1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
|
%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
Arity and ete expansion
\begin{code}
{-# OPTIONS -fno-warn-tabs #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and
-- detab the module (please do the detabbing in a separate patch). See
-- http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces
-- for details
-- | Arit and eta expansion
module CoreArity (
manifestArity, exprArity, exprBotStrictness_maybe,
exprEtaExpandArity, CheapFun, etaExpand
) where
#include "HsVersions.h"
import CoreSyn
import CoreFVs
import CoreUtils
import CoreSubst
import Demand
import Var
import VarEnv
import Id
import Type
import TyCon ( isRecursiveTyCon, isClassTyCon )
import Coercion
import BasicTypes
import Unique
import Outputable
import FastString
import Pair
\end{code}
%************************************************************************
%* *
manifestArity and exprArity
%* *
%************************************************************************
exprArity is a cheap-and-cheerful version of exprEtaExpandArity.
It tells how many things the expression can be applied to before doing
any work. It doesn't look inside cases, lets, etc. The idea is that
exprEtaExpandArity will do the hard work, leaving something that's easy
for exprArity to grapple with. In particular, Simplify uses exprArity to
compute the ArityInfo for the Id.
Originally I thought that it was enough just to look for top-level lambdas, but
it isn't. I've seen this
foo = PrelBase.timesInt
We want foo to get arity 2 even though the eta-expander will leave it
unchanged, in the expectation that it'll be inlined. But occasionally it
isn't, because foo is blacklisted (used in a rule).
Similarly, see the ok_note check in exprEtaExpandArity. So
f = __inline_me (\x -> e)
won't be eta-expanded.
And in any case it seems more robust to have exprArity be a bit more intelligent.
But note that (\x y z -> f x y z)
should have arity 3, regardless of f's arity.
\begin{code}
manifestArity :: CoreExpr -> Arity
-- ^ manifestArity sees how many leading value lambdas there are
manifestArity (Lam v e) | isId v = 1 + manifestArity e
| otherwise = manifestArity e
manifestArity (Tick t e) | not (tickishIsCode t) = manifestArity e
manifestArity (Cast e _) = manifestArity e
manifestArity _ = 0
---------------
exprArity :: CoreExpr -> Arity
-- ^ An approximate, fast, version of 'exprEtaExpandArity'
exprArity e = go e
where
go (Var v) = idArity v
go (Lam x e) | isId x = go e + 1
| otherwise = go e
go (Tick t e) | not (tickishIsCode t) = go e
go (Cast e co) = go e `min` length (typeArity (pSnd (coercionKind co)))
-- Note [exprArity invariant]
go (App e (Type _)) = go e
go (App f a) | exprIsTrivial a = (go f - 1) `max` 0
-- See Note [exprArity for applications]
-- NB: coercions count as a value argument
go _ = 0
---------------
typeArity :: Type -> [OneShot]
-- How many value arrows are visible in the type?
-- We look through foralls, and newtypes
-- See Note [exprArity invariant]
typeArity ty
| Just (_, ty') <- splitForAllTy_maybe ty
= typeArity ty'
| Just (arg,res) <- splitFunTy_maybe ty
= isStateHackType arg : typeArity res
| Just (tc,tys) <- splitTyConApp_maybe ty
, Just (ty', _) <- instNewTyCon_maybe tc tys
, not (isRecursiveTyCon tc)
, not (isClassTyCon tc) -- Do not eta-expand through newtype classes
-- See Note [Newtype classes and eta expansion]
= typeArity ty'
-- Important to look through non-recursive newtypes, so that, eg
-- (f x) where f has arity 2, f :: Int -> IO ()
-- Here we want to get arity 1 for the result!
| otherwise
= []
---------------
exprBotStrictness_maybe :: CoreExpr -> Maybe (Arity, StrictSig)
-- A cheap and cheerful function that identifies bottoming functions
-- and gives them a suitable strictness signatures. It's used during
-- float-out
exprBotStrictness_maybe e
= case getBotArity (arityType is_cheap e) of
Nothing -> Nothing
Just ar -> Just (ar, mkStrictSig (mkTopDmdType (replicate ar topDmd) BotRes))
where
is_cheap _ _ = False -- Irrelevant for this purpose
\end{code}
Note [exprArity invariant]
~~~~~~~~~~~~~~~~~~~~~~~~~~
exprArity has the following invariant:
* If typeArity (exprType e) = n,
then manifestArity (etaExpand e n) = n
That is, etaExpand can always expand as much as typeArity says
So the case analysis in etaExpand and in typeArity must match
* exprArity e <= typeArity (exprType e)
* Hence if (exprArity e) = n, then manifestArity (etaExpand e n) = n
That is, if exprArity says "the arity is n" then etaExpand really
can get "n" manifest lambdas to the top.
