1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
|
{-
(c) The University of Glasgow, 1992-2006
Here we collect a variety of helper functions that construct or
analyse HsSyn. All these functions deal with generic HsSyn; functions
which deal with the instantiated versions are located elsewhere:
Parameterised by Module
---------------- -------------
RdrName parser/RdrHsSyn
Name rename/RnHsSyn
Id typecheck/TcHsSyn
-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE FlexibleContexts #-}
module HsUtils(
-- Terms
mkHsPar, mkHsApp, mkHsConApp, mkSimpleHsAlt,
mkSimpleMatch, unguardedGRHSs, unguardedRHS,
mkMatchGroup, mkMatchGroupName, mkMatch, mkHsLam, mkHsIf,
mkHsWrap, mkLHsWrap, mkHsWrapCo, mkHsWrapCoR, mkLHsWrapCo,
coToHsWrapper, mkHsDictLet, mkHsLams,
mkHsOpApp, mkHsDo, mkHsComp, mkHsWrapPat, mkHsWrapPatCo,
mkLHsPar, mkHsCmdCast,
nlHsTyApp, nlHsTyApps, nlHsVar, nlHsLit, nlHsApp, nlHsApps, nlHsIntLit, nlHsVarApps,
nlHsDo, nlHsOpApp, nlHsLam, nlHsPar, nlHsIf, nlHsCase, nlList,
mkLHsTupleExpr, mkLHsVarTuple, missingTupArg,
toHsType, toHsKind,
-- Bindings
mkFunBind, mkVarBind, mkHsVarBind, mk_easy_FunBind, mkTopFunBind, mkPatSynBind,
-- Literals
mkHsIntegral, mkHsFractional, mkHsIsString, mkHsString,
-- Patterns
mkNPat, mkNPlusKPat, nlVarPat, nlLitPat, nlConVarPat, nlConPat,
nlConPatName, nlInfixConPat, nlNullaryConPat, nlWildConPat, nlWildPat,
nlWildPatName, nlWildPatId, nlTuplePat, mkParPat,
-- Types
mkHsAppTy, userHsTyVarBndrs,
nlHsAppTy, nlHsTyVar, nlHsFunTy, nlHsTyConApp,
-- Stmts
mkTransformStmt, mkTransformByStmt, mkBodyStmt, mkBindStmt, mkLastStmt,
emptyTransStmt, mkGroupUsingStmt, mkGroupByUsingStmt,
emptyRecStmt, emptyRecStmtName, emptyRecStmtId, mkRecStmt,
-- Template Haskell
mkHsSpliceTy, mkHsSpliceE, mkHsSpliceTE, mkHsSplice,
mkHsQuasiQuote, unqualQuasiQuote,
-- Flags
noRebindableInfo,
-- Collecting binders
collectLocalBinders, collectHsValBinders, collectHsBindListBinders,
collectHsIdBinders,
collectHsBindsBinders, collectHsBindBinders, collectMethodBinders,
collectPatBinders, collectPatsBinders,
collectLStmtsBinders, collectStmtsBinders,
collectLStmtBinders, collectStmtBinders,
hsLTyClDeclBinders, hsTyClForeignBinders, hsPatSynBinders,
hsForeignDeclsBinders, hsGroupBinders, hsDataFamInstBinders,
-- Collecting implicit binders
lStmtsImplicits, hsValBindsImplicits, lPatImplicits
) where
#include "HsVersions.h"
import HsDecls
import HsBinds
import HsExpr
import HsPat
import HsTypes
import HsLit
import PlaceHolder
import TcEvidence
import RdrName
import Var
import TypeRep
import TcType
import Kind
import DataCon
import Name
import NameSet
import BasicTypes
import SrcLoc
import FastString
import Util
import Bag
import Outputable
import Data.Either
import Data.Function
import Data.List
{-
************************************************************************
* *
Some useful helpers for constructing syntax
* *
************************************************************************
These functions attempt to construct a not-completely-useless SrcSpan
from their components, compared with the nl* functions below which
just attach noSrcSpan to everything.
