1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
|
-- (c) The University of Glasgow 2006
{-# LANGUAGE CPP #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE MagicHash #-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
-- | Highly random utility functions
--
module GHC.Utils.Misc (
-- * Miscellaneous higher-order functions
applyWhen, nTimes, const2,
-- * General list processing
zipEqual, zipWithEqual, zipWith3Equal, zipWith4Equal,
zipLazy, stretchZipWith, zipWithAndUnzip, zipAndUnzip,
zipWithLazy, zipWith3Lazy,
filterByList, filterByLists, partitionByList,
unzipWith,
mapFst, mapSnd, chkAppend,
mapAndUnzip, mapAndUnzip3,
filterOut, partitionWith,
dropWhileEndLE, spanEnd, last2, lastMaybe, onJust,
List.foldl1', foldl2, count, countWhile, all2,
lengthExceeds, lengthIs, lengthIsNot,
lengthAtLeast, lengthAtMost, lengthLessThan,
listLengthCmp, atLength,
equalLength, compareLength, leLength, ltLength,
isSingleton, only, expectOnly, GHC.Utils.Misc.singleton,
notNull, snocView,
chunkList,
holes,
changeLast,
mapLastM,
whenNonEmpty,
mergeListsBy,
isSortedBy,
-- Foldable generalised functions,
mapMaybe',
-- * Tuples
fstOf3, sndOf3, thdOf3,
fst3, snd3, third3,
uncurry3,
-- * List operations controlled by another list
takeList, dropList, splitAtList, split,
dropTail, capitalise,
-- * Sorting
sortWith, minWith, nubSort, ordNub, ordNubOn,
-- * Comparisons
isEqual,
removeSpaces,
(<&&>), (<||>),
-- * Edit distance
fuzzyMatch, fuzzyLookup,
-- * Transitive closures
transitiveClosure,
-- * Strictness
seqList, strictMap, strictZipWith, strictZipWith3,
-- * Module names
looksLikeModuleName,
looksLikePackageName,
-- * Integers
exactLog2,
-- * Floating point
readRational,
readSignificandExponentPair,
readHexRational,
readHexSignificandExponentPair,
-- * IO-ish utilities
doesDirNameExist,
getModificationUTCTime,
modificationTimeIfExists,
fileHashIfExists,
withAtomicRename,
-- * Filenames and paths
Suffix,
splitLongestPrefix,
escapeSpaces,
Direction(..), reslash,
makeRelativeTo,
-- * Utils for defining Data instances
abstractConstr, abstractDataType, mkNoRepType,
-- * Utils for printing C code
charToC,
-- * Hashing
hashString,
-- * Call stacks
HasCallStack,
HasDebugCallStack,
) where
import GHC.Prelude hiding ( last )
import GHC.Utils.Exception
import GHC.Utils.Panic.Plain
import GHC.Utils.Constants
import GHC.Utils.Fingerprint
import Data.Data
import qualified Data.List as List
import Data.List.NonEmpty ( NonEmpty(..), last )
import GHC.Exts
import GHC.Stack (HasCallStack)
import Control.Monad ( guard )
import Control.Monad.IO.Class ( MonadIO, liftIO )
import System.IO.Error as IO ( isDoesNotExistError )
import System.Directory ( doesDirectoryExist, getModificationTime, renameFile )
import System.FilePath
import Data.Bifunctor ( first, second )
import Data.Char ( isUpper, isAlphaNum, isSpace, chr, ord, isDigit, toUpper
, isHexDigit, digitToInt )
import Data.Int
import Data.Ratio ( (%) )
import Data.Ord ( comparing )
import Data.Word
import qualified Data.IntMap as IM
import qualified Data.Set as Set
import Data.Time
{-
************************************************************************
* *
\subsection{Miscellaneous higher-order functions}
* *
************************************************************************
-}
-- | Apply a function iff some condition is met.
applyWhen :: Bool -> (a -> a) -> a -> a
applyWhen True f x = f x
applyWhen _ _ x = x
-- | Apply a function @n@ times to a given value.
nTimes :: Int -> (a -> a) -> (a -> a)
nTimes 0 _ = id
nTimes 1 f = f
nTimes n f = f . nTimes (n-1) f
const2 :: a -> b -> c -> a
const2 x _ _ = x
fstOf3 :: (a,b,c) -> a
sndOf3 :: (a,b,c) -> b
thdOf3 :: (a,b,c) -> c
fstOf3 (a,_,_) = a
sndOf3 (_,b,_) = b
thdOf3 (_,_,c) = c
fst3 :: (a -> d) -> (a, b, c) -> (d, b, c)
fst3 f (a, b, c) = (f a, b, c)
snd3 :: (b -> d) -> (a, b, c) -> (a, d, c)
snd3 f (a, b, c) = (a, f b, c)
third3 :: (c -> d) -> (a, b, c) -> (a, b, d)
third3 f (a, b, c) = (a, b, f c)
uncurry3 :: (a -> b -> c -> d) -> (a, b, c) -> d
uncurry3 f (a, b, c) = f a b c
{-
************************************************************************
* *
\subsection[Utils-lists]{General list processing}
* *
************************************************************************
-}
filterOut :: (a->Bool) -> [a] -> [a]
-- ^ Like filter, only it reverses the sense of the test
filterOut p = filter (not . p)
partitionWith :: (a -> Either b c) -> [a] -> ([b], [c])
-- ^ Uses a function to determine which of two output lists an input element should join
partitionWith _ [] = ([],[])
partitionWith f (x:xs) = case f x of
Left b -> (b:bs, cs)
Right c -> (bs, c:cs)
where (bs,cs) = partitionWith f xs
chkAppend :: [a] -> [a] -> [a]
-- Checks for the second argument being empty
-- Used in situations where that situation is common
chkAppend xs ys
| null ys = xs
| otherwise = xs ++ ys
{-
A paranoid @zip@ (and some @zipWith@ friends) that checks the lists
are of equal length. Alastair Reid thinks this should only happen if
DEBUGging on; hey, why not?
