1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
|
%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
Utility functions on @Core@ syntax
\begin{code}
-- | Commonly useful utilites for manipulating the Core language
module CoreUtils (
-- * Constructing expressions
mkCast,
mkTick, mkTickNoHNF,
bindNonRec, needsCaseBinding,
mkAltExpr,
-- * Taking expressions apart
findDefault, findAlt, isDefaultAlt, mergeAlts, trimConArgs,
-- * Properties of expressions
exprType, coreAltType, coreAltsType,
exprIsDupable, exprIsTrivial, getIdFromTrivialExpr, exprIsBottom,
exprIsCheap, exprIsExpandable, exprIsCheap', CheapAppFun,
exprIsHNF, exprOkForSpeculation, exprIsBig, exprIsConLike,
rhsIsStatic, isCheapApp, isExpandableApp,
-- * Expression and bindings size
coreBindsSize, exprSize,
CoreStats(..), coreBindsStats,
-- * Hashing
hashExpr,
-- * Equality
cheapEqExpr, eqExpr, eqExprX,
-- * Eta reduction
tryEtaReduce,
-- * Manipulating data constructors and types
applyTypeToArgs, applyTypeToArg,
dataConRepInstPat, dataConRepFSInstPat
) where
#include "HsVersions.h"
import CoreSyn
import PprCore
import Var
import SrcLoc
import VarEnv
import VarSet
import Name
import Literal
import DataCon
import PrimOp
import Id
import IdInfo
import Type
import Coercion
import TyCon
import Unique
import Outputable
import TysPrim
import FastString
import Maybes
import Util
import Pair
import Data.Word
import Data.Bits
import Data.List ( mapAccumL )
\end{code}
%************************************************************************
%* *
\subsection{Find the type of a Core atom/expression}
%* *
%************************************************************************
\begin{code}
exprType :: CoreExpr -> Type
-- ^ Recover the type of a well-typed Core expression. Fails when
-- applied to the actual 'CoreSyn.Type' expression as it cannot
-- really be said to have a type
exprType (Var var) = idType var
exprType (Lit lit) = literalType lit
exprType (Coercion co) = coercionType co
exprType (Let _ body) = exprType body
exprType (Case _ _ ty _) = ty
exprType (Cast _ co) = pSnd (coercionKind co)
exprType (Tick _ e) = exprType e
exprType (Lam binder expr) = mkPiType binder (exprType expr)
exprType e@(App _ _)
= case collectArgs e of
(fun, args) -> applyTypeToArgs e (exprType fun) args
exprType other = pprTrace "exprType" (pprCoreExpr other) alphaTy
coreAltType :: CoreAlt -> Type
-- ^ Returns the type of the alternatives right hand side
coreAltType (_,bs,rhs)
| any bad_binder bs = expandTypeSynonyms ty
| otherwise = ty -- Note [Existential variables and silly type synonyms]
where
ty = exprType rhs
free_tvs = tyVarsOfType ty
bad_binder b = isTyVar b && b `elemVarSet` free_tvs
coreAltsType :: [CoreAlt] -> Type
-- ^ Returns the type of the first alternative, which should be the same as for all alternatives
coreAltsType (alt:_) = coreAltType alt
coreAltsType [] = panic "corAltsType"
\end{code}
Note [Existential variables and silly type synonyms]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
data T = forall a. T (Funny a)
type Funny a = Bool
f :: T -> Bool
f (T x) = x
Now, the type of 'x' is (Funny a), where 'a' is existentially quantified.
That means that 'exprType' and 'coreAltsType' may give a result that *appears*
to mention an out-of-scope type variable. See Trac #3409 for a more real-world
example.
Various possibilities suggest themselves:
- Ignore the problem, and make Lint not complain about such variables
- Expand all type synonyms (or at least all those that discard arguments)
This is tricky, because at least for top-level things we want to
retain the type the user originally specified.
- Expand synonyms on the fly, when the problem arises. That is what
we are doing here. It's not too expensive, I think.
\begin{code}
applyTypeToArg :: Type -> CoreExpr -> Type
-- ^ Determines the type resulting from applying an expression to a function with the given type
applyTypeToArg fun_ty (Type arg_ty) = applyTy fun_ty arg_ty
applyTypeToArg fun_ty _ = funResultTy fun_ty
applyTypeToArgs :: CoreExpr -> Type -> [CoreExpr] -> Type
-- ^ A more efficient version of 'applyTypeToArg' when we have several arguments.
-- The first argument is just for debugging, and gives some context
applyTypeToArgs _ op_ty [] = op_ty
applyTypeToArgs e op_ty (Type ty : args)
= -- Accumulate type arguments so we can instantiate all at once
go [ty] args
where
go rev_tys (Type ty : args) = go (ty:rev_tys) args
go rev_tys rest_args = applyTypeToArgs e op_ty' rest_args
where
op_ty' = applyTysD msg op_ty (reverse rev_tys)
msg = ptext (sLit "applyTypeToArgs") <+>
panic_msg e op_ty
applyTypeToArgs e op_ty (_ : args)
= case (splitFunTy_maybe op_ty) of
Just (_, res_ty) -> applyTypeToArgs e res_ty args
Nothing -> pprPanic "applyTypeToArgs" (panic_msg e op_ty)
panic_msg :: CoreExpr -> Type -> SDoc
panic_msg e op_ty = pprCoreExpr e $$ ppr op_ty
\end{code}
%************************************************************************
%* *
\subsection{Attaching notes}
%* *
%************************************************************************
\begin{code}
-- | Wrap the given expression in the coercion safely, dropping
-- identity coercions and coalescing nested coercions
mkCast :: CoreExpr -> Coercion -> CoreExpr
mkCast e co | isReflCo co = e
mkCast (Coercion e_co) co
| isCoVarType (pSnd (coercionKind co))
-- The guard here checks that g has a (~#) on both sides,
-- otherwise decomposeCo fails. Can in principle happen
-- with unsafeCoerce
= Coercion new_co
where
-- g :: (s1 ~# s2) ~# (t1 ~# t2)
-- g1 :: s1 ~# t1
-- g2 :: s2 ~# t2
new_co = mkSymCo g1 `mkTransCo` e_co `mkTransCo` g2
[_reflk, g1, g2] = decomposeCo 3 co
-- Remember, (~#) :: forall k. k -> k -> *
-- so it takes *three* arguments, not two
mkCast (Cast expr co2) co
= ASSERT(let { Pair from_ty _to_ty = coercionKind co;
Pair _from_ty2 to_ty2 = coercionKind co2} in
from_ty `eqType` to_ty2 )
mkCast expr (mkTransCo co2 co)
mkCast expr co
= let Pair from_ty _to_ty = coercionKind co in
-- if to_ty `eqType` from_ty
-- then expr
-- else
WARN(not (from_ty `eqType` exprType expr), text "Trying to coerce" <+> text "(" <> ppr expr $$ text "::" <+> ppr (exprType expr) <> text ")" $$ ppr co $$ pprEqPred (coercionKind co))
(Cast expr co)
\end{code}
\begin{code}
-- | Wraps the given expression in the source annotation, dropping the
-- annotation if possible.
mkTick :: Tickish Id -> CoreExpr -> CoreExpr
mkTick t (Var x)
| isFunTy (idType x) = Tick t (Var x)
| otherwise
= if tickishCounts t
then if tickishScoped t && tickishCanSplit t
then Tick (mkNoScope t) (Var x)
else Tick t (Var x)
else Var x
mkTick t (Cast e co)
= Cast (mkTick t e) co -- Move tick inside cast
mkTick _ (Coercion co) = Coercion co
mkTick t (Lit l)
| not (tickishCounts t) = Lit l
mkTick t expr@(App f arg)
| not (isRuntimeArg arg) = App (mkTick t f) arg
| isSaturatedConApp expr
= if not (tickishCounts t)
then tickHNFArgs t expr
else if tickishScoped t && tickishCanSplit t
then Tick (mkNoScope t) (tickHNFArgs (mkNoTick t) expr)
else Tick t expr
mkTick t (Lam x e)
-- if this is a type lambda, or the tick does not count entries,
-- then we can push the tick inside:
| not (isRuntimeVar x) || not (tickishCounts t) = Lam x (mkTick t e)
-- if it is both counting and scoped, we split the tick into its
-- two components, keep the counting tick on the outside of the lambda
-- and push the scoped tick inside. The point of this is that the
-- counting tick can probably be floated, and the lambda may then be
-- in a position to be beta-reduced.