-}
mkHsPar :: LHsExpr id -> LHsExpr id
mkHsPar e = L (getLoc e) (HsPar e)
mkSimpleMatch :: [LPat id] -> Located (body id) -> LMatch id (Located (body id))
mkSimpleMatch pats rhs
= L loc $
Match Nothing pats Nothing (unguardedGRHSs rhs)
where
loc = case pats of
[] -> getLoc rhs
(pat:_) -> combineSrcSpans (getLoc pat) (getLoc rhs)
unguardedGRHSs :: Located (body id) -> GRHSs id (Located (body id))
unguardedGRHSs rhs@(L loc _) = GRHSs (unguardedRHS loc rhs) emptyLocalBinds
unguardedRHS :: SrcSpan -> Located (body id) -> [LGRHS id (Located (body id))]
unguardedRHS loc rhs = [L loc (GRHS [] rhs)]
mkMatchGroup :: Origin -> [LMatch RdrName (Located (body RdrName))]
-> MatchGroup RdrName (Located (body RdrName))
mkMatchGroup origin matches = MG { mg_alts = matches, mg_arg_tys = []
, mg_res_ty = placeHolderType
, mg_origin = origin }
mkMatchGroupName :: Origin -> [LMatch Name (Located (body Name))]
-> MatchGroup Name (Located (body Name))
mkMatchGroupName origin matches = MG { mg_alts = matches, mg_arg_tys = []
, mg_res_ty = placeHolderType
, mg_origin = origin }
mkHsAppTy :: LHsType name -> LHsType name -> LHsType name
mkHsAppTy t1 t2 = addCLoc t1 t2 (HsAppTy t1 t2)
mkHsApp :: LHsExpr name -> LHsExpr name -> LHsExpr name
mkHsApp e1 e2 = addCLoc e1 e2 (HsApp e1 e2)
mkHsLam :: [LPat RdrName] -> LHsExpr RdrName -> LHsExpr RdrName
mkHsLam pats body = mkHsPar (L (getLoc body) (HsLam matches))
where
matches = mkMatchGroup Generated [mkSimpleMatch pats body]
mkHsLams :: [TyVar] -> [EvVar] -> LHsExpr Id -> LHsExpr Id
mkHsLams tyvars dicts expr = mkLHsWrap (mkWpTyLams tyvars
<.> mkWpLams dicts) expr
mkHsConApp :: DataCon -> [Type] -> [HsExpr Id] -> LHsExpr Id
-- Used for constructing dictionary terms etc, so no locations
mkHsConApp data_con tys args
= foldl mk_app (nlHsTyApp (dataConWrapId data_con) tys) args
where
mk_app f a = noLoc (HsApp f (noLoc a))
mkSimpleHsAlt :: LPat id -> (Located (body id)) -> LMatch id (Located (body id))
-- A simple lambda with a single pattern, no binds, no guards; pre-typechecking
mkSimpleHsAlt pat expr
= mkSimpleMatch [pat] expr
nlHsTyApp :: name -> [Type] -> LHsExpr name
nlHsTyApp fun_id tys = noLoc (HsWrap (mkWpTyApps tys) (HsVar fun_id))
nlHsTyApps :: name -> [Type] -> [LHsExpr name] -> LHsExpr name
nlHsTyApps fun_id tys xs = foldl nlHsApp (nlHsTyApp fun_id tys) xs
--------- Adding parens ---------
mkLHsPar :: LHsExpr name -> LHsExpr name
-- Wrap in parens if hsExprNeedsParens says it needs them
-- So 'f x' becomes '(f x)', but '3' stays as '3'
mkLHsPar le@(L loc e) | hsExprNeedsParens e = L loc (HsPar le)
| otherwise = le
mkParPat :: LPat name -> LPat name
mkParPat lp@(L loc p) | hsPatNeedsParens p = L loc (ParPat lp)
| otherwise = lp
-------------------------------
-- These are the bits of syntax that contain rebindable names
-- See RnEnv.lookupSyntaxName
mkHsIntegral :: String -> Integer -> PostTc RdrName Type -> HsOverLit RdrName
mkHsFractional :: FractionalLit -> PostTc RdrName Type -> HsOverLit RdrName
mkHsIsString :: String -> FastString -> PostTc RdrName Type -> HsOverLit RdrName
mkHsDo :: HsStmtContext Name -> [ExprLStmt RdrName] -> HsExpr RdrName
mkHsComp :: HsStmtContext Name -> [ExprLStmt RdrName] -> LHsExpr RdrName
-> HsExpr RdrName
mkNPat :: Located (HsOverLit id) -> Maybe (SyntaxExpr id) -> Pat id
mkNPlusKPat :: Located id -> Located (HsOverLit id) -> Pat id
mkLastStmt :: Located (bodyR idR) -> StmtLR idL idR (Located (bodyR idR))
mkBodyStmt :: Located (bodyR RdrName)
-> StmtLR idL RdrName (Located (bodyR RdrName))
mkBindStmt :: LPat idL -> Located (bodyR idR) -> StmtLR idL idR (Located (bodyR idR))
emptyRecStmt :: StmtLR idL RdrName bodyR
emptyRecStmtName :: StmtLR Name Name bodyR
emptyRecStmtId :: StmtLR Id Id bodyR
mkRecStmt :: [LStmtLR idL RdrName bodyR] -> StmtLR idL RdrName bodyR
mkHsIntegral src i = OverLit (HsIntegral src i) noRebindableInfo noSyntaxExpr
mkHsFractional f = OverLit (HsFractional f) noRebindableInfo noSyntaxExpr
mkHsIsString src s = OverLit (HsIsString src s) noRebindableInfo noSyntaxExpr
noRebindableInfo :: PlaceHolder
noRebindableInfo = PlaceHolder -- Just another placeholder;
mkHsDo ctxt stmts = HsDo ctxt stmts placeHolderType
mkHsComp ctxt stmts expr = mkHsDo ctxt (stmts ++ [last_stmt])
where
last_stmt = L (getLoc expr) $ mkLastStmt expr
mkHsIf :: LHsExpr id -> LHsExpr id -> LHsExpr id -> HsExpr id
mkHsIf c a b = HsIf (Just noSyntaxExpr) c a b
mkNPat lit neg = NPat lit neg noSyntaxExpr
mkNPlusKPat id lit = NPlusKPat id lit noSyntaxExpr noSyntaxExpr
mkTransformStmt :: [ExprLStmt idL] -> LHsExpr idR
-> StmtLR idL idR (LHsExpr idL)
mkTransformByStmt :: [ExprLStmt idL] -> LHsExpr idR -> LHsExpr idR
-> StmtLR idL idR (LHsExpr idL)
mkGroupUsingStmt :: [ExprLStmt idL] -> LHsExpr idR
-> StmtLR idL idR (LHsExpr idL)
mkGroupByUsingStmt :: [ExprLStmt idL] -> LHsExpr idR -> LHsExpr idR
-> StmtLR idL idR (LHsExpr idL)
emptyTransStmt :: StmtLR idL idR (LHsExpr idR)
emptyTransStmt = TransStmt { trS_form = panic "emptyTransStmt: form"
, trS_stmts = [], trS_bndrs = []
, trS_by = Nothing, trS_using = noLoc noSyntaxExpr
, trS_ret = noSyntaxExpr, trS_bind = noSyntaxExpr
, trS_fmap = noSyntaxExpr }
mkTransformStmt ss u = emptyTransStmt { trS_form = ThenForm, trS_stmts = ss, trS_using = u }
mkTransformByStmt ss u b = emptyTransStmt { trS_form = ThenForm, trS_stmts = ss, trS_using = u, trS_by = Just b }
mkGroupUsingStmt ss u = emptyTransStmt { trS_form = GroupForm, trS_stmts = ss, trS_using = u }
mkGroupByUsingStmt ss b u = emptyTransStmt { trS_form = GroupForm, trS_stmts = ss, trS_using = u, trS_by = Just b }
mkLastStmt body = LastStmt body noSyntaxExpr
mkBodyStmt body = BodyStmt body noSyntaxExpr noSyntaxExpr placeHolderType
mkBindStmt pat body = BindStmt pat body noSyntaxExpr noSyntaxExpr
emptyRecStmt' :: forall idL idR body.
