1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
|
%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
Type checking of type signatures in interface files
\begin{code}
module TcIface (
tcImportDecl, importDecl, checkWiredInTyCon, tcHiBootIface, typecheckIface,
tcIfaceDecl, tcIfaceInst, tcIfaceFamInst, tcIfaceRules,
tcIfaceVectInfo, tcIfaceAnnotations, tcIfaceGlobal, tcExtCoreBindings
) where
#include "HsVersions.h"
import IfaceSyn
import LoadIface
import IfaceEnv
import BuildTyCl
import TcRnMonad
import TcType
import Type
import Coercion
import TypeRep
import HscTypes
import Annotations
import InstEnv
import FamInstEnv
import CoreSyn
import CoreUtils
import CoreUnfold
import CoreLint
import WorkWrap ( mkWrapper )
import MkCore ( castBottomExpr )
import Id
import MkId
import IdInfo
import Class
import TyCon
import CoAxiom
import DataCon
import PrelNames
import TysWiredIn
import TysPrim ( superKindTyConName )
import BasicTypes ( Arity, strongLoopBreaker )
import Literal
import qualified Var
import VarEnv
import VarSet
import Name
import NameEnv
import NameSet
import OccurAnal ( occurAnalyseExpr )
import Demand ( isBottomingSig )
import Module
import UniqFM
import UniqSupply
import Outputable
import ErrUtils
import Maybes
import SrcLoc
import DynFlags
import Util
import FastString
import Control.Monad
\end{code}
This module takes
IfaceDecl -> TyThing
IfaceType -> Type
etc
An IfaceDecl is populated with RdrNames, and these are not renamed to
Names before typechecking, because there should be no scope errors etc.
-- For (b) consider: f = \$(...h....)
-- where h is imported, and calls f via an hi-boot file.
-- This is bad! But it is not seen as a staging error, because h
-- is indeed imported. We don't want the type-checker to black-hole
-- when simplifying and compiling the splice!
--
-- Simple solution: discard any unfolding that mentions a variable
-- bound in this module (and hence not yet processed).
-- The discarding happens when forkM finds a type error.
%************************************************************************
%* *
%* tcImportDecl is the key function for "faulting in" *
%* imported things
%* *
%************************************************************************
The main idea is this. We are chugging along type-checking source code, and
find a reference to GHC.Base.map. We call tcLookupGlobal, which doesn't find
it in the EPS type envt. So it
1 loads GHC.Base.hi
2 gets the decl for GHC.Base.map
3 typechecks it via tcIfaceDecl
4 and adds it to the type env in the EPS
Note that DURING STEP 4, we may find that map's type mentions a type
constructor that also
Notice that for imported things we read the current version from the EPS
mutable variable. This is important in situations like
...$(e1)...$(e2)...
where the code that e1 expands to might import some defns that
also turn out to be needed by the code that e2 expands to.
\begin{code}
tcImportDecl :: Name -> TcM TyThing
-- Entry point for *source-code* uses of importDecl
tcImportDecl name
| Just thing <- wiredInNameTyThing_maybe name
= do { when (needWiredInHomeIface thing)
(initIfaceTcRn (loadWiredInHomeIface name))
-- See Note [Loading instances for wired-in things]
; return thing }
| otherwise
= do { traceIf (text "tcImportDecl" <+> ppr name)
; mb_thing <- initIfaceTcRn (importDecl name)
; case mb_thing of
Succeeded thing -> return thing
Failed err -> failWithTc err }
importDecl :: Name -> IfM lcl (MaybeErr MsgDoc TyThing)
-- Get the TyThing for this Name from an interface file
-- It's not a wired-in thing -- the caller caught that
importDecl name
= ASSERT( not (isWiredInName name) )
do { traceIf nd_doc
-- Load the interface, which should populate the PTE
; mb_iface <- ASSERT2( isExternalName name, ppr name )
loadInterface nd_doc (nameModule name) ImportBySystem
; case mb_iface of {
Failed err_msg -> return (Failed err_msg) ;
Succeeded _ -> do
-- Now look it up again; this time we should find it
{ eps <- getEps
; case lookupTypeEnv (eps_PTE eps) name of
Just thing -> return (Succeeded thing)
Nothing -> return (Failed not_found_msg)
}}}
where
nd_doc = ptext (sLit "Need decl for") <+> ppr name
not_found_msg = hang (ptext (sLit "Can't find interface-file declaration for") <+>
pprNameSpace (occNameSpace (nameOccName name)) <+> ppr name)
2 (vcat [ptext (sLit "Probable cause: bug in .hi-boot file, or inconsistent .hi file"),
ptext (sLit "Use -ddump-if-trace to get an idea of which file caused the error")])
\end{code}
%************************************************************************
%* *
Checks for wired-in things
%* *
%************************************************************************
Note [Loading instances for wired-in things]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We need to make sure that we have at least *read* the interface files
for any module with an instance decl or RULE that we might want.
* If the instance decl is an orphan, we have a whole separate mechanism
(loadOprhanModules)
* If the instance decl not an orphan, then the act of looking at the
TyCon or Class will force in the defining module for the
TyCon/Class, and hence the instance decl
* BUT, if the TyCon is a wired-in TyCon, we don't really need its interface;
but we must make sure we read its interface in case it has instances or
rules. That is what LoadIface.loadWiredInHomeInterface does. It's called
from TcIface.{tcImportDecl, checkWiredInTyCon, ifCheckWiredInThing}
* HOWEVER, only do this for TyCons. There are no wired-in Classes. There
are some wired-in Ids, but we don't want to load their interfaces. For
example, Control.Exception.Base.recSelError is wired in, but that module
is compiled late in the base library, and we don't want to force it to
load before it's been compiled!
All of this is done by the type checker. The renamer plays no role.
(It used to, but no longer.)
\begin{code}
checkWiredInTyCon :: TyCon -> TcM ()
-- Ensure that the home module of the TyCon (and hence its instances)
-- are loaded. See Note [Loading instances for wired-in things]
-- It might not be a wired-in tycon (see the calls in TcUnify),
-- in which case this is a no-op.
checkWiredInTyCon tc
| not (isWiredInName tc_name)
= return ()
| otherwise
= do { mod <- getModule
; ASSERT( isExternalName tc_name )
when (mod /= nameModule tc_name)
(initIfaceTcRn (loadWiredInHomeIface tc_name))
-- Don't look for (non-existent) Float.hi when
-- compiling Float.lhs, which mentions Float of course
-- A bit yukky to call initIfaceTcRn here
}
where
tc_name = tyConName tc
ifCheckWiredInThing :: TyThing -> IfL ()
-- Even though we are in an interface file, we want to make
-- sure the instances of a wired-in thing are loaded (imagine f :: Double -> Double)
-- Ditto want to ensure that RULES are loaded too
-- See Note [Loading instances for wired-in things]
ifCheckWiredInThing thing
= do { mod <- getIfModule
-- Check whether we are typechecking the interface for this
-- very module. E.g when compiling the base library in --make mode
-- we may typecheck GHC.Base.hi. At that point, GHC.Base is not in
-- the HPT, so without the test we'll demand-load it into the PIT!
-- C.f. the same test in checkWiredInTyCon above
; let name = getName thing
; ASSERT2( isExternalName name, ppr name )
when (needWiredInHomeIface thing && mod /= nameModule name)
(loadWiredInHomeIface name) }
needWiredInHomeIface :: TyThing -> Bool
-- Only for TyCons; see Note [Loading instances for wired-in things]
needWiredInHomeIface (ATyCon {}) = True
needWiredInHomeIface _