-}
zipEqual :: String -> [a] -> [b] -> [(a,b)]
zipWithEqual :: String -> (a->b->c) -> [a]->[b]->[c]
zipWith3Equal :: String -> (a->b->c->d) -> [a]->[b]->[c]->[d]
zipWith4Equal :: String -> (a->b->c->d->e) -> [a]->[b]->[c]->[d]->[e]
#if !defined(DEBUG)
zipEqual _ = zip
zipWithEqual _ = zipWith
zipWith3Equal _ = zipWith3
zipWith4Equal _ = List.zipWith4
#else
zipEqual _ [] [] = []
zipEqual msg (a:as) (b:bs) = (a,b) : zipEqual msg as bs
zipEqual msg _ _ = panic ("zipEqual: unequal lists: "++msg)
zipWithEqual msg z (a:as) (b:bs)= z a b : zipWithEqual msg z as bs
zipWithEqual _ _ [] [] = []
zipWithEqual msg _ _ _ = panic ("zipWithEqual: unequal lists: "++msg)
zipWith3Equal msg z (a:as) (b:bs) (c:cs)
= z a b c : zipWith3Equal msg z as bs cs
zipWith3Equal _ _ [] [] [] = []
zipWith3Equal msg _ _ _ _ = panic ("zipWith3Equal: unequal lists: "++msg)
zipWith4Equal msg z (a:as) (b:bs) (c:cs) (d:ds)
= z a b c d : zipWith4Equal msg z as bs cs ds
zipWith4Equal _ _ [] [] [] [] = []
zipWith4Equal msg _ _ _ _ _ = panic ("zipWith4Equal: unequal lists: "++msg)
#endif
-- | 'zipLazy' is a kind of 'zip' that is lazy in the second list (observe the ~)
zipLazy :: [a] -> [b] -> [(a,b)]
zipLazy [] _ = []
zipLazy (x:xs) ~(y:ys) = (x,y) : zipLazy xs ys
-- | 'zipWithLazy' is like 'zipWith' but is lazy in the second list.
-- The length of the output is always the same as the length of the first
-- list.
zipWithLazy :: (a -> b -> c) -> [a] -> [b] -> [c]
zipWithLazy _ [] _ = []
zipWithLazy f (a:as) ~(b:bs) = f a b : zipWithLazy f as bs
-- | 'zipWith3Lazy' is like 'zipWith3' but is lazy in the second and third lists.
-- The length of the output is always the same as the length of the first
-- list.
zipWith3Lazy :: (a -> b -> c -> d) -> [a] -> [b] -> [c] -> [d]
zipWith3Lazy _ [] _ _ = []
zipWith3Lazy f (a:as) ~(b:bs) ~(c:cs) = f a b c : zipWith3Lazy f as bs cs
-- | 'filterByList' takes a list of Bools and a list of some elements and
-- filters out these elements for which the corresponding value in the list of
-- Bools is False. This function does not check whether the lists have equal
-- length.
filterByList :: [Bool] -> [a] -> [a]
filterByList (True:bs) (x:xs) = x : filterByList bs xs
filterByList (False:bs) (_:xs) = filterByList bs xs
filterByList _ _ = []
-- | 'filterByLists' takes a list of Bools and two lists as input, and
-- outputs a new list consisting of elements from the last two input lists. For
-- each Bool in the list, if it is 'True', then it takes an element from the
-- former list. If it is 'False', it takes an element from the latter list.
-- The elements taken correspond to the index of the Bool in its list.
-- For example:
--
-- @
-- filterByLists [True, False, True, False] \"abcd\" \"wxyz\" = \"axcz\"
-- @
--
-- This function does not check whether the lists have equal length.
filterByLists :: [Bool] -> [a] -> [a] -> [a]
filterByLists (True:bs) (x:xs) (_:ys) = x : filterByLists bs xs ys
filterByLists (False:bs) (_:xs) (y:ys) = y : filterByLists bs xs ys
filterByLists _ _ _ = []
-- | 'partitionByList' takes a list of Bools and a list of some elements and
-- partitions the list according to the list of Bools. Elements corresponding
-- to 'True' go to the left; elements corresponding to 'False' go to the right.
-- For example, @partitionByList [True, False, True] [1,2,3] == ([1,3], [2])@
-- This function does not check whether the lists have equal
-- length; when one list runs out, the function stops.
partitionByList :: [Bool] -> [a] -> ([a], [a])
partitionByList = go [] []
where
go trues falses (True : bs) (x : xs) = go (x:trues) falses bs xs
go trues falses (False : bs) (x : xs) = go trues (x:falses) bs xs
go trues falses _ _ = (reverse trues, reverse falses)
stretchZipWith :: (a -> Bool) -> b -> (a->b->c) -> [a] -> [b] -> [c]
-- ^ @stretchZipWith p z f xs ys@ stretches @ys@ by inserting @z@ in
-- the places where @p@ returns @True@
stretchZipWith _ _ _ [] _ = []
stretchZipWith p z f (x:xs) ys
| p x = f x z : stretchZipWith p z f xs ys
| otherwise = case ys of
[] -> []
(y:ys) -> f x y : stretchZipWith p z f xs ys
mapFst :: Functor f => (a->c) -> f(a,b) -> f(c,b)
mapSnd :: Functor f => (b->c) -> f(a,b) -> f(a,c)
mapFst = fmap . first
mapSnd = fmap . second
mapAndUnzip :: (a -> (b, c)) -> [a] -> ([b], [c])
mapAndUnzip _ [] = ([], [])
mapAndUnzip f (x:xs)
= let (r1, r2) = f x
(rs1, rs2) = mapAndUnzip f xs
in
(r1:rs1, r2:rs2)
mapAndUnzip3 :: (a -> (b, c, d)) -> [a] -> ([b], [c], [d])
mapAndUnzip3 _ [] = ([], [], [])
mapAndUnzip3 f (x:xs)
= let (r1, r2, r3) = f x
(rs1, rs2, rs3) = mapAndUnzip3 f xs
in
(r1:rs1, r2:rs2, r3:rs3)
zipWithAndUnzip :: (a -> b -> (c,d)) -> [a] -> [b] -> ([c],[d])
zipWithAndUnzip f (a:as) (b:bs)
= let (r1, r2) = f a b
(rs1, rs2) = zipWithAndUnzip f as bs
in
(r1:rs1, r2:rs2)
zipWithAndUnzip _ _ _ = ([],[])
-- | This has the effect of making the two lists have equal length by dropping
-- the tail of the longer one.