| tickishScoped t && tickishCanSplit t
= Tick (mkNoScope t) (Lam x (mkTick (mkNoTick t) e))
-- just a counting tick: leave it on the outside
| otherwise = Tick t (Lam x e)
mkTick t other = Tick t other
isSaturatedConApp :: CoreExpr -> Bool
isSaturatedConApp e = go e []
where go (App f a) as = go f (a:as)
go (Var fun) args
= isConLikeId fun && idArity fun == valArgCount args
go (Cast f _) as = go f as
go _ _ = False
mkTickNoHNF :: Tickish Id -> CoreExpr -> CoreExpr
mkTickNoHNF t e
| exprIsHNF e = tickHNFArgs t e
| otherwise = mkTick t e
-- push a tick into the arguments of a HNF (call or constructor app)
tickHNFArgs :: Tickish Id -> CoreExpr -> CoreExpr
tickHNFArgs t e = push t e
where
push t (App f (Type u)) = App (push t f) (Type u)
push t (App f arg) = App (push t f) (mkTick t arg)
push _t e = e
\end{code}
%************************************************************************
%* *
\subsection{Other expression construction}
%* *
%************************************************************************
\begin{code}
bindNonRec :: Id -> CoreExpr -> CoreExpr -> CoreExpr
-- ^ @bindNonRec x r b@ produces either:
--
-- > let x = r in b
--
-- or:
--
-- > case r of x { _DEFAULT_ -> b }
--
-- depending on whether we have to use a @case@ or @let@
-- binding for the expression (see 'needsCaseBinding').
-- It's used by the desugarer to avoid building bindings
-- that give Core Lint a heart attack, although actually
-- the simplifier deals with them perfectly well. See
-- also 'MkCore.mkCoreLet'
bindNonRec bndr rhs body
| needsCaseBinding (idType bndr) rhs = Case rhs bndr (exprType body) [(DEFAULT, [], body)]
| otherwise = Let (NonRec bndr rhs) body
-- | Tests whether we have to use a @case@ rather than @let@ binding for this expression
-- as per the invariants of 'CoreExpr': see "CoreSyn#let_app_invariant"
needsCaseBinding :: Type -> CoreExpr -> Bool
needsCaseBinding ty rhs = isUnLiftedType ty && not (exprOkForSpeculation rhs)
-- Make a case expression instead of a let
-- These can arise either from the desugarer,
-- or from beta reductions: (\x.e) (x +# y)
\end{code}
\begin{code}
mkAltExpr :: AltCon -- ^ Case alternative constructor
-> [CoreBndr] -- ^ Things bound by the pattern match
-> [Type] -- ^ The type arguments to the case alternative
-> CoreExpr
-- ^ This guy constructs the value that the scrutinee must have
-- given that you are in one particular branch of a case
mkAltExpr (DataAlt con) args inst_tys
= mkConApp con (map Type inst_tys ++ varsToCoreExprs args)
mkAltExpr (LitAlt lit) [] []
= Lit lit
mkAltExpr (LitAlt _) _ _ = panic "mkAltExpr LitAlt"
mkAltExpr DEFAULT _ _ = panic "mkAltExpr DEFAULT"
\end{code}
%************************************************************************
%* *
\subsection{Taking expressions apart}
%* *
%************************************************************************
The default alternative must be first, if it exists at all.
This makes it easy to find, though it makes matching marginally harder.
\begin{code}
-- | Extract the default case alternative
findDefault :: [CoreAlt] -> ([CoreAlt], Maybe CoreExpr)
findDefault ((DEFAULT,args,rhs) : alts) = ASSERT( null args ) (alts, Just rhs)
findDefault alts = (alts, Nothing)
isDefaultAlt :: CoreAlt -> Bool
isDefaultAlt (DEFAULT, _, _) = True
isDefaultAlt _ = False
-- | Find the case alternative corresponding to a particular
-- constructor: panics if no such constructor exists
findAlt :: AltCon -> [CoreAlt] -> Maybe CoreAlt
-- A "Nothing" result *is* legitmiate
-- See Note [Unreachable code]
findAlt con alts
= case alts of
(deflt@(DEFAULT,_,_):alts) -> go alts (Just deflt)
_ -> go alts Nothing
where
go [] deflt = deflt
go (alt@(con1,_,_) : alts) deflt
= case con `cmpAltCon` con1 of
LT -> deflt -- Missed it already; the alts are in increasing order
EQ -> Just alt
GT -> ASSERT( not (con1 == DEFAULT) ) go alts deflt
---------------------------------
mergeAlts :: [CoreAlt] -> [CoreAlt] -> [CoreAlt]
-- ^ Merge alternatives preserving order; alternatives in
-- the first argument shadow ones in the second
mergeAlts [] as2 = as2
mergeAlts as1 [] = as1
mergeAlts (a1:as1) (a2:as2)
= case a1 `cmpAlt` a2 of
LT -> a1 : mergeAlts as1 (a2:as2)
EQ -> a1 : mergeAlts as1 as2 -- Discard a2
GT -> a2 : mergeAlts (a1:as1) as2
---------------------------------
trimConArgs :: AltCon -> [CoreArg] -> [CoreArg]
-- ^ Given:
--
-- > case (C a b x y) of
-- > C b x y -> ...
--
-- We want to drop the leading type argument of the scrutinee
-- leaving the arguments to match agains the pattern
trimConArgs DEFAULT args = ASSERT( null args ) []
trimConArgs (LitAlt _) args = ASSERT( null args ) []
trimConArgs (DataAlt dc) args = dropList (dataConUnivTyVars dc) args
\end{code}
Note [Unreachable code]
~~~~~~~~~~~~~~~~~~~~~~~
It is possible (although unusual) for GHC to find a case expression
that cannot match. For example:
data Col = Red | Green | Blue
x = Red
f v = case x of
Red -> ...
_ -> ...(case x of { Green -> e1; Blue -> e2 })...
Suppose that for some silly reason, x isn't substituted in the case
expression. (Perhaps there's a NOINLINE on it, or profiling SCC stuff
gets in the way; cf Trac #3118.) Then the full-lazines pass might produce
this
x = Red
lvl = case x of { Green -> e1; Blue -> e2 })
f v = case x of
Red -> ...
_ -> ...lvl...
Now if x gets inlined, we won't be able to find a matching alternative
for 'Red'. That's because 'lvl' is unreachable. So rather than crashing
we generate (error "Inaccessible alternative").
Similar things can happen (augmented by GADTs) when the Simplifier
filters down the matching alternatives in Simplify.rebuildCase.
%************************************************************************
%* *
exprIsTrivial
%* *
%************************************************************************
Note [exprIsTrivial]
~~~~~~~~~~~~~~~~~~~~
@exprIsTrivial@ is true of expressions we are unconditionally happy to
duplicate; simple variables and constants, and type
applications. Note that primop Ids aren't considered
trivial unless
Note [Variable are trivial]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
There used to be a gruesome test for (hasNoBinding v) in the
Var case:
exprIsTrivial (Var v) | hasNoBinding v = idArity v == 0
The idea here is that a constructor worker, like \$wJust, is
really short for (\x -> \$wJust x), becuase \$wJust has no binding.
So it should be treated like a lambda. Ditto unsaturated primops.
But now constructor workers are not "have-no-binding" Ids. And
completely un-applied primops and foreign-call Ids are sufficiently
rare that I plan to allow them to be duplicated and put up with
saturating them.
