> [TyVar] -> TcM (Subst, [TcTyVar])
-- Just like newMetaTyVars, but start with an existing substitution.
newMetaTyVarsX subst = mapAccumLM newMetaTyVarX subst

newMetaTyVarX :: Subst -> TyVar -> TcM (Subst, TcTyVar)
-- Make a new unification variable tyvar whose Name and Kind come from
-- an existing TyVar. We substitute kind variables in the kind.
newMetaTyVarX = new_meta_tv_x TauTv

newMetaTyVarTyVarX :: Subst -> TyVar -> TcM (Subst, TcTyVar)
-- Just like newMetaTyVarX, but make a TyVarTv
newMetaTyVarTyVarX = new_meta_tv_x TyVarTv

newWildCardX :: Subst -> TyVar -> TcM (Subst, TcTyVar)
newWildCardX subst tv
  = do { new_tv <- newAnonMetaTyVar TauTv (substTy subst (tyVarKind tv))
       ; return (extendTvSubstWithClone subst tv new_tv, new_tv) }

new_meta_tv_x :: MetaInfo -> Subst -> TyVar -> TcM (Subst, TcTyVar)
new_meta_tv_x info subst tv
  = do  { new_tv <- cloneAnonMetaTyVar info tv substd_kind
        ; let subst1 = extendTvSubstWithClone subst tv new_tv
        ; return (subst1, new_tv) }
  where
    substd_kind = substTyUnchecked subst (tyVarKind tv)
      -- NOTE: #12549 is fixed so we could use
      -- substTy here, but the tc_infer_args problem
      -- is not yet fixed so leaving as unchecked for now.
      -- OLD NOTE:
      -- Unchecked because we call newMetaTyVarX from
      -- tcInstTyBinder, which is called from tcInferTyApps
      -- which does not yet take enough trouble to ensure
      -- the in-scope set is right; e.g. #12785 trips
      -- if we use substTy here

newMetaTyVarTyAtLevel :: TcLevel -> TcKind -> TcM TcType
newMetaTyVarTyAtLevel tc_lvl kind
  = do  { details <- newTauTvDetailsAtLevel tc_lvl
        ; name    <- newMetaTyVarName (fsLit "p")
        ; return (mkTyVarTy (mkTcTyVar name kind details)) }

newConcreteTyVarTyAtLevel :: ConcreteTvOrigin -> TcLevel -> TcKind -> TcM TcType
newConcreteTyVarTyAtLevel conc_orig tc_lvl kind
  = do  { details <- newConcreteTvDetailsAtLevel conc_orig tc_lvl
        ; name    <- newMetaTyVarName (fsLit "c")
        ; return (mkTyVarTy (mkTcTyVar name kind details)) }

{- *********************************************************************
*                                                                      *
          Finding variables to quantify over
*                                                                      *
********************************************************************* -}

{- Note [Dependent type variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In Haskell type inference we quantify over type variables; but we only
quantify over /kind/ variables when -XPolyKinds is on.  Without -XPolyKinds
we default the kind variables to *.

So, to support this defaulting, and only for that reason, when
collecting the free vars of a type (in candidateQTyVarsOfType and friends),
prior to quantifying, we must keep the type and kind variables separate.

But what does that mean in a system where kind variables /are/ type
variables? It's a fairly arbitrary distinction based on how the
variables appear:

  - "Kind variables" appear in the kind of some other free variable
    or in the kind of a locally quantified type variable
    (forall (a :: kappa). ...) or in the kind of a coercion
    (a |> (co :: kappa1 ~ kappa2)).

     These are the ones we default to * if -XPolyKinds is off

  - "Type variables" are all free vars that are not kind variables

E.g.  In the type    T k (a::k)
      'k' is a kind variable, because it occurs in the kind of 'a',
          even though it also appears at "top level" of the type
      'a' is a type variable, because it doesn't

We gather these variables using a CandidatesQTvs record:
  DV { dv_kvs: Variables free in the kind of a free type variable
               or of a forall-bound type variable
     , dv_tvs: Variables syntactically free in the type }

So:  dv_kvs            are the kind variables of the type
     (dv_tvs - dv_kvs) are the type variable of the type

Note that

* A variable can occur in both.
      T k (x::k)    The first occurrence of k makes it
                    show up in dv_tvs, the second in dv_kvs

* We include any coercion variables in the "dependent",
  "kind-variable" set because we never quantify over them.

* The "kind variables" might depend on each other; e.g
     (k1 :: k2), (k2 :: *)
  The "type variables" do not depend on each other; if
  one did, it'd be classified as a kind variable!

Note [CandidatesQTvs determinism and order]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* Determinism: when we quantify over type variables we decide the
  order in which they appear in the final type. Because the order of
  type variables in the type can end up in the interface file and
  affects some optimizations like worker-wrapper, we want this order to
  be deterministic.

  To achieve that we use deterministic sets of variables that can be
  converted to lists in a deterministic order. For more information
  about deterministic sets see Note [Deterministic UniqFM] in GHC.Types.Unique.DFM.

* Order: as well as being deterministic, we use an
  accumulating-parameter style for candidateQTyVarsOfType so that we
  add variables one at a time, left to right.  That means we tend to
  produce the variables in left-to-right order.  This is just to make
  it bit more predictable for the programmer.

Note [Naughty quantification candidates]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider (#14880, dependent/should_compile/T14880-2), suppose
we are trying to generalise this type:

  forall arg. ... (alpha[tau]:arg) ...

We have a metavariable alpha whose kind mentions a skolem variable
bound inside the very type we are generalising.
This can arise while type-checking a user-written type signature
(see the test case for the full code).

We cannot generalise over alpha!  That would produce a type like
  forall {a :: arg}. forall arg. ...blah...
The fact that alpha's kind mentions arg renders it completely
ineligible for generalisation.

However, we are not going to learn any new constraints on alpha,
because its kind isn't even in scope in the outer context (but see Wrinkle).
So alpha is entirely unconstrained.

What then should we do with alpha?  During generalization, every
metavariable is either (A) promoted, (B) generalized, or (C) zapped
(according to Note [Recipe for checking a signature] in GHC.Tc.Gen.HsType).

 * We can't generalise it.
 * We can't promote it, because its kind prevents that
 * We can't simply leave it be, because this type is about to
   go into the typing environment (as the type of some let-bound
   variable, say), and then chaos erupts when we try to instantiate.

Previously, we zapped it to Any. This worked, but it had the unfortunate
effect of causing Any sometimes to appear in error messages. If this
kind of signature happens, the user probably has made a mistake -- no
one really wants Any in their types. So we now error. This must be
a hard error (failure in the monad) to avoid other messages from mentioning
Any.

We do this eager erroring in candidateQTyVars, which always precedes
generalisation, because at that moment we have a clear picture of what
skolems are in scope within the type itself (e.g. that 'forall arg').

This change is inspired by and described in Section 7.2 of "Kind Inference
for Datatypes", POPL'20.

NB: this is all rather similar to, but sadly not the same as
    Note [Error on unconstrained meta-variables]

Wrinkle:

We must make absolutely sure that alpha indeed is not from an outer
context. (Otherwise, we might indeed learn more information about it.)
This can be done easily: we just check alpha's TcLevel.  That level
must be strictly greater than the ambient TcLevel in order to treat it
as naughty. We say "strictly greater than" because the call to
candidateQTyVars is made outside the bumped TcLevel, as stated in the
comment to candidateQTyVarsOfType. The level check is done in go_tv in
collect_cand_qtvs. Skipping this check caused #16517.

-}

data CandidatesQTvs
  -- See Note [Dependent type variables]
  -- See Note [CandidatesQTvs determinism and order]
  --
  -- Invariants:
  --   * All variables are fully zonked, including their kinds
  --   * All variables are at a level greater than the ambient level
  --     See Note [Use level numbers for quantification]
  --
  -- This *can* contain skolems. For example, in `data X k :: k -> Type`
  -- we need to know that the k is a dependent variable. This is done
  -- by collecting the candidates in the kind after skolemising. It also
  -- comes up when generalizing a associated type instance, where instance
  -- variables are skolems. (Recall that associated type instances are generalized
  -- independently from their enclosing class instance, and the associated
  -- type instance may be generalized by more, fewer, or different variables
  -- than the class instance.)
  --
  = DV { dv_kvs :: DTyVarSet    -- "kind" metavariables (dependent)
       , dv_tvs :: DTyVarSet    -- "type" metavariables (non-dependent)
         -- A variable may appear in both sets
         -- E.g.   T k (x::k)    The first occurrence of k makes it
         --                      show up in dv_tvs, the second in dv_kvs
         -- See Note [Dependent type variables]

       , dv_cvs :: CoVarSet
         -- These are covars. Included only so that we don't repeatedly
         -- look at covars' kinds in accumulator. Not used by quantifyTyVars.
    }

instance Semi.Semigroup CandidatesQTvs where
   (DV { dv_kvs = kv1, dv_tvs = tv1, dv_cvs = cv1 })
     <> (DV { dv_kvs = kv2, dv_tvs = tv2, dv_cvs = cv2 })
          = DV { dv_kvs = kv1 `unionDVarSet` kv2
               , dv_tvs = tv1 `unionDVarSet` tv2
               , dv_cvs = cv1 `unionVarSet` cv2 }

instance Monoid CandidatesQTvs where
   mempty = DV { dv_kvs = emptyDVarSet, dv_tvs = emptyDVarSet, dv_cvs = emptyVarSet }
   mappend = (Semi.<>)

instance Outputable CandidatesQTvs where
  ppr (DV {dv_kvs = kvs, dv_tvs = tvs, dv_cvs = cvs })
    = text "DV" <+> braces (pprWithCommas id [ text "dv_kvs =" <+> ppr kvs
                                             , text "dv_tvs =" <+> ppr tvs
                                             , text "dv_cvs =" <+> ppr cvs ])

isEmptyCandidates :: CandidatesQTvs -> Bool
isEmptyCandidates (DV { dv_kvs = kvs, dv_tvs = tvs })
  = isEmptyDVarSet kvs && isEmptyDVarSet tvs

