1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
|
-----------------------------------------------------------------------------
--
-- Code generator utilities; mostly monadic
--
-- (c) The University of Glasgow 2004-2006
--
-----------------------------------------------------------------------------
module CgUtils (
addIdReps,
cgLit,
emitDataLits, mkDataLits,
emitRODataLits, mkRODataLits,
emitIf, emitIfThenElse,
emitRtsCall, emitRtsCallWithVols, emitRtsCallWithResult,
emitRtsCallGen,
assignTemp, assignTemp_, newTemp,
emitSimultaneously,
emitSwitch, emitLitSwitch,
tagToClosure,
callerSaves, callerSaveVolatileRegs, get_GlobalReg_addr,
activeStgRegs, fixStgRegisters,
cmmAndWord, cmmOrWord, cmmNegate, cmmEqWord, cmmNeWord,
cmmUGtWord, cmmSubWord, cmmMulWord, cmmAddWord, cmmUShrWord,
cmmOffsetExprW, cmmOffsetExprB,
cmmRegOffW, cmmRegOffB,
cmmLabelOffW, cmmLabelOffB,
cmmOffsetW, cmmOffsetB,
cmmOffsetLitW, cmmOffsetLitB,
cmmLoadIndexW,
cmmConstrTag, cmmConstrTag1,
tagForCon, tagCons, isSmallFamily,
cmmUntag, cmmIsTagged, cmmGetTag,
addToMem, addToMemE,
mkWordCLit,
newStringCLit, newByteStringCLit,
packHalfWordsCLit,
blankWord,
getSRTInfo
) where
#include "HsVersions.h"
#include "../includes/stg/MachRegs.h"
import BlockId
import CgMonad
import TyCon
import DataCon
import Id
import IdInfo
import Constants
import SMRep
import OldCmm
import OldCmmUtils
import CLabel
import ForeignCall
import ClosureInfo
import StgSyn (SRT(..))
import Module
import Literal
import Digraph
import ListSetOps
import Util
import DynFlags
import FastString
import Outputable
import Data.Char
import Data.Word
import Data.List
import Data.Maybe
import Data.Ord
-------------------------------------------------------------------------
--
-- Random small functions
--
-------------------------------------------------------------------------
addIdReps :: [Id] -> [(CgRep, Id)]
addIdReps ids = [(idCgRep id, id) | id <- ids]
-------------------------------------------------------------------------
--
-- Literals
--
-------------------------------------------------------------------------
cgLit :: Literal -> FCode CmmLit
cgLit (MachStr s) = newByteStringCLit (bytesFB s)
cgLit other_lit = return (mkSimpleLit other_lit)
mkSimpleLit :: Literal -> CmmLit
mkSimpleLit (MachChar c) = CmmInt (fromIntegral (ord c)) wordWidth
mkSimpleLit MachNullAddr = zeroCLit
mkSimpleLit (MachInt i) = CmmInt i wordWidth
mkSimpleLit (MachInt64 i) = CmmInt i W64
mkSimpleLit (MachWord i) = CmmInt i wordWidth
mkSimpleLit (MachWord64 i) = CmmInt i W64
mkSimpleLit (MachFloat r) = CmmFloat r W32
mkSimpleLit (MachDouble r) = CmmFloat r W64
mkSimpleLit (MachLabel fs ms fod)
= CmmLabel (mkForeignLabel fs ms labelSrc fod)
where
-- TODO: Literal labels might not actually be in the current package...
labelSrc = ForeignLabelInThisPackage
mkSimpleLit (MachStr _) = panic "mkSimpleLit: MachStr"
-- No LitInteger's should be left by the time this is called. CorePrep
-- should have converted them all to a real core representation.
mkSimpleLit (LitInteger {}) = panic "mkSimpleLit: LitInteger"
mkLtOp :: Literal -> MachOp
-- On signed literals we must do a signed comparison
mkLtOp (MachInt _) = MO_S_Lt wordWidth
mkLtOp (MachFloat _) = MO_F_Lt W32
mkLtOp (MachDouble _) = MO_F_Lt W64
mkLtOp lit = MO_U_Lt (typeWidth (cmmLitType (mkSimpleLit lit)))
---------------------------------------------------
--
-- Cmm data type functions
--
---------------------------------------------------
{-
The family size of a data type (the number of constructors)
can be either:
* small, if the family size < 2**tag_bits
* big, otherwise.
Small families can have the constructor tag in the tag
bits.
Big families only use the tag value 1 to represent
evaluatedness.
-}
isSmallFamily :: Int -> Bool
isSmallFamily fam_size = fam_size <= mAX_PTR_TAG
tagForCon :: DataCon -> ConTagZ
tagForCon con = tag
where
con_tag = dataConTagZ con
fam_size = tyConFamilySize (dataConTyCon con)
tag | isSmallFamily fam_size = con_tag + 1
| otherwise = 1
--Tag an expression, to do: refactor, this appears in some other module.
tagCons :: DataCon -> CmmExpr -> CmmExpr
tagCons con expr = cmmOffsetB expr (tagForCon con)
--------------------------------------------------------------------------
--
-- Incrementing a memory location
--
--------------------------------------------------------------------------
addToMem :: Width -- rep of the counter
-> CmmExpr -- Address
-> Int -- What to add (a word)
-> CmmStmt
addToMem width ptr n = addToMemE width ptr (CmmLit (CmmInt (toInteger n) width))
addToMemE :: Width -- rep of the counter
-> CmmExpr -- Address
-> CmmExpr -- What to add (a word-typed expression)
-> CmmStmt
addToMemE width ptr n
= CmmStore ptr (CmmMachOp (MO_Add width) [CmmLoad ptr (cmmBits width), n])
-------------------------------------------------------------------------
--
-- Converting a closure tag to a closure for enumeration types
-- (this is the implementation of tagToEnum#).