Note [Tick trivial]
~~~~~~~~~~~~~~~~~~~
Ticks are not trivial. If we treat "tick<n> x" as trivial, it will be
inlined inside lambdas and the entry count will be skewed, for
example. Furthermore "scc<n> x" will turn into just "x" in mkTick.
\begin{code}
exprIsTrivial :: CoreExpr -> Bool
exprIsTrivial (Var _) = True -- See Note [Variables are trivial]
exprIsTrivial (Type _) = True
exprIsTrivial (Coercion _) = True
exprIsTrivial (Lit lit) = litIsTrivial lit
exprIsTrivial (App e arg) = not (isRuntimeArg arg) && exprIsTrivial e
exprIsTrivial (Tick _ _) = False -- See Note [Tick trivial]
exprIsTrivial (Cast e _) = exprIsTrivial e
exprIsTrivial (Lam b body) = not (isRuntimeVar b) && exprIsTrivial body
exprIsTrivial _ = False
\end{code}
When substituting in a breakpoint we need to strip away the type cruft
from a trivial expression and get back to the Id. The invariant is
that the expression we're substituting was originally trivial
according to exprIsTrivial.
\begin{code}
getIdFromTrivialExpr :: CoreExpr -> Id
getIdFromTrivialExpr e = go e
where go (Var v) = v
go (App f t) | not (isRuntimeArg t) = go f
go (Cast e _) = go e
go (Lam b e) | not (isRuntimeVar b) = go e
go e = pprPanic "getIdFromTrivialExpr" (ppr e)
\end{code}
exprIsBottom is a very cheap and cheerful function; it may return
False for bottoming expressions, but it never costs much to ask.
See also CoreArity.exprBotStrictness_maybe, but that's a bit more
expensive.
\begin{code}
exprIsBottom :: CoreExpr -> Bool
exprIsBottom e
= go 0 e
where
go n (Var v) = isBottomingId v && n >= idArity v
go n (App e a) | isTypeArg a = go n e
| otherwise = go (n+1) e
go n (Tick _ e) = go n e
go n (Cast e _) = go n e
go n (Let _ e) = go n e
go _ _ = False
\end{code}
%************************************************************************
%* *
exprIsDupable
%* *
%************************************************************************
Note [exprIsDupable]
~~~~~~~~~~~~~~~~~~~~
@exprIsDupable@ is true of expressions that can be duplicated at a modest
cost in code size. This will only happen in different case
branches, so there's no issue about duplicating work.
That is, exprIsDupable returns True of (f x) even if
f is very very expensive to call.
Its only purpose is to avoid fruitless let-binding
and then inlining of case join points
\begin{code}
exprIsDupable :: CoreExpr -> Bool
exprIsDupable e
= isJust (go dupAppSize e)
where
go :: Int -> CoreExpr -> Maybe Int
go n (Type {}) = Just n
go n (Coercion {}) = Just n
go n (Var {}) = decrement n
go n (Tick _ e) = go n e
go n (Cast e _) = go n e
go n (App f a) | Just n' <- go n a = go n' f
go n (Lit lit) | litIsDupable lit = decrement n
go _ _ = Nothing
decrement :: Int -> Maybe Int
decrement 0 = Nothing
decrement n = Just (n-1)
dupAppSize :: Int
dupAppSize = 8 -- Size of term we are prepared to duplicate
-- This is *just* big enough to make test MethSharing
-- inline enough join points. Really it should be
-- smaller, and could be if we fixed Trac #4960.
\end{code}
%************************************************************************
%* *
exprIsCheap, exprIsExpandable
%* *
%************************************************************************
Note [exprIsCheap] See also Note [Interaction of exprIsCheap and lone variables]
~~~~~~~~~~~~~~~~~~ in CoreUnfold.lhs
@exprIsCheap@ looks at a Core expression and returns \tr{True} if
it is obviously in weak head normal form, or is cheap to get to WHNF.
[Note that that's not the same as exprIsDupable; an expression might be
big, and hence not dupable, but still cheap.]
By ``cheap'' we mean a computation we're willing to:
push inside a lambda, or
inline at more than one place
That might mean it gets evaluated more than once, instead of being
shared. The main examples of things which aren't WHNF but are
``cheap'' are:
* case e of
pi -> ei
(where e, and all the ei are cheap)
* let x = e in b
(where e and b are cheap)
* op x1 ... xn
(where op is a cheap primitive operator)
* error "foo"
(because we are happy to substitute it inside a lambda)
Notice that a variable is considered 'cheap': we can push it inside a lambda,
because sharing will make sure it is only evaluated once.
Note [exprIsCheap and exprIsHNF]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Note that exprIsHNF does not imply exprIsCheap. Eg
let x = fac 20 in Just x
This responds True to exprIsHNF (you can discard a seq), but
False to exprIsCheap.
\begin{code}
exprIsCheap :: CoreExpr -> Bool
exprIsCheap = exprIsCheap' isCheapApp
exprIsExpandable :: CoreExpr -> Bool
exprIsExpandable = exprIsCheap' isExpandableApp -- See Note [CONLIKE pragma] in BasicTypes
type CheapAppFun = Id -> Int -> Bool
exprIsCheap' :: CheapAppFun -> CoreExpr -> Bool
exprIsCheap' _ (Lit _) = True
exprIsCheap' _ (Type _) = True
exprIsCheap' _ (Coercion _) = True
exprIsCheap' _ (Var _) = True
exprIsCheap' good_app (Cast e _) = exprIsCheap' good_app e
exprIsCheap' good_app (Lam x e) = isRuntimeVar x
|| exprIsCheap' good_app e
exprIsCheap' good_app (Case e _ _ alts) = exprIsCheap' good_app e &&
and [exprIsCheap' good_app rhs | (_,_,rhs) <- alts]
-- Experimentally, treat (case x of ...) as cheap
-- (and case __coerce x etc.)
-- This improves arities of overloaded functions where
-- there is only dictionary selection (no construction) involved
exprIsCheap' good_app (Tick t e)
| tickishCounts t = False
| otherwise = exprIsCheap' good_app e
-- never duplicate ticks. If we get this wrong, then HPC's entry
-- counts will be off (check test in libraries/hpc/tests/raytrace)
exprIsCheap' good_app (Let (NonRec x _) e)
| isUnLiftedType (idType x) = exprIsCheap' good_app e
| otherwise = False
-- Strict lets always have cheap right hand sides,
-- and do no allocation, so just look at the body
-- Non-strict lets do allocation so we don't treat them as cheap
-- See also
exprIsCheap' good_app other_expr -- Applications and variables
= go other_expr []
where
-- Accumulate value arguments, then decide
go (Cast e _) val_args = go e val_args
go (App f a) val_args | isRuntimeArg a = go f (a:val_args)
| otherwise = go f val_args
go (Var _) [] = True -- Just a type application of a variable
-- (f t1 t2 t3) counts as WHNF
go (Var f) args
= case idDetails f of
RecSelId {} -> go_sel args
ClassOpId {} -> go_sel args
PrimOpId op -> go_primop op args
_ | good_app f (length args) -> go_pap args
| isBottomingId f -> True
| otherwise -> False
-- Application of a function which
-- always gives bottom; we treat this as cheap
-- because it certainly doesn't need to be shared!
go _ _ = False
--------------
go_pap args = all (exprIsCheap' good_app) args
-- Used to be "all exprIsTrivial args" due to concerns about
-- duplicating nested constructor applications, but see #4978.
-- The principle here is that
-- let x = a +# b in c *# x
-- should behave equivalently to
-- c *# (a +# b)
-- Since lets with cheap RHSs are accepted,
-- so should paps with cheap arguments
--------------
go_primop op args = primOpIsCheap op && all (exprIsCheap' good_app) args
-- In principle we should worry about primops
-- that return a type variable, since the result
-- might be applied to something, but I'm not going
-- to bother to check the number of args
--------------
go_sel [arg] = exprIsCheap' good_app arg -- I'm experimenting with making record selection
go_sel _ = False -- look cheap, so we will substitute it inside a
-- lambda. Particularly for dictionary field selection.