Why is this important? Because
- In TidyPgm we use exprArity to fix the *final arity* of
each top-level Id, and in
- In CorePrep we use etaExpand on each rhs, so that the visible lambdas
actually match that arity, which in turn means
that the StgRhs has the right number of lambdas
An alternative would be to do the eta-expansion in TidyPgm, at least
for top-level bindings, in which case we would not need the trim_arity
in exprArity. That is a less local change, so I'm going to leave it for today!
Note [Newtype classes and eta expansion]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We have to be careful when eta-expanding through newtypes. In general
it's a good idea, but annoyingly it interacts badly with the class-op
rule mechanism. Consider
class C a where { op :: a -> a }
instance C b => C [b] where
op x = ...
These translate to
co :: forall a. (a->a) ~ C a
$copList :: C b -> [b] -> [b]
$copList d x = ...
$dfList :: C b -> C [b]
{-# DFunUnfolding = [$copList] #-}
$dfList d = $copList d |> co@[b]
Now suppose we have:
dCInt :: C Int
blah :: [Int] -> [Int]
blah = op ($dfList dCInt)
Now we want the built-in op/$dfList rule will fire to give
blah = $copList dCInt
But with eta-expansion 'blah' might (and in Trac #3772, which is
slightly more complicated, does) turn into
blah = op (\eta. ($dfList dCInt |> sym co) eta)
and now it is *much* harder for the op/$dfList rule to fire, becuase
exprIsConApp_maybe won't hold of the argument to op. I considered
trying to *make* it hold, but it's tricky and I gave up.
The test simplCore/should_compile/T3722 is an excellent example.
Note [exprArity for applications]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we come to an application we check that the arg is trivial.
eg f (fac x) does not have arity 2,
even if f has arity 3!
* We require that is trivial rather merely cheap. Suppose f has arity 2.
Then f (Just y)
has arity 0, because if we gave it arity 1 and then inlined f we'd get
let v = Just y in \w. <f-body>
which has arity 0. And we try to maintain the invariant that we don't
have arity decreases.
* The `max 0` is important! (\x y -> f x) has arity 2, even if f is
unknown, hence arity 0
%************************************************************************
%* *
Computing the "arity" of an expression
%* *
%************************************************************************
Note [Definition of arity]
~~~~~~~~~~~~~~~~~~~~~~~~~~
The "arity" of an expression 'e' is n if
applying 'e' to *fewer* than n *value* arguments
converges rapidly
Or, to put it another way
there is no work lost in duplicating the partial
application (e x1 .. x(n-1))
In the divegent case, no work is lost by duplicating because if the thing
is evaluated once, that's the end of the program.
Or, to put it another way, in any context C
C[ (\x1 .. xn. e x1 .. xn) ]
is as efficient as
C[ e ]
It's all a bit more subtle than it looks:
Note [Arity of case expressions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We treat the arity of
case x of p -> \s -> ...
as 1 (or more) because for I/O ish things we really want to get that
\s to the top. We are prepared to evaluate x each time round the loop
in order to get that.
This isn't really right in the presence of seq. Consider
f = \x -> case x of
True -> \y -> x+y
False -> \y -> x-y
Can we eta-expand here? At first the answer looks like "yes of course", but
consider
(f bot) `seq` 1
This should diverge! But if we eta-expand, it won't. Again, we ignore this
"problem", because being scrupulous would lose an important transformation for
many programs.
1. Note [One-shot lambdas]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider one-shot lambdas
let x = expensive in \y z -> E
We want this to have arity 1 if the \y-abstraction is a 1-shot lambda.