--
-------------------------------------------------------------------------
tagToClosure :: TyCon -> CmmExpr -> CmmExpr
tagToClosure tycon tag
= CmmLoad (cmmOffsetExprW closure_tbl tag) gcWord
where closure_tbl = CmmLit (CmmLabel lbl)
lbl = mkClosureTableLabel (tyConName tycon) NoCafRefs
-------------------------------------------------------------------------
--
-- Conditionals and rts calls
--
-------------------------------------------------------------------------
emitIf :: CmmExpr -- Boolean
-> Code -- Then part
-> Code
-- Emit (if e then x)
-- ToDo: reverse the condition to avoid the extra branch instruction if possible
-- (some conditionals aren't reversible. eg. floating point comparisons cannot
-- be inverted because there exist some values for which both comparisons
-- return False, such as NaN.)
emitIf cond then_part
= do { then_id <- newLabelC
; join_id <- newLabelC
; stmtC (CmmCondBranch cond then_id)
; stmtC (CmmBranch join_id)
; labelC then_id
; then_part
; labelC join_id
}
emitIfThenElse :: CmmExpr -- Boolean
-> Code -- Then part
-> Code -- Else part
-> Code
-- Emit (if e then x else y)
emitIfThenElse cond then_part else_part
= do { then_id <- newLabelC
; join_id <- newLabelC
; stmtC (CmmCondBranch cond then_id)
; else_part
; stmtC (CmmBranch join_id)
; labelC then_id
; then_part
; labelC join_id
}
-- | Emit code to call a Cmm function.
emitRtsCall
:: PackageId -- ^ package the function is in
-> FastString -- ^ name of function
-> [CmmHinted CmmExpr] -- ^ function args
-> Code -- ^ cmm code
emitRtsCall pkg fun args = emitRtsCallGen [] pkg fun args Nothing
-- The 'Nothing' says "save all global registers"
emitRtsCallWithVols :: PackageId -> FastString -> [CmmHinted CmmExpr] -> [GlobalReg] -> Code
emitRtsCallWithVols pkg fun args vols
= emitRtsCallGen [] pkg fun args (Just vols)
emitRtsCallWithResult
:: LocalReg -> ForeignHint
-> PackageId -> FastString
-> [CmmHinted CmmExpr] -> Code
emitRtsCallWithResult res hint pkg fun args
= emitRtsCallGen [CmmHinted res hint] pkg fun args Nothing
-- Make a call to an RTS C procedure
emitRtsCallGen
:: [CmmHinted LocalReg]
-> PackageId
-> FastString
-> [CmmHinted CmmExpr]
-> Maybe [GlobalReg]
-> Code
emitRtsCallGen res pkg fun args vols = do
stmtsC caller_save
stmtC (CmmCall target res args CmmMayReturn)
stmtsC caller_load
where
(caller_save, caller_load) = callerSaveVolatileRegs vols
target = CmmCallee fun_expr CCallConv
fun_expr = mkLblExpr (mkCmmCodeLabel pkg fun)
-----------------------------------------------------------------------------
--
-- Caller-Save Registers
--
-----------------------------------------------------------------------------
-- Here we generate the sequence of saves/restores required around a
-- foreign call instruction.
-- TODO: reconcile with includes/Regs.h
-- * Regs.h claims that BaseReg should be saved last and loaded first
-- * This might not have been tickled before since BaseReg is callee save
-- * Regs.h saves SparkHd, ParkT1, SparkBase and SparkLim
callerSaveVolatileRegs :: Maybe [GlobalReg] -> ([CmmStmt], [CmmStmt])
callerSaveVolatileRegs vols = (caller_save, caller_load)
where
caller_save = foldr ($!) [] (map callerSaveGlobalReg regs_to_save)
caller_load = foldr ($!) [] (map callerRestoreGlobalReg regs_to_save)
system_regs = [Sp,SpLim,Hp,HpLim,CCCS,CurrentTSO,CurrentNursery,
{-SparkHd,SparkTl,SparkBase,SparkLim,-}BaseReg ]
regs_to_save = system_regs ++ vol_list
vol_list = case vols of Nothing -> all_of_em; Just regs -> regs
all_of_em = [ VanillaReg n VNonGcPtr | n <- [0..mAX_Vanilla_REG] ]
-- The VNonGcPtr is a lie, but I don't think it matters
++ [ FloatReg n | n <- [0..mAX_Float_REG] ]
++ [ DoubleReg n | n <- [0..mAX_Double_REG] ]
++ [ LongReg n | n <- [0..mAX_Long_REG] ]
callerSaveGlobalReg reg next
| callerSaves reg =
CmmStore (get_GlobalReg_addr reg)
(CmmReg (CmmGlobal reg)) : next
| otherwise = next
callerRestoreGlobalReg reg next
| callerSaves reg =
CmmAssign (CmmGlobal reg)
(CmmLoad (get_GlobalReg_addr reg) (globalRegType reg))
: next
| otherwise = next
-- | Returns @True@ if this global register is stored in a caller-saves
-- machine register.
