1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
|
{-# LANGUAGE GADTs #-}
{-# OPTIONS_GHC -fno-warn-warnings-deprecations -fno-warn-incomplete-patterns #-}
module CmmContFlowOpt
( runCmmContFlowOpts
, removeUnreachableBlocks, replaceBranches
)
where
import BlockId
import Cmm
import CmmUtils
import Digraph
import Maybes
import Outputable
import Compiler.Hoopl
import Control.Monad
import Prelude hiding (succ, unzip, zip)
-----------------------------------------------------------------------------
--
-- Control-flow optimisations
--
-----------------------------------------------------------------------------
runCmmContFlowOpts :: CmmGroup -> CmmGroup
runCmmContFlowOpts = map (optProc cmmCfgOpts)
cmmCfgOpts :: CmmGraph -> CmmGraph
cmmCfgOpts = removeUnreachableBlocks . blockConcat . branchChainElim
-- Here branchChainElim can ultimately be replaced
-- with a more exciting combination of optimisations
optProc :: (g -> g) -> GenCmmDecl d h g -> GenCmmDecl d h g
optProc opt (CmmProc info lbl g) = CmmProc info lbl (opt g)
optProc _ top = top
-----------------------------------------------------------------------------
--
-- Branch Chain Elimination
--
-----------------------------------------------------------------------------
-- | Remove any basic block of the form L: goto L', and replace L with
-- L' everywhere else, unless L is the successor of a call instruction
-- and L' is the entry block. You don't want to set the successor of a
-- function call to the entry block because there is no good way to
-- store both the infotables for the call and from the callee, while
-- putting the stack pointer in a consistent place.
--
-- JD isn't quite sure when it's safe to share continuations for different
-- function calls -- have to think about where the SP will be,
-- so we'll table that problem for now by leaving all call successors alone.
branchChainElim :: CmmGraph -> CmmGraph
branchChainElim g
| null lone_branch_blocks = g -- No blocks to remove
| otherwise = {- pprTrace "branchChainElim" (ppr forest) $ -}
replaceLabels (mapFromList edges) g
where
blocks = toBlockList g
lone_branch_blocks :: [(BlockId, BlockId)]
-- each (L,K) is a block of the form
-- L : goto K
lone_branch_blocks = mapCatMaybes isLoneBranch blocks
call_succs = foldl add emptyBlockSet blocks
where add :: BlockSet -> CmmBlock -> BlockSet
add succs b =
case lastNode b of
(CmmCall _ (Just k) _ _ _) -> setInsert k succs
(CmmForeignCall {succ=k}) -> setInsert k succs
_ -> succs
isLoneBranch :: CmmBlock -> Maybe (BlockId, BlockId)
isLoneBranch block
| (JustC (CmmEntry id), [], JustC (CmmBranch target)) <- blockToNodeList block
, not (setMember id call_succs)
= Just (id,target)
| otherwise
= Nothing
-- We build a graph from lone_branch_blocks (every node has only
-- one out edge). Then we
-- - topologically sort the graph: if from A we can reach B,
-- then A occurs before B in the result list.
-- - depth-first search starting from the nodes in this list.
-- This gives us a [[node]], in which each list is a dependency
-- chain.
-- - for each list [a1,a2,...an] replace branches to ai with an.
--
-- This approach nicely deals with cycles by ignoring them.
-- Branches in a cycle will be redirected to somewhere in the
-- cycle, but we don't really care where. A cycle should be dead code,
-- and so will be eliminated by removeUnreachableBlocks.
--
fromNode (b,_) = b
toNode a = (a,a)
all_block_ids :: LabelSet
all_block_ids = setFromList (map fst lone_branch_blocks)
`setUnion`
setFromList (map snd lone_branch_blocks)
forest = dfsTopSortG $ graphFromVerticesAndAdjacency nodes lone_branch_blocks
where nodes = map toNode $ setElems $ all_block_ids
edges = [ (fromNode y, fromNode x)
| (x:xs) <- map reverse forest, y <- xs ]
----------------------------------------------------------------
replaceLabels :: BlockEnv BlockId -> CmmGraph -> CmmGraph
replaceLabels env =
replace_eid . mapGraphNodes1 txnode
where
replace_eid g = g {g_entry = lookup (g_entry g)}
lookup id = mapLookup id env `orElse` id
txnode :: CmmNode e x -> CmmNode e x
txnode (CmmBranch bid) = CmmBranch (lookup bid)
txnode (CmmCondBranch p t f) = CmmCondBranch (exp p) (lookup t) (lookup f)
txnode (CmmSwitch e arms) = CmmSwitch (exp e) (map (liftM lookup) arms)
txnode (CmmCall t k a res r) = CmmCall (exp t) (liftM lookup k) a res r
txnode fc@CmmForeignCall{} = fc{ args = map exp (args fc)
, succ = lookup (succ fc) }
txnode other = mapExpDeep exp other
exp :: CmmExpr -> CmmExpr
exp (CmmLit (CmmBlock bid)) = CmmLit (CmmBlock (lookup bid))
exp (CmmStackSlot (CallArea (Young id)) i) = CmmStackSlot (CallArea (Young (lookup id))) i
exp e = e
replaceBranches :: BlockEnv BlockId -> CmmGraph -> CmmGraph
replaceBranches env g = mapGraphNodes (id, id, last) g
where
last :: CmmNode O C -> CmmNode O C
last (CmmBranch id) = CmmBranch (lookup id)
last (CmmCondBranch e ti fi) = CmmCondBranch e (lookup ti) (lookup fi)
last (CmmSwitch e tbl) = CmmSwitch e (map (fmap lookup) tbl)
last l@(CmmCall {}) = l
last l@(CmmForeignCall {}) = l
lookup id = fmap lookup (mapLookup id env) `orElse` id
-- XXX: this is a recursive lookup, it follows chains until the lookup
-- returns Nothing, at which point we return the last BlockId
----------------------------------------------------------------
-- Build a map from a block to its set of predecessors. Very useful.
predMap :: [CmmBlock] -> BlockEnv BlockSet
predMap blocks = foldr add_preds mapEmpty blocks -- find the back edges
where add_preds block env = foldl (add (entryLabel block)) env (successors block)
add bid env b' =
mapInsert b' (setInsert bid (mapLookup b' env `orElse` setEmpty)) env
-----------------------------------------------------------------------------
--
-- Block concatenation
--
-----------------------------------------------------------------------------
-- If a block B branches to a label L, L is not the entry block,
-- and L has no other predecessors,
-- then we can splice the block starting with L onto the end of B.
-- Order matters, so we work bottom up (reverse postorder DFS).
-- This optimization can be inhibited by unreachable blocks, but
-- the reverse postorder DFS returns only reachable blocks.
--
-- To ensure correctness, we have to make sure that the BlockId of the block
-- we are about to eliminate is not named in another instruction.
--
-- Note: This optimization does _not_ subsume branch chain elimination.
blockConcat :: CmmGraph -> CmmGraph
blockConcat g@(CmmGraph {g_entry=eid}) =
replaceLabels concatMap $ ofBlockMap (g_entry g) blocks'
where
blocks = postorderDfs g
(blocks', concatMap) =
foldr maybe_concat (toBlockMap g, mapEmpty) $ blocks
maybe_concat :: CmmBlock -> (LabelMap CmmBlock, LabelMap Label) -> (LabelMap CmmBlock, LabelMap Label)
maybe_concat b unchanged@(blocks', concatMap) =
let bid = entryLabel b
in case blockToNodeList b of
(JustC h, m, JustC (CmmBranch b')) ->
if canConcatWith b' then
(mapInsert bid (splice blocks' h m b') blocks',
mapInsert b' bid concatMap)
else unchanged
_ -> unchanged
num_preds bid = liftM setSize (mapLookup bid backEdges) `orElse` 0
canConcatWith b' = b' /= eid && num_preds b' == 1
backEdges = predMap blocks
splice :: forall map n e x.
IsMap map =>
map (Block n e x) -> n C O -> [n O O] -> KeyOf map -> Block n C x
splice blocks' h m bid' =
case mapLookup bid' blocks' of
Nothing -> panic "unknown successor block"
Just block | (_, m', l') <- blockToNodeList block
-> blockOfNodeList (JustC h, (m ++ m'), l')
-----------------------------------------------------------------------------
--
-- Removing unreachable blocks
--
-----------------------------------------------------------------------------
removeUnreachableBlocks :: CmmGraph -> CmmGraph
removeUnreachableBlocks g
| length blocks < mapSize (toBlockMap g) = ofBlockList (g_entry g) blocks
| otherwise = g
where blocks = postorderDfs g
|