zipAndUnzip :: [a] -> [b] -> ([a],[b])
zipAndUnzip (a:as) (b:bs)
= let (rs1, rs2) = zipAndUnzip as bs
in
(a:rs1, b:rs2)
zipAndUnzip _ _ = ([],[])
-- | @atLength atLen atEnd ls n@ unravels list @ls@ to position @n@. Precisely:
--
-- @
-- atLength atLenPred atEndPred ls n
-- | n < 0 = atLenPred ls
-- | length ls < n = atEndPred (n - length ls)
-- | otherwise = atLenPred (drop n ls)
-- @
atLength :: ([a] -> b) -- Called when length ls >= n, passed (drop n ls)
-- NB: arg passed to this function may be []
-> b -- Called when length ls < n
-> [a]
-> Int
-> b
atLength atLenPred atEnd ls0 n0
| n0 < 0 = atLenPred ls0
| otherwise = go n0 ls0
where
-- go's first arg n >= 0
go 0 ls = atLenPred ls
go _ [] = atEnd -- n > 0 here
go n (_:xs) = go (n-1) xs
-- Some special cases of atLength:
-- | @(lengthExceeds xs n) = (length xs > n)@
lengthExceeds :: [a] -> Int -> Bool
lengthExceeds lst n
| n < 0
= True
| otherwise
= atLength notNull False lst n
-- | @(lengthAtLeast xs n) = (length xs >= n)@
lengthAtLeast :: [a] -> Int -> Bool
lengthAtLeast = atLength (const True) False
-- | @(lengthIs xs n) = (length xs == n)@
lengthIs :: [a] -> Int -> Bool
lengthIs lst n
| n < 0
= False
| otherwise
= atLength null False lst n
-- | @(lengthIsNot xs n) = (length xs /= n)@
lengthIsNot :: [a] -> Int -> Bool
lengthIsNot lst n
| n < 0 = True
| otherwise = atLength notNull True lst n
-- | @(lengthAtMost xs n) = (length xs <= n)@
lengthAtMost :: [a] -> Int -> Bool
lengthAtMost lst n
| n < 0
= False
| otherwise
= atLength null True lst n
-- | @(lengthLessThan xs n) == (length xs < n)@
lengthLessThan :: [a] -> Int -> Bool
lengthLessThan = atLength (const False) True
listLengthCmp :: [a] -> Int -> Ordering
listLengthCmp = atLength atLen atEnd
where
atEnd = LT -- Not yet seen 'n' elts, so list length is < n.
atLen [] = EQ
atLen _ = GT
equalLength :: [a] -> [b] -> Bool
-- ^ True if length xs == length ys
equalLength [] [] = True
equalLength (_:xs) (_:ys) = equalLength xs ys
equalLength _ _ = False
compareLength :: [a] -> [b] -> Ordering
compareLength [] [] = EQ
compareLength (_:xs) (_:ys) = compareLength xs ys
compareLength [] _ = LT
compareLength _ [] = GT
leLength :: [a] -> [b] -> Bool
-- ^ True if length xs <= length ys
leLength xs ys = case compareLength xs ys of
LT -> True
EQ -> True
GT -> False
ltLength :: [a] -> [b] -> Bool
-- ^ True if length xs < length ys
ltLength xs ys = case compareLength xs ys of
LT -> True
EQ -> False
GT -> False
----------------------------
singleton :: a -> [a]
singleton x = [x]
isSingleton :: [a] -> Bool
isSingleton [_] = True
isSingleton _ = False
notNull :: Foldable f => f a -> Bool
notNull = not . null
-- | Utility function to go from a singleton list to it's element.
--
-- Wether or not the argument is a singleton list is only checked
-- in debug builds.
only :: [a] -> a
#if defined(DEBUG)
only [a] = a
#else
only (a:_) = a
#endif
only _ = panic "Util: only"
-- | Extract the single element of a list and panic with the given message if
-- there are more elements or the list was empty.
-- Like 'expectJust', but for lists.
expectOnly :: HasCallStack => String -> [a] -> a
{-# INLINE expectOnly #-}
#if defined(DEBUG)
expectOnly _ [a] = a
#else
expectOnly _ (a:_) = a
#endif
expectOnly msg _ = panic ("expectOnly: " ++ msg)
-- | Split a list into chunks of /n/ elements
chunkList :: Int -> [a] -> [[a]]
chunkList _ [] = []
chunkList n xs = as : chunkList n bs where (as,bs) = splitAt n xs
-- | Compute all the ways of removing a single element from a list.
--
-- > holes [1,2,3] = [(1, [2,3]), (2, [1,3]), (3, [1,2])]
holes :: [a] -> [(a, [a])]
holes [] = []
holes (x:xs) = (x, xs) : mapSnd (x:) (holes xs)
-- | Replace the last element of a list with another element.
changeLast :: [a] -> a -> [a]
changeLast [] _ = panic "changeLast"
changeLast [_] x = [x]
changeLast (x:xs) x' = x : changeLast xs x'
-- | Apply an effectful function to the last list element.
-- Assumes a non-empty list (panics otherwise).
mapLastM :: Functor f => (a -> f a) -> [a] -> f [a]
mapLastM _ [] = panic "mapLastM: empty list"
mapLastM f [x] = (\x' -> [x']) <$> f x
mapLastM f (x:xs) = (x:) <$> mapLastM f xs
whenNonEmpty :: Applicative m => [a] -> (NonEmpty a -> m ()) -> m ()
whenNonEmpty [] _ = pure ()
whenNonEmpty (x:xs) f = f (x :| xs)
-- | Merge an unsorted list of sorted lists, for example:
--
-- > mergeListsBy compare [ [2,5,15], [1,10,100] ] = [1,2,5,10,15,100]
--
-- \( O(n \log{} k) \)
mergeListsBy :: forall a. (a -> a -> Ordering) -> [[a]] -> [a]
mergeListsBy cmp lists | debugIsOn, not (all sorted lists) =
-- When debugging is on, we check that the input lists are sorted.
panic "mergeListsBy: input lists must be sorted"
where sorted = isSortedBy cmp
mergeListsBy cmp all_lists = merge_lists all_lists
where
-- Implements "Iterative 2-Way merge" described at
-- https://en.wikipedia.org/wiki/K-way_merge_algorithm
-- Merge two sorted lists into one in O(n).
merge2 :: [a] -> [a] -> [a]
merge2 [] ys = ys
merge2 xs [] = xs
merge2 (x:xs) (y:ys) =
case cmp x y of
GT -> y : merge2 (x:xs) ys
_ -> x : merge2 xs (y:ys)
-- Merge the first list with the second, the third with the fourth, and so
-- on. The output has half as much lists as the input.
merge_neighbours :: [[a]] -> [[a]]
merge_neighbours [] = []
merge_neighbours [xs] = [xs]
merge_neighbours (xs : ys : lists) =
merge2 xs ys : merge_neighbours lists
-- Since 'merge_neighbours' halves the amount of lists in each iteration,
-- we perform O(log k) iteration. Each iteration is O(n). The total running
-- time is therefore O(n log k).