callerSaves :: GlobalReg -> Bool
#ifdef CALLER_SAVES_Base
callerSaves BaseReg = True
#endif
#ifdef CALLER_SAVES_R1
callerSaves (VanillaReg 1 _) = True
#endif
#ifdef CALLER_SAVES_R2
callerSaves (VanillaReg 2 _) = True
#endif
#ifdef CALLER_SAVES_R3
callerSaves (VanillaReg 3 _) = True
#endif
#ifdef CALLER_SAVES_R4
callerSaves (VanillaReg 4 _) = True
#endif
#ifdef CALLER_SAVES_R5
callerSaves (VanillaReg 5 _) = True
#endif
#ifdef CALLER_SAVES_R6
callerSaves (VanillaReg 6 _) = True
#endif
#ifdef CALLER_SAVES_R7
callerSaves (VanillaReg 7 _) = True
#endif
#ifdef CALLER_SAVES_R8
callerSaves (VanillaReg 8 _) = True
#endif
#ifdef CALLER_SAVES_R9
callerSaves (VanillaReg 9 _) = True
#endif
#ifdef CALLER_SAVES_R10
callerSaves (VanillaReg 10 _) = True
#endif
#ifdef CALLER_SAVES_F1
callerSaves (FloatReg 1) = True
#endif
#ifdef CALLER_SAVES_F2
callerSaves (FloatReg 2) = True
#endif
#ifdef CALLER_SAVES_F3
callerSaves (FloatReg 3) = True
#endif
#ifdef CALLER_SAVES_F4
callerSaves (FloatReg 4) = True
#endif
#ifdef CALLER_SAVES_D1
callerSaves (DoubleReg 1) = True
#endif
#ifdef CALLER_SAVES_D2
callerSaves (DoubleReg 2) = True
#endif
#ifdef CALLER_SAVES_L1
callerSaves (LongReg 1) = True
#endif
#ifdef CALLER_SAVES_Sp
callerSaves Sp = True
#endif
#ifdef CALLER_SAVES_SpLim
callerSaves SpLim = True
#endif
#ifdef CALLER_SAVES_Hp
callerSaves Hp = True
#endif
#ifdef CALLER_SAVES_HpLim
callerSaves HpLim = True
#endif
#ifdef CALLER_SAVES_CCCS
callerSaves CCCS = True
#endif
#ifdef CALLER_SAVES_CurrentTSO
callerSaves CurrentTSO = True
#endif
#ifdef CALLER_SAVES_CurrentNursery
callerSaves CurrentNursery = True
#endif
callerSaves _ = False
-- -----------------------------------------------------------------------------
-- Information about global registers
baseRegOffset :: GlobalReg -> Int
baseRegOffset (VanillaReg 1 _) = oFFSET_StgRegTable_rR1
baseRegOffset (VanillaReg 2 _) = oFFSET_StgRegTable_rR2
baseRegOffset (VanillaReg 3 _) = oFFSET_StgRegTable_rR3
baseRegOffset (VanillaReg 4 _) = oFFSET_StgRegTable_rR4
baseRegOffset (VanillaReg 5 _) = oFFSET_StgRegTable_rR5
baseRegOffset (VanillaReg 6 _) = oFFSET_StgRegTable_rR6
baseRegOffset (VanillaReg 7 _) = oFFSET_StgRegTable_rR7
baseRegOffset (VanillaReg 8 _) = oFFSET_StgRegTable_rR8
baseRegOffset (VanillaReg 9 _) = oFFSET_StgRegTable_rR9
baseRegOffset (VanillaReg 10 _) = oFFSET_StgRegTable_rR10
baseRegOffset (VanillaReg n _) = panic ("Registers above R10 are not supported (tried to use R" ++ show n ++ ")")
baseRegOffset (FloatReg 1) = oFFSET_StgRegTable_rF1
baseRegOffset (FloatReg 2) = oFFSET_StgRegTable_rF2
baseRegOffset (FloatReg 3) = oFFSET_StgRegTable_rF3
baseRegOffset (FloatReg 4) = oFFSET_StgRegTable_rF4
baseRegOffset (FloatReg n) = panic ("Registers above F4 are not supported (tried to use F" ++ show n ++ ")")
baseRegOffset (DoubleReg 1) = oFFSET_StgRegTable_rD1
baseRegOffset (DoubleReg 2) = oFFSET_StgRegTable_rD2
baseRegOffset (DoubleReg n) = panic ("Registers above D2 are not supported (tried to use D" ++ show n ++ ")")
baseRegOffset Sp = oFFSET_StgRegTable_rSp
baseRegOffset SpLim = oFFSET_StgRegTable_rSpLim
baseRegOffset (LongReg 1) = oFFSET_StgRegTable_rL1
baseRegOffset (LongReg n) = panic ("Registers above L1 are not supported (tried to use L" ++ show n ++ ")")
baseRegOffset Hp = oFFSET_StgRegTable_rHp
baseRegOffset HpLim = oFFSET_StgRegTable_rHpLim
baseRegOffset CCCS = oFFSET_StgRegTable_rCCCS
baseRegOffset CurrentTSO = oFFSET_StgRegTable_rCurrentTSO
baseRegOffset CurrentNursery = oFFSET_StgRegTable_rCurrentNursery
baseRegOffset HpAlloc = oFFSET_StgRegTable_rHpAlloc
baseRegOffset EagerBlackholeInfo = oFFSET_stgEagerBlackholeInfo
baseRegOffset GCEnter1 = oFFSET_stgGCEnter1
baseRegOffset GCFun = oFFSET_stgGCFun
baseRegOffset BaseReg = panic "baseRegOffset:BaseReg"
baseRegOffset PicBaseReg = panic "baseRegOffset:PicBaseReg"
-------------------------------------------------------------------------
--
-- Strings generate a top-level data block
--