-- BUT: Take care with (sel d x)! The (sel d) might be cheap, but
-- there's no guarantee that (sel d x) will be too. Hence (n_val_args == 1)
isCheapApp :: CheapAppFun
isCheapApp fn n_val_args
= isDataConWorkId fn
|| n_val_args < idArity fn
isExpandableApp :: CheapAppFun
isExpandableApp fn n_val_args
= isConLikeId fn
|| n_val_args < idArity fn
|| go n_val_args (idType fn)
where
-- See if all the arguments are PredTys (implicit params or classes)
-- If so we'll regard it as expandable; see Note [Expandable overloadings]
go 0 _ = True
go n_val_args ty
| Just (_, ty) <- splitForAllTy_maybe ty = go n_val_args ty
| Just (arg, ty) <- splitFunTy_maybe ty
, isPredTy arg = go (n_val_args-1) ty
| otherwise = False
\end{code}
Note [Expandable overloadings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose the user wrote this
{-# RULE forall x. foo (negate x) = h x #-}
f x = ....(foo (negate x))....
He'd expect the rule to fire. But since negate is overloaded, we might
get this:
f = \d -> let n = negate d in \x -> ...foo (n x)...
So we treat the application of a function (negate in this case) to a
*dictionary* as expandable. In effect, every function is CONLIKE when
it's applied only to dictionaries.
%************************************************************************
%* *
exprOkForSpeculation
%* *
%************************************************************************
\begin{code}
-----------------------------
-- | 'exprOkForSpeculation' returns True of an expression that is:
--
-- * Safe to evaluate even if normal order eval might not
-- evaluate the expression at all, or
--
-- * Safe /not/ to evaluate even if normal order would do so
--
-- It is usually called on arguments of unlifted type, but not always
-- In particular, Simplify.rebuildCase calls it on lifted types
-- when a 'case' is a plain 'seq'. See the example in
-- Note [exprOkForSpeculation: case expressions] below
--
-- Precisely, it returns @True@ iff:
--
-- * The expression guarantees to terminate,
-- * soon,
-- * without raising an exception,
-- * without causing a side effect (e.g. writing a mutable variable)
--
-- Note that if @exprIsHNF e@, then @exprOkForSpecuation e@.
-- As an example of the considerations in this test, consider:
--
-- > let x = case y# +# 1# of { r# -> I# r# }
-- > in E
--
-- being translated to:
--
-- > case y# +# 1# of { r# ->
-- > let x = I# r#
-- > in E
-- > }
--
-- We can only do this if the @y + 1@ is ok for speculation: it has no
-- side effects, and can't diverge or raise an exception.
exprOkForSpeculation :: Expr b -> Bool
-- Polymorphic in binder type
-- There is one call at a non-Id binder type, in SetLevels
exprOkForSpeculation (Lit _) = True
exprOkForSpeculation (Type _) = True
exprOkForSpeculation (Coercion _) = True
exprOkForSpeculation (Var v) = appOkForSpeculation v []
exprOkForSpeculation (Cast e _) = exprOkForSpeculation e
-- Tick annotations that *tick* cannot be speculated, because these
-- are meant to identify whether or not (and how often) the particular
-- source expression was evaluated at runtime.
exprOkForSpeculation (Tick tickish e)
| tickishCounts tickish = False
| otherwise = exprOkForSpeculation e
exprOkForSpeculation (Case e _ _ alts)
= exprOkForSpeculation e -- Note [exprOkForSpeculation: case expressions]
&& all (\(_,_,rhs) -> exprOkForSpeculation rhs) alts
&& altsAreExhaustive alts -- Note [exprOkForSpeculation: exhaustive alts]
exprOkForSpeculation other_expr
= case collectArgs other_expr of
(Var f, args) -> appOkForSpeculation f args
_ -> False
-----------------------------
appOkForSpeculation :: Id -> [Expr b] -> Bool
appOkForSpeculation fun args
= case idDetails fun of
DFunId new_type -> not new_type
-- DFuns terminate, unless the dict is implemented
-- with a newtype in which case they may not
DataConWorkId {} -> True
-- The strictness of the constructor has already
-- been expressed by its "wrapper", so we don't need
-- to take the arguments into account
PrimOpId op
| isDivOp op -- Special case for dividing operations that fail
, [arg1, Lit lit] <- args -- only if the divisor is zero
-> not (isZeroLit lit) && exprOkForSpeculation arg1
-- Often there is a literal divisor, and this
-- can get rid of a thunk in an inner looop
| DataToTagOp <- op -- See Note [dataToTag speculation]
-> True
| otherwise
-> primOpOkForSpeculation op &&
all exprOkForSpeculation args
-- A bit conservative: we don't really need
-- to care about lazy arguments, but this is easy
_other -> isUnLiftedType (idType fun) -- c.f. the Var case of exprIsHNF
|| idArity fun > n_val_args -- Partial apps
|| (n_val_args ==0 &&
isEvaldUnfolding (idUnfolding fun)) -- Let-bound values
where
n_val_args = valArgCount args
-----------------------------
altsAreExhaustive :: [Alt b] -> Bool
-- True <=> the case alterantives are definiely exhaustive
-- False <=> they may or may not be
altsAreExhaustive []
= False -- Should not happen
altsAreExhaustive ((con1,_,_) : alts)
= case con1 of
DEFAULT -> True
LitAlt {} -> False
DataAlt c -> 1 + length alts == tyConFamilySize (dataConTyCon c)
-- It is possible to have an exhaustive case that does not
-- enumerate all constructors, notably in a GADT match, but
-- we behave conservatively here -- I don't think it's important
-- enough to deserve special treatment
-- | True of dyadic operators that can fail only if the second arg is zero!
isDivOp :: PrimOp -> Bool
-- This function probably belongs in PrimOp, or even in
-- an automagically generated file.. but it's such a
-- special case I thought I'd leave it here for now.
isDivOp IntQuotOp = True
isDivOp IntRemOp = True
isDivOp WordQuotOp = True
isDivOp WordRemOp = True
isDivOp FloatDivOp = True
isDivOp DoubleDivOp = True
isDivOp _ = False
\end{code}
Note [exprOkForSpeculation: case expressions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's always sound for exprOkForSpeculation to return False, and we
don't want it to take too long, so it bales out on complicated-looking
terms. Notably lets, which can be stacked very deeply; and in any
case the argument of exprOkForSpeculation is usually in a strict context,
so any lets will have been floated away.
However, we keep going on case-expressions. An example like this one
showed up in DPH code (Trac #3717):
foo :: Int -> Int
foo 0 = 0
foo n = (if n < 5 then 1 else 2) `seq` foo (n-1)
If exprOkForSpeculation doesn't look through case expressions, you get this:
T.$wfoo =
\ (ww :: GHC.Prim.Int#) ->
case ww of ds {
__DEFAULT -> case (case <# ds 5 of _ {
GHC.Types.False -> lvl1;
GHC.Types.True -> lvl})
of _ { __DEFAULT ->
T.$wfoo (GHC.Prim.-# ds_XkE 1) };
0 -> 0
}
The inner case is redundant, and should be nuked.
Note [exprOkForSpeculation: exhaustive alts]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We might have something like
case x of {
A -> ...
_ -> ...(case x of { B -> ...; C -> ... })...
Here, the inner case is fine, becuase the A alternative
can't happen, but it's not ok to float the inner case outside
the outer one (even if we know x is evaluated outside), because
then it would be non-exhaustive. See Trac #5453.
Similarly, this is a valid program (albeit a slightly dodgy one)
let v = case x of { B -> ...; C -> ... }
in case x of
A -> ...
_ -> ...v...v....
But we don't want to speculate the v binding.
One could try to be clever, but the easy fix is simpy to regard
a non-exhaustive case as *not* okForSpeculation.
Note [dataToTag speculation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Is this OK?
f x = let v::Int# = dataToTag# x
in ...