3. Note [Dealing with bottom]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
f = \x -> error "foo"
Here, arity 1 is fine. But if it is
f = \x -> case x of
True -> error "foo"
False -> \y -> x+y
then we want to get arity 2. Technically, this isn't quite right, because
(f True) `seq` 1
should diverge, but it'll converge if we eta-expand f. Nevertheless, we
do so; it improves some programs significantly, and increasing convergence
isn't a bad thing. Hence the ABot/ATop in ArityType.
However, this really isn't always the Right Thing, and we have several
tickets reporting unexpected bahaviour resulting from this
transformation. So we try to limit it as much as possible:
* Do NOT move a lambda outside a known-bottom case expression
case undefined of { (a,b) -> \y -> e }
This showed up in Trac #5557
* Do NOT move a lambda outside a case if all the branches of
the case are known to return bottom.
case x of { (a,b) -> \y -> error "urk" }
This case is less important, but the idea is that if the fn is
going to diverge eventually anyway then getting the best arity
isn't an issue, so we might as well play safe
Of course both these are readily defeated by disguising the bottoms.
4. Note [Newtype arity]
~~~~~~~~~~~~~~~~~~~~~~~~
Non-recursive newtypes are transparent, and should not get in the way.
We do (currently) eta-expand recursive newtypes too. So if we have, say
newtype T = MkT ([T] -> Int)
Suppose we have
e = coerce T f
where f has arity 1. Then: etaExpandArity e = 1;
that is, etaExpandArity looks through the coerce.
When we eta-expand e to arity 1: eta_expand 1 e T
we want to get: coerce T (\x::[T] -> (coerce ([T]->Int) e) x)
HOWEVER, note that if you use coerce bogusly you can ge
coerce Int negate
And since negate has arity 2, you might try to eta expand. But you can't
decopose Int to a function type. Hence the final case in eta_expand.
Note [The state-transformer hack]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have
f = e
where e has arity n. Then, if we know from the context that f has
a usage type like
t1 -> ... -> tn -1-> t(n+1) -1-> ... -1-> tm -> ...
then we can expand the arity to m. This usage type says that
any application (x e1 .. en) will be applied to uniquely to (m-n) more args
Consider f = \x. let y = <expensive>
in case x of
True -> foo
False -> \(s:RealWorld) -> e
where foo has arity 1. Then we want the state hack to
apply to foo too, so we can eta expand the case.
Then we expect that if f is applied to one arg, it'll be applied to two
(that's the hack -- we don't really know, and sometimes it's false)
See also Id.isOneShotBndr.
Note [State hack and bottoming functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's a terrible idea to use the state hack on a bottoming function.
Here's what happens (Trac #2861):
f :: String -> IO T
f = \p. error "..."
Eta-expand, using the state hack:
f = \p. (\s. ((error "...") |> g1) s) |> g2
g1 :: IO T ~ (S -> (S,T))
g2 :: (S -> (S,T)) ~ IO T
Extrude the g2
f' = \p. \s. ((error "...") |> g1) s
f = f' |> (String -> g2)
Discard args for bottomming function
f' = \p. \s. ((error "...") |> g1 |> g3
g3 :: (S -> (S,T)) ~ (S,T)
Extrude g1.g3
f'' = \p. \s. (error "...")
f' = f'' |> (String -> S -> g1.g3)
And now we can repeat the whole loop. Aargh! The bug is in applying the
state hack to a function which then swallows the argument.
This arose in another guise in Trac #3959. Here we had
catch# (throw exn >> return ())
Note that (throw :: forall a e. Exn e => e -> a) is called with [a = IO ()].
After inlining (>>) we get
catch# (\_. throw {IO ()} exn)
We must *not* eta-expand to
catch# (\_ _. throw {...} exn)
because 'catch#' expects to get a (# _,_ #) after applying its argument to
a State#, not another function!
In short, we use the state hack to allow us to push let inside a lambda,
but not to introduce a new lambda.
Note [ArityType]
~~~~~~~~~~~~~~~~
ArityType is the result of a compositional analysis on expressions,
from which we can decide the real arity of the expression (extracted
with function exprEtaExpandArity).