-- | Extract out the kind vars (in order) and type vars (in order) from
-- a 'CandidatesQTvs'. The lists are guaranteed to be distinct. Keeping
-- the lists separate is important only in the -XNoPolyKinds case.
candidateVars :: CandidatesQTvs -> ([TcTyVar], [TcTyVar])
candidateVars (DV { dv_kvs = dep_kv_set, dv_tvs = nondep_tkv_set })
  = (dep_kvs, nondep_tvs)
  where
    dep_kvs = scopedSort $ dVarSetElems dep_kv_set
      -- scopedSort: put the kind variables into
      --    well-scoped order.
      --    E.g.  [k, (a::k)] not the other way round

    nondep_tvs = dVarSetElems (nondep_tkv_set `minusDVarSet` dep_kv_set)
      -- See Note [Dependent type variables]
      -- The `minus` dep_tkvs removes any kind-level vars
      --    e.g. T k (a::k)   Since k appear in a kind it'll
      --    be in dv_kvs, and is dependent. So remove it from
      --    dv_tvs which will also contain k
      -- NB kinds of tvs are already zonked

candidateKindVars :: CandidatesQTvs -> TyVarSet
candidateKindVars dvs = dVarSetToVarSet (dv_kvs dvs)

delCandidates :: CandidatesQTvs -> [Var] -> CandidatesQTvs
delCandidates (DV { dv_kvs = kvs, dv_tvs = tvs, dv_cvs = cvs }) vars
  = DV { dv_kvs = kvs `delDVarSetList` vars
       , dv_tvs = tvs `delDVarSetList` vars
       , dv_cvs = cvs `delVarSetList`  vars }

partitionCandidates :: CandidatesQTvs -> (TyVar -> Bool) -> (TyVarSet, CandidatesQTvs)
-- The selected TyVars are returned as a non-deterministic TyVarSet
partitionCandidates dvs@(DV { dv_kvs = kvs, dv_tvs = tvs }) pred
  = (extracted, dvs { dv_kvs = rest_kvs, dv_tvs = rest_tvs })
  where
    (extracted_kvs, rest_kvs) = partitionDVarSet pred kvs
    (extracted_tvs, rest_tvs) = partitionDVarSet pred tvs
    extracted = dVarSetToVarSet extracted_kvs `unionVarSet` dVarSetToVarSet extracted_tvs

candidateQTyVarsWithBinders :: [TyVar] -> Type -> TcM CandidatesQTvs
-- (candidateQTyVarsWithBinders tvs ty) returns the candidateQTyVars
-- of (forall tvs. ty), but do not treat 'tvs' as bound for the purpose
-- of Note [Naughty quantification candidates].  Why?
-- Because we are going to scoped-sort the quantified variables
-- in among the tvs
candidateQTyVarsWithBinders bound_tvs ty
  = do { kvs     <- candidateQTyVarsOfKinds (map tyVarKind bound_tvs)
       ; cur_lvl <- getTcLevel
       ; all_tvs <- collect_cand_qtvs ty False cur_lvl emptyVarSet kvs ty
       ; return (all_tvs `delCandidates` bound_tvs) }

-- | Gathers free variables to use as quantification candidates (in
-- 'quantifyTyVars'). This might output the same var
-- in both sets, if it's used in both a type and a kind.
-- The variables to quantify must have a TcLevel strictly greater than
-- the ambient level. (See Wrinkle in Note [Naughty quantification candidates])
-- See Note [CandidatesQTvs determinism and order]
-- See Note [Dependent type variables]
candidateQTyVarsOfType :: TcType       -- not necessarily zonked
                       -> TcM CandidatesQTvs
candidateQTyVarsOfType ty
  = do { cur_lvl <- getTcLevel
       ; collect_cand_qtvs ty False cur_lvl emptyVarSet mempty ty }

-- | Like 'candidateQTyVarsOfType', but over a list of types
-- The variables to quantify must have a TcLevel strictly greater than
-- the ambient level. (See Wrinkle in Note [Naughty quantification candidates])
candidateQTyVarsOfTypes :: [Type] -> TcM CandidatesQTvs
candidateQTyVarsOfTypes tys
  = do { cur_lvl <- getTcLevel
       ; foldlM (\acc ty -> collect_cand_qtvs ty False cur_lvl emptyVarSet acc ty)
                mempty tys }

-- | Like 'candidateQTyVarsOfType', but consider every free variable
-- to be dependent. This is appropriate when generalizing a *kind*,
-- instead of a type. (That way, -XNoPolyKinds will default the variables
-- to Type.)
candidateQTyVarsOfKind :: TcKind       -- Not necessarily zonked
                       -> TcM CandidatesQTvs
candidateQTyVarsOfKind ty
  = do { cur_lvl <- getTcLevel
       ; collect_cand_qtvs ty True cur_lvl emptyVarSet mempty ty }

candidateQTyVarsOfKinds :: [TcKind]    -- Not necessarily zonked
                       -> TcM CandidatesQTvs
candidateQTyVarsOfKinds tys
  = do { cur_lvl <- getTcLevel
       ; foldM (\acc ty -> collect_cand_qtvs ty True cur_lvl emptyVarSet acc ty)
               mempty tys }

collect_cand_qtvs
  :: TcType          -- Original type that we started recurring into; for errors
  -> Bool            -- True <=> consider every fv in Type to be dependent
  -> TcLevel         -- Current TcLevel; collect only tyvars whose level is greater
  -> VarSet          -- Bound variables (locals only)
  -> CandidatesQTvs  -- Accumulating parameter
  -> Type            -- Not necessarily zonked
  -> TcM CandidatesQTvs

-- Key points:
--   * Looks through meta-tyvars as it goes;
--     no need to zonk in advance
--
--   * Needs to be monadic anyway, because it handles naughty
--     quantification; see Note [Naughty quantification candidates]
--
--   * Returns fully-zonked CandidateQTvs, including their kinds
--     so that subsequent dependency analysis (to build a well
--     scoped telescope) works correctly

collect_cand_qtvs orig_ty is_dep cur_lvl bound dvs ty
  = go dvs ty
  where
    is_bound tv = tv `elemVarSet` bound

    -----------------
    go :: CandidatesQTvs -> TcType -> TcM CandidatesQTvs
    -- Uses accumulating-parameter style
    go dv (AppTy t1 t2)       = foldlM go dv [t1, t2]
    go dv (TyConApp tc tys)   = go_tc_args dv (tyConBinders tc) tys
    go dv (FunTy _ w arg res) = foldlM go dv [w, arg, res]
    go dv (LitTy {})          = return dv
    go dv (CastTy ty co)      = do { dv1 <- go dv ty
                                   ; collect_cand_qtvs_co orig_ty cur_lvl bound dv1 co }
    go dv (CoercionTy co)     = collect_cand_qtvs_co orig_ty cur_lvl bound dv co

    go dv (TyVarTy tv)
      | is_bound tv = return dv
      | otherwise   = do { m_contents <- isFilledMetaTyVar_maybe tv
                         ; case m_contents of
                             Just ind_ty -> go dv ind_ty
                             Nothing     -> go_tv dv tv }

    go dv (ForAllTy (Bndr tv _) ty)
      = do { dv1 <- collect_cand_qtvs orig_ty True cur_lvl bound dv (tyVarKind tv)
           ; collect_cand_qtvs orig_ty is_dep cur_lvl (bound `extendVarSet` tv) dv1 ty }

      -- This makes sure that we default e.g. the alpha in Proxy alpha (Any alpha).
      -- Tested in polykinds/NestedProxies.
      -- We just might get this wrong in AppTy, but I don't think that's possible
      -- with -XNoPolyKinds. And fixing it would be non-performant, as we'd need
      -- to look at kinds.
    go_tc_args dv (tc_bndr:tc_bndrs) (ty:tys)
      = do { dv1 <- collect_cand_qtvs orig_ty (is_dep || isNamedTyConBinder tc_bndr)
                                      cur_lvl bound dv ty
           ; go_tc_args dv1 tc_bndrs tys }
    go_tc_args dv _bndrs tys  -- _bndrs might be non-empty: undersaturation
                              -- tys might be non-empty: oversaturation
                              -- either way, the foldlM is correct
      = foldlM go dv tys

    -----------------
    go_tv dv@(DV { dv_kvs = kvs, dv_tvs = tvs }) tv
      | tcTyVarLevel tv <= cur_lvl
      = return dv   -- This variable is from an outer context; skip
                    -- See Note [Use level numbers for quantification]

      | case tcTyVarDetails tv of
          SkolemTv _ lvl _ -> lvl > pushTcLevel cur_lvl
          _                -> False
      = return dv  -- Skip inner skolems
        -- This only happens for erroneous program with bad telescopes
        -- e.g. BadTelescope2:  forall a k (b :: k). SameKind a b
        --      We have (a::k), and at the outer we don't want to quantify
        --      over the already-quantified skolem k.
        -- (Apparently we /do/ want to quantify over skolems whose level sk_lvl is
        -- sk_lvl > cur_lvl; you get lots of failures otherwise. A battle for another day.)

      | tv `elemDVarSet` kvs
      = return dv  -- We have met this tyvar already

      | not is_dep
      , tv `elemDVarSet` tvs
      = return dv  -- We have met this tyvar already

      | otherwise
      = do { tv_kind <- zonkTcType (tyVarKind tv)
                 -- This zonk is annoying, but it is necessary, both to
                 -- ensure that the collected candidates have zonked kinds
                 -- (#15795) and to make the naughty check
                 -- (which comes next) works correctly

           ; let tv_kind_vars = tyCoVarsOfType tv_kind
           ; if | intersectsVarSet bound tv_kind_vars
                   -- the tyvar must not be from an outer context, but we have
                   -- already checked for this.
                   -- See Note [Naughty quantification candidates]
                -> do { traceTc "Naughty quantifier" $
                          vcat [ ppr tv <+> dcolon <+> ppr tv_kind
                               , text "bound:" <+> pprTyVars (nonDetEltsUniqSet bound)
                               , text "fvs:" <+> pprTyVars (nonDetEltsUniqSet tv_kind_vars) ]