PostTc idR Type -> StmtLR idL idR body
emptyRecStmt' tyVal =
RecStmt
{ recS_stmts = [], recS_later_ids = []
, recS_rec_ids = []
, recS_ret_fn = noSyntaxExpr
, recS_mfix_fn = noSyntaxExpr
, recS_bind_fn = noSyntaxExpr, recS_later_rets = []
, recS_rec_rets = [], recS_ret_ty = tyVal }
emptyRecStmt = emptyRecStmt' placeHolderType
emptyRecStmtName = emptyRecStmt' placeHolderType
emptyRecStmtId = emptyRecStmt' placeHolderTypeTc
mkRecStmt stmts = emptyRecStmt { recS_stmts = stmts }
-------------------------------
--- A useful function for building @OpApps@. The operator is always a
-- variable, and we don't know the fixity yet.
mkHsOpApp :: LHsExpr id -> id -> LHsExpr id -> HsExpr id
mkHsOpApp e1 op e2 = OpApp e1 (noLoc (HsVar op)) (error "mkOpApp:fixity") e2
mkHsSplice :: LHsExpr RdrName -> HsSplice RdrName
mkHsSplice e = HsSplice unqualSplice e
unqualSplice :: RdrName
unqualSplice = mkRdrUnqual (mkVarOccFS (fsLit "splice"))
mkHsSpliceE :: LHsExpr RdrName -> HsExpr RdrName
mkHsSpliceE e = HsSpliceE False (mkHsSplice e)
mkHsSpliceTE :: LHsExpr RdrName -> HsExpr RdrName
mkHsSpliceTE e = HsSpliceE True (mkHsSplice e)
mkHsSpliceTy :: LHsExpr RdrName -> HsType RdrName
mkHsSpliceTy e = HsSpliceTy (mkHsSplice e) placeHolderKind
mkHsQuasiQuote :: RdrName -> SrcSpan -> FastString -> HsQuasiQuote RdrName
mkHsQuasiQuote quoter span quote = HsQuasiQuote quoter span quote
unqualQuasiQuote :: RdrName
unqualQuasiQuote = mkRdrUnqual (mkVarOccFS (fsLit "quasiquote"))
-- A name (uniquified later) to
-- identify the quasi-quote
mkHsString :: String -> HsLit
mkHsString s = HsString s (mkFastString s)
-------------
userHsTyVarBndrs :: SrcSpan -> [name] -> [Located (HsTyVarBndr name)]
-- Caller sets location
userHsTyVarBndrs loc bndrs = [ L loc (UserTyVar v) | v <- bndrs ]
{-
************************************************************************
* *
Constructing syntax with no location info
* *
************************************************************************
-}
nlHsVar :: id -> LHsExpr id
nlHsVar n = noLoc (HsVar n)
nlHsLit :: HsLit -> LHsExpr id
nlHsLit n = noLoc (HsLit n)
nlVarPat :: id -> LPat id
nlVarPat n = noLoc (VarPat n)
nlLitPat :: HsLit -> LPat id
nlLitPat l = noLoc (LitPat l)
nlHsApp :: LHsExpr id -> LHsExpr id -> LHsExpr id
nlHsApp f x = noLoc (HsApp f x)
nlHsIntLit :: Integer -> LHsExpr id
nlHsIntLit n = noLoc (HsLit (HsInt (show n) n))
nlHsApps :: id -> [LHsExpr id] -> LHsExpr id
nlHsApps f xs = foldl nlHsApp (nlHsVar f) xs
nlHsVarApps :: id -> [id] -> LHsExpr id
nlHsVarApps f xs = noLoc (foldl mk (HsVar f) (map HsVar xs))
where
mk f a = HsApp (noLoc f) (noLoc a)
nlConVarPat :: RdrName -> [RdrName] -> LPat RdrName
nlConVarPat con vars = nlConPat con (map nlVarPat vars)
nlInfixConPat :: id -> LPat id -> LPat id -> LPat id
nlInfixConPat con l r = noLoc (ConPatIn (noLoc con) (InfixCon l r))
nlConPat :: RdrName -> [LPat RdrName] -> LPat RdrName
nlConPat con pats = noLoc (ConPatIn (noLoc con) (PrefixCon pats))
nlConPatName :: Name -> [LPat Name] -> LPat Name
nlConPatName con pats = noLoc (ConPatIn (noLoc con) (PrefixCon pats))
nlNullaryConPat :: id -> LPat id
nlNullaryConPat con = noLoc (ConPatIn (noLoc con) (PrefixCon []))
nlWildConPat :: DataCon -> LPat RdrName
nlWildConPat con = noLoc (ConPatIn (noLoc (getRdrName con))
(PrefixCon (nOfThem (dataConSourceArity con)
nlWildPat)))
nlWildPat :: LPat RdrName
nlWildPat = noLoc (WildPat placeHolderType ) -- Pre-typechecking
nlWildPatName :: LPat Name
nlWildPatName = noLoc (WildPat placeHolderType ) -- Pre-typechecking
nlWildPatId :: LPat Id