Here is what the fields mean. If an arbitrary expression 'f' has
ArityType 'at', then
* If at = ABot n, then (f x1..xn) definitely diverges. Partial
applications to fewer than n args may *or may not* diverge.
We allow ourselves to eta-expand bottoming functions, even
if doing so may lose some `seq` sharing,
let x = <expensive> in \y. error (g x y)
==> \y. let x = <expensive> in error (g x y)
* If at = ATop as, and n=length as,
then expanding 'f' to (\x1..xn. f x1 .. xn) loses no sharing,
assuming the calls of f respect the one-shot-ness of of
its definition.
NB 'f' is an arbitary expression, eg (f = g e1 e2). This 'f'
can have ArityType as ATop, with length as > 0, only if e1 e2 are
themselves.
* In both cases, f, (f x1), ... (f x1 ... f(n-1)) are definitely
really functions, or bottom, but *not* casts from a data type, in
at least one case branch. (If it's a function in one case branch but
an unsafe cast from a data type in another, the program is bogus.)
So eta expansion is dynamically ok; see Note [State hack and
bottoming functions], the part about catch#
Example:
f = \x\y. let v = <expensive> in
\s(one-shot) \t(one-shot). blah
'f' has ArityType [ManyShot,ManyShot,OneShot,OneShot]
The one-shot-ness means we can, in effect, push that
'let' inside the \st.
Suppose f = \xy. x+y
Then f :: AT [False,False] ATop
f v :: AT [False] ATop
f <expensive> :: AT [] ATop
-------------------- Main arity code ----------------------------
\begin{code}
-- See Note [ArityType]
data ArityType = ATop [OneShot] | ABot Arity
-- There is always an explicit lambda
-- to justify the [OneShot], or the Arity
type OneShot = Bool -- False <=> Know nothing
-- True <=> Can definitely float inside this lambda
-- The 'True' case can arise either because a binder
-- is marked one-shot, or because it's a state lambda
-- and we have the state hack on
vanillaArityType :: ArityType
vanillaArityType = ATop [] -- Totally uninformative
-- ^ The Arity returned is the number of value args the
-- expression can be applied to without doing much work
exprEtaExpandArity :: CheapFun -> CoreExpr -> Arity
-- exprEtaExpandArity is used when eta expanding
-- e ==> \xy -> e x y
exprEtaExpandArity cheap_fun e
= case (arityType cheap_fun e) of
ATop (os:oss)
| os || has_lam e -> 1 + length oss -- Note [Eta expanding thunks]
| otherwise -> 0
ATop [] -> 0
ABot n -> n
where
has_lam (Tick _ e) = has_lam e
has_lam (Lam b e) = isId b || has_lam e
has_lam _ = False
getBotArity :: ArityType -> Maybe Arity
-- Arity of a divergent function
getBotArity (ABot n) = Just n
getBotArity _ = Nothing
\end{code}
Note [Eta expanding thunks]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we see
f = case y of p -> \x -> blah
should we eta-expand it? Well, if 'x' is a one-shot state token
then 'yes' because 'f' will only be applied once. But otherwise
we (conservatively) say no. My main reason is to avoid expanding
PAPSs
f = g d ==> f = \x. g d x
because that might in turn make g inline (if it has an inline pragma),
which we might not want. After all, INLINE pragmas say "inline only
when saturate" so we don't want to be too gung-ho about saturating!
\begin{code}
arityLam :: Id -> ArityType -> ArityType
arityLam id (ATop as) = ATop (isOneShotBndr id : as)
arityLam _ (ABot n) = ABot (n+1)
floatIn :: Bool -> ArityType -> ArityType
-- We have something like (let x = E in b),
-- where b has the given arity type.