                      ; let escapees = intersectVarSet bound tv_kind_vars
                      ; naughtyQuantification orig_ty tv escapees }

                |  otherwise
                -> do { let tv' = tv `setTyVarKind` tv_kind
                            dv' | is_dep    = dv { dv_kvs = kvs `extendDVarSet` tv' }
                                | otherwise = dv { dv_tvs = tvs `extendDVarSet` tv' }
                                -- See Note [Order of accumulation]

                        -- See Note [Recurring into kinds for candidateQTyVars]
                      ; collect_cand_qtvs orig_ty True cur_lvl bound dv' tv_kind } }

collect_cand_qtvs_co :: TcType -- original type at top of recursion; for errors
                     -> TcLevel
                     -> VarSet -- bound variables
                     -> CandidatesQTvs -> Coercion
                     -> TcM CandidatesQTvs
collect_cand_qtvs_co orig_ty cur_lvl bound = go_co
  where
    go_co dv (Refl ty)               = collect_cand_qtvs orig_ty True cur_lvl bound dv ty
    go_co dv (GRefl _ ty mco)        = do { dv1 <- collect_cand_qtvs orig_ty True cur_lvl bound dv ty
                                          ; go_mco dv1 mco }
    go_co dv (TyConAppCo _ _ cos)    = foldlM go_co dv cos
    go_co dv (AppCo co1 co2)         = foldlM go_co dv [co1, co2]
    go_co dv (FunCo _ _ _ w co1 co2) = foldlM go_co dv [w, co1, co2]
    go_co dv (AxiomInstCo _ _ cos)   = foldlM go_co dv cos
    go_co dv (AxiomRuleCo _ cos)     = foldlM go_co dv cos
    go_co dv (UnivCo prov _ t1 t2)   = do { dv1 <- go_prov dv prov
                                          ; dv2 <- collect_cand_qtvs orig_ty True cur_lvl bound dv1 t1
                                          ; collect_cand_qtvs orig_ty True cur_lvl bound dv2 t2 }
    go_co dv (SymCo co)              = go_co dv co
    go_co dv (TransCo co1 co2)       = foldlM go_co dv [co1, co2]
    go_co dv (SelCo _ co)            = go_co dv co
    go_co dv (LRCo _ co)             = go_co dv co
    go_co dv (InstCo co1 co2)        = foldlM go_co dv [co1, co2]
    go_co dv (KindCo co)             = go_co dv co
    go_co dv (SubCo co)              = go_co dv co

    go_co dv (HoleCo hole)
      = do m_co <- unpackCoercionHole_maybe hole
           case m_co of
             Just co -> go_co dv co
             Nothing -> go_cv dv (coHoleCoVar hole)

    go_co dv (CoVarCo cv) = go_cv dv cv

    go_co dv (ForAllCo tcv kind_co co)
      = do { dv1 <- go_co dv kind_co
           ; collect_cand_qtvs_co orig_ty cur_lvl (bound `extendVarSet` tcv) dv1 co }

    go_mco dv MRefl    = return dv
    go_mco dv (MCo co) = go_co dv co

    go_prov dv (PhantomProv co)    = go_co dv co
    go_prov dv (ProofIrrelProv co) = go_co dv co
    go_prov dv (PluginProv _)      = return dv
    go_prov dv (CorePrepProv _)    = return dv

    go_cv :: CandidatesQTvs -> CoVar -> TcM CandidatesQTvs
    go_cv dv@(DV { dv_cvs = cvs }) cv
      | is_bound cv         = return dv
      | cv `elemVarSet` cvs = return dv

        -- See Note [Recurring into kinds for candidateQTyVars]
      | otherwise           = collect_cand_qtvs orig_ty True cur_lvl bound
                                    (dv { dv_cvs = cvs `extendVarSet` cv })
                                    (idType cv)

    is_bound tv = tv `elemVarSet` bound

{- Note [Order of accumulation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
You might be tempted (like I was) to use unitDVarSet and mappend
rather than extendDVarSet.  However, the union algorithm for
deterministic sets depends on (roughly) the size of the sets. The
elements from the smaller set end up to the right of the elements from
the larger one. When sets are equal, the left-hand argument to
`mappend` goes to the right of the right-hand argument.

In our case, if we use unitDVarSet and mappend, we learn that the free
variables of (a -> b -> c -> d) are [b, a, c, d], and we then quantify
over them in that order. (The a comes after the b because we union the
singleton sets as ({a} `mappend` {b}), producing {b, a}. Thereafter,
the size criterion works to our advantage.) This is just annoying to
users, so I use `extendDVarSet`, which unambiguously puts the new
element to the right.

Note that the unitDVarSet/mappend implementation would not be wrong
against any specification -- just suboptimal and confounding to users.

Note [Recurring into kinds for candidateQTyVars]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
First, read Note [Closing over free variable kinds] in GHC.Core.TyCo.FVs, paying
attention to the end of the Note about using an empty bound set when
traversing a variable's kind.

That Note concludes with the recommendation that we empty out the bound
set when recurring into the kind of a type variable. Yet, we do not do
this here. I have two tasks in order to convince you that this code is
right. First, I must show why it is safe to ignore the reasoning in that
Note. Then, I must show why is is necessary to contradict the reasoning in
that Note.

Why it is safe: There can be no
shadowing in the candidateQ... functions: they work on the output of
type inference, which is seeded by the renamer and its insistence to
use different Uniques for different variables. (In contrast, the Core
functions work on the output of optimizations, which may introduce
shadowing.) Without shadowing, the problem studied by
Note [Closing over free variable kinds] in GHC.Core.TyCo.FVs cannot happen.

Why it is necessary:
Wiping the bound set would be just plain wrong here. Consider

  forall k1 k2 (a :: k1). Proxy k2 (a |> (hole :: k1 ~# k2))

We really don't want to think k1 and k2 are free here. (It's true that we'll
never be able to fill in `hole`, but we don't want to go off the rails just
because we have an insoluble coercion hole.) So: why is it wrong to wipe
the bound variables here but right in Core? Because the final statement
in Note [Closing over free variable kinds] in GHC.Core.TyCo.FVs is wrong: not
every variable is either free or bound. A variable can be a hole, too!
The reasoning in that Note then breaks down.

And the reasoning applies just as well to free non-hole variables, so we
retain the bound set always.

-}

{- *********************************************************************
*                                                                      *
             Quantification
*                                                                      *
************************************************************************