nlWildPatId = noLoc (WildPat placeHolderTypeTc ) -- Post-typechecking
nlHsDo :: HsStmtContext Name -> [LStmt RdrName (LHsExpr RdrName)]
-> LHsExpr RdrName
nlHsDo ctxt stmts = noLoc (mkHsDo ctxt stmts)
nlHsOpApp :: LHsExpr id -> id -> LHsExpr id -> LHsExpr id
nlHsOpApp e1 op e2 = noLoc (mkHsOpApp e1 op e2)
nlHsLam :: LMatch RdrName (LHsExpr RdrName) -> LHsExpr RdrName
nlHsPar :: LHsExpr id -> LHsExpr id
nlHsIf :: LHsExpr id -> LHsExpr id -> LHsExpr id -> LHsExpr id
nlHsCase :: LHsExpr RdrName -> [LMatch RdrName (LHsExpr RdrName)]
-> LHsExpr RdrName
nlList :: [LHsExpr RdrName] -> LHsExpr RdrName
nlHsLam match = noLoc (HsLam (mkMatchGroup Generated [match]))
nlHsPar e = noLoc (HsPar e)
nlHsIf cond true false = noLoc (mkHsIf cond true false)
nlHsCase expr matches = noLoc (HsCase expr (mkMatchGroup Generated matches))
nlList exprs = noLoc (ExplicitList placeHolderType Nothing exprs)
nlHsAppTy :: LHsType name -> LHsType name -> LHsType name
nlHsTyVar :: name -> LHsType name
nlHsFunTy :: LHsType name -> LHsType name -> LHsType name
nlHsAppTy f t = noLoc (HsAppTy f t)
nlHsTyVar x = noLoc (HsTyVar x)
nlHsFunTy a b = noLoc (HsFunTy a b)
nlHsTyConApp :: name -> [LHsType name] -> LHsType name
nlHsTyConApp tycon tys = foldl nlHsAppTy (nlHsTyVar tycon) tys
{-
Tuples. All these functions are *pre-typechecker* because they lack
types on the tuple.
-}
mkLHsTupleExpr :: [LHsExpr a] -> LHsExpr a
-- Makes a pre-typechecker boxed tuple, deals with 1 case
mkLHsTupleExpr [e] = e
mkLHsTupleExpr es = noLoc $ ExplicitTuple (map (noLoc . Present) es) Boxed
mkLHsVarTuple :: [a] -> LHsExpr a
mkLHsVarTuple ids = mkLHsTupleExpr (map nlHsVar ids)
nlTuplePat :: [LPat id] -> Boxity -> LPat id
nlTuplePat pats box = noLoc (TuplePat pats box [])
missingTupArg :: HsTupArg RdrName
missingTupArg = Missing placeHolderType
{-
************************************************************************
* *
Converting a Type to an HsType RdrName
* *
************************************************************************
This is needed to implement GeneralizedNewtypeDeriving.
-}
toHsType :: Type -> LHsType RdrName
toHsType ty
| [] <- tvs_only
, [] <- theta
= to_hs_type tau
| otherwise
= noLoc $
mkExplicitHsForAllTy (map mk_hs_tvb tvs_only)
(noLoc $ map toHsType theta)
(to_hs_type tau)
where
(tvs, theta, tau) = tcSplitSigmaTy ty
tvs_only = filter isTypeVar tvs
to_hs_type (TyVarTy tv) = nlHsTyVar (getRdrName tv)
to_hs_type (AppTy t1 t2) = nlHsAppTy (toHsType t1) (toHsType t2)
to_hs_type (TyConApp tc args) = nlHsTyConApp (getRdrName tc) (map toHsType args')
where
args' = filterOut isKind args
-- Source-language types have _implicit_ kind arguments,
-- so we must remove them here (Trac #8563)
to_hs_type (FunTy arg res) = ASSERT( not (isConstraintKind (typeKind arg)) )
nlHsFunTy (toHsType arg) (toHsType res)
to_hs_type t@(ForAllTy {}) = pprPanic "toHsType" (ppr t)
to_hs_type (LitTy (NumTyLit n)) = noLoc $ HsTyLit (HsNumTy "" n)
to_hs_type (LitTy (StrTyLit s)) = noLoc $ HsTyLit (HsStrTy "" s)
mk_hs_tvb tv = noLoc $ KindedTyVar (noLoc (getRdrName tv))
(toHsKind (tyVarKind tv))
toHsKind :: Kind -> LHsKind RdrName
toHsKind = toHsType
--------- HsWrappers: type args, dict args, casts ---------
mkLHsWrap :: HsWrapper -> LHsExpr id -> LHsExpr id
mkLHsWrap co_fn (L loc e) = L loc (mkHsWrap co_fn e)
mkHsWrap :: HsWrapper -> HsExpr id -> HsExpr id
mkHsWrap co_fn e | isIdHsWrapper co_fn = e
| otherwise = HsWrap co_fn e
mkHsWrapCo :: TcCoercion -- A Nominal coercion a ~N b
-> HsExpr id -> HsExpr id
mkHsWrapCo co e = mkHsWrap (coToHsWrapper co) e
mkHsWrapCoR :: TcCoercion -- A Representational coercion a ~R b