We say "yes", even though 'x' may not be evaluated. Reasons
* dataToTag#'s strictness means that its argument often will be
evaluated, but FloatOut makes that temporarily untrue
case x of y -> let v = dataToTag# y in ...
-->
case x of y -> let v = dataToTag# x in ...
Note that we look at 'x' instead of 'y' (this is to improve
floating in FloatOut). So Lint complains.
Moreover, it really *might* improve floating to let the
v-binding float out
* CorePrep makes sure dataToTag#'s argument is evaluated, just
before code gen. Until then, it's not guaranteed
%************************************************************************
%* *
exprIsHNF, exprIsConLike
%* *
%************************************************************************
\begin{code}
-- Note [exprIsHNF] See also Note [exprIsCheap and exprIsHNF]
-- ~~~~~~~~~~~~~~~~
-- | exprIsHNF returns true for expressions that are certainly /already/
-- evaluated to /head/ normal form. This is used to decide whether it's ok
-- to change:
--
-- > case x of _ -> e
--
-- into:
--
-- > e
--
-- and to decide whether it's safe to discard a 'seq'.
--
-- So, it does /not/ treat variables as evaluated, unless they say they are.
-- However, it /does/ treat partial applications and constructor applications
-- as values, even if their arguments are non-trivial, provided the argument
-- type is lifted. For example, both of these are values:
--
-- > (:) (f x) (map f xs)
-- > map (...redex...)
--
-- because 'seq' on such things completes immediately.
--
-- For unlifted argument types, we have to be careful:
--
-- > C (f x :: Int#)
--
-- Suppose @f x@ diverges; then @C (f x)@ is not a value. However this can't
-- happen: see "CoreSyn#let_app_invariant". This invariant states that arguments of
-- unboxed type must be ok-for-speculation (or trivial).
exprIsHNF :: CoreExpr -> Bool -- True => Value-lambda, constructor, PAP
exprIsHNF = exprIsHNFlike isDataConWorkId isEvaldUnfolding
\end{code}
\begin{code}
-- | Similar to 'exprIsHNF' but includes CONLIKE functions as well as
-- data constructors. Conlike arguments are considered interesting by the
-- inliner.
exprIsConLike :: CoreExpr -> Bool -- True => lambda, conlike, PAP
exprIsConLike = exprIsHNFlike isConLikeId isConLikeUnfolding
-- | Returns true for values or value-like expressions. These are lambdas,
-- constructors / CONLIKE functions (as determined by the function argument)
-- or PAPs.
--
exprIsHNFlike :: (Var -> Bool) -> (Unfolding -> Bool) -> CoreExpr -> Bool
exprIsHNFlike is_con is_con_unf = is_hnf_like
where
is_hnf_like (Var v) -- NB: There are no value args at this point
= is_con v -- Catches nullary constructors,
-- so that [] and () are values, for example
|| idArity v > 0 -- Catches (e.g.) primops that don't have unfoldings
|| is_con_unf (idUnfolding v)
-- Check the thing's unfolding; it might be bound to a value
-- We don't look through loop breakers here, which is a bit conservative
-- but otherwise I worry that if an Id's unfolding is just itself,
-- we could get an infinite loop
is_hnf_like (Lit _) = True
is_hnf_like (Type _) = True -- Types are honorary Values;
-- we don't mind copying them
is_hnf_like (Coercion _) = True -- Same for coercions
is_hnf_like (Lam b e) = isRuntimeVar b || is_hnf_like e
is_hnf_like (Tick tickish e) = not (tickishCounts tickish)
&& is_hnf_like e
-- See Note [exprIsHNF Tick]
is_hnf_like (Cast e _) = is_hnf_like e
is_hnf_like (App e (Type _)) = is_hnf_like e
is_hnf_like (App e (Coercion _)) = is_hnf_like e
is_hnf_like (App e a) = app_is_value e [a]
is_hnf_like (Let _ e) = is_hnf_like e -- Lazy let(rec)s don't affect us
is_hnf_like _ = False
-- There is at least one value argument
app_is_value :: CoreExpr -> [CoreArg] -> Bool
app_is_value (Var fun) args
= idArity fun > valArgCount args -- Under-applied function
|| is_con fun -- or constructor-like
app_is_value (Tick _ f) as = app_is_value f as
app_is_value (Cast f _) as = app_is_value f as
app_is_value (App f a) as = app_is_value f (a:as)
app_is_value _ _ = False
{-
Note [exprIsHNF Tick]
We can discard source annotations on HNFs as long as they aren't
tick-like:
scc c (\x . e) => \x . e
scc c (C x1..xn) => C x1..xn
So we regard these as HNFs. Tick annotations that tick are not
regarded as HNF if the expression they surround is HNF, because the
tick is there to tell us that the expression was evaluated, so we
don't want to discard a seq on it.
-}
\end{code}
%************************************************************************
%* *
Instantiating data constructors
%* *
%************************************************************************
These InstPat functions go here to avoid circularity between DataCon and Id
\begin{code}
dataConRepInstPat :: [Unique] -> DataCon -> [Type] -> ([TyVar], [Id])
dataConRepFSInstPat :: [FastString] -> [Unique] -> DataCon -> [Type] -> ([TyVar], [Id])
dataConRepInstPat = dataConInstPat (repeat ((fsLit "ipv")))
dataConRepFSInstPat = dataConInstPat
dataConInstPat :: [FastString] -- A long enough list of FSs to use for names
-> [Unique] -- An equally long list of uniques, at least one for each binder
-> DataCon
-> [Type] -- Types to instantiate the universally quantified tyvars
-> ([TyVar], [Id]) -- Return instantiated variables
-- dataConInstPat arg_fun fss us con inst_tys returns a triple
-- (ex_tvs, arg_ids),
--
-- ex_tvs are intended to be used as binders for existential type args
--
-- arg_ids are indended to be used as binders for value arguments,
-- and their types have been instantiated with inst_tys and ex_tys
-- The arg_ids include both evidence and
-- programmer-specified arguments (both after rep-ing)
--
-- Example.
-- The following constructor T1
--
-- data T a where
-- T1 :: forall b. Int -> b -> T(a,b)
-- ...
--
-- has representation type
-- forall a. forall a1. forall b. (a ~ (a1,b)) =>
-- Int -> b -> T a
--
-- dataConInstPat fss us T1 (a1',b') will return
--
-- ([a1'', b''], [c :: (a1', b')~(a1'', b''), x :: Int, y :: b''])
--
-- where the double-primed variables are created with the FastStrings and
-- Uniques given as fss and us
dataConInstPat fss uniqs con inst_tys
= ASSERT( univ_tvs `equalLength` inst_tys )
(ex_bndrs, arg_ids)
where
univ_tvs = dataConUnivTyVars con
ex_tvs = dataConExTyVars con
arg_tys = dataConRepArgTys con
n_ex = length ex_tvs
-- split the Uniques and FastStrings
(ex_uniqs, id_uniqs) = splitAt n_ex uniqs
(ex_fss, id_fss) = splitAt n_ex fss
-- Make the instantiating substitution for universals
univ_subst = zipOpenTvSubst univ_tvs inst_tys
-- Make existential type variables, applyingn and extending the substitution
(full_subst, ex_bndrs) = mapAccumL mk_ex_var univ_subst
(zip3 ex_tvs ex_fss ex_uniqs)
mk_ex_var :: TvSubst -> (TyVar, FastString, Unique) -> (TvSubst, TyVar)
mk_ex_var subst (tv, fs, uniq) = (Type.extendTvSubst subst tv (mkTyVarTy new_tv)
, new_tv)
where
new_tv = mkTyVar new_name kind
new_name = mkSysTvName uniq fs
kind = Type.substTy subst (tyVarKind tv)
-- Make value vars, instantiating types
arg_ids = zipWith3 mk_id_var id_uniqs id_fss arg_tys
mk_id_var uniq fs ty = mkUserLocal (mkVarOccFS fs) uniq
(Type.substTy full_subst ty) noSrcSpan
\end{code}
%************************************************************************
%* *
Equality
%* *
%************************************************************************
\begin{code}
-- | A cheap equality test which bales out fast!