merge_lists :: [[a]] -> [a]
merge_lists lists =
case merge_neighbours lists of
[] -> []
[xs] -> xs
lists' -> merge_lists lists'
isSortedBy :: (a -> a -> Ordering) -> [a] -> Bool
isSortedBy cmp = sorted
where
sorted [] = True
sorted [_] = True
sorted (x:y:xs) = cmp x y /= GT && sorted (y:xs)
{-
************************************************************************
* *
\subsubsection{Sort utils}
* *
************************************************************************
-}
minWith :: Ord b => (a -> b) -> [a] -> a
minWith get_key xs = assert (not (null xs) )
head (sortWith get_key xs)
nubSort :: Ord a => [a] -> [a]
nubSort = Set.toAscList . Set.fromList
-- | Remove duplicates but keep elements in order.
-- O(n * log n)
ordNub :: Ord a => [a] -> [a]
ordNub xs = ordNubOn id xs
-- | Remove duplicates but keep elements in order.
-- O(n * log n)
ordNubOn :: Ord b => (a -> b) -> [a] -> [a]
ordNubOn f xs
= go Set.empty xs
where
go _ [] = []
go s (x:xs)
| Set.member (f x) s = go s xs
| otherwise = x : go (Set.insert (f x) s) xs
{-
************************************************************************
* *
\subsection[Utils-transitive-closure]{Transitive closure}
* *
************************************************************************
This algorithm for transitive closure is straightforward, albeit quadratic.
-}
transitiveClosure :: (a -> [a]) -- Successor function
-> (a -> a -> Bool) -- Equality predicate
-> [a]
-> [a] -- The transitive closure
transitiveClosure succ eq xs
= go [] xs
where
go done [] = done
go done (x:xs) | x `is_in` done = go done xs
| otherwise = go (x:done) (succ x ++ xs)
_ `is_in` [] = False
x `is_in` (y:ys) | eq x y = True
| otherwise = x `is_in` ys
{-
************************************************************************
* *
\subsection[Utils-accum]{Accumulating}
* *
************************************************************************
A combination of foldl with zip. It works with equal length lists.
-}
foldl2 :: (acc -> a -> b -> acc) -> acc -> [a] -> [b] -> acc
foldl2 _ z [] [] = z
foldl2 k z (a:as) (b:bs) = foldl2 k (k z a b) as bs
foldl2 _ _ _ _ = panic "Util: foldl2"
all2 :: (a -> b -> Bool) -> [a] -> [b] -> Bool
-- True if the lists are the same length, and
-- all corresponding elements satisfy the predicate
all2 _ [] [] = True
all2 p (x:xs) (y:ys) = p x y && all2 p xs ys
all2 _ _ _ = False
-- Count the number of times a predicate is true
count :: (a -> Bool) -> [a] -> Int
count p = go 0
where go !n [] = n
go !n (x:xs) | p x = go (n+1) xs
| otherwise = go n xs
countWhile :: (a -> Bool) -> [a] -> Int
-- Length of an /initial prefix/ of the list satisfying p
countWhile p = go 0
where go !n (x:xs) | p x = go (n+1) xs
go !n _ = n
{-
@splitAt@, @take@, and @drop@ but with length of another
list giving the break-off point:
-}
takeList :: [b] -> [a] -> [a]
-- (takeList as bs) trims bs to the be same length
-- as as, unless as is longer in which case it's a no-op
takeList [] _ = []
takeList (_:xs) ls =
case ls of
[] -> []
(y:ys) -> y : takeList xs ys
dropList :: [b] -> [a] -> [a]
dropList [] xs = xs
dropList _ xs@[] = xs
dropList (_:xs) (_:ys) = dropList xs ys
-- | Given two lists xs and ys, return `splitAt (length xs) ys`.
splitAtList :: [b] -> [a] -> ([a], [a])
splitAtList xs ys = go 0# xs ys
where
-- we are careful to avoid allocating when there are no leftover
-- arguments: in this case we can return "ys" directly (cf #18535)
--
-- We make `xs` strict because in the general case `ys` isn't `[]` so we
-- will have to evaluate `xs` anyway.
go _ !_ [] = (ys, []) -- length ys <= length xs
go n [] bs = (take (I# n) ys, bs) -- = splitAt n ys
go n (_:as) (_:bs) = go (n +# 1#) as bs
-- | drop from the end of a list
dropTail :: Int -> [a] -> [a]
-- Specification: dropTail n = reverse . drop n . reverse
-- Better implementation due to Joachim Breitner
-- http://www.joachim-breitner.de/blog/archives/600-On-taking-the-last-n-elements-of-a-list.html
dropTail n xs
= go (drop n xs) xs
where
go (_:ys) (x:xs) = x : go ys xs
go _ _ = [] -- Stop when ys runs out
-- It'll always run out before xs does
-- dropWhile from the end of a list. This is similar to Data.List.dropWhileEnd,
-- but is lazy in the elements and strict in the spine. For reasonably short lists,
-- such as path names and typical lines of text, dropWhileEndLE is generally
-- faster than dropWhileEnd. Its advantage is magnified when the predicate is
-- expensive--using dropWhileEndLE isSpace to strip the space off a line of text
-- is generally much faster than using dropWhileEnd isSpace for that purpose.
-- Specification: dropWhileEndLE p = reverse . dropWhile p . reverse
-- Pay attention to the short-circuit (&&)! The order of its arguments is the only
-- difference between dropWhileEnd and dropWhileEndLE.
dropWhileEndLE :: (a -> Bool) -> [a] -> [a]
dropWhileEndLE p = foldr (\x r -> if null r && p x then [] else x:r) []
-- | @spanEnd p l == reverse (span p (reverse l))@. The first list
-- returns actually comes after the second list (when you look at the
-- input list).
spanEnd :: (a -> Bool) -> [a] -> ([a], [a])
spanEnd p l = go l [] [] l
where go yes _rev_yes rev_no [] = (yes, reverse rev_no)
go yes rev_yes rev_no (x:xs)
| p x = go yes (x : rev_yes) rev_no xs
| otherwise = go xs [] (x : rev_yes ++ rev_no) xs
-- | Get the last two elements in a list. Partial!