floatIn _ (ABot n) = ABot n
floatIn True (ATop as) = ATop as
floatIn False (ATop as) = ATop (takeWhile id as)
-- If E is not cheap, keep arity only for one-shots
arityApp :: ArityType -> Bool -> ArityType
-- Processing (fun arg) where at is the ArityType of fun,
-- Knock off an argument and behave like 'let'
arityApp (ABot 0) _ = ABot 0
arityApp (ABot n) _ = ABot (n-1)
arityApp (ATop []) _ = ATop []
arityApp (ATop (_:as)) cheap = floatIn cheap (ATop as)
andArityType :: ArityType -> ArityType -> ArityType -- Used for branches of a 'case'
andArityType (ABot n1) (ABot n2)
= ABot (n1 `min` n2)
andArityType (ATop as) (ABot _) = ATop as
andArityType (ABot _) (ATop bs) = ATop bs
andArityType (ATop as) (ATop bs) = ATop (as `combine` bs)
where -- See Note [Combining case branches]
combine (a:as) (b:bs) = (a && b) : combine as bs
combine [] bs = take_one_shots bs
combine as [] = take_one_shots as
take_one_shots [] = []
take_one_shots (one_shot : as)
| one_shot = True : take_one_shots as
| otherwise = []
\end{code}
Note [Combining case branches]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
go = \x. let z = go e0
go2 = \x. case x of
True -> z
False -> \s(one-shot). e1
in go2 x
We *really* want to eta-expand go and go2.
When combining the barnches of the case we have
ATop [] `andAT` ATop [True]
and we want to get ATop [True]. But if the inner
lambda wasn't one-shot we don't want to do this.
(We need a proper arity analysis to justify that.)
\begin{code}
---------------------------
type CheapFun = CoreExpr -> Maybe Type -> Bool
-- How to decide if an expression is cheap
-- If the Maybe is Just, the type is the type
-- of the expression; Nothing means "don't know"
arityType :: CheapFun -> CoreExpr -> ArityType
arityType cheap_fn (Cast e co)
= arityType cheap_fn e
`andArityType` ATop (typeArity (pSnd (coercionKind co)))
-- See Note [exprArity invariant]; must be true of
-- arityType too, since that is how we compute the arity
-- of variables, and they in turn affect result of exprArity
-- Trac #5441 is a nice demo
arityType _ (Var v)
| Just strict_sig <- idStrictness_maybe v
, (ds, res) <- splitStrictSig strict_sig
, let arity = length ds
= if isBotRes res then ABot arity
else ATop (take arity one_shots)
| otherwise
= ATop (take (idArity v) one_shots)
where
one_shots :: [Bool] -- One-shot-ness derived from the type
one_shots = typeArity (idType v)
-- Lambdas; increase arity
arityType cheap_fn (Lam x e)
| isId x = arityLam x (arityType cheap_fn e)
| otherwise = arityType cheap_fn e
-- Applications; decrease arity, except for types
arityType cheap_fn (App fun (Type _))
= arityType cheap_fn fun
arityType cheap_fn (App fun arg )
= arityApp (arityType cheap_fn fun) (cheap_fn arg Nothing)
-- Case/Let; keep arity if either the expression is cheap
-- or it's a 1-shot lambda
-- The former is not really right for Haskell
-- f x = case x of { (a,b) -> \y. e }
-- ===>
-- f x y = case x of { (a,b) -> e }
-- The difference is observable using 'seq'
--
arityType cheap_fn (Case scrut _ _ alts)
| exprIsBottom scrut
= ABot 0 -- Do not eta expand
-- See Note [Dealing with bottom]
| otherwise
= case alts_type of
ABot n | n>0 -> ATop [] -- Don't eta expand
| otherwise -> ABot 0 -- if RHS is bottomming
-- See Note [Dealing with bottom]
ATop as | exprIsTrivial scrut -> ATop as
| otherwise -> ATop (takeWhile id as)
where
alts_type = foldr1 andArityType [arityType cheap_fn rhs | (_,_,rhs) <- alts]
arityType cheap_fn (Let b e)
= floatIn (cheap_bind b) (arityType cheap_fn e)
where
cheap_bind (NonRec b e) = is_cheap (b,e)
cheap_bind (Rec prs) = all is_cheap prs
is_cheap (b,e) = cheap_fn e (Just (idType b))
arityType cheap_fn (Tick t e)
| not (tickishIsCode t) = arityType cheap_fn e
arityType _ _ = vanillaArityType
\end{code}
%************************************************************************
%* *
The main eta-expander
%* *
%************************************************************************
We go for:
f = \x1..xn -> N ==> f = \x1..xn y1..ym -> N y1..ym
(n >= 0)
where (in both cases)
* The xi can include type variables
* The yi are all value variables
* N is a NORMAL FORM (i.e. no redexes anywhere)
wanting a suitable number of extra args.