-------------------------------------------------------------------------
emitDataLits :: CLabel -> [CmmLit] -> Code
-- Emit a data-segment data block
emitDataLits lbl lits = emitDecl (mkDataLits Data lbl lits)
emitRODataLits :: String -> CLabel -> [CmmLit] -> Code
-- Emit a read-only data block
emitRODataLits _caller lbl lits
= emitDecl (mkRODataLits lbl lits)
newStringCLit :: String -> FCode CmmLit
-- Make a global definition for the string,
-- and return its label
newStringCLit str = newByteStringCLit (map (fromIntegral.ord) str)
newByteStringCLit :: [Word8] -> FCode CmmLit
newByteStringCLit bytes
= do { uniq <- newUnique
; let (lit, decl) = mkByteStringCLit uniq bytes
; emitDecl decl
; return lit }
-------------------------------------------------------------------------
--
-- Assigning expressions to temporaries
--
-------------------------------------------------------------------------
-- | If the expression is trivial, return it. Otherwise, assign the
-- expression to a temporary register and return an expression
-- referring to this register.
assignTemp :: CmmExpr -> FCode CmmExpr
-- For a non-trivial expression, e, create a local
-- variable and assign the expression to it
assignTemp e
| isTrivialCmmExpr e = return e
| otherwise = do { reg <- newTemp (cmmExprType e)
; stmtC (CmmAssign (CmmLocal reg) e)
; return (CmmReg (CmmLocal reg)) }
-- | If the expression is trivial and doesn't refer to a global
-- register, return it. Otherwise, assign the expression to a
-- temporary register and return an expression referring to this
-- register.
assignTemp_ :: CmmExpr -> FCode CmmExpr
assignTemp_ e
| isTrivialCmmExpr e && hasNoGlobalRegs e = return e
| otherwise = do
reg <- newTemp (cmmExprType e)
stmtC (CmmAssign (CmmLocal reg) e)
return (CmmReg (CmmLocal reg))
newTemp :: CmmType -> FCode LocalReg
newTemp rep = do { uniq <- newUnique; return (LocalReg uniq rep) }
-------------------------------------------------------------------------
--
-- Building case analysis
--
-------------------------------------------------------------------------
emitSwitch
:: CmmExpr -- Tag to switch on
-> [(ConTagZ, CgStmts)] -- Tagged branches
-> Maybe CgStmts -- Default branch (if any)
-> ConTagZ -> ConTagZ -- Min and Max possible values; behaviour
-- outside this range is undefined
-> Code
-- ONLY A DEFAULT BRANCH: no case analysis to do
emitSwitch _ [] (Just stmts) _ _
= emitCgStmts stmts
-- Right, off we go
emitSwitch tag_expr branches mb_deflt lo_tag hi_tag
= -- Just sort the branches before calling mk_sritch
do { mb_deflt_id <-
case mb_deflt of
Nothing -> return Nothing
Just stmts -> do id <- forkCgStmts stmts; return (Just id)
; dflags <- getDynFlags
; let via_C | HscC <- hscTarget dflags = True
| otherwise = False
; stmts <- mk_switch tag_expr (sortBy (comparing fst) branches)
mb_deflt_id lo_tag hi_tag via_C
; emitCgStmts stmts
}
mk_switch :: CmmExpr -> [(ConTagZ, CgStmts)]
-> Maybe BlockId -> ConTagZ -> ConTagZ -> Bool
-> FCode CgStmts
-- SINGLETON TAG RANGE: no case analysis to do
mk_switch _tag_expr [(tag,stmts)] _ lo_tag hi_tag _via_C
| lo_tag == hi_tag
= ASSERT( tag == lo_tag )
return stmts
-- SINGLETON BRANCH, NO DEFAULT: no case analysis to do
mk_switch _tag_expr [(_tag,stmts)] Nothing _lo_tag _hi_tag _via_C
= return stmts
-- The simplifier might have eliminated a case
-- so we may have e.g. case xs of
-- [] -> e
-- In that situation we can be sure the (:) case
-- can't happen, so no need to test
-- SINGLETON BRANCH: one equality check to do
mk_switch tag_expr [(tag,stmts)] (Just deflt) _lo_tag _hi_tag _via_C
= return (CmmCondBranch cond deflt `consCgStmt` stmts)
where
cond = cmmNeWord tag_expr (CmmLit (mkIntCLit tag))
-- We have lo_tag < hi_tag, but there's only one branch,
-- so there must be a default
-- ToDo: we might want to check for the two branch case, where one of
-- the branches is the tag 0, because comparing '== 0' is likely to be
-- more efficient than other kinds of comparison.