{-# INLINE last2 #-}
last2 :: [a] -> (a,a)
last2 = List.foldl' (\(_,x2) x -> (x2,x)) (partialError,partialError)
where
partialError = panic "last2 - list length less than two"
lastMaybe :: [a] -> Maybe a
lastMaybe [] = Nothing
lastMaybe (x:xs) = Just $ last (x:|xs)
-- | @onJust x m f@ applies f to the value inside the Just or returns the default.
onJust :: b -> Maybe a -> (a->b) -> b
onJust dflt = flip (maybe dflt)
-- | Split a list into its last element and the initial part of the list.
-- @snocView xs = Just (init xs, last xs)@ for non-empty lists.
-- @snocView xs = Nothing@ otherwise.
-- Unless both parts of the result are guaranteed to be used
-- prefer separate calls to @last@ + @init@.
-- If you are guaranteed to use both, this will
-- be more efficient.
snocView :: [a] -> Maybe ([a],a)
snocView [] = Nothing
snocView xs
| (xs,x) <- go xs
= Just (xs,x)
where
go :: [a] -> ([a],a)
go [x] = ([],x)
go (x:xs)
| !(xs',x') <- go xs
= (x:xs', x')
go [] = error "impossible"
split :: Char -> String -> [String]
split c s = case rest of
[] -> [chunk]
_:rest -> chunk : split c rest
where (chunk, rest) = break (==c) s
-- | Convert a word to title case by capitalising the first letter
capitalise :: String -> String
capitalise [] = []
capitalise (c:cs) = toUpper c : cs
{-
************************************************************************
* *
\subsection[Utils-comparison]{Comparisons}
* *
************************************************************************
-}
isEqual :: Ordering -> Bool
-- Often used in (isEqual (a `compare` b))
isEqual GT = False
isEqual EQ = True
isEqual LT = False
removeSpaces :: String -> String
removeSpaces = dropWhileEndLE isSpace . dropWhile isSpace
-- Boolean operators lifted to Applicative
(<&&>) :: Applicative f => f Bool -> f Bool -> f Bool
(<&&>) = liftA2 (&&)
infixr 3 <&&> -- same as (&&)
(<||>) :: Applicative f => f Bool -> f Bool -> f Bool
(<||>) = liftA2 (||)
infixr 2 <||> -- same as (||)
{-
************************************************************************
* *
\subsection{Edit distance}
* *
************************************************************************
-}
-- | Find the "restricted" Damerau-Levenshtein edit distance between two strings.
-- See: <http://en.wikipedia.org/wiki/Damerau-Levenshtein_distance>.
-- Based on the algorithm presented in "A Bit-Vector Algorithm for Computing
-- Levenshtein and Damerau Edit Distances" in PSC'02 (Heikki Hyyro).
-- See http://www.cs.uta.fi/~helmu/pubs/psc02.pdf and
-- http://www.cs.uta.fi/~helmu/pubs/PSCerr.html for an explanation
restrictedDamerauLevenshteinDistance :: String -> String -> Int
restrictedDamerauLevenshteinDistance str1 str2
= restrictedDamerauLevenshteinDistanceWithLengths m n str1 str2
where
m = length str1
n = length str2
restrictedDamerauLevenshteinDistanceWithLengths
:: Int -> Int -> String -> String -> Int
restrictedDamerauLevenshteinDistanceWithLengths m n str1 str2
| m <= n
= if n <= 32 -- n must be larger so this check is sufficient
then restrictedDamerauLevenshteinDistance' (undefined :: Word32) m n str1 str2
else restrictedDamerauLevenshteinDistance' (undefined :: Integer) m n str1 str2
| otherwise
= if m <= 32 -- m must be larger so this check is sufficient
then restrictedDamerauLevenshteinDistance' (undefined :: Word32) n m str2 str1
else restrictedDamerauLevenshteinDistance' (undefined :: Integer) n m str2 str1
restrictedDamerauLevenshteinDistance'
:: (Bits bv, Num bv) => bv -> Int -> Int -> String -> String -> Int
restrictedDamerauLevenshteinDistance' _bv_dummy m n str1 str2
| [] <- str1 = n
| otherwise = extractAnswer $
List.foldl' (restrictedDamerauLevenshteinDistanceWorker
(matchVectors str1) top_bit_mask vector_mask)
(0, 0, m_ones, 0, m) str2
where
m_ones@vector_mask = (2 ^ m) - 1
top_bit_mask = (1 `shiftL` (m - 1)) `asTypeOf` _bv_dummy
extractAnswer (_, _, _, _, distance) = distance
restrictedDamerauLevenshteinDistanceWorker
:: (Bits bv, Num bv) => IM.IntMap bv -> bv -> bv
-> (bv, bv, bv, bv, Int) -> Char -> (bv, bv, bv, bv, Int)
restrictedDamerauLevenshteinDistanceWorker str1_mvs top_bit_mask vector_mask
(pm, d0, vp, vn, distance) char2
= seq str1_mvs $ seq top_bit_mask $ seq vector_mask $
seq pm' $ seq d0' $ seq vp' $ seq vn' $
seq distance'' $ seq char2 $
(pm', d0', vp', vn', distance'')
where
pm' = IM.findWithDefault 0 (ord char2) str1_mvs
d0' = ((((sizedComplement vector_mask d0) .&. pm') `shiftL` 1) .&. pm)
.|. ((((pm' .&. vp) + vp) .&. vector_mask) `xor` vp) .|. pm' .|. vn
-- No need to mask the shiftL because of the restricted range of pm
hp' = vn .|. sizedComplement vector_mask (d0' .|. vp)
hn' = d0' .&. vp
hp'_shift = ((hp' `shiftL` 1) .|. 1) .&. vector_mask
hn'_shift = (hn' `shiftL` 1) .&. vector_mask
vp' = hn'_shift .|. sizedComplement vector_mask (d0' .|. hp'_shift)
vn' = d0' .&. hp'_shift
distance' = if hp' .&. top_bit_mask /= 0 then distance + 1 else distance
distance'' = if hn' .&. top_bit_mask /= 0 then distance' - 1 else distance'
sizedComplement :: Bits bv => bv -> bv -> bv
sizedComplement vector_mask vect = vector_mask `xor` vect
matchVectors :: (Bits bv, Num bv) => String -> IM.IntMap bv
matchVectors = snd . List.foldl' go (0 :: Int, IM.empty)
where
go (ix, im) char = let ix' = ix + 1
im' = IM.insertWith (.|.) (ord char) (2 ^ ix) im
in seq ix' $ seq im' $ (ix', im')
{-# SPECIALIZE INLINE restrictedDamerauLevenshteinDistance'
:: Word32 -> Int -> Int -> String -> String -> Int #-}