The biggest reason for doing this is for cases like
f = \x -> case x of
True -> \y -> e1
False -> \y -> e2
Here we want to get the lambdas together. A good exmaple is the nofib
program fibheaps, which gets 25% more allocation if you don't do this
eta-expansion.
We may have to sandwich some coerces between the lambdas
to make the types work. exprEtaExpandArity looks through coerces
when computing arity; and etaExpand adds the coerces as necessary when
actually computing the expansion.
Note [No crap in eta-expanded code]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The eta expander is careful not to introduce "crap". In particular,
given a CoreExpr satisfying the 'CpeRhs' invariant (in CorePrep), it
returns a CoreExpr satisfying the same invariant. See Note [Eta
expansion and the CorePrep invariants] in CorePrep.
This means the eta-expander has to do a bit of on-the-fly
simplification but it's not too hard. The alernative, of relying on
a subsequent clean-up phase of the Simplifier to de-crapify the result,
means you can't really use it in CorePrep, which is painful.
Note [Eta expansion and SCCs]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Note that SCCs are not treated specially by etaExpand. If we have
etaExpand 2 (\x -> scc "foo" e)
= (\xy -> (scc "foo" e) y)
So the costs of evaluating 'e' (not 'e y') are attributed to "foo"
\begin{code}
-- | @etaExpand n us e ty@ returns an expression with
-- the same meaning as @e@, but with arity @n@.
--
-- Given:
--
-- > e' = etaExpand n us e ty
--
-- We should have that:
--
-- > ty = exprType e = exprType e'
etaExpand :: Arity -- ^ Result should have this number of value args
-> CoreExpr -- ^ Expression to expand
-> CoreExpr
-- etaExpand deals with for-alls. For example:
-- etaExpand 1 E
-- where E :: forall a. a -> a
-- would return
-- (/\b. \y::a -> E b y)
--
-- It deals with coerces too, though they are now rare
-- so perhaps the extra code isn't worth it
etaExpand n orig_expr
= go n orig_expr
where
-- Strip off existing lambdas and casts
-- Note [Eta expansion and SCCs]
go 0 expr = expr
go n (Lam v body) | isTyVar v = Lam v (go n body)
| otherwise = Lam v (go (n-1) body)
go n (Cast expr co) = Cast (go n expr) co
go n expr = -- pprTrace "ee" (vcat [ppr orig_expr, ppr expr, ppr etas]) $
etaInfoAbs etas (etaInfoApp subst' expr etas)
where
in_scope = mkInScopeSet (exprFreeVars expr)
(in_scope', etas) = mkEtaWW n orig_expr in_scope (exprType expr)
subst' = mkEmptySubst in_scope'
-- Wrapper Unwrapper
--------------
data EtaInfo = EtaVar Var -- /\a. [], [] a
-- \x. [], [] x
| EtaCo Coercion -- [] |> co, [] |> (sym co)
instance Outputable EtaInfo where
ppr (EtaVar v) = ptext (sLit "EtaVar") <+> ppr v
ppr (EtaCo co) = ptext (sLit "EtaCo") <+> ppr co
pushCoercion :: Coercion -> [EtaInfo] -> [EtaInfo]
pushCoercion co1 (EtaCo co2 : eis)
| isReflCo co = eis
| otherwise = EtaCo co : eis
where
co = co1 `mkTransCo` co2
pushCoercion co eis = EtaCo co : eis
--------------
etaInfoAbs :: [EtaInfo] -> CoreExpr -> CoreExpr
etaInfoAbs [] expr = expr
etaInfoAbs (EtaVar v : eis) expr = Lam v (etaInfoAbs eis expr)
etaInfoAbs (EtaCo co : eis) expr = Cast (etaInfoAbs eis expr) (mkSymCo co)
--------------
etaInfoApp :: Subst -> CoreExpr -> [EtaInfo] -> CoreExpr
-- (etaInfoApp s e eis) returns something equivalent to