Note [quantifyTyVars]
~~~~~~~~~~~~~~~~~~~~~
quantifyTyVars is given the free vars of a type that we
are about to wrap in a forall.

It takes these free type/kind variables (partitioned into dependent and
non-dependent variables) skolemises metavariables with a TcLevel greater
than the ambient level (see Note [Use level numbers for quantification]).

* This function distinguishes between dependent and non-dependent
  variables only to keep correct defaulting behavior with -XNoPolyKinds.
  With -XPolyKinds, it treats both classes of variables identically.

* quantifyTyVars never quantifies over
    - a coercion variable (or any tv mentioned in the kind of a covar)
    - a runtime-rep variable

Note [Use level numbers for quantification]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The level numbers assigned to metavariables are very useful. Not only
do they track touchability (Note [TcLevel invariants] in GHC.Tc.Utils.TcType),
but they also allow us to determine which variables to
generalise. The rule is this:

  When generalising, quantify only metavariables with a TcLevel greater
  than the ambient level.

This works because we bump the level every time we go inside a new
source-level construct. In a traditional generalisation algorithm, we
would gather all free variables that aren't free in an environment.
However, if a variable is in that environment, it will always have a lower
TcLevel: it came from an outer scope. So we can replace the "free in
environment" check with a level-number check.

Here is an example:

  f x = x + (z True)
    where
      z y = x * x

We start by saying (x :: alpha[1]). When inferring the type of z, we'll
quickly discover that z :: alpha[1]. But it would be disastrous to
generalise over alpha in the type of z. So we need to know that alpha
comes from an outer environment. By contrast, the type of y is beta[2],
and we are free to generalise over it. What's the difference between
alpha[1] and beta[2]? Their levels. beta[2] has the right TcLevel for
generalisation, and so we generalise it. alpha[1] does not, and so
we leave it alone.

Note that not *every* variable with a higher level will get
generalised, either due to the monomorphism restriction or other
quirks. See, for example, the code in GHC.Tc.Solver.decideMonoTyVars
and in GHC.Tc.Gen.HsType.kindGeneralizeSome, both of which exclude
certain otherwise-eligible variables from being generalised.

Using level numbers for quantification is implemented in the candidateQTyVars...
functions, by adding only those variables with a level strictly higher than
the ambient level to the set of candidates.

Note [quantifyTyVars determinism]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The results of quantifyTyVars are wrapped in a forall and can end up in the
interface file. One such example is inferred type signatures. They also affect
the results of optimizations, for example worker-wrapper. This means that to
get deterministic builds quantifyTyVars needs to be deterministic.

To achieve this CandidatesQTvs is backed by deterministic sets which allows them
to be later converted to a list in a deterministic order.

For more information about deterministic sets see
Note [Deterministic UniqFM] in GHC.Types.Unique.DFM.
-}

quantifyTyVars :: SkolemInfo
               -> NonStandardDefaultingStrategy
               -> CandidatesQTvs   -- See Note [Dependent type variables]
                                   -- Already zonked
               -> TcM [TcTyVar]
-- See Note [quantifyTyVars]
-- Can be given a mixture of TcTyVars and TyVars, in the case of
--   associated type declarations. Also accepts covars, but *never* returns any.
-- According to Note [Use level numbers for quantification] and the
-- invariants on CandidateQTvs, we do not have to filter out variables
-- free in the environment here. Just quantify unconditionally, subject
-- to the restrictions in Note [quantifyTyVars].
quantifyTyVars skol_info ns_strat dvs
       -- short-circuit common case
  | isEmptyCandidates dvs
  = do { traceTc "quantifyTyVars has nothing to quantify" empty
       ; return [] }

  | otherwise
  = do { traceTc "quantifyTyVars {"
           ( vcat [ text "ns_strat =" <+> ppr ns_strat
                  , text "dvs =" <+> ppr dvs ])

       ; undefaulted <- defaultTyVars ns_strat dvs
       ; final_qtvs  <- mapMaybeM zonk_quant undefaulted

       ; traceTc "quantifyTyVars }"
           (vcat [ text "undefaulted:" <+> pprTyVars undefaulted
                 , text "final_qtvs:"  <+> pprTyVars final_qtvs ])

       -- We should never quantify over coercion variables; check this
       ; let co_vars = filter isCoVar final_qtvs
       ; massertPpr (null co_vars) (ppr co_vars)

       ; return final_qtvs }
  where
    -- zonk_quant returns a tyvar if it should be quantified over;
    -- otherwise, it returns Nothing. The latter case happens for
    -- non-meta-tyvars
    zonk_quant tkv
      | not (isTyVar tkv)
      = return Nothing   -- this can happen for a covar that's associated with
                         -- a coercion hole. Test case: typecheck/should_compile/T2494

      | otherwise
      = Just <$> skolemiseQuantifiedTyVar skol_info tkv

isQuantifiableTv :: TcLevel   -- Level of the context, outside the quantification
                 -> TcTyVar
                 -> Bool
isQuantifiableTv outer_tclvl tcv
  | isTcTyVar tcv  -- Might be a CoVar; change this when gather covars separately
  = tcTyVarLevel tcv > outer_tclvl
  | otherwise
  = False

zonkAndSkolemise :: SkolemInfo -> TcTyCoVar -> TcM TcTyCoVar
-- A tyvar binder is never a unification variable (TauTv),
-- rather it is always a skolem. It *might* be a TyVarTv.
-- (Because non-CUSK type declarations use TyVarTvs.)
-- Regardless, it may have a kind that has not yet been zonked,
-- and may include kind unification variables.
zonkAndSkolemise skol_info tyvar
  | isTyVarTyVar tyvar
     -- We want to preserve the binding location of the original TyVarTv.
     -- This is important for error messages. If we don't do this, then
     -- we get bad locations in, e.g., typecheck/should_fail/T2688
  = do { zonked_tyvar <- zonkTcTyVarToTcTyVar tyvar
       ; skolemiseQuantifiedTyVar skol_info zonked_tyvar }

  | otherwise
  = assertPpr (isImmutableTyVar tyvar || isCoVar tyvar) (pprTyVar tyvar) $
    zonkTyCoVarKind tyvar

skolemiseQuantifiedTyVar :: SkolemInfo -> TcTyVar -> TcM TcTyVar
-- The quantified type variables often include meta type variables
-- we want to freeze them into ordinary type variables
-- The meta tyvar is updated to point to the new skolem TyVar.  Now any
-- bound occurrences of the original type variable will get zonked to
-- the immutable version.
--
-- We leave skolem TyVars alone; they are immutable.
--
-- This function is called on both kind and type variables,
-- but kind variables *only* if PolyKinds is on.

skolemiseQuantifiedTyVar skol_info tv
  = case tcTyVarDetails tv of
      MetaTv {} -> skolemiseUnboundMetaTyVar skol_info tv

      SkolemTv _ lvl _  -- It might be a skolem type variable,
                        -- for example from a user type signature
        -- But it might also be a shared meta-variable across several
        -- type declarations, each with its own skol_info. The first
        -- will skolemise it, but the other uses must update its
        -- skolem info (#22379)
        -> do { kind <- zonkTcType (tyVarKind tv)
              ; let details = SkolemTv skol_info lvl False
                    name = tyVarName tv
              ; return (mkTcTyVar name kind details) }

      _other -> pprPanic "skolemiseQuantifiedTyVar" (ppr tv) -- RuntimeUnk

-- | Default a type variable using the given defaulting strategy.
--
-- See Note [Type variable defaulting options] in GHC.Types.Basic.
defaultTyVar :: DefaultingStrategy
             -> TcTyVar    -- If it's a MetaTyVar then it is unbound
             -> TcM Bool   -- True <=> defaulted away altogether
defaultTyVar def_strat tv
  | not (isMetaTyVar tv)
  || isTyVarTyVar tv
    -- Do not default TyVarTvs. Doing so would violate the invariants
    -- on TyVarTvs; see Note [TyVarTv] in GHC.Tc.Utils.TcMType.
    -- #13343 is an example; #14555 is another
    -- See Note [Inferring kinds for type declarations] in GHC.Tc.TyCl
  = return False

  | isRuntimeRepVar tv
  , default_ns_vars
  = do { traceTc "Defaulting a RuntimeRep var to LiftedRep" (ppr tv)
       ; writeMetaTyVar tv liftedRepTy
       ; return True }

  | isLevityVar tv
  , default_ns_vars
  = do { traceTc "Defaulting a Levity var to Lifted" (ppr tv)
       ; writeMetaTyVar tv liftedDataConTy
       ; return True }

  | isMultiplicityVar tv
  , default_ns_vars
  = do { traceTc "Defaulting a Multiplicity var to Many" (ppr tv)
       ; writeMetaTyVar tv manyDataConTy
       ; return True }

  | isConcreteTyVar tv
    -- We don't want to quantify; but neither can we default to
    -- anything sensible.  (If it has kind RuntimeRep or Levity, as is
    -- often the case, it'll have been caught earlier by earlier
    -- cases. So in this exotic situation we just promote.  Not very
    -- satisfing, but it's very much a corner case: #23051
    -- We should really implement the plan in #20686.
  = do { lvl <- getTcLevel
       ; _ <- promoteMetaTyVarTo lvl tv
       ; return True }

  | DefaultKindVars <- def_strat -- -XNoPolyKinds and this is a kind var: we must default it
  = default_kind_var tv

  | otherwise
  = return False

  where
    default_ns_vars :: Bool
    default_ns_vars = defaultNonStandardTyVars def_strat
    default_kind_var :: TyVar -> TcM Bool
       -- defaultKindVar is used exclusively with -XNoPolyKinds
       -- See Note [Defaulting with -XNoPolyKinds]
       -- It takes an (unconstrained) meta tyvar and defaults it.
       -- Works only on vars of type *; for other kinds, it issues an error.
    default_kind_var kv
      | isLiftedTypeKind (tyVarKind kv)
      = do { traceTc "Defaulting a kind var to *" (ppr kv)
           ; writeMetaTyVar kv liftedTypeKind
           ; return True }
      | otherwise
      = do { addErr $ TcRnCannotDefaultKindVar kv' (tyVarKind kv')
           -- We failed to default it, so return False to say so.
           -- Hence, it'll get skolemised.  That might seem odd, but we must either
           -- promote, skolemise, or zap-to-Any, to satisfy GHC.Tc.Gen.HsType
           --    Note [Recipe for checking a signature]
           -- Otherwise we get level-number assertion failures. It doesn't matter much
           -- because we are in an error situation anyway.
           ; return False
        }
      where
        (_, kv') = tidyOpenTyCoVar emptyTidyEnv kv

-- | Default some unconstrained type variables, as specified
-- by the defaulting options:
--
--  - 'RuntimeRep' tyvars default to 'LiftedRep'
--  - 'Levity' tyvars default to 'Lifted'
--  - 'Multiplicity' tyvars default to 'Many'
--  - 'Type' tyvars from dv_kvs default to 'Type', when -XNoPolyKinds
--    (under -XNoPolyKinds, non-defaulting vars in dv_kvs is an error)
defaultTyVars :: NonStandardDefaultingStrategy
              -> CandidatesQTvs    -- ^ all candidates for quantification
              -> TcM [TcTyVar]     -- ^ those variables not defaulted
defaultTyVars ns_strat dvs