-- DENSE TAG RANGE: use a switch statment.
--
-- We also use a switch uncoditionally when compiling via C, because
-- this will get emitted as a C switch statement and the C compiler
-- should do a good job of optimising it. Also, older GCC versions
-- (2.95 in particular) have problems compiling the complicated
-- if-trees generated by this code, so compiling to a switch every
-- time works around that problem.
--
mk_switch tag_expr branches mb_deflt lo_tag hi_tag via_C
| use_switch -- Use a switch
= do { branch_ids <- mapM forkCgStmts (map snd branches)
; let
tagged_blk_ids = zip (map fst branches) (map Just branch_ids)
find_branch :: ConTagZ -> Maybe BlockId
find_branch i = assocDefault mb_deflt tagged_blk_ids i
-- NB. we have eliminated impossible branches at
-- either end of the range (see below), so the first
-- tag of a real branch is real_lo_tag (not lo_tag).
arms = [ find_branch i | i <- [real_lo_tag..real_hi_tag]]
switch_stmt = CmmSwitch (cmmOffset tag_expr (- real_lo_tag)) arms
; ASSERT(not (all isNothing arms))
return (oneCgStmt switch_stmt)
}
-- if we can knock off a bunch of default cases with one if, then do so
| Just deflt <- mb_deflt, (lowest_branch - lo_tag) >= n_branches
= do { (assign_tag, tag_expr') <- assignTemp' tag_expr
; let cond = cmmULtWord tag_expr' (CmmLit (mkIntCLit lowest_branch))
branch = CmmCondBranch cond deflt
; stmts <- mk_switch tag_expr' branches mb_deflt
lowest_branch hi_tag via_C
; return (assign_tag `consCgStmt` (branch `consCgStmt` stmts))
}
| Just deflt <- mb_deflt, (hi_tag - highest_branch) >= n_branches
= do { (assign_tag, tag_expr') <- assignTemp' tag_expr
; let cond = cmmUGtWord tag_expr' (CmmLit (mkIntCLit highest_branch))
branch = CmmCondBranch cond deflt
; stmts <- mk_switch tag_expr' branches mb_deflt
lo_tag highest_branch via_C
; return (assign_tag `consCgStmt` (branch `consCgStmt` stmts))
}
| otherwise -- Use an if-tree
= do { (assign_tag, tag_expr') <- assignTemp' tag_expr
-- To avoid duplication
; lo_stmts <- mk_switch tag_expr' lo_branches mb_deflt
lo_tag (mid_tag-1) via_C
; hi_stmts <- mk_switch tag_expr' hi_branches mb_deflt
mid_tag hi_tag via_C
; hi_id <- forkCgStmts hi_stmts
; let cond = cmmUGeWord tag_expr' (CmmLit (mkIntCLit mid_tag))
branch_stmt = CmmCondBranch cond hi_id
; return (assign_tag `consCgStmt` (branch_stmt `consCgStmt` lo_stmts))
}
-- we test (e >= mid_tag) rather than (e < mid_tag), because
-- the former works better when e is a comparison, and there
-- are two tags 0 & 1 (mid_tag == 1). In this case, the code
-- generator can reduce the condition to e itself without
-- having to reverse the sense of the comparison: comparisons
-- can't always be easily reversed (eg. floating
-- pt. comparisons).
where
use_switch = {- pprTrace "mk_switch" (
ppr tag_expr <+> text "n_tags:" <+> int n_tags <+>
text "branches:" <+> ppr (map fst branches) <+>
text "n_branches:" <+> int n_branches <+>
text "lo_tag:" <+> int lo_tag <+>
text "hi_tag:" <+> int hi_tag <+>
text "real_lo_tag:" <+> int real_lo_tag <+>
text "real_hi_tag:" <+> int real_hi_tag) $ -}
ASSERT( n_branches > 1 && n_tags > 1 )
n_tags > 2 && (via_C || (dense && big_enough))
-- up to 4 branches we use a decision tree, otherwise
-- a switch (== jump table in the NCG). This seems to be
-- optimal, and corresponds with what gcc does.
big_enough = n_branches > 4
dense = n_branches > (n_tags `div` 2)
n_branches = length branches
-- ignore default slots at each end of the range if there's
-- no default branch defined.