-- ((substExpr s e) `appliedto` eis)
etaInfoApp subst (Lam v1 e) (EtaVar v2 : eis)
= etaInfoApp (CoreSubst.extendSubstWithVar subst v1 v2) e eis
etaInfoApp subst (Cast e co1) eis
= etaInfoApp subst e (pushCoercion co' eis)
where
co' = CoreSubst.substCo subst co1
etaInfoApp subst (Case e b _ alts) eis
= Case (subst_expr subst e) b1 (coreAltsType alts') alts'
where
(subst1, b1) = substBndr subst b
alts' = map subst_alt alts
subst_alt (con, bs, rhs) = (con, bs', etaInfoApp subst2 rhs eis)
where
(subst2,bs') = substBndrs subst1 bs
etaInfoApp subst (Let b e) eis
= Let b' (etaInfoApp subst' e eis)
where
(subst', b') = subst_bind subst b
etaInfoApp subst (Tick t e) eis
= Tick (substTickish subst t) (etaInfoApp subst e eis)
etaInfoApp subst e eis
= go (subst_expr subst e) eis
where
go e [] = e
go e (EtaVar v : eis) = go (App e (varToCoreExpr v)) eis
go e (EtaCo co : eis) = go (Cast e co) eis
--------------
mkEtaWW :: Arity -> CoreExpr -> InScopeSet -> Type
-> (InScopeSet, [EtaInfo])
-- EtaInfo contains fresh variables,
-- not free in the incoming CoreExpr
-- Outgoing InScopeSet includes the EtaInfo vars
-- and the original free vars
mkEtaWW orig_n orig_expr in_scope orig_ty
= go orig_n empty_subst orig_ty []
where
empty_subst = TvSubst in_scope emptyTvSubstEnv
go n subst ty eis -- See Note [exprArity invariant]
| n == 0
= (getTvInScope subst, reverse eis)
| Just (tv,ty') <- splitForAllTy_maybe ty
, let (subst', tv') = Type.substTyVarBndr subst tv
-- Avoid free vars of the original expression
= go n subst' ty' (EtaVar tv' : eis)
| Just (arg_ty, res_ty) <- splitFunTy_maybe ty
, let (subst', eta_id') = freshEtaId n subst arg_ty
-- Avoid free vars of the original expression
= go (n-1) subst' res_ty (EtaVar eta_id' : eis)
| Just(ty',co) <- splitNewTypeRepCo_maybe ty
= -- Given this:
-- newtype T = MkT ([T] -> Int)
-- Consider eta-expanding this
-- eta_expand 1 e T
-- We want to get
-- coerce T (\x::[T] -> (coerce ([T]->Int) e) x)
go n subst ty' (EtaCo co : eis)
| otherwise -- We have an expression of arity > 0,
-- but its type isn't a function.
= WARN( True, (ppr orig_n <+> ppr orig_ty) $$ ppr orig_expr )
(getTvInScope subst, reverse eis)
-- This *can* legitmately happen:
-- e.g. coerce Int (\x. x) Essentially the programmer is
-- playing fast and loose with types (Happy does this a lot).
-- So we simply decline to eta-expand. Otherwise we'd end up
-- with an explicit lambda having a non-function type
--------------
-- Avoiding unnecessary substitution; use short-cutting versions
subst_expr :: Subst -> CoreExpr -> CoreExpr
subst_expr = substExprSC (text "CoreArity:substExpr")
subst_bind :: Subst -> CoreBind -> (Subst, CoreBind)
subst_bind = substBindSC
--------------
freshEtaId :: Int -> TvSubst -> Type -> (TvSubst, Id)
-- Make a fresh Id, with specified type (after applying substitution)
-- It should be "fresh" in the sense that it's not in the in-scope set
-- of the TvSubstEnv; and it should itself then be added to the in-scope
-- set of the TvSubstEnv
--
-- The Int is just a reasonable starting point for generating a unique;
-- it does not necessarily have to be unique itself.
freshEtaId n subst ty
= (subst', eta_id')
where
ty' = Type.substTy subst ty
eta_id' = uniqAway (getTvInScope subst) $
mkSysLocal (fsLit "eta") (mkBuiltinUnique n) ty'
subst' = extendTvInScope subst eta_id'
\end{code}
|