  = do { poly_kinds <- xoptM LangExt.PolyKinds
       ; let
           def_tvs, def_kvs :: DefaultingStrategy
           def_tvs = NonStandardDefaulting ns_strat
           def_kvs | poly_kinds = def_tvs
                   | otherwise  = DefaultKindVars
             -- As -XNoPolyKinds precludes polymorphic kind variables, we default them.
             -- For example:
             --
             --   type F :: Type -> Type
             --   type family F a where
             --      F (a -> b) = b
             --
             -- Here we get `a :: TYPE r`, so to accept this program when -XNoPolyKinds is enabled
             -- we must default the kind variable `r :: RuntimeRep`.
             -- Test case: T20584.
       ; defaulted_kvs <- mapM (defaultTyVar def_kvs) dep_kvs
       ; defaulted_tvs <- mapM (defaultTyVar def_tvs) nondep_tvs
       ; let undefaulted_kvs = [ kv | (kv, False) <- dep_kvs    `zip` defaulted_kvs ]
             undefaulted_tvs = [ tv | (tv, False) <- nondep_tvs `zip` defaulted_tvs ]
       ; return (undefaulted_kvs ++ undefaulted_tvs) }
          -- NB: kvs before tvs because tvs may depend on kvs
  where
    (dep_kvs, nondep_tvs) = candidateVars dvs

skolemiseUnboundMetaTyVar :: SkolemInfo -> TcTyVar -> TcM TyVar
-- We have a Meta tyvar with a ref-cell inside it
-- Skolemise it, so that we are totally out of Meta-tyvar-land
-- We create a skolem TcTyVar, not a regular TyVar
--   See Note [Zonking to Skolem]
--
-- Its level should be one greater than the ambient level, which will typically
-- be the same as the level on the meta-tyvar. But not invariably; for example
--    f :: (forall a b. SameKind a b) -> Int
-- The skolems 'a' and 'b' are bound by tcTKTelescope, at level 2; and they each
-- have a level-2 kind unification variable, since it might get unified with another
-- of the level-2 skolems e.g. 'k' in this version
--    f :: (forall k (a :: k) b. SameKind a b) -> Int
-- So when we quantify the kind vars at the top level of the signature, the ambient
-- level is 1, but we will quantify over kappa[2].

skolemiseUnboundMetaTyVar skol_info tv
  = assertPpr (isMetaTyVar tv) (ppr tv) $
    do  { check_empty tv
        ; tc_lvl <- getTcLevel   -- Get the location and level from "here"
        ; here   <- getSrcSpanM  -- i.e. where we are generalising
        ; kind   <- zonkTcType (tyVarKind tv)
        ; let tv_name = tyVarName tv
              -- See Note [Skolemising and identity]
              final_name | isSystemName tv_name
                         = mkInternalName (nameUnique tv_name)
                                          (nameOccName tv_name) here
                         | otherwise
                         = tv_name
              details    = SkolemTv skol_info (pushTcLevel tc_lvl) False
              final_tv   = mkTcTyVar final_name kind details

        ; traceTc "Skolemising" (ppr tv <+> text ":=" <+> ppr final_tv)
        ; writeMetaTyVar tv (mkTyVarTy final_tv)
        ; return final_tv }
  where
    check_empty tv       -- [Sept 04] Check for non-empty.
      = when debugIsOn $  -- See Note [Silly Type Synonyms]
        do { cts <- readMetaTyVar tv
           ; case cts of
               Flexi       -> return ()
               Indirect ty -> warnPprTrace True "skolemiseUnboundMetaTyVar" (ppr tv $$ ppr ty) $
                              return () }

{- Note [Error on unconstrained meta-variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider

* type C :: Type -> Type -> Constraint
  class (forall a. a b ~ a c) => C b c

* type T = forall a. Proxy a

* data (forall a. a b ~ a c) => T b c

* type instance F Int = Proxy Any
  where Any :: forall k. k

In the first three cases we will infer a :: Type -> kappa, but then
we get no further information on kappa. In the last, we will get
  Proxy kappa Any
but again will get no further info on kappa.

What do do?
 A. We could choose kappa := Type. But this only works when the kind of kappa
    is Type (true in this example, but not always).
 B. We could default to Any.
 C. We could quantify.
 D. We could error.

We choose (D), as described in #17567, and implement this choice in
doNotQuantifyTyVars.  Discussion of alternatives A-C is below.

NB: this is all rather similar to, but sadly not the same as
    Note [Naughty quantification candidates]

To do this, we must take an extra step before doing the final zonk to create
e.g. a TyCon. (There is no problem in the final term-level zonk. See the
section on alternative (B) below.) This extra step is needed only for
constructs that do not quantify their free meta-variables, such as a class
constraint or right-hand side of a type synonym.

Specifically: before the final zonk, every construct must either call
quantifyTyVars or doNotQuantifyTyVars. The latter issues an error
if it is passed any free variables. (Exception: we still default
RuntimeRep and Multiplicity variables.)

Because no meta-variables remain after quantifying or erroring, we perform
the zonk with NoFlexi, which panics upon seeing a meta-variable.

Alternatives A-C, not implemented:

A. As stated above, this works only sometimes. We might have a free
   meta-variable of kind Nat, for example.

B. This is what we used to do, but it caused Any to appear in error
   messages sometimes. See #17567 for several examples. Defaulting to
   Any during the final, whole-program zonk is OK, though, because
   we are completely done type-checking at that point. No chance to
   leak into an error message.

C. Examine the class declaration at the top of this Note again.
   Where should we quantify? We might imagine quantifying and
   putting the kind variable in the forall of the quantified constraint.
   But what if there are nested foralls? Which one should get the
   variable? Other constructs have other problems. (For example,
   the right-hand side of a type family instance equation may not
   be a poly-type.)

   More broadly, the GHC AST defines a set of places where it performs
   implicit lexical generalization. For example, in a type
   signature

     f :: Proxy a -> Bool

   the otherwise-unbound a is lexically quantified, giving us

     f :: forall a. Proxy a -> Bool

   The places that allow lexical quantification are marked in the AST with
   HsImplicitBndrs. HsImplicitBndrs offers a binding site for otherwise-unbound
   variables.

   Later, during type-checking, we discover that a's kind is unconstrained.
   We thus quantify *again*, to

     f :: forall {k} (a :: k). Proxy @k a -> Bool

   It is this second quantification that this Note is really about --
   let's call it *inferred quantification*.
   So there are two sorts of implicit quantification in types:
     1. Lexical quantification: signalled by HsImplicitBndrs, occurs over
        variables mentioned by the user but with no explicit binding site,
        suppressed by a user-written forall (by the forall-or-nothing rule,
        in Note [forall-or-nothing rule] in GHC.Hs.Type).
     2. Inferred quantification: no signal in HsSyn, occurs over unconstrained
        variables invented by the type-checker, possible only with -XPolyKinds,
        unaffected by forall-or-nothing rule
   These two quantifications are performed in different compiler phases, and are
   essentially unrelated. However, it is convenient
   for programmers to remember only one set of implicit quantification
   sites. So, we choose to use the same places (those with HsImplicitBndrs)
   for lexical quantification as for inferred quantification of unconstrained
   meta-variables. Accordingly, there is no quantification in a class
   constraint, or the other constructs that call doNotQuantifyTyVars.
-}

doNotQuantifyTyVars :: CandidatesQTvs
                    -> (TidyEnv -> TcM (TidyEnv, UninferrableTyVarCtx))
                            -- ^ like "the class context (D a b, E foogle)"
                    -> TcM ()
-- See Note [Error on unconstrained meta-variables]
doNotQuantifyTyVars dvs where_found
  | isEmptyCandidates dvs
  = traceTc "doNotQuantifyTyVars has nothing to error on" empty

  | otherwise
  = do { traceTc "doNotQuantifyTyVars" (ppr dvs)
       ; undefaulted <- defaultTyVars DefaultNonStandardTyVars dvs
          -- could have regular TyVars here, in an associated type RHS, or
          -- bound by a type declaration head. So filter looking only for
          -- metavars. e.g. b and c in `class (forall a. a b ~ a c) => C b c`
          -- are OK
       ; let leftover_metas = filter isMetaTyVar undefaulted
       ; unless (null leftover_metas) $
         do { let (tidy_env1, tidied_tvs) = tidyOpenTyCoVars emptyTidyEnv leftover_metas
            ; (tidy_env2, where_doc) <- where_found tidy_env1
            ; let msg = TcRnUninferrableTyVar tidied_tvs where_doc
            ; failWithTcM (tidy_env2, msg) }
       ; traceTc "doNotQuantifyTyVars success" empty }

{- Note [Defaulting with -XNoPolyKinds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider

  data Compose f g a = Mk (f (g a))

We infer

  Compose :: forall k1 k2. (k2 -> *) -> (k1 -> k2) -> k1 -> *
  Mk :: forall k1 k2 (f :: k2 -> *) (g :: k1 -> k2) (a :: k1).
        f (g a) -> Compose k1 k2 f g a

Now, in another module, we have -XNoPolyKinds -XDataKinds in effect.
What does 'Mk mean? Pre GHC-8.0 with -XNoPolyKinds,
we just defaulted all kind variables to *. But that's no good here,
because the kind variables in 'Mk aren't of kind *, so defaulting to *
is ill-kinded.

After some debate on #11334, we decided to issue an error in this case.
The code is in defaultKindVar.

Note [What is a meta variable?]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A "meta type-variable", also know as a "unification variable" is a placeholder
introduced by the typechecker for an as-yet-unknown monotype.

For example, when we see a call `reverse (f xs)`, we know that we calling
    reverse :: forall a. [a] -> [a]
So we know that the argument `f xs` must be a "list of something". But what is
the "something"? We don't know until we explore the `f xs` a bit more. So we set
out what we do know at the call of `reverse` by instantiating its type with a fresh
meta tyvar, `alpha` say. So now the type of the argument `f xs`, and of the
result, is `[alpha]`. The unification variable `alpha` stands for the
as-yet-unknown type of the elements of the list.

As type inference progresses we may learn more about `alpha`. For example, suppose
`f` has the type
    f :: forall b. b -> [Maybe b]
Then we instantiate `f`'s type with another fresh unification variable, say
`beta`; and equate `f`'s result type with reverse's argument type, thus
`[alpha] ~ [Maybe beta]`.

Now we can solve this equality to learn that `alpha ~ Maybe beta`, so we've
refined our knowledge about `alpha`. And so on.

If you found this Note useful, you may also want to have a look at
Section 5 of "Practical type inference for higher rank types" (Peyton Jones,
Vytiniotis, Weirich and Shields. J. Functional Programming. 2011).

Note [What is zonking?]
~~~~~~~~~~~~~~~~~~~~~~~
GHC relies heavily on mutability in the typechecker for efficient operation.
For this reason, throughout much of the type checking process meta type
variables (the MetaTv constructor of TcTyVarDetails) are represented by mutable
variables (known as TcRefs).