-> HsExpr id -> HsExpr id
mkHsWrapCoR co e = mkHsWrap (coToHsWrapperR co) e
mkLHsWrapCo :: TcCoercion -> LHsExpr id -> LHsExpr id
mkLHsWrapCo co (L loc e) = L loc (mkHsWrapCo co e)
mkHsCmdCast :: TcCoercion -> HsCmd id -> HsCmd id
mkHsCmdCast co cmd | isTcReflCo co = cmd
| otherwise = HsCmdCast co cmd
coToHsWrapper :: TcCoercion -> HsWrapper -- A Nominal coercion
coToHsWrapper co | isTcReflCo co = idHsWrapper
| otherwise = mkWpCast (mkTcSubCo co)
coToHsWrapperR :: TcCoercion -> HsWrapper -- A Representational coercion
coToHsWrapperR co | isTcReflCo co = idHsWrapper
| otherwise = mkWpCast co
mkHsWrapPat :: HsWrapper -> Pat id -> Type -> Pat id
mkHsWrapPat co_fn p ty | isIdHsWrapper co_fn = p
| otherwise = CoPat co_fn p ty
mkHsWrapPatCo :: TcCoercion -> Pat id -> Type -> Pat id
mkHsWrapPatCo co pat ty | isTcReflCo co = pat
| otherwise = CoPat (mkWpCast co) pat ty
mkHsDictLet :: TcEvBinds -> LHsExpr Id -> LHsExpr Id
mkHsDictLet ev_binds expr = mkLHsWrap (mkWpLet ev_binds) expr
{-
l
************************************************************************
* *
Bindings; with a location at the top
* *
************************************************************************
-}
mkFunBind :: Located RdrName -> [LMatch RdrName (LHsExpr RdrName)]
-> HsBind RdrName
-- Not infix, with place holders for coercion and free vars
mkFunBind fn ms = FunBind { fun_id = fn, fun_infix = False
, fun_matches = mkMatchGroup Generated ms
, fun_co_fn = idHsWrapper
, bind_fvs = placeHolderNames
, fun_tick = [] }
mkTopFunBind :: Origin -> Located Name -> [LMatch Name (LHsExpr Name)]
-> HsBind Name
-- In Name-land, with empty bind_fvs
mkTopFunBind origin fn ms = FunBind { fun_id = fn, fun_infix = False
, fun_matches = mkMatchGroupName origin ms
, fun_co_fn = idHsWrapper
, bind_fvs = emptyNameSet -- NB: closed
-- binding
, fun_tick = [] }
mkHsVarBind :: SrcSpan -> RdrName -> LHsExpr RdrName -> LHsBind RdrName
mkHsVarBind loc var rhs = mk_easy_FunBind loc var [] rhs
mkVarBind :: id -> LHsExpr id -> LHsBind id
mkVarBind var rhs = L (getLoc rhs) $
VarBind { var_id = var, var_rhs = rhs, var_inline = False }
mkPatSynBind :: Located RdrName -> HsPatSynDetails (Located RdrName)
-> LPat RdrName -> HsPatSynDir RdrName -> HsBind RdrName
mkPatSynBind name details lpat dir = PatSynBind psb
where
psb = PSB{ psb_id = name
, psb_args = details
, psb_def = lpat
, psb_dir = dir
, psb_fvs = placeHolderNames }
------------
mk_easy_FunBind :: SrcSpan -> RdrName -> [LPat RdrName]
-> LHsExpr RdrName -> LHsBind RdrName
mk_easy_FunBind loc fun pats expr
= L loc $ mkFunBind (L loc fun) [mkMatch pats expr emptyLocalBinds]
------------
mkMatch :: [LPat id] -> LHsExpr id -> HsLocalBinds id -> LMatch id (LHsExpr id)
mkMatch pats expr binds
= noLoc (Match Nothing (map paren pats) Nothing
(GRHSs (unguardedRHS noSrcSpan expr) binds))
where
paren lp@(L l p) | hsPatNeedsParens p = L l (ParPat lp)
| otherwise = lp
{-
************************************************************************
* *
Collecting binders
* *
************************************************************************
Get all the binders in some HsBindGroups, IN THE ORDER OF APPEARANCE. eg.
...
where
(x, y) = ...
f i j = ...
[a, b] = ...
it should return [x, y, f, a, b] (remember, order important).
Note [Collect binders only after renaming]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
These functions should only be used on HsSyn *after* the renamer,
to return a [Name] or [Id]. Before renaming the record punning
and wild-card mechanism makes it hard to know what is bound.