lowest_branch = fst (head branches)
highest_branch = fst (last branches)
real_lo_tag
| isNothing mb_deflt = lowest_branch
| otherwise = lo_tag
real_hi_tag
| isNothing mb_deflt = highest_branch
| otherwise = hi_tag
n_tags = real_hi_tag - real_lo_tag + 1
-- INVARIANT: Provided hi_tag > lo_tag (which is true)
-- lo_tag <= mid_tag < hi_tag
-- lo_branches have tags < mid_tag
-- hi_branches have tags >= mid_tag
(mid_tag,_) = branches !! (n_branches `div` 2)
-- 2 branches => n_branches `div` 2 = 1
-- => branches !! 1 give the *second* tag
-- There are always at least 2 branches here
(lo_branches, hi_branches) = span is_lo branches
is_lo (t,_) = t < mid_tag
assignTemp' :: CmmExpr -> FCode (CmmStmt, CmmExpr)
assignTemp' e
| isTrivialCmmExpr e = return (CmmNop, e)
| otherwise = do { reg <- newTemp (cmmExprType e)
; return (CmmAssign (CmmLocal reg) e, CmmReg (CmmLocal reg)) }
emitLitSwitch :: CmmExpr -- Tag to switch on
-> [(Literal, CgStmts)] -- Tagged branches
-> CgStmts -- Default branch (always)
-> Code -- Emit the code
-- Used for general literals, whose size might not be a word,
-- where there is always a default case, and where we don't know
-- the range of values for certain. For simplicity we always generate a tree.
--
-- ToDo: for integers we could do better here, perhaps by generalising
-- mk_switch and using that. --SDM 15/09/2004
emitLitSwitch _ [] deflt = emitCgStmts deflt
emitLitSwitch scrut branches deflt_blk
= do { scrut' <- assignTemp scrut
; deflt_blk_id <- forkCgStmts deflt_blk
; blk <- mk_lit_switch scrut' deflt_blk_id (sortBy (comparing fst) branches)
; emitCgStmts blk }
mk_lit_switch :: CmmExpr -> BlockId
-> [(Literal,CgStmts)]
-> FCode CgStmts
mk_lit_switch scrut deflt_blk_id [(lit,blk)]
= return (consCgStmt if_stmt blk)
where
cmm_lit = mkSimpleLit lit
rep = cmmLitType cmm_lit
ne = if isFloatType rep then MO_F_Ne else MO_Ne
cond = CmmMachOp (ne (typeWidth rep)) [scrut, CmmLit cmm_lit]
if_stmt = CmmCondBranch cond deflt_blk_id
mk_lit_switch scrut deflt_blk_id branches
= do { hi_blk <- mk_lit_switch scrut deflt_blk_id hi_branches
; lo_blk <- mk_lit_switch scrut deflt_blk_id lo_branches
; lo_blk_id <- forkCgStmts lo_blk
; let if_stmt = CmmCondBranch cond lo_blk_id
; return (if_stmt `consCgStmt` hi_blk) }
where
n_branches = length branches
(mid_lit,_) = branches !! (n_branches `div` 2)
-- See notes above re mid_tag
(lo_branches, hi_branches) = span is_lo branches
is_lo (t,_) = t < mid_lit
cond = CmmMachOp (mkLtOp mid_lit)
[scrut, CmmLit (mkSimpleLit mid_lit)]
-------------------------------------------------------------------------
--
-- Simultaneous assignment
--
-------------------------------------------------------------------------
emitSimultaneously :: CmmStmts -> Code
-- Emit code to perform the assignments in the
-- input simultaneously, using temporary variables when necessary.
--
-- The Stmts must be:
-- CmmNop, CmmComment, CmmAssign, CmmStore
-- and nothing else
-- We use the strongly-connected component algorithm, in which
-- * the vertices are the statements
-- * an edge goes from s1 to s2 iff
-- s1 assigns to something s2 uses
-- that is, if s1 should *follow* s2 in the final order
type CVertex = (Int, CmmStmt) -- Give each vertex a unique number,
-- for fast comparison
emitSimultaneously stmts
= codeOnly $
case filterOut isNopStmt (stmtList stmts) of
-- Remove no-ops
[] -> nopC
[stmt] -> stmtC stmt -- It's often just one stmt
stmt_list -> doSimultaneously1 (zip [(1::Int)..] stmt_list)
doSimultaneously1 :: [CVertex] -> Code
doSimultaneously1 vertices
= let
edges = [ (vertex, key1, edges_from stmt1)
| vertex@(key1, stmt1) <- vertices
]
edges_from stmt1 = [ key2 | (key2, stmt2) <- vertices,
stmt1 `mustFollow` stmt2
]
components = stronglyConnCompFromEdgedVertices edges
-- do_components deal with one strongly-connected component
-- Not cyclic, or singleton? Just do it
do_component (AcyclicSCC (_n, stmt)) = stmtC stmt
do_component (CyclicSCC [])
= panic "doSimultaneously1: do_component (CyclicSCC [])"
do_component (CyclicSCC [(_n, stmt)]) = stmtC stmt
-- Cyclic? Then go via temporaries. Pick one to
-- break the loop and try again with the rest.