Zonking is the process of ripping out these mutable variables and replacing them
with a real Type. This involves traversing the entire type expression, but the
interesting part of replacing the mutable variables occurs in zonkTyVarOcc.

There are two ways to zonk a Type:

 * zonkTcTypeToType, which is intended to be used at the end of type-checking
   for the final zonk. It has to deal with unfilled metavars, either by filling
   it with a value like Any or failing (determined by the UnboundTyVarZonker
   used).

 * zonkTcType, which will happily ignore unfilled metavars. This is the
   appropriate function to use while in the middle of type-checking.

Note [Zonking to Skolem]
~~~~~~~~~~~~~~~~~~~~~~~~
We used to zonk quantified type variables to regular TyVars.  However, this
leads to problems.  Consider this program from the regression test suite:

  eval :: Int -> String -> String -> String
  eval 0 root actual = evalRHS 0 root actual

  evalRHS :: Int -> a
  evalRHS 0 root actual = eval 0 root actual

It leads to the deferral of an equality (wrapped in an implication constraint)

  forall a. () => ((String -> String -> String) ~ a)

which is propagated up to the toplevel (see GHC.Tc.Solver.tcSimplifyInferCheck).
In the meantime `a' is zonked and quantified to form `evalRHS's signature.
This has the *side effect* of also zonking the `a' in the deferred equality
(which at this point is being handed around wrapped in an implication
constraint).

Finally, the equality (with the zonked `a') will be handed back to the
simplifier by GHC.Tc.Module.tcRnSrcDecls calling GHC.Tc.Solver.tcSimplifyTop.
If we zonk `a' with a regular type variable, we will have this regular type
variable now floating around in the simplifier, which in many places assumes to
only see proper TcTyVars.

We can avoid this problem by zonking with a skolem TcTyVar.  The
skolem is rigid (which we require for a quantified variable), but is
still a TcTyVar that the simplifier knows how to deal with.

Note [Skolemising and identity]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In some places, we make a TyVarTv for a binder. E.g.
    class C a where ...
As Note [Inferring kinds for type declarations] discusses,
we make a TyVarTv for 'a'.  Later we skolemise it, and we'd
like to retain its identity, location info etc.  (If we don't
retain its identity we'll have to do some pointless swizzling;
see GHC.Tc.TyCl.swizzleTcTyConBndrs.  If we retain its identity
but not its location we'll lose the detailed binding site info.

Conclusion: use the Name of the TyVarTv.  But we don't want
to do that when skolemising random unification variables;
there the location we want is the skolemisation site.

Fortunately we can tell the difference: random unification
variables have System Names.  That's why final_name is
set based on the isSystemName test.


Note [Silly Type Synonyms]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this:
        type C u a = u  -- Note 'a' unused

        foo :: (forall a. C u a -> C u a) -> u
        foo x = ...

        bar :: Num u => u
        bar = foo (\t -> t + t)

* From the (\t -> t+t) we get type  {Num d} =>  d -> d
  where d is fresh.

* Now unify with type of foo's arg, and we get:
        {Num (C d a)} =>  C d a -> C d a
  where a is fresh.

* Now abstract over the 'a', but float out the Num (C d a) constraint
  because it does not 'really' mention a.  (see exactTyVarsOfType)
  The arg to foo becomes
        \/\a -> \t -> t+t

* So we get a dict binding for Num (C d a), which is zonked to give
        a = ()
  Note (Sept 04): now that we are zonking quantified type variables
  on construction, the 'a' will be frozen as a regular tyvar on
  quantification, so the floated dict will still have type (C d a).
  Which renders this whole note moot; happily!]

* Then the \/\a abstraction has a zonked 'a' in it.

All very silly.   I think its harmless to ignore the problem.  We'll end up with
a \/\a in the final result but all the occurrences of a will be zonked to ()
-}

{- *********************************************************************
*                                                                      *
              Promotion
*                                                                      *
********************************************************************* -}

promoteMetaTyVarTo :: HasDebugCallStack => TcLevel -> TcTyVar -> TcM Bool
-- When we float a constraint out of an implication we must restore
-- invariant (WantedInv) in Note [TcLevel invariants] in GHC.Tc.Utils.TcType
-- Return True <=> we did some promotion
-- Also returns either the original tyvar (no promotion) or the new one
-- See Note [Promoting unification variables]
promoteMetaTyVarTo tclvl tv
  | assertPpr (isMetaTyVar tv) (ppr tv) $
    tcTyVarLevel tv `strictlyDeeperThan` tclvl
  = do { cloned_tv <- cloneMetaTyVar tv
       ; let rhs_tv = setMetaTyVarTcLevel cloned_tv tclvl
       ; writeMetaTyVar tv (mkTyVarTy rhs_tv)
       ; traceTc "promoteTyVar" (ppr tv <+> text "-->" <+> ppr rhs_tv)
       ; return True }
   | otherwise
   = return False

-- Returns whether or not *any* tyvar is defaulted
promoteTyVarSet :: HasDebugCallStack => TcTyVarSet -> TcM Bool
promoteTyVarSet tvs
  = do { tclvl <- getTcLevel
       ; bools <- mapM (promoteMetaTyVarTo tclvl)  $
                  filter isPromotableMetaTyVar $
                  nonDetEltsUniqSet tvs
         -- Non-determinism is OK because order of promotion doesn't matter
       ; return (or bools) }


{- *********************************************************************
*                                                                      *
              Zonking types
*                                                                      *
********************************************************************* -}

zonkTcTypeAndFV :: TcType -> TcM DTyCoVarSet
-- Zonk a type and take its free variables
-- With kind polymorphism it can be essential to zonk *first*
-- so that we find the right set of free variables.  Eg
--    forall k1. forall (a:k2). a
-- where k2:=k1 is in the substitution.  We don't want
-- k2 to look free in this type!
zonkTcTypeAndFV ty
  = tyCoVarsOfTypeDSet <$> zonkTcType ty

zonkTyCoVar :: TyCoVar -> TcM TcType
-- Works on TyVars and TcTyVars
zonkTyCoVar tv | isTcTyVar tv = zonkTcTyVar tv
               | isTyVar   tv = mkTyVarTy <$> zonkTyCoVarKind tv
               | otherwise    = assertPpr (isCoVar tv) (ppr tv) $
                                mkCoercionTy . mkCoVarCo <$> zonkTyCoVarKind tv
   -- Hackily, when typechecking type and class decls
   -- we have TyVars in scope added (only) in
   -- GHC.Tc.Gen.HsType.bindTyClTyVars, but it seems
   -- painful to make them into TcTyVars there

zonkTyCoVarsAndFV :: TyCoVarSet -> TcM TyCoVarSet
zonkTyCoVarsAndFV tycovars
  = tyCoVarsOfTypes <$> mapM zonkTyCoVar (nonDetEltsUniqSet tycovars)
  -- It's OK to use nonDetEltsUniqSet here because we immediately forget about
  -- the ordering by turning it into a nondeterministic set and the order
  -- of zonking doesn't matter for determinism.

zonkDTyCoVarSetAndFV :: DTyCoVarSet -> TcM DTyCoVarSet
zonkDTyCoVarSetAndFV tycovars
  = mkDVarSet <$> (zonkTyCoVarsAndFVList $ dVarSetElems tycovars)

-- Takes a list of TyCoVars, zonks them and returns a
-- deterministically ordered list of their free variables.
zonkTyCoVarsAndFVList :: [TyCoVar] -> TcM [TyCoVar]
zonkTyCoVarsAndFVList tycovars
  = tyCoVarsOfTypesList <$> mapM zonkTyCoVar tycovars

zonkTcTyVars :: [TcTyVar] -> TcM [TcType]
zonkTcTyVars tyvars = mapM zonkTcTyVar tyvars

-----------------  Types
zonkTyCoVarKind :: TyCoVar -> TcM TyCoVar
zonkTyCoVarKind tv = do { kind' <- zonkTcType (tyVarKind tv)
                        ; return (setTyVarKind tv kind') }

{-
************************************************************************
*                                                                      *
              Zonking constraints
*                                                                      *
************************************************************************
-}

zonkImplication :: Implication -> TcM Implication
zonkImplication implic@(Implic { ic_skols  = skols
                               , ic_given  = given
                               , ic_wanted = wanted
                               , ic_info   = info })
  = do { skols'  <- mapM zonkTyCoVarKind skols  -- Need to zonk their kinds!
                                                -- as #7230 showed
       ; given'  <- mapM zonkEvVar given
       ; info'   <- zonkSkolemInfoAnon info
       ; wanted' <- zonkWCRec wanted
       ; return (implic { ic_skols  = skols'
                        , ic_given  = given'
                        , ic_wanted = wanted'
                        , ic_info   = info' }) }

zonkEvVar :: EvVar -> TcM EvVar
zonkEvVar var = updateIdTypeAndMultM zonkTcType var


zonkWC :: WantedConstraints -> TcM WantedConstraints
zonkWC wc = zonkWCRec wc

zonkWCRec :: WantedConstraints -> TcM WantedConstraints
zonkWCRec (WC { wc_simple = simple, wc_impl = implic, wc_errors = errs })
  = do { simple' <- zonkSimples simple
       ; implic' <- mapBagM zonkImplication implic
       ; errs'   <- mapBagM zonkDelayedError errs
       ; return (WC { wc_simple = simple', wc_impl = implic', wc_errors = errs' }) }

zonkSimples :: Cts -> TcM Cts
zonkSimples cts = do { cts' <- mapBagM zonkCt cts
                     ; traceTc "zonkSimples done:" (ppr cts')
                     ; return cts' }

zonkDelayedError :: DelayedError -> TcM DelayedError
zonkDelayedError (DE_Hole hole)
  = DE_Hole <$> zonkHole hole
zonkDelayedError (DE_NotConcrete err)
  = DE_NotConcrete <$> zonkNotConcreteError err

zonkHole :: Hole -> TcM Hole
zonkHole hole@(Hole { hole_ty = ty })
  = do { ty' <- zonkTcType ty
       ; return (hole { hole_ty = ty' }) }

zonkNotConcreteError :: NotConcreteError -> TcM NotConcreteError
zonkNotConcreteError err@(NCE_FRR { nce_frr_origin = frr_orig })
  = do { frr_orig  <- zonkFRROrigin frr_orig
       ; return $ err { nce_frr_origin = frr_orig  } }

zonkFRROrigin :: FixedRuntimeRepOrigin -> TcM FixedRuntimeRepOrigin
zonkFRROrigin (FixedRuntimeRepOrigin ty orig)
  = do { ty' <- zonkTcType ty
       ; return $ FixedRuntimeRepOrigin ty' orig }

{- Note [zonkCt behaviour]
~~~~~~~~~~~~~~~~~~~~~~~~~~
zonkCt tries to maintain the canonical form of a Ct.  For example,
  - a CDictCan should stay a CDictCan;
  - a CIrredCan should stay a CIrredCan with its cc_reason flag intact

Why?, for example:
- For CDictCan, the @GHC.Tc.Solver.expandSuperClasses@ step, which runs after the
  simple wanted and plugin loop, looks for @CDictCan@s. If a plugin is in use,
  constraints are zonked before being passed to the plugin. This means if we
  don't preserve a canonical form, @expandSuperClasses@ fails to expand
  superclasses. This is what happened in #11525.