So these functions should not be applied to (HsSyn RdrName)
-}
----------------- Bindings --------------------------
collectLocalBinders :: HsLocalBindsLR idL idR -> [idL]
collectLocalBinders (HsValBinds binds) = collectHsIdBinders binds
-- No pattern synonyms here
collectLocalBinders (HsIPBinds _) = []
collectLocalBinders EmptyLocalBinds = []
collectHsIdBinders, collectHsValBinders :: HsValBindsLR idL idR -> [idL]
-- Collect Id binders only, or Ids + pattern synonmys, respectively
collectHsIdBinders = collect_hs_val_binders True
collectHsValBinders = collect_hs_val_binders False
collectHsBindBinders :: HsBindLR idL idR -> [idL]
-- Collect both Ids and pattern-synonym binders
collectHsBindBinders b = collect_bind False b []
collectHsBindsBinders :: LHsBindsLR idL idR -> [idL]
collectHsBindsBinders binds = collect_binds False binds []
collectHsBindListBinders :: [LHsBindLR idL idR] -> [idL]
-- Same as collectHsBindsBinders, but works over a list of bindings
collectHsBindListBinders = foldr (collect_bind False . unLoc) []
collect_hs_val_binders :: Bool -> HsValBindsLR idL idR -> [idL]
collect_hs_val_binders ps (ValBindsIn binds _) = collect_binds ps binds []
collect_hs_val_binders ps (ValBindsOut binds _) = collect_out_binds ps binds
collect_out_binds :: Bool -> [(RecFlag, LHsBinds id)] -> [id]
collect_out_binds ps = foldr (collect_binds ps . snd) []
collect_binds :: Bool -> LHsBindsLR idL idR -> [idL] -> [idL]
-- Collect Ids, or Ids + patter synonyms, depending on boolean flag
collect_binds ps binds acc = foldrBag (collect_bind ps . unLoc) acc binds
collect_bind :: Bool -> HsBindLR idL idR -> [idL] -> [idL]
collect_bind _ (PatBind { pat_lhs = p }) acc = collect_lpat p acc
collect_bind _ (FunBind { fun_id = L _ f }) acc = f : acc
collect_bind _ (VarBind { var_id = f }) acc = f : acc
collect_bind _ (AbsBinds { abs_exports = dbinds }) acc = map abe_poly dbinds ++ acc
-- I don't think we want the binders from the abe_binds
-- The only time we collect binders from a typechecked
-- binding (hence see AbsBinds) is in zonking in TcHsSyn
collect_bind omitPatSyn (PatSynBind (PSB { psb_id = L _ ps })) acc =
if omitPatSyn then acc else ps : acc
collectMethodBinders :: LHsBindsLR RdrName idR -> [Located RdrName]
-- Used exclusively for the bindings of an instance decl which are all FunBinds
collectMethodBinders binds = foldrBag (get . unLoc) [] binds
where
get (FunBind { fun_id = f }) fs = f : fs
get _ fs = fs
-- Someone else complains about non-FunBinds
----------------- Statements --------------------------
collectLStmtsBinders :: [LStmtLR idL idR body] -> [idL]
collectLStmtsBinders = concatMap collectLStmtBinders
collectStmtsBinders :: [StmtLR idL idR body] -> [idL]
collectStmtsBinders = concatMap collectStmtBinders
collectLStmtBinders :: LStmtLR idL idR body -> [idL]
collectLStmtBinders = collectStmtBinders . unLoc
collectStmtBinders :: StmtLR idL idR body -> [idL]
-- Id Binders for a Stmt... [but what about pattern-sig type vars]?
collectStmtBinders (BindStmt pat _ _ _) = collectPatBinders pat
collectStmtBinders (LetStmt binds) = collectLocalBinders binds
collectStmtBinders (BodyStmt {}) = []
collectStmtBinders (LastStmt {}) = []
collectStmtBinders (ParStmt xs _ _) = collectLStmtsBinders
$ [s | ParStmtBlock ss _ _ <- xs, s <- ss]
collectStmtBinders (TransStmt { trS_stmts = stmts }) = collectLStmtsBinders stmts
collectStmtBinders (RecStmt { recS_stmts = ss }) = collectLStmtsBinders ss
----------------- Patterns --------------------------
collectPatBinders :: LPat a -> [a]
collectPatBinders pat = collect_lpat pat []
collectPatsBinders :: [LPat a] -> [a]
collectPatsBinders pats = foldr collect_lpat [] pats
-------------
collect_lpat :: LPat name -> [name] -> [name]
collect_lpat (L _ pat) bndrs
= go pat
where
go (VarPat var) = var : bndrs
go (WildPat _) = bndrs
go (LazyPat pat) = collect_lpat pat bndrs
go (BangPat pat) = collect_lpat pat bndrs
go (AsPat (L _ a) pat) = a : collect_lpat pat bndrs
go (ViewPat _ pat _) = collect_lpat pat bndrs
go (ParPat pat) = collect_lpat pat bndrs
go (ListPat pats _ _) = foldr collect_lpat bndrs pats
go (PArrPat pats _) = foldr collect_lpat bndrs pats
go (TuplePat pats _ _) = foldr collect_lpat bndrs pats
go (ConPatIn _ ps) = foldr collect_lpat bndrs (hsConPatArgs ps)
go (ConPatOut {pat_args=ps}) = foldr collect_lpat bndrs (hsConPatArgs ps)
-- See Note [Dictionary binders in ConPatOut]
go (LitPat _) = bndrs
go (NPat _ _ _) = bndrs
go (NPlusKPat (L _ n) _ _ _) = n : bndrs
go (SigPatIn pat _) = collect_lpat pat bndrs
go (SigPatOut pat _) = collect_lpat pat bndrs
go (SplicePat _) = bndrs
go (QuasiQuotePat _) = bndrs
go (CoPat _ pat _) = go pat
{-
Note [Dictionary binders in ConPatOut] See also same Note in DsArrows
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Do *not* gather (a) dictionary and (b) dictionary bindings as binders