-- If it returns @True@ the arguments are definitely equal,
-- otherwise, they may or may not be equal.
--
-- See also 'exprIsBig'
cheapEqExpr :: Expr b -> Expr b -> Bool
cheapEqExpr (Var v1) (Var v2) = v1==v2
cheapEqExpr (Lit lit1) (Lit lit2) = lit1 == lit2
cheapEqExpr (Type t1) (Type t2) = t1 `eqType` t2
cheapEqExpr (Coercion c1) (Coercion c2) = c1 `coreEqCoercion` c2
cheapEqExpr (App f1 a1) (App f2 a2)
= f1 `cheapEqExpr` f2 && a1 `cheapEqExpr` a2
cheapEqExpr (Cast e1 t1) (Cast e2 t2)
= e1 `cheapEqExpr` e2 && t1 `coreEqCoercion` t2
cheapEqExpr _ _ = False
\end{code}
\begin{code}
exprIsBig :: Expr b -> Bool
-- ^ Returns @True@ of expressions that are too big to be compared by 'cheapEqExpr'
exprIsBig (Lit _) = False
exprIsBig (Var _) = False
exprIsBig (Type _) = False
exprIsBig (Coercion _) = False
exprIsBig (Lam _ e) = exprIsBig e
exprIsBig (App f a) = exprIsBig f || exprIsBig a
exprIsBig (Cast e _) = exprIsBig e -- Hopefully coercions are not too big!
exprIsBig _ = True
\end{code}
\begin{code}
eqExpr :: InScopeSet -> CoreExpr -> CoreExpr -> Bool
-- Compares for equality, modulo alpha
eqExpr in_scope e1 e2
= eqExprX id_unf (mkRnEnv2 in_scope) e1 e2
where
id_unf _ = noUnfolding -- Don't expand
\end{code}
\begin{code}
eqExprX :: IdUnfoldingFun -> RnEnv2 -> CoreExpr -> CoreExpr -> Bool
-- ^ Compares expressions for equality, modulo alpha.
-- Does /not/ look through newtypes or predicate types
-- Used in rule matching, and also CSE
eqExprX id_unfolding_fun env e1 e2
= go env e1 e2
where
go env (Var v1) (Var v2)
| rnOccL env v1 == rnOccR env v2
= True
-- The next two rules expand non-local variables
-- C.f. Note [Expanding variables] in Rules.lhs
-- and Note [Do not expand locally-bound variables] in Rules.lhs
go env (Var v1) e2
| not (locallyBoundL env v1)
, Just e1' <- expandUnfolding_maybe (id_unfolding_fun (lookupRnInScope env v1))
= go (nukeRnEnvL env) e1' e2
go env e1 (Var v2)
| not (locallyBoundR env v2)
, Just e2' <- expandUnfolding_maybe (id_unfolding_fun (lookupRnInScope env v2))
= go (nukeRnEnvR env) e1 e2'
go _ (Lit lit1) (Lit lit2) = lit1 == lit2
go env (Type t1) (Type t2) = eqTypeX env t1 t2
go env (Coercion co1) (Coercion co2) = coreEqCoercion2 env co1 co2
go env (Cast e1 co1) (Cast e2 co2) = coreEqCoercion2 env co1 co2 && go env e1 e2
go env (App f1 a1) (App f2 a2) = go env f1 f2 && go env a1 a2
go env (Tick n1 e1) (Tick n2 e2) = go_tickish n1 n2 && go env e1 e2
go env (Lam b1 e1) (Lam b2 e2)
= eqTypeX env (varType b1) (varType b2) -- False for Id/TyVar combination
&& go (rnBndr2 env b1 b2) e1 e2
go env (Let (NonRec v1 r1) e1) (Let (NonRec v2 r2) e2)
= go env r1 r2 -- No need to check binder types, since RHSs match
&& go (rnBndr2 env v1 v2) e1 e2
go env (Let (Rec ps1) e1) (Let (Rec ps2) e2)
= all2 (go env') rs1 rs2 && go env' e1 e2
where
(bs1,rs1) = unzip ps1
(bs2,rs2) = unzip ps2
env' = rnBndrs2 env bs1 bs2
go env (Case e1 b1 _ a1) (Case e2 b2 _ a2)
= go env e1 e2
&& eqTypeX env (idType b1) (idType b2)
&& all2 (go_alt (rnBndr2 env b1 b2)) a1 a2
go _ _ _ = False
-----------
go_alt env (c1, bs1, e1) (c2, bs2, e2)
= c1 == c2 && go (rnBndrs2 env bs1 bs2) e1 e2
-----------
go_tickish (Breakpoint lid lids) (Breakpoint rid rids)
= lid == rid && map (rnOccL env) lids == map (rnOccR env) rids
go_tickish l r = l == r
\end{code}
Auxiliary functions
\begin{code}
locallyBoundL, locallyBoundR :: RnEnv2 -> Var -> Bool
locallyBoundL rn_env v = inRnEnvL rn_env v
locallyBoundR rn_env v = inRnEnvR rn_env v
\end{code}
%************************************************************************
%* *
\subsection{The size of an expression}
%* *
%************************************************************************
\begin{code}
coreBindsSize :: [CoreBind] -> Int
coreBindsSize bs = foldr ((+) . bindSize) 0 bs
exprSize :: CoreExpr -> Int
-- ^ A measure of the size of the expressions, strictly greater than 0
-- It also forces the expression pretty drastically as a side effect
-- Counts *leaves*, not internal nodes. Types and coercions are not counted.
exprSize (Var v) = v `seq` 1
exprSize (Lit lit) = lit `seq` 1
exprSize (App f a) = exprSize f + exprSize a
exprSize (Lam b e) = varSize b + exprSize e
exprSize (Let b e) = bindSize b + exprSize e
exprSize (Case e b t as) = seqType t `seq` exprSize e + varSize b + 1 + foldr ((+) . altSize) 0 as
exprSize (Cast e co) = (seqCo co `seq` 1) + exprSize e
exprSize (Tick n e) = tickSize n + exprSize e
exprSize (Type t) = seqType t `seq` 1
exprSize (Coercion co) = seqCo co `seq` 1
tickSize :: Tickish Id -> Int
tickSize (ProfNote cc _ _) = cc `seq` 1
tickSize _ = 1 -- the rest are strict
varSize :: Var -> Int
varSize b | isTyVar b = 1
| otherwise = seqType (idType b) `seq`
megaSeqIdInfo (idInfo b) `seq`
1
varsSize :: [Var] -> Int
varsSize = sum . map varSize
bindSize :: CoreBind -> Int
bindSize (NonRec b e) = varSize b + exprSize e
bindSize (Rec prs) = foldr ((+) . pairSize) 0 prs
pairSize :: (Var, CoreExpr) -> Int
pairSize (b,e) = varSize b + exprSize e
altSize :: CoreAlt -> Int
altSize (c,bs,e) = c `seq` varsSize bs + exprSize e
\end{code}
\begin{code}
data CoreStats = CS { cs_tm, cs_ty, cs_co :: Int }
instance Outputable CoreStats where
ppr (CS { cs_tm = i1, cs_ty = i2, cs_co = i3 })
= braces (sep [ptext (sLit "terms:") <+> intWithCommas i1 <> comma,
ptext (sLit "types:") <+> intWithCommas i2 <> comma,
ptext (sLit "coercions:") <+> intWithCommas i3])
plusCS :: CoreStats -> CoreStats -> CoreStats
plusCS (CS { cs_tm = p1, cs_ty = q1, cs_co = r1 })
(CS { cs_tm = p2, cs_ty = q2, cs_co = r2 })
= CS { cs_tm = p1+p2, cs_ty = q1+q2, cs_co = r1+r2 }
zeroCS, oneTM :: CoreStats
zeroCS = CS { cs_tm = 0, cs_ty = 0, cs_co = 0 }
oneTM = zeroCS { cs_tm = 1 }
sumCS :: (a -> CoreStats) -> [a] -> CoreStats
sumCS f = foldr (plusCS . f) zeroCS
coreBindsStats :: [CoreBind] -> CoreStats
coreBindsStats = sumCS bindStats
bindStats :: CoreBind -> CoreStats
bindStats (NonRec v r) = bindingStats v r
bindStats (Rec prs) = sumCS (\(v,r) -> bindingStats v r) prs
bindingStats :: Var -> CoreExpr -> CoreStats
bindingStats v r = bndrStats v `plusCS` exprStats r
bndrStats :: Var -> CoreStats
bndrStats v = oneTM `plusCS` tyStats (varType v)
exprStats :: CoreExpr -> CoreStats
exprStats (Var {}) = oneTM
exprStats (Lit {}) = oneTM
exprStats (Type t) = tyStats t
exprStats (Coercion c) = coStats c
exprStats (App f a) = exprStats f `plusCS` exprStats a
exprStats (Lam b e) = bndrStats b `plusCS` exprStats e
exprStats (Let b e) = bindStats b `plusCS` exprStats e
exprStats (Case e b _ as) = exprStats e `plusCS` bndrStats b `plusCS` sumCS altStats as
exprStats (Cast e co) = coStats co `plusCS` exprStats e
exprStats (Tick _ e) = exprStats e
altStats :: CoreAlt -> CoreStats
altStats (_, bs, r) = sumCS bndrStats bs `plusCS` exprStats r
tyStats :: Type -> CoreStats
tyStats ty = zeroCS { cs_ty = typeSize ty }
coStats :: Coercion -> CoreStats
coStats co = zeroCS { cs_co = coercionSize co }
\end{code}
%************************************************************************
%* *
\subsection{Hashing}
%* *
%************************************************************************
\begin{code}
hashExpr :: CoreExpr -> Int
-- ^ Two expressions that hash to the same @Int@ may be equal (but may not be)
-- Two expressions that hash to the different Ints are definitely unequal.