- For CIrredCan we want to see if a constraint is insoluble with insolubleWC

On the other hand, we change CEqCan to CNonCanonical, because of all of
CEqCan's invariants, which can break during zonking. (Example: a ~R alpha, where
we have alpha := N Int, where N is a newtype.) Besides, the constraint
will be canonicalised again, so there is little benefit in keeping the
CEqCan structure.

NB: Constraints are always rewritten etc by the canonicaliser in
@GHC.Tc.Solver.Canonical@ even if they come in as CDictCan. Only canonical constraints that
are actually in the inert set carry all the guarantees. So it is okay if zonkCt
creates e.g. a CDictCan where the cc_tyars are /not/ fully reduced.
-}

zonkCt :: Ct -> TcM Ct
-- See Note [zonkCt behaviour]
zonkCt ct@(CDictCan { cc_ev = ev, cc_tyargs = args })
  = do { ev'   <- zonkCtEvidence ev
       ; args' <- mapM zonkTcType args
       ; return $ ct { cc_ev = ev', cc_tyargs = args' } }

zonkCt (CEqCan (EqCt { eq_ev = ev }))
  = mkNonCanonical <$> zonkCtEvidence ev

zonkCt ct@(CIrredCan { cc_ev = ev }) -- Preserve the cc_reason flag
  = do { ev' <- zonkCtEvidence ev
       ; return (ct { cc_ev = ev' }) }

zonkCt ct
  = do { fl' <- zonkCtEvidence (ctEvidence ct)
       ; return (mkNonCanonical fl') }

zonkCtEvidence :: CtEvidence -> TcM CtEvidence
zonkCtEvidence ctev
  = do { pred' <- zonkTcType (ctev_pred ctev)
       ; return (setCtEvPredType ctev pred') }

zonkSkolemInfo :: SkolemInfo -> TcM SkolemInfo
zonkSkolemInfo (SkolemInfo u sk) = SkolemInfo u <$> zonkSkolemInfoAnon sk

zonkSkolemInfoAnon :: SkolemInfoAnon -> TcM SkolemInfoAnon
zonkSkolemInfoAnon (SigSkol cx ty tv_prs)  = do { ty' <- zonkTcType ty
                                            ; return (SigSkol cx ty' tv_prs) }
zonkSkolemInfoAnon (InferSkol ntys) = do { ntys' <- mapM do_one ntys
                                     ; return (InferSkol ntys') }
  where
    do_one (n, ty) = do { ty' <- zonkTcType ty; return (n, ty') }
zonkSkolemInfoAnon skol_info = return skol_info

{-
************************************************************************
*                                                                      *
     Zonking -- the main work-horses: zonkTcType, zonkTcTyVar
*                                                                      *
************************************************************************
-}

-- For unbound, mutable tyvars, zonkType uses the function given to it
-- For tyvars bound at a for-all, zonkType zonks them to an immutable
--      type variable and zonks the kind too
zonkTcType  :: TcType -> TcM TcType
zonkTcTypes :: [TcType] -> TcM [TcType]
zonkCo      :: Coercion -> TcM Coercion

(zonkTcType, zonkTcTypes, zonkCo, _)
  = mapTyCo zonkTcTypeMapper

-- | A suitable TyCoMapper for zonking a type during type-checking,
-- before all metavars are filled in.
zonkTcTypeMapper :: TyCoMapper () TcM
zonkTcTypeMapper = TyCoMapper
  { tcm_tyvar = const zonkTcTyVar
  , tcm_covar = const (\cv -> mkCoVarCo <$> zonkTyCoVarKind cv)
  , tcm_hole  = hole
  , tcm_tycobinder = \_env tv _vis -> ((), ) <$> zonkTyCoVarKind tv
  , tcm_tycon      = zonkTcTyCon }
  where
    hole :: () -> CoercionHole -> TcM Coercion
    hole _ hole@(CoercionHole { ch_ref = ref, ch_co_var = cv })
      = do { contents <- readTcRef ref
           ; case contents of
               Just co -> do { co' <- zonkCo co
                             ; checkCoercionHole cv co' }
               Nothing -> do { cv' <- zonkCoVar cv
                             ; return $ HoleCo (hole { ch_co_var = cv' }) } }

zonkTcTyCon :: TcTyCon -> TcM TcTyCon
-- Only called on TcTyCons
-- A non-poly TcTyCon may have unification
-- variables that need zonking, but poly ones cannot
zonkTcTyCon tc
 | isMonoTcTyCon tc = do { tck' <- zonkTcType (tyConKind tc)
                         ; return (setTcTyConKind tc tck') }
 | otherwise        = return tc

zonkTcTyVar :: TcTyVar -> TcM TcType
-- Simply look through all Flexis
zonkTcTyVar tv
  | isTcTyVar tv
  = case tcTyVarDetails tv of
      SkolemTv {}   -> zonk_kind_and_return
      RuntimeUnk {} -> zonk_kind_and_return
      MetaTv { mtv_ref = ref }
         -> do { cts <- readMutVar ref
               ; case cts of
                    Flexi       -> zonk_kind_and_return
                    Indirect ty -> do { zty <- zonkTcType ty
                                      ; writeTcRef ref (Indirect zty)
                                        -- See Note [Sharing in zonking]
                                      ; return zty } }

  | otherwise -- coercion variable
  = zonk_kind_and_return
  where
    zonk_kind_and_return = do { z_tv <- zonkTyCoVarKind tv
                              ; return (mkTyVarTy z_tv) }

-- Variant that assumes that any result of zonking is still a TyVar.
-- Should be used only on skolems and TyVarTvs
zonkTcTyVarsToTcTyVars :: HasDebugCallStack => [TcTyVar] -> TcM [TcTyVar]
zonkTcTyVarsToTcTyVars = mapM zonkTcTyVarToTcTyVar

zonkTcTyVarToTcTyVar :: HasDebugCallStack => TcTyVar -> TcM TcTyVar
zonkTcTyVarToTcTyVar tv
  = do { ty <- zonkTcTyVar tv
       ; let tv' = case getTyVar_maybe ty of
                     Just tv' -> tv'
                     Nothing  -> pprPanic "zonkTcTyVarToTcTyVar"
                                          (ppr tv $$ ppr ty)
       ; return tv' }

zonkInvisTVBinder :: VarBndr TcTyVar spec -> TcM (VarBndr TcTyVar spec)
zonkInvisTVBinder (Bndr tv spec) = do { tv' <- zonkTcTyVarToTcTyVar tv
                                      ; return (Bndr tv' spec) }

-- zonkId is used *during* typechecking just to zonk the Id's type
zonkId :: TcId -> TcM TcId
zonkId id = Id.updateIdTypeAndMultM zonkTcType id

zonkCoVar :: CoVar -> TcM CoVar
zonkCoVar = zonkId

{- Note [Sharing in zonking]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have
   alpha :-> beta :-> gamma :-> ty
where the ":->" means that the unification variable has been
filled in with Indirect. Then when zonking alpha, it'd be nice
to short-circuit beta too, so we end up with
   alpha :-> zty
   beta  :-> zty
   gamma :-> zty
where zty is the zonked version of ty.  That way, if we come across
beta later, we'll have less work to do.  (And indeed the same for
alpha.)

This is easily achieved: just overwrite (Indirect ty) with (Indirect
zty).  Non-systematic perf comparisons suggest that this is a modest
win.

But c.f Note [Sharing when zonking to Type] in GHC.Tc.Utils.Zonk.

%************************************************************************
%*                                                                      *
                 Tidying
*                                                                      *
************************************************************************
-}

zonkTidyTcType :: TidyEnv -> TcType -> TcM (TidyEnv, TcType)
zonkTidyTcType env ty = do { ty' <- zonkTcType ty
                           ; return (tidyOpenType env ty') }

zonkTidyTcTypes :: TidyEnv -> [TcType] -> TcM (TidyEnv, [TcType])
zonkTidyTcTypes = zonkTidyTcTypes' []
  where zonkTidyTcTypes' zs env [] = return (env, reverse zs)
        zonkTidyTcTypes' zs env (ty:tys)
          = do { (env', ty') <- zonkTidyTcType env ty
               ; zonkTidyTcTypes' (ty':zs) env' tys }