of a ConPatOut pattern. For most calls it doesn't matter, because
it's pre-typechecker and there are no ConPatOuts. But it does matter
more in the desugarer; for example, DsUtils.mkSelectorBinds uses
collectPatBinders. In a lazy pattern, for example f ~(C x y) = ...,
we want to generate bindings for x,y but not for dictionaries bound by
C. (The type checker ensures they would not be used.)
Desugaring of arrow case expressions needs these bindings (see DsArrows
and arrowcase1), but SPJ (Jan 2007) says it's safer for it to use its
own pat-binder-collector:
Here's the problem. Consider
data T a where
C :: Num a => a -> Int -> T a
f ~(C (n+1) m) = (n,m)
Here, the pattern (C (n+1)) binds a hidden dictionary (d::Num a),
and *also* uses that dictionary to match the (n+1) pattern. Yet, the
variables bound by the lazy pattern are n,m, *not* the dictionary d.
So in mkSelectorBinds in DsUtils, we want just m,n as the variables bound.
-}
hsGroupBinders :: HsGroup Name -> [Name]
hsGroupBinders (HsGroup { hs_valds = val_decls, hs_tyclds = tycl_decls,
hs_instds = inst_decls, hs_fords = foreign_decls })
= collectHsValBinders val_decls
++ hsTyClForeignBinders tycl_decls inst_decls foreign_decls
hsTyClForeignBinders :: [TyClGroup Name] -> [LInstDecl Name]
-> [LForeignDecl Name] -> [Name]
-- We need to look at instance declarations too,
-- because their associated types may bind data constructors
hsTyClForeignBinders tycl_decls inst_decls foreign_decls
= map unLoc $
hsForeignDeclsBinders foreign_decls ++
concatMap (concatMap hsLTyClDeclBinders . group_tyclds) tycl_decls ++
concatMap hsLInstDeclBinders inst_decls
-------------------
hsLTyClDeclBinders :: Eq name => Located (TyClDecl name) -> [Located name]
-- ^ Returns all the /binding/ names of the decl.
-- The first one is guaranteed to be the name of the decl. For record fields
-- mentioned in multiple constructors, the SrcLoc will be from the first
-- occurrence. We use the equality to filter out duplicate field names.
--
-- Each returned (Located name) has a SrcSpan for the /whole/ declaration.
-- See Note [SrcSpan for binders]
hsLTyClDeclBinders (L loc (FamDecl { tcdFam = FamilyDecl { fdLName = L _ name } }))
= [L loc name]
hsLTyClDeclBinders (L loc (SynDecl { tcdLName = L _ name })) = [L loc name]
hsLTyClDeclBinders (L loc (ClassDecl { tcdLName = L _ cls_name
, tcdSigs = sigs, tcdATs = ats }))
= L loc cls_name :
[ L fam_loc fam_name | L fam_loc (FamilyDecl { fdLName = L _ fam_name }) <- ats ] ++
[ L mem_loc mem_name | L mem_loc (TypeSig ns _ _) <- sigs, L _ mem_name <- ns ]
hsLTyClDeclBinders (L loc (DataDecl { tcdLName = L _ name, tcdDataDefn = defn }))
= L loc name : hsDataDefnBinders defn
-------------------
hsForeignDeclsBinders :: [LForeignDecl name] -> [Located name]
-- See Note [SrcSpan for binders]
hsForeignDeclsBinders foreign_decls
= [ L decl_loc n
| L decl_loc (ForeignImport (L _ n) _ _ _) <- foreign_decls]
-------------------
hsPatSynBinders :: LHsBindsLR idL idR -> [Located idL]
-- Collect pattern-synonym binders only, not Ids
-- See Note [SrcSpan for binders]
hsPatSynBinders binds = foldrBag addPatSynBndr [] binds
addPatSynBndr :: LHsBindLR idL idR -> [Located idL] -> [Located idL]
-- See Note [SrcSpan for binders]
addPatSynBndr bind pss
| L bind_loc (PatSynBind (PSB { psb_id = L _ n })) <- bind
= L bind_loc n : pss
| otherwise
= pss
-------------------
hsLInstDeclBinders :: Eq name => LInstDecl name -> [Located name]
hsLInstDeclBinders (L _ (ClsInstD { cid_inst = ClsInstDecl { cid_datafam_insts = dfis } }))
= concatMap (hsDataFamInstBinders . unLoc) dfis
hsLInstDeclBinders (L _ (DataFamInstD { dfid_inst = fi }))
= hsDataFamInstBinders fi
hsLInstDeclBinders (L _ (TyFamInstD {})) = []
-------------------
-- the SrcLoc returned are for the whole declarations, not just the names
hsDataFamInstBinders :: Eq name => DataFamInstDecl name -> [Located name]
hsDataFamInstBinders (DataFamInstDecl { dfid_defn = defn })
= hsDataDefnBinders defn
-- There can't be repeated symbols because only data instances have binders
-------------------
-- the SrcLoc returned are for the whole declarations, not just the names
hsDataDefnBinders :: Eq name => HsDataDefn name -> [Located name]
hsDataDefnBinders (HsDataDefn { dd_cons = cons })
= hsConDeclsBinders cons
-- See Note [Binders in family instances]
-------------------
hsConDeclsBinders :: forall name. (Eq name) => [LConDecl name] -> [Located name]
-- See hsLTyClDeclBinders for what this does
-- The function is boringly complicated because of the records
-- And since we only have equality, we have to be a little careful
hsConDeclsBinders cons = go id cons
where go :: ([Located name] -> [Located name]) -> [LConDecl name] -> [Located name]
go _ [] = []
go remSeen (r:rs) =
-- don't re-mangle the location of field names, because we don't
-- have a record of the full location of the field declaration anyway
case r of
-- remove only the first occurrence of any seen field in order to
-- avoid circumventing detection of duplicate fields (#9156)
L loc (ConDecl { con_names = names, con_details = RecCon flds }) ->
(map (L loc . unLoc) names) ++ r' ++ go remSeen' rs
where r' = remSeen (concatMap (cd_fld_names . unLoc)
(unLoc flds))
remSeen' = foldr (.) remSeen [deleteBy ((==) `on` unLoc) v | v <- r']
L loc (ConDecl { con_names = names }) ->
(map (L loc . unLoc) names) ++ go remSeen rs
{-
Note [SrcSpan for binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~
When extracting the (Located RdrNme) for a binder, at least for the
main name (the TyCon of a type declaration etc), we want to give it
the @SrcSpan@ of the whole /declaration/, not just the name itself
(which is how it appears in the syntax tree). This SrcSpan (for the
entire declaration) is used as the SrcSpan for the Name that is
finally produced, and hence for error messages. (See Trac #8607.)
Note [Binders in family instances]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In a type or data family instance declaration, the type
constructor is an *occurrence* not a binding site
type instance T Int = Int -> Int -- No binders
data instance S Bool = S1 | S2 -- Binders are S1,S2
************************************************************************
* *
Collecting binders the user did not write
* *
************************************************************************
The job of this family of functions is to run through binding sites and find the set of all Names
that were defined "implicitly", without being explicitly written by the user.
The main purpose is to find names introduced by record wildcards so that we can avoid
warning the user when they don't use those names (#4404)
-}
lStmtsImplicits :: [LStmtLR Name idR (Located (body idR))] -> NameSet
lStmtsImplicits = hs_lstmts
where
hs_lstmts :: [LStmtLR Name idR (Located (body idR))] -> NameSet
hs_lstmts = foldr (\stmt rest -> unionNameSet (hs_stmt (unLoc stmt)) rest) emptyNameSet
hs_stmt (BindStmt pat _ _ _) = lPatImplicits pat
hs_stmt (LetStmt binds) = hs_local_binds binds
hs_stmt (BodyStmt {}) = emptyNameSet
hs_stmt (LastStmt {}) = emptyNameSet
hs_stmt (ParStmt xs _ _) = hs_lstmts [s | ParStmtBlock ss _ _ <- xs, s <- ss]
hs_stmt (TransStmt { trS_stmts = stmts }) = hs_lstmts stmts
hs_stmt (RecStmt { recS_stmts = ss }) = hs_lstmts ss
hs_local_binds (HsValBinds val_binds) = hsValBindsImplicits val_binds
hs_local_binds (HsIPBinds _) = emptyNameSet
hs_local_binds EmptyLocalBinds = emptyNameSet
hsValBindsImplicits :: HsValBindsLR Name idR -> NameSet
hsValBindsImplicits (ValBindsOut binds _)
= foldr (unionNameSet . lhsBindsImplicits . snd) emptyNameSet binds
hsValBindsImplicits (ValBindsIn binds _)
= lhsBindsImplicits binds
lhsBindsImplicits :: LHsBindsLR Name idR -> NameSet
lhsBindsImplicits = foldBag unionNameSet (lhs_bind . unLoc) emptyNameSet
where
lhs_bind (PatBind { pat_lhs = lpat }) = lPatImplicits lpat
lhs_bind _ = emptyNameSet
lPatImplicits :: LPat Name -> NameSet
lPatImplicits = hs_lpat
where
hs_lpat (L _ pat) = hs_pat pat
hs_lpats = foldr (\pat rest -> hs_lpat pat `unionNameSet` rest) emptyNameSet
hs_pat (LazyPat pat) = hs_lpat pat
hs_pat (BangPat pat) = hs_lpat pat
hs_pat (AsPat _ pat) = hs_lpat pat
hs_pat (ViewPat _ pat _) = hs_lpat pat
hs_pat (ParPat pat) = hs_lpat pat
hs_pat (ListPat pats _ _) = hs_lpats pats
hs_pat (PArrPat pats _) = hs_lpats pats
hs_pat (TuplePat pats _ _) = hs_lpats pats
hs_pat (SigPatIn pat _) = hs_lpat pat
hs_pat (SigPatOut pat _) = hs_lpat pat
hs_pat (CoPat _ pat _) = hs_pat pat
hs_pat (ConPatIn _ ps) = details ps
hs_pat (ConPatOut {pat_args=ps}) = details ps
hs_pat _ = emptyNameSet
details (PrefixCon ps) = hs_lpats ps
details (RecCon fs) = hs_lpats explicit `unionNameSet` mkNameSet (collectPatsBinders implicit)
where (explicit, implicit) = partitionEithers [if pat_explicit then Left pat else Right pat
| (i, fld) <- [0..] `zip` rec_flds fs
, let pat = hsRecFieldArg
(unLoc fld)
pat_explicit = maybe True (i<) (rec_dotdot fs)]
details (InfixCon p1 p2) = hs_lpat p1 `unionNameSet` hs_lpat p2
|