do_component (CyclicSCC ((_n, first_stmt) : rest))
= do { from_temp <- go_via_temp first_stmt
; doSimultaneously1 rest
; stmtC from_temp }
go_via_temp (CmmAssign dest src)
= do { tmp <- newTemp (cmmRegType dest) -- TODO FIXME NOW if the pair of assignments move across a call this will be wrong
; stmtC (CmmAssign (CmmLocal tmp) src)
; return (CmmAssign dest (CmmReg (CmmLocal tmp))) }
go_via_temp (CmmStore dest src)
= do { tmp <- newTemp (cmmExprType src) -- TODO FIXME NOW if the pair of assignments move across a call this will be wrong
; stmtC (CmmAssign (CmmLocal tmp) src)
; return (CmmStore dest (CmmReg (CmmLocal tmp))) }
go_via_temp _ = panic "doSimultaneously1: go_via_temp"
in
mapCs do_component components
mustFollow :: CmmStmt -> CmmStmt -> Bool
CmmAssign reg _ `mustFollow` stmt = anySrc (reg `regUsedIn`) stmt
CmmStore loc e `mustFollow` stmt = anySrc (locUsedIn loc (cmmExprType e)) stmt
CmmNop `mustFollow` _ = False
CmmComment _ `mustFollow` _ = False
_ `mustFollow` _ = panic "mustFollow"
anySrc :: (CmmExpr -> Bool) -> CmmStmt -> Bool
-- True if the fn is true of any input of the stmt
anySrc p (CmmAssign _ e) = p e
anySrc p (CmmStore e1 e2) = p e1 || p e2 -- Might be used in either side
anySrc _ (CmmComment _) = False
anySrc _ CmmNop = False
anySrc _ _ = True -- Conservative
locUsedIn :: CmmExpr -> CmmType -> CmmExpr -> Bool
-- (locUsedIn a r e) checks whether writing to r[a] could affect the value of
-- 'e'. Returns True if it's not sure.
locUsedIn _ _ (CmmLit _) = False
locUsedIn loc rep (CmmLoad e ld_rep) = possiblySameLoc loc rep e ld_rep
locUsedIn _ _ (CmmReg _) = False
locUsedIn _ _ (CmmRegOff _ _) = False
locUsedIn loc rep (CmmMachOp _ es) = any (locUsedIn loc rep) es
locUsedIn _ _ (CmmStackSlot _ _) = panic "locUsedIn: CmmStackSlot"
possiblySameLoc :: CmmExpr -> CmmType -> CmmExpr -> CmmType -> Bool
-- Assumes that distinct registers (eg Hp, Sp) do not
-- point to the same location, nor any offset thereof.
possiblySameLoc (CmmReg r1) _ (CmmReg r2) _ = r1 == r2
possiblySameLoc (CmmReg r1) _ (CmmRegOff r2 0) _ = r1 == r2
possiblySameLoc (CmmRegOff r1 0) _ (CmmReg r2) _ = r1 == r2
possiblySameLoc (CmmRegOff r1 start1) rep1 (CmmRegOff r2 start2) rep2
= r1==r2 && end1 > start2 && end2 > start1
where
end1 = start1 + widthInBytes (typeWidth rep1)
end2 = start2 + widthInBytes (typeWidth rep2)
possiblySameLoc _ _ (CmmLit _) _ = False
possiblySameLoc _ _ _ _ = True -- Conservative
-------------------------------------------------------------------------
--
-- Static Reference Tables
--
-------------------------------------------------------------------------
-- There is just one SRT for each top level binding; all the nested
-- bindings use sub-sections of this SRT. The label is passed down to
-- the nested bindings via the monad.
getSRTInfo :: FCode C_SRT
getSRTInfo = do
srt_lbl <- getSRTLabel
srt <- getSRT
case srt of
-- TODO: Should we panic in this case?
-- Someone obviously thinks there should be an SRT
NoSRT -> return NoC_SRT
SRTEntries {} -> panic "getSRTInfo: SRTEntries. Perhaps you forgot to run SimplStg?"
SRT off len bmp
| len > hALF_WORD_SIZE_IN_BITS || bmp == [fromIntegral srt_escape]
-> do id <- newUnique
let srt_desc_lbl = mkLargeSRTLabel id
emitRODataLits "getSRTInfo" srt_desc_lbl
( cmmLabelOffW srt_lbl off
: mkWordCLit (fromIntegral len)
: map mkWordCLit bmp)
return (C_SRT srt_desc_lbl 0 srt_escape)
| otherwise
-> return (C_SRT srt_lbl off (fromIntegral (head bmp)))
-- The fromIntegral converts to StgHalfWord
srt_escape :: StgHalfWord
srt_escape = -1
-- -----------------------------------------------------------------------------
--
-- STG/Cmm GlobalReg
--
-- -----------------------------------------------------------------------------
-- | Here is where the STG register map is defined for each target arch.
-- The order matters (for the llvm backend anyway)! We must make sure to
-- maintain the order here with the order used in the LLVM calling conventions.
-- Note that also, this isn't all registers, just the ones that are currently
-- possbily mapped to real registers.