zonkTidyOrigin :: TidyEnv -> CtOrigin -> TcM (TidyEnv, CtOrigin)
zonkTidyOrigin env (GivenOrigin skol_info)
  = do { skol_info1 <- zonkSkolemInfoAnon skol_info
       ; let skol_info2 = tidySkolemInfoAnon env skol_info1
       ; return (env, GivenOrigin skol_info2) }
zonkTidyOrigin env (GivenSCOrigin skol_info sc_depth blocked)
  = do { skol_info1 <- zonkSkolemInfoAnon skol_info
       ; let skol_info2 = tidySkolemInfoAnon env skol_info1
       ; return (env, GivenSCOrigin skol_info2 sc_depth blocked) }
zonkTidyOrigin env orig@(TypeEqOrigin { uo_actual   = act
                                      , uo_expected = exp })
  = do { (env1, act') <- zonkTidyTcType env  act
       ; (env2, exp') <- zonkTidyTcType env1 exp
       ; return ( env2, orig { uo_actual   = act'
                             , uo_expected = exp' }) }
zonkTidyOrigin env (KindEqOrigin ty1 ty2 orig t_or_k)
  = do { (env1, ty1')  <- zonkTidyTcType env  ty1
       ; (env2, ty2')  <- zonkTidyTcType env1 ty2
       ; (env3, orig') <- zonkTidyOrigin env2 orig
       ; return (env3, KindEqOrigin ty1' ty2' orig' t_or_k) }
zonkTidyOrigin env (FunDepOrigin1 p1 o1 l1 p2 o2 l2)
  = do { (env1, p1') <- zonkTidyTcType env  p1
       ; (env2, o1') <- zonkTidyOrigin env1 o1
       ; (env3, p2') <- zonkTidyTcType env2 p2
       ; (env4, o2') <- zonkTidyOrigin env3 o2
       ; return (env4, FunDepOrigin1 p1' o1' l1 p2' o2' l2) }
zonkTidyOrigin env (FunDepOrigin2 p1 o1 p2 l2)
  = do { (env1, p1') <- zonkTidyTcType env  p1
       ; (env2, p2') <- zonkTidyTcType env1 p2
       ; (env3, o1') <- zonkTidyOrigin env2 o1
       ; return (env3, FunDepOrigin2 p1' o1' p2' l2) }
zonkTidyOrigin env (InjTFOrigin1 pred1 orig1 loc1 pred2 orig2 loc2)
  = do { (env1, pred1') <- zonkTidyTcType env  pred1
       ; (env2, orig1') <- zonkTidyOrigin env1 orig1
       ; (env3, pred2') <- zonkTidyTcType env2 pred2
       ; (env4, orig2') <- zonkTidyOrigin env3 orig2
       ; return (env4, InjTFOrigin1 pred1' orig1' loc1 pred2' orig2' loc2) }
zonkTidyOrigin env (CycleBreakerOrigin orig)
  = do { (env1, orig') <- zonkTidyOrigin env orig
       ; return (env1, CycleBreakerOrigin orig') }
zonkTidyOrigin env (InstProvidedOrigin mod cls_inst)
  = do { (env1, is_tys') <- mapAccumLM zonkTidyTcType env (is_tys cls_inst)
       ; return (env1, InstProvidedOrigin mod (cls_inst {is_tys = is_tys'})) }
zonkTidyOrigin env (WantedSuperclassOrigin pty orig)
  = do { (env1, pty')  <- zonkTidyTcType env pty
       ; (env2, orig') <- zonkTidyOrigin env1 orig
       ; return (env2, WantedSuperclassOrigin pty' orig') }
zonkTidyOrigin env orig = return (env, orig)

zonkTidyOrigins :: TidyEnv -> [CtOrigin] -> TcM (TidyEnv, [CtOrigin])
zonkTidyOrigins = mapAccumLM zonkTidyOrigin

zonkTidyFRRInfos :: TidyEnv
                 -> [FixedRuntimeRepErrorInfo]
                 -> TcM (TidyEnv, [FixedRuntimeRepErrorInfo])
zonkTidyFRRInfos = go []
  where
    go zs env [] = return (env, reverse zs)
    go zs env (FRR_Info { frr_info_origin = FixedRuntimeRepOrigin ty orig
                        , frr_info_not_concrete = mb_not_conc } : tys)
      = do { (env, ty) <- zonkTidyTcType env ty
           ; (env, mb_not_conc) <- go_mb_not_conc env mb_not_conc
           ; let info = FRR_Info { frr_info_origin = FixedRuntimeRepOrigin ty orig
                                 , frr_info_not_concrete = mb_not_conc }
           ; go (info:zs) env tys }

    go_mb_not_conc env Nothing = return (env, Nothing)
    go_mb_not_conc env (Just (tv, ty))
      = do { (env, tv) <- return $ tidyOpenTyCoVar env tv
           ; (env, ty) <- zonkTidyTcType env ty
           ; return (env, Just (tv, ty)) }

----------------
tidyCt :: TidyEnv -> Ct -> Ct
-- Used only in error reporting
tidyCt env ct = ct { cc_ev = tidyCtEvidence env (ctEvidence ct) }

tidyCtEvidence :: TidyEnv -> CtEvidence -> CtEvidence
     -- NB: we do not tidy the ctev_evar field because we don't
     --     show it in error messages
tidyCtEvidence env ctev = ctev { ctev_pred = tidyType env ty }
  where
    ty  = ctev_pred ctev

tidyHole :: TidyEnv -> Hole -> Hole
tidyHole env h@(Hole { hole_ty = ty }) = h { hole_ty = tidyType env ty }

tidyDelayedError :: TidyEnv -> DelayedError -> DelayedError
tidyDelayedError env (DE_Hole hole)
  = DE_Hole $ tidyHole env hole
tidyDelayedError env (DE_NotConcrete err)
  = DE_NotConcrete $ tidyConcreteError env err

tidyConcreteError :: TidyEnv -> NotConcreteError -> NotConcreteError
tidyConcreteError env err@(NCE_FRR { nce_frr_origin = frr_orig })
  = err { nce_frr_origin = tidyFRROrigin env frr_orig }

tidyFRROrigin :: TidyEnv -> FixedRuntimeRepOrigin -> FixedRuntimeRepOrigin
tidyFRROrigin env (FixedRuntimeRepOrigin ty orig)
  = FixedRuntimeRepOrigin (tidyType env ty) orig

----------------
tidyEvVar :: TidyEnv -> EvVar -> EvVar
tidyEvVar env var = updateIdTypeAndMult (tidyType env) var


-------------------------------------------------------------------------
{-
%************************************************************************
%*                                                                      *
             Representation polymorphism checks
*                                                                       *
***********************************************************************-}

-- | Check that the specified type has a fixed runtime representation.
--
-- If it isn't, throw a representation-polymorphism error appropriate
-- for the context (as specified by the 'FixedRuntimeRepProvenance').
--
-- Unlike the other representation polymorphism checks, which can emit
-- new Wanted constraints to be solved by the constraint solver, this function
-- does not emit any constraints: it has enough information to immediately
-- make a decision.
--
-- See (1) in Note [Representation polymorphism checking] in GHC.Tc.Utils.Concrete
checkTypeHasFixedRuntimeRep :: FixedRuntimeRepProvenance -> Type -> TcM ()
checkTypeHasFixedRuntimeRep prov ty =
  unless (typeHasFixedRuntimeRep ty)
    (addDetailedDiagnostic $ TcRnTypeDoesNotHaveFixedRuntimeRep ty prov)

{-
%************************************************************************
%*                                                                      *
             Error messages
*                                                                       *
*************************************************************************

-}

-- See Note [Naughty quantification candidates]
naughtyQuantification :: TcType   -- original type user wanted to quantify
                      -> TcTyVar  -- naughty var
                      -> TyVarSet -- skolems that would escape
                      -> TcM a
naughtyQuantification orig_ty tv escapees
  = do { orig_ty1 <- zonkTcType orig_ty  -- in case it's not zonked

       ; escapees' <- zonkTcTyVarsToTcTyVars $
                      nonDetEltsUniqSet escapees
                     -- we'll just be printing, so no harmful non-determinism

       ; let fvs  = tyCoVarsOfTypeWellScoped orig_ty1
             env0 = tidyFreeTyCoVars emptyTidyEnv fvs
             env  = env0 `delTidyEnvList` escapees'
                    -- this avoids gratuitous renaming of the escaped
                    -- variables; very confusing to users!

             orig_ty'   = tidyType env orig_ty1
             tidied = map (tidyTyCoVarOcc env) escapees'
             msg = TcRnSkolemEscape tidied (tidyTyCoVarOcc env tv) orig_ty'

       ; failWithTcM (env, msg) }

{-
************************************************************************
*                                                                      *
             Checking for coercion holes
*                                                                      *
************************************************************************
-}

zonkCtRewriterSet :: Ct -> TcM Ct
zonkCtRewriterSet ct
  | isGiven ev = return ct
  | otherwise
  = case ct of
      CQuantCan {}                    -> return ct
      CEqCan eq@(EqCt { eq_ev = ev }) -> do { ev' <- zonkCtEvRewriterSet ev
                                            ; return (CEqCan (eq { eq_ev = ev' })) }
      _ ->  do { ev' <- zonkCtEvRewriterSet ev
               ; return (ct { cc_ev = ev' }) }
  where
    ev = ctEvidence ct

zonkCtEvRewriterSet :: CtEvidence -> TcM CtEvidence
zonkCtEvRewriterSet ev@(CtGiven {})
  = return ev
zonkCtEvRewriterSet ev@(CtWanted { ctev_rewriters = rewriters })
  = do { rewriters' <- zonkRewriterSet rewriters
       ; return (ev { ctev_rewriters = rewriters' }) }

-- | Check whether any coercion hole in a RewriterSet is still unsolved.
-- Does this by recursively looking through filled coercion holes until
-- one is found that is not yet filled in, at which point this aborts.
zonkRewriterSet :: RewriterSet -> TcM RewriterSet
zonkRewriterSet (RewriterSet set)
  = nonDetStrictFoldUniqSet go (return emptyRewriterSet) set
     -- this does not introduce non-determinism, because the only
     -- monadic action is to read, and the combining function is
     -- commutative
  where
    go :: CoercionHole -> TcM RewriterSet -> TcM RewriterSet
    go hole m_acc = unionRewriterSet <$> (check_hole hole) <*> m_acc

    check_hole :: CoercionHole -> TcM RewriterSet
    check_hole hole = do { m_co <- unpackCoercionHole_maybe hole
                         ; case m_co of
                             Nothing -> return (unitRewriterSet hole)
                             Just co -> unUCHM (check_co co) }

    check_ty :: Type -> UnfilledCoercionHoleMonoid
    check_co :: Coercion -> UnfilledCoercionHoleMonoid
    (check_ty, _, check_co, _) = foldTyCo folder ()

    folder :: TyCoFolder () UnfilledCoercionHoleMonoid
    folder = TyCoFolder { tcf_view  = noView
                        , tcf_tyvar = \ _ tv -> check_ty (tyVarKind tv)
                        , tcf_covar = \ _ cv -> check_ty (varType cv)
                        , tcf_hole  = \ _ -> UCHM . check_hole
                        , tcf_tycobinder = \ _ _ _ -> () }

newtype UnfilledCoercionHoleMonoid = UCHM { unUCHM :: TcM RewriterSet }

instance Semigroup UnfilledCoercionHoleMonoid where
  UCHM l <> UCHM r = UCHM (unionRewriterSet <$> l <*> r)

instance Monoid UnfilledCoercionHoleMonoid where
  mempty = UCHM (return emptyRewriterSet)