--
-- The emphasis is on a crude, fast hash, rather than on high precision.
--
-- But unequal here means \"not identical\"; two alpha-equivalent
-- expressions may hash to the different Ints.
--
-- We must be careful that @\\x.x@ and @\\y.y@ map to the same hash code,
-- (at least if we want the above invariant to be true).
hashExpr e = fromIntegral (hash_expr (1,emptyVarEnv) e .&. 0x7fffffff)
-- UniqFM doesn't like negative Ints
type HashEnv = (Int, VarEnv Int) -- Hash code for bound variables
hash_expr :: HashEnv -> CoreExpr -> Word32
-- Word32, because we're expecting overflows here, and overflowing
-- signed types just isn't cool. In C it's even undefined.
hash_expr env (Tick _ e) = hash_expr env e
hash_expr env (Cast e _) = hash_expr env e
hash_expr env (Var v) = hashVar env v
hash_expr _ (Lit lit) = fromIntegral (hashLiteral lit)
hash_expr env (App f e) = hash_expr env f * fast_hash_expr env e
hash_expr env (Let (NonRec b r) e) = hash_expr (extend_env env b) e * fast_hash_expr env r
hash_expr env (Let (Rec ((b,_):_)) e) = hash_expr (extend_env env b) e
hash_expr _ (Let (Rec []) _) = panic "hash_expr: Let (Rec []) _"
hash_expr env (Case e _ _ _) = hash_expr env e
hash_expr env (Lam b e) = hash_expr (extend_env env b) e
hash_expr env (Coercion co) = fast_hash_co env co
hash_expr _ (Type _) = WARN(True, text "hash_expr: type") 1
-- Shouldn't happen. Better to use WARN than trace, because trace
-- prevents the CPR optimisation kicking in for hash_expr.
fast_hash_expr :: HashEnv -> CoreExpr -> Word32
fast_hash_expr env (Var v) = hashVar env v
fast_hash_expr env (Type t) = fast_hash_type env t
fast_hash_expr env (Coercion co) = fast_hash_co env co
fast_hash_expr _ (Lit lit) = fromIntegral (hashLiteral lit)
fast_hash_expr env (Cast e _) = fast_hash_expr env e
fast_hash_expr env (Tick _ e) = fast_hash_expr env e
fast_hash_expr env (App _ a) = fast_hash_expr env a -- A bit idiosyncratic ('a' not 'f')!
fast_hash_expr _ _ = 1
fast_hash_type :: HashEnv -> Type -> Word32
fast_hash_type env ty
| Just tv <- getTyVar_maybe ty = hashVar env tv
| Just (tc,tys) <- splitTyConApp_maybe ty = let hash_tc = fromIntegral (hashName (tyConName tc))
in foldr (\t n -> fast_hash_type env t + n) hash_tc tys
| otherwise = 1
fast_hash_co :: HashEnv -> Coercion -> Word32
fast_hash_co env co
| Just cv <- getCoVar_maybe co = hashVar env cv
| Just (tc,cos) <- splitTyConAppCo_maybe co = let hash_tc = fromIntegral (hashName (tyConName tc))
in foldr (\c n -> fast_hash_co env c + n) hash_tc cos
| otherwise = 1
extend_env :: HashEnv -> Var -> (Int, VarEnv Int)
extend_env (n,env) b = (n+1, extendVarEnv env b n)
hashVar :: HashEnv -> Var -> Word32
hashVar (_,env) v
= fromIntegral (lookupVarEnv env v `orElse` hashName (idName v))
\end{code}
%************************************************************************
%* *
Eta reduction
%* *
%************************************************************************
Note [Eta reduction conditions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We try for eta reduction here, but *only* if we get all the way to an
trivial expression. We don't want to remove extra lambdas unless we
are going to avoid allocating this thing altogether.
There are some particularly delicate points here:
* Eta reduction is not valid in general:
\x. bot /= bot
This matters, partly for old-fashioned correctness reasons but,
worse, getting it wrong can yield a seg fault. Consider
f = \x.f x
h y = case (case y of { True -> f `seq` True; False -> False }) of
True -> ...; False -> ...
If we (unsoundly) eta-reduce f to get f=f, the strictness analyser
says f=bottom, and replaces the (f `seq` True) with just
(f `cast` unsafe-co). BUT, as thing stand, 'f' got arity 1, and it
*keeps* arity 1 (perhaps also wrongly). So CorePrep eta-expands
the definition again, so that it does not termninate after all.
Result: seg-fault because the boolean case actually gets a function value.
See Trac #1947.
So it's important to to the right thing.
* Note [Arity care]: we need to be careful if we just look at f's
arity. Currently (Dec07), f's arity is visible in its own RHS (see
Note [Arity robustness] in SimplEnv) so we must *not* trust the
arity when checking that 'f' is a value. Otherwise we will
eta-reduce
f = \x. f x
to
f = f
Which might change a terminiating program (think (f `seq` e)) to a
non-terminating one. So we check for being a loop breaker first.
However for GlobalIds we can look at the arity; and for primops we
must, since they have no unfolding.
* Regardless of whether 'f' is a value, we always want to
reduce (/\a -> f a) to f
This came up in a RULE: foldr (build (/\a -> g a))
did not match foldr (build (/\b -> ...something complex...))
The type checker can insert these eta-expanded versions,
with both type and dictionary lambdas; hence the slightly
ad-hoc isDictId
* Never *reduce* arity. For example
f = \xy. g x y
Then if h has arity 1 we don't want to eta-reduce because then
f's arity would decrease, and that is bad
These delicacies are why we don't use exprIsTrivial and exprIsHNF here.
Alas.