{-# SPECIALIZE INLINE restrictedDamerauLevenshteinDistance'
:: Integer -> Int -> Int -> String -> String -> Int #-}
{-# SPECIALIZE restrictedDamerauLevenshteinDistanceWorker
:: IM.IntMap Word32 -> Word32 -> Word32
-> (Word32, Word32, Word32, Word32, Int)
-> Char -> (Word32, Word32, Word32, Word32, Int) #-}
{-# SPECIALIZE restrictedDamerauLevenshteinDistanceWorker
:: IM.IntMap Integer -> Integer -> Integer
-> (Integer, Integer, Integer, Integer, Int)
-> Char -> (Integer, Integer, Integer, Integer, Int) #-}
{-# SPECIALIZE INLINE sizedComplement :: Word32 -> Word32 -> Word32 #-}
{-# SPECIALIZE INLINE sizedComplement :: Integer -> Integer -> Integer #-}
{-# SPECIALIZE matchVectors :: String -> IM.IntMap Word32 #-}
{-# SPECIALIZE matchVectors :: String -> IM.IntMap Integer #-}
fuzzyMatch :: String -> [String] -> [String]
fuzzyMatch key vals = fuzzyLookup key [(v,v) | v <- vals]
-- | Search for possible matches to the users input in the given list,
-- returning a small number of ranked results
fuzzyLookup :: String -> [(String,a)] -> [a]
fuzzyLookup user_entered possibilities
= map fst $ take mAX_RESULTS $ List.sortBy (comparing snd)
[ (poss_val, sort_key)
| (poss_str, poss_val) <- possibilities
, let distance = restrictedDamerauLevenshteinDistance poss_str user_entered
, distance <= fuzzy_threshold
, let sort_key = (distance, length poss_str, poss_str)
]
where
-- Work out an appropriate match threshold:
-- We report a candidate if its edit distance is <= the threshold,
-- The threshold is set to about a quarter of the # of characters the user entered
-- Length Threshold
-- 1 0 -- Don't suggest *any* candidates
-- 2 1 -- for single-char identifiers
-- 3 1
-- 4 1
-- 5 1
-- 6 2
--
-- Candidates with the same distance are sorted by their length. We also
-- use the actual string as the third sorting criteria the sort key to get
-- deterministic output, even if the input may have depended on the uniques
-- in question
fuzzy_threshold = truncate $ fromIntegral (length user_entered + 2) / (4 :: Rational)
mAX_RESULTS = 3
{-
************************************************************************
* *
\subsection[Utils-pairs]{Pairs}
* *
************************************************************************
-}
unzipWith :: (a -> b -> c) -> [(a, b)] -> [c]
unzipWith = fmap . uncurry
seqList :: [a] -> b -> b
seqList [] b = b
seqList (x:xs) b = x `seq` seqList xs b
strictMap :: (a -> b) -> [a] -> [b]
strictMap _ [] = []
strictMap f (x:xs) =
let
!x' = f x
!xs' = strictMap f xs
in
x' : xs'
strictZipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
strictZipWith _ [] _ = []
strictZipWith _ _ [] = []
strictZipWith f (x:xs) (y:ys) =
let
!x' = f x y
!xs' = strictZipWith f xs ys
in
x' : xs'
strictZipWith3 :: (a -> b -> c -> d) -> [a] -> [b] -> [c] -> [d]
strictZipWith3 _ [] _ _ = []
strictZipWith3 _ _ [] _ = []
strictZipWith3 _ _ _ [] = []
strictZipWith3 f (x:xs) (y:ys) (z:zs) =
let
!x' = f x y z
!xs' = strictZipWith3 f xs ys zs
in
x' : xs'
-- Module names:
looksLikeModuleName :: String -> Bool
looksLikeModuleName [] = False
looksLikeModuleName (c:cs) = isUpper c && go cs
where go [] = True
go ('.':cs) = looksLikeModuleName cs
go (c:cs) = (isAlphaNum c || c == '_' || c == '\'') && go cs
-- Similar to 'parse' for Distribution.Package.PackageName,
-- but we don't want to depend on Cabal.
looksLikePackageName :: String -> Bool
looksLikePackageName = all (all isAlphaNum <&&> not . (all isDigit)) . split '-'
-----------------------------------------------------------------------------
-- Integers
-- | Determine the $\log_2$ of exact powers of 2
exactLog2 :: Integer -> Maybe Integer
exactLog2 x
| x <= 0 = Nothing
| x > fromIntegral (maxBound :: Int32) = Nothing
| x' .&. (-x') /= x' = Nothing
| otherwise = Just (fromIntegral c)
where
x' = fromIntegral x :: Int32
c = countTrailingZeros x'
{-
-- -----------------------------------------------------------------------------
-- Floats
-}
readRational__ :: ReadS Rational -- NB: doesn't handle leading "-"
readRational__ r = do
((i, e), t) <- readSignificandExponentPair__ r
return ((i%1)*10^^e, t)
readRational :: String -> Rational -- NB: *does* handle a leading "-"
readRational top_s
= case top_s of
'-' : xs -> negate (read_me xs)
xs -> read_me xs
where
read_me s
= case (do { (x,"") <- readRational__ s ; return x }) of
[x] -> x
[] -> error ("readRational: no parse:" ++ top_s)
_ -> error ("readRational: ambiguous parse:" ++ top_s)
readSignificandExponentPair__ :: ReadS (Integer, Integer) -- NB: doesn't handle leading "-"
readSignificandExponentPair__ r = do
(n,d,s) <- readFix r
(k,t) <- readExp s
let pair = (n, toInteger (k - d))
return (pair, t)
where
readFix r = do
(ds,s) <- lexDecDigits r
(ds',t) <- lexDotDigits s
return (read (ds++ds'), length ds', t)
readExp (e:s) | e `elem` "eE" = readExp' s
readExp s = return (0,s)
readExp' ('+':s) = readDec s
readExp' ('-':s) = do (k,t) <- readDec s
return (-k,t)
readExp' s = readDec s
readDec s = do
(ds,r) <- nonnull isDigit s
return (foldl1 (\n d -> n * 10 + d) [ ord d - ord '0' | d <- ds ],
r)
lexDecDigits = nonnull isDigit
lexDotDigits ('.':s) = return (span' isDigit s)
lexDotDigits s = return ("",s)
nonnull p s = do (cs@(_:_),t) <- return (span' p s)
return (cs,t)
span' _ xs@[] = (xs, xs)
span' p xs@(x:xs')
| x == '_' = span' p xs' -- skip "_" (#14473)
| p x = let (ys,zs) = span' p xs' in (x:ys,zs)
| otherwise = ([],xs)
-- | Parse a string into a significand and exponent.
-- A trivial example might be:
-- ghci> readSignificandExponentPair "1E2"
-- (1,2)
-- In a more complex case we might return a exponent different than that
-- which the user wrote. This is needed in order to use a Integer significand.
-- ghci> readSignificandExponentPair "-1.11E5"
-- (-111,3)
readSignificandExponentPair :: String -> (Integer, Integer) -- NB: *does* handle a leading "-"
readSignificandExponentPair top_s
= case top_s of
'-' : xs -> let (i, e) = read_me xs in (-i, e)
xs -> read_me xs
where
read_me s
= case (do { (x,"") <- readSignificandExponentPair__ s ; return x }) of
[x] -> x
[] -> error ("readSignificandExponentPair: no parse:" ++ top_s)
_ -> error ("readSignificandExponentPair: ambiguous parse:" ++ top_s)
readHexRational :: String -> Rational
readHexRational str =
case str of
'-' : xs -> negate (readMe xs)
xs -> readMe xs
where
readMe as =
case readHexRational__ as of
Just n -> n
_ -> error ("readHexRational: no parse:" ++ str)
readHexRational__ :: String -> Maybe Rational
readHexRational__ ('0' : x : rest)
| x == 'X' || x == 'x' =
do let (front,rest2) = span' isHexDigit rest
guard (not (null front))
let frontNum = steps 16 0 front
case rest2 of
'.' : rest3 ->
do let (back,rest4) = span' isHexDigit rest3
guard (not (null back))
let backNum = steps 16 frontNum back
exp1 = -4 * length back
case rest4 of
p : ps | isExp p -> fmap (mk backNum . (+ exp1)) (getExp ps)
_ -> return (mk backNum exp1)
p : ps | isExp p -> fmap (mk frontNum) (getExp ps)
_ -> Nothing
where
isExp p = p == 'p' || p == 'P'
getExp ('+' : ds) = dec ds
getExp ('-' : ds) = fmap negate (dec ds)
getExp ds = dec ds
mk :: Integer -> Int -> Rational
mk n e = fromInteger n * 2^^e
dec cs = case span' isDigit cs of
(ds,"") | not (null ds) -> Just (steps 10 0 ds)
_ -> Nothing
steps base n ds = List.foldl' (step base) n ds
step base n d = base * n + fromIntegral (digitToInt d)
span' _ xs@[] = (xs, xs)
span' p xs@(x:xs')
| x == '_' = span' p xs' -- skip "_" (#14473)
| p x = let (ys,zs) = span' p xs' in (x:ys,zs)
| otherwise = ([],xs)
readHexRational__ _ = Nothing
-- | Parse a string into a significand and exponent according to
-- the "Hexadecimal Floats in Haskell" proposal.
-- A trivial example might be:
-- ghci> readHexSignificandExponentPair "0x1p+1"
-- (1,1)
-- Behaves similar to readSignificandExponentPair but the base is 16
-- and numbers are given in hexadecimal:
-- ghci> readHexSignificandExponentPair "0xAp-4"
-- (10,-4)
-- ghci> readHexSignificandExponentPair "0x1.2p3"
-- (18,-1)
readHexSignificandExponentPair :: String -> (Integer, Integer)
readHexSignificandExponentPair str =
case str of
'-' : xs -> let (i, e) = readMe xs in (-i, e)
xs -> readMe xs
where
readMe as =
case readHexSignificandExponentPair__ as of
Just n -> n
_ -> error ("readHexSignificandExponentPair: no parse:" ++ str)
readHexSignificandExponentPair__ :: String -> Maybe (Integer, Integer)
readHexSignificandExponentPair__ ('0' : x : rest)
| x == 'X' || x == 'x' =
do let (front,rest2) = span' isHexDigit rest
guard (not (null front))
let frontNum = steps 16 0 front
case rest2 of
'.' : rest3 ->
do let (back,rest4) = span' isHexDigit rest3
guard (not (null back))
let backNum = steps 16 frontNum back
exp1 = -4 * length back
case rest4 of
p : ps | isExp p -> fmap (mk backNum . (+ exp1)) (getExp ps)
_ -> return (mk backNum exp1)
p : ps | isExp p -> fmap (mk frontNum) (getExp ps)
_ -> Nothing
where
isExp p = p == 'p' || p == 'P'
getExp ('+' : ds) = dec ds
getExp ('-' : ds) = fmap negate (dec ds)
getExp ds = dec ds
mk :: Integer -> Int -> (Integer, Integer)
mk n e = (n, fromIntegral e)
dec cs = case span' isDigit cs of
(ds,"") | not (null ds) -> Just (steps 10 0 ds)
_ -> Nothing
steps base n ds = foldl' (step base) n ds
step base n d = base * n + fromIntegral (digitToInt d)
span' _ xs@[] = (xs, xs)
span' p xs@(x:xs')
| x == '_' = span' p xs' -- skip "_" (#14473)
| p x = let (ys,zs) = span' p xs' in (x:ys,zs)
| otherwise = ([],xs)
readHexSignificandExponentPair__ _ = Nothing
-----------------------------------------------------------------------------
-- Verify that the 'dirname' portion of a FilePath exists.
--
doesDirNameExist :: FilePath -> IO Bool
doesDirNameExist fpath = doesDirectoryExist (takeDirectory fpath)
-----------------------------------------------------------------------------
-- Backwards compatibility definition of getModificationTime
getModificationUTCTime :: FilePath -> IO UTCTime
getModificationUTCTime = getModificationTime
-- --------------------------------------------------------------
-- check existence & modification time at the same time
modificationTimeIfExists :: FilePath -> IO (Maybe UTCTime)
modificationTimeIfExists f =
(do t <- getModificationUTCTime f; return (Just t))
`catchIO` \e -> if isDoesNotExistError e
then return Nothing
else ioError e
-- --------------------------------------------------------------
-- check existence & hash at the same time
fileHashIfExists :: FilePath -> IO (Maybe Fingerprint)
fileHashIfExists f =
(do t <- getFileHash f; return (Just t))
`catchIO` \e -> if isDoesNotExistError e
then return Nothing
else ioError e
-- --------------------------------------------------------------
-- atomic file writing by writing to a temporary file first (see #14533)
--
-- This should be used in all cases where GHC writes files to disk
-- and uses their modification time to skip work later,
-- as otherwise a partially written file (e.g. due to crash or Ctrl+C)
-- also results in a skip.
withAtomicRename :: (MonadIO m) => FilePath -> (FilePath -> m a) -> m a
withAtomicRename targetFile f = do
-- The temp file must be on the same file system (mount) as the target file
-- to result in an atomic move on most platforms.
-- The standard way to ensure that is to place it into the same directory.
-- This can still be fooled when somebody mounts a different file system
-- at just the right time, but that is not a case we aim to cover here.
let temp = targetFile <.> "tmp"
res <- f temp
liftIO $ renameFile temp targetFile
return res
-- --------------------------------------------------------------
-- split a string at the last character where 'pred' is True,
-- returning a pair of strings. The first component holds the string
-- up (but not including) the last character for which 'pred' returned
-- True, the second whatever comes after (but also not including the
-- last character).
--
-- If 'pred' returns False for all characters in the string, the original
-- string is returned in the first component (and the second one is just
-- empty).
splitLongestPrefix :: String -> (Char -> Bool) -> (String,String)
splitLongestPrefix str pred = case r_pre of
[] -> (str, [])
_:r_pre' -> (reverse r_pre', reverse r_suf)
-- 'tail' drops the char satisfying 'pred'
where (r_suf, r_pre) = break pred (reverse str)
escapeSpaces :: String -> String
escapeSpaces = foldr (\c s -> if isSpace c then '\\':c:s else c:s) ""
type Suffix = String
--------------------------------------------------------------
-- * Search path
--------------------------------------------------------------
data Direction = Forwards | Backwards
reslash :: Direction -> FilePath -> FilePath
reslash d = f
where f ('/' : xs) = slash : f xs
f ('\\' : xs) = slash : f xs
f (x : xs) = x : f xs
f "" = ""
slash = case d of
Forwards -> '/'
Backwards -> '\\'
makeRelativeTo :: FilePath -> FilePath -> FilePath
this `makeRelativeTo` that = directory </> thisFilename
where (thisDirectory, thisFilename) = splitFileName this
thatDirectory = dropFileName that
directory = joinPath $ f (splitPath thisDirectory)
(splitPath thatDirectory)
f (x : xs) (y : ys)
| x == y = f xs ys
f xs ys = replicate (length ys) ".." ++ xs
{-
************************************************************************
* *
\subsection[Utils-Data]{Utils for defining Data instances}
* *
************************************************************************
These functions helps us to define Data instances for abstract types.
-}
abstractConstr :: String -> Constr
abstractConstr n = mkConstr (abstractDataType n) ("{abstract:"++n++"}") [] Prefix
abstractDataType :: String -> DataType
abstractDataType n = mkDataType n [abstractConstr n]
{-
************************************************************************
* *
\subsection[Utils-C]{Utils for printing C code}
* *
************************************************************************
-}
charToC :: Word8 -> String
charToC w =
case chr (fromIntegral w) of
'\"' -> "\\\""
'\'' -> "\\\'"
'\\' -> "\\\\"
c | c >= ' ' && c <= '~' -> [c]
| otherwise -> ['\\',
chr (ord '0' + ord c `div` 64),
chr (ord '0' + ord c `div` 8 `mod` 8),
chr (ord '0' + ord c `mod` 8)]
{-
************************************************************************
* *
\subsection[Utils-Hashing]{Utils for hashing}
* *
************************************************************************
-}
-- | A sample hash function for Strings. We keep multiplying by the
-- golden ratio and adding. The implementation is:
--
-- > hashString = foldl' f golden
-- > where f m c = fromIntegral (ord c) * magic + hashInt32 m
-- > magic = 0xdeadbeef
--
-- Where hashInt32 works just as hashInt shown above.
--
-- Knuth argues that repeated multiplication by the golden ratio
-- will minimize gaps in the hash space, and thus it's a good choice
-- for combining together multiple keys to form one.
--
-- Here we know that individual characters c are often small, and this
-- produces frequent collisions if we use ord c alone. A
-- particular problem are the shorter low ASCII and ISO-8859-1
-- character strings. We pre-multiply by a magic twiddle factor to
-- obtain a good distribution. In fact, given the following test:
--
-- > testp :: Int32 -> Int
-- > testp k = (n - ) . length . group . sort . map hs . take n $ ls
-- > where ls = [] : [c : l | l <- ls, c <- ['\0'..'\xff']]
-- > hs = foldl' f golden
-- > f m c = fromIntegral (ord c) * k + hashInt32 m
-- > n = 100000
--
-- We discover that testp magic = 0.
hashString :: String -> Int32
hashString = foldl' f golden
where f m c = fromIntegral (ord c) * magic + hashInt32 m
magic = fromIntegral (0xdeadbeef :: Word32)
golden :: Int32
golden = 1013904242 -- = round ((sqrt 5 - 1) * 2^32) :: Int32
-- was -1640531527 = round ((sqrt 5 - 1) * 2^31) :: Int32
-- but that has bad mulHi properties (even adding 2^32 to get its inverse)
-- Whereas the above works well and contains no hash duplications for
-- [-32767..65536]
-- | A sample (and useful) hash function for Int32,
-- implemented by extracting the uppermost 32 bits of the 64-bit
-- result of multiplying by a 33-bit constant. The constant is from
-- Knuth, derived from the golden ratio:
--
-- > golden = round ((sqrt 5 - 1) * 2^32)
--
-- We get good key uniqueness on small inputs
-- (a problem with previous versions):
-- (length $ group $ sort $ map hashInt32 [-32767..65536]) == 65536 + 32768
--
hashInt32 :: Int32 -> Int32
hashInt32 x = mulHi x golden + x
-- hi 32 bits of a x-bit * 32 bit -> 64-bit multiply
mulHi :: Int32 -> Int32 -> Int32
mulHi a b = fromIntegral (r `shiftR` 32)
where r :: Int64
r = fromIntegral a * fromIntegral b
-- | A call stack constraint, but only when 'isDebugOn'.
#if defined(DEBUG)
type HasDebugCallStack = HasCallStack
#else
type HasDebugCallStack = (() :: Constraint)
#endif
mapMaybe' :: Foldable f => (a -> Maybe b) -> f a -> [b]
mapMaybe' f = foldr g []
where
g x rest
| Just y <- f x = y : rest
| otherwise = rest
|