activeStgRegs :: [GlobalReg]
activeStgRegs = [
#ifdef REG_Base
BaseReg
#endif
#ifdef REG_Sp
,Sp
#endif
#ifdef REG_Hp
,Hp
#endif
#ifdef REG_R1
,VanillaReg 1 VGcPtr
#endif
#ifdef REG_R2
,VanillaReg 2 VGcPtr
#endif
#ifdef REG_R3
,VanillaReg 3 VGcPtr
#endif
#ifdef REG_R4
,VanillaReg 4 VGcPtr
#endif
#ifdef REG_R5
,VanillaReg 5 VGcPtr
#endif
#ifdef REG_R6
,VanillaReg 6 VGcPtr
#endif
#ifdef REG_R7
,VanillaReg 7 VGcPtr
#endif
#ifdef REG_R8
,VanillaReg 8 VGcPtr
#endif
#ifdef REG_R9
,VanillaReg 9 VGcPtr
#endif
#ifdef REG_R10
,VanillaReg 10 VGcPtr
#endif
#ifdef REG_SpLim
,SpLim
#endif
#ifdef REG_F1
,FloatReg 1
#endif
#ifdef REG_F2
,FloatReg 2
#endif
#ifdef REG_F3
,FloatReg 3
#endif
#ifdef REG_F4
,FloatReg 4
#endif
#ifdef REG_D1
,DoubleReg 1
#endif
#ifdef REG_D2
,DoubleReg 2
#endif
]
-- | We map STG registers onto appropriate CmmExprs. Either they map
-- to real machine registers or stored as offsets from BaseReg. Given
-- a GlobalReg, get_GlobalReg_addr always produces the
-- register table address for it.
get_GlobalReg_addr :: GlobalReg -> CmmExpr
get_GlobalReg_addr BaseReg = regTableOffset 0
get_GlobalReg_addr mid = get_Regtable_addr_from_offset
(globalRegType mid) (baseRegOffset mid)
-- Calculate a literal representing an offset into the register table.
-- Used when we don't have an actual BaseReg to offset from.
regTableOffset :: Int -> CmmExpr
regTableOffset n =
CmmLit (CmmLabelOff mkMainCapabilityLabel (oFFSET_Capability_r + n))
get_Regtable_addr_from_offset :: CmmType -> Int -> CmmExpr
get_Regtable_addr_from_offset _ offset =
#ifdef REG_Base
CmmRegOff (CmmGlobal BaseReg) offset
#else
regTableOffset offset
#endif
-- | Fixup global registers so that they assign to locations within the
-- RegTable if they aren't pinned for the current target.
fixStgRegisters :: RawCmmDecl -> RawCmmDecl
fixStgRegisters top@(CmmData _ _) = top
fixStgRegisters (CmmProc info lbl (ListGraph blocks)) =
let blocks' = map fixStgRegBlock blocks
in CmmProc info lbl $ ListGraph blocks'
fixStgRegBlock :: CmmBasicBlock -> CmmBasicBlock
fixStgRegBlock (BasicBlock id stmts) =
let stmts' = map fixStgRegStmt stmts
in BasicBlock id stmts'
fixStgRegStmt :: CmmStmt -> CmmStmt
fixStgRegStmt stmt
= case stmt of
CmmAssign (CmmGlobal reg) src ->
let src' = fixStgRegExpr src
baseAddr = get_GlobalReg_addr reg
in case reg `elem` activeStgRegs of
True -> CmmAssign (CmmGlobal reg) src'
False -> CmmStore baseAddr src'
CmmAssign reg src ->
let src' = fixStgRegExpr src
in CmmAssign reg src'
CmmStore addr src -> CmmStore (fixStgRegExpr addr) (fixStgRegExpr src)
CmmCall target regs args returns ->
let target' = case target of
CmmCallee e conv -> CmmCallee (fixStgRegExpr e) conv
CmmPrim op mStmts ->
CmmPrim op (fmap (map fixStgRegStmt) mStmts)
args' = map (\(CmmHinted arg hint) ->
(CmmHinted (fixStgRegExpr arg) hint)) args
in CmmCall target' regs args' returns
CmmCondBranch test dest -> CmmCondBranch (fixStgRegExpr test) dest
CmmSwitch expr ids -> CmmSwitch (fixStgRegExpr expr) ids
CmmJump addr live -> CmmJump (fixStgRegExpr addr) live
-- CmmNop, CmmComment, CmmBranch, CmmReturn
_other -> stmt
fixStgRegExpr :: CmmExpr -> CmmExpr
fixStgRegExpr expr
= case expr of
CmmLoad addr ty -> CmmLoad (fixStgRegExpr addr) ty
CmmMachOp mop args -> CmmMachOp mop args'
where args' = map fixStgRegExpr args
CmmReg (CmmGlobal reg) ->
-- Replace register leaves with appropriate StixTrees for
-- the given target. MagicIds which map to a reg on this
-- arch are left unchanged. For the rest, BaseReg is taken
-- to mean the address of the reg table in MainCapability,
-- and for all others we generate an indirection to its
-- location in the register table.
case reg `elem` activeStgRegs of
True -> expr
False ->
let baseAddr = get_GlobalReg_addr reg
in case reg of
BaseReg -> fixStgRegExpr baseAddr
_other -> fixStgRegExpr
(CmmLoad baseAddr (globalRegType reg))
CmmRegOff (CmmGlobal reg) offset ->
-- RegOf leaves are just a shorthand form. If the reg maps
-- to a real reg, we keep the shorthand, otherwise, we just
-- expand it and defer to the above code.
case reg `elem` activeStgRegs of
True -> expr
False -> fixStgRegExpr (CmmMachOp (MO_Add wordWidth) [
CmmReg (CmmGlobal reg),
CmmLit (CmmInt (fromIntegral offset)
wordWidth)])
-- CmmLit, CmmReg (CmmLocal), CmmStackSlot
_other -> expr
|