Note [Eta reduction with casted arguments]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
(\(x:t3). f (x |> g)) :: t3 -> t2
where
f :: t1 -> t2
g :: t3 ~ t1
This should be eta-reduced to
f |> (sym g -> t2)
So we need to accumulate a coercion, pushing it inward (past
variable arguments only) thus:
f (x |> co_arg) |> co --> (f |> (sym co_arg -> co)) x
f (x:t) |> co --> (f |> (t -> co)) x
f @ a |> co --> (f |> (forall a.co)) @ a
f @ (g:t1~t2) |> co --> (f |> (t1~t2 => co)) @ (g:t1~t2)
These are the equations for ok_arg.
It's true that we could also hope to eta reduce these:
(\xy. (f x |> g) y)
(\xy. (f x y) |> g)
But the simplifier pushes those casts outwards, so we don't
need to address that here.
\begin{code}
tryEtaReduce :: [Var] -> CoreExpr -> Maybe CoreExpr
tryEtaReduce bndrs body
= go (reverse bndrs) body (mkReflCo (exprType body))
where
incoming_arity = count isId bndrs
go :: [Var] -- Binders, innermost first, types [a3,a2,a1]
-> CoreExpr -- Of type tr
-> Coercion -- Of type tr ~ ts
-> Maybe CoreExpr -- Of type a1 -> a2 -> a3 -> ts
-- See Note [Eta reduction with casted arguments]
-- for why we have an accumulating coercion
go [] fun co
| ok_fun fun = Just (mkCast fun co)
go (b : bs) (App fun arg) co
| Just co' <- ok_arg b arg co
= go bs fun co'
go _ _ _ = Nothing -- Failure!
---------------
-- Note [Eta reduction conditions]
ok_fun (App fun (Type ty))
| not (any (`elemVarSet` tyVarsOfType ty) bndrs)
= ok_fun fun
ok_fun (Var fun_id)
= not (fun_id `elem` bndrs)
&& (ok_fun_id fun_id || all ok_lam bndrs)
ok_fun _fun = False
---------------
ok_fun_id fun = fun_arity fun >= incoming_arity
---------------
fun_arity fun -- See Note [Arity care]
| isLocalId fun && isStrongLoopBreaker (idOccInfo fun) = 0
| otherwise = idArity fun
---------------
ok_lam v = isTyVar v || isEvVar v
---------------
ok_arg :: Var -- Of type bndr_t
-> CoreExpr -- Of type arg_t
-> Coercion -- Of kind (t1~t2)
-> Maybe Coercion -- Of type (arg_t -> t1 ~ bndr_t -> t2)
-- (and similarly for tyvars, coercion args)
-- See Note [Eta reduction with casted arguments]
ok_arg bndr (Type ty) co
| Just tv <- getTyVar_maybe ty
, bndr == tv = Just (mkForAllCo tv co)
ok_arg bndr (Var v) co
| bndr == v = Just (mkFunCo (mkReflCo (idType bndr)) co)
ok_arg bndr (Cast (Var v) co_arg) co
| bndr == v = Just (mkFunCo (mkSymCo co_arg) co)
-- The simplifier combines multiple casts into one,
-- so we can have a simple-minded pattern match here
ok_arg _ _ _ = Nothing
\end{code}
%************************************************************************
%* *
\subsection{Determining non-updatable right-hand-sides}
%* *
%************************************************************************
Top-level constructor applications can usually be allocated
statically, but they can't if the constructor, or any of the
arguments, come from another DLL (because we can't refer to static
labels in other DLLs).
If this happens we simply make the RHS into an updatable thunk,
and 'execute' it rather than allocating it statically.
\begin{code}
-- | This function is called only on *top-level* right-hand sides.
-- Returns @True@ if the RHS can be allocated statically in the output,
-- with no thunks involved at all.
rhsIsStatic :: (Name -> Bool) -> CoreExpr -> Bool
-- It's called (i) in TidyPgm.hasCafRefs to decide if the rhs is, or
-- refers to, CAFs; (ii) in CoreToStg to decide whether to put an
-- update flag on it and (iii) in DsExpr to decide how to expand
-- list literals
--
-- The basic idea is that rhsIsStatic returns True only if the RHS is
-- (a) a value lambda
-- (b) a saturated constructor application with static args
--
-- BUT watch out for
-- (i) Any cross-DLL references kill static-ness completely
-- because they must be 'executed' not statically allocated
-- ("DLL" here really only refers to Windows DLLs, on other platforms,
-- this is not necessary)
--
-- (ii) We treat partial applications as redexes, because in fact we
-- make a thunk for them that runs and builds a PAP
-- at run-time. The only appliations that are treated as
-- static are *saturated* applications of constructors.
-- We used to try to be clever with nested structures like this:
-- ys = (:) w ((:) w [])
-- on the grounds that CorePrep will flatten ANF-ise it later.
-- But supporting this special case made the function much more
-- complicated, because the special case only applies if there are no
-- enclosing type lambdas:
-- ys = /\ a -> Foo (Baz ([] a))
-- Here the nested (Baz []) won't float out to top level in CorePrep.
--
-- But in fact, even without -O, nested structures at top level are
-- flattened by the simplifier, so we don't need to be super-clever here.
--
-- Examples
--
-- f = \x::Int. x+7 TRUE
-- p = (True,False) TRUE
--
-- d = (fst p, False) FALSE because there's a redex inside
-- (this particular one doesn't happen but...)
--
-- h = D# (1.0## /## 2.0##) FALSE (redex again)
-- n = /\a. Nil a TRUE
--
-- t = /\a. (:) (case w a of ...) (Nil a) FALSE (redex)
--
--
-- This is a bit like CoreUtils.exprIsHNF, with the following differences:
-- a) scc "foo" (\x -> ...) is updatable (so we catch the right SCC)
--
-- b) (C x xs), where C is a contructor is updatable if the application is
-- dynamic
--
-- c) don't look through unfolding of f in (f x).
rhsIsStatic _is_dynamic_name rhs = is_static False rhs
where
is_static :: Bool -- True <=> in a constructor argument; must be atomic
-> CoreExpr -> Bool
is_static False (Lam b e) = isRuntimeVar b || is_static False e
is_static in_arg (Tick n e) = not (tickishIsCode n)
&& is_static in_arg e
is_static in_arg (Cast e _) = is_static in_arg e
is_static _ (Coercion {}) = True -- Behaves just like a literal
is_static _ (Lit (LitInteger {})) = False
is_static _ (Lit (MachLabel {})) = False
is_static _ (Lit _) = True
-- A MachLabel (foreign import "&foo") in an argument
-- prevents a constructor application from being static. The
-- reason is that it might give rise to unresolvable symbols
-- in the object file: under Linux, references to "weak"
-- symbols from the data segment give rise to "unresolvable
-- relocation" errors at link time This might be due to a bug
-- in the linker, but we'll work around it here anyway.
-- SDM 24/2/2004
is_static in_arg other_expr = go other_expr 0
where
go (Var f) n_val_args
#if mingw32_TARGET_OS
| not (_is_dynamic_name (idName f))
#endif
= saturated_data_con f n_val_args
|| (in_arg && n_val_args == 0)
-- A naked un-applied variable is *not* deemed a static RHS
-- E.g. f = g
-- Reason: better to update so that the indirection gets shorted
-- out, and the true value will be seen
-- NB: if you change this, you'll break the invariant that THUNK_STATICs
-- are always updatable. If you do so, make sure that non-updatable
-- ones have enough space for their static link field!
go (App f a) n_val_args
| isTypeArg a = go f n_val_args
| not in_arg && is_static True a = go f (n_val_args + 1)
-- The (not in_arg) checks that we aren't in a constructor argument;
-- if we are, we don't allow (value) applications of any sort
--
-- NB. In case you wonder, args are sometimes not atomic. eg.
-- x = D# (1.0## /## 2.0##)
-- can't float because /## can fail.
go (Tick n f) n_val_args = not (tickishIsCode n) && go f n_val_args
go (Cast e _) n_val_args = go e n_val_args
go _ _ = False
saturated_data_con f n_val_args
= case isDataConWorkId_maybe f of
Just dc -> n_val_args == dataConRepArity dc
Nothing -> False
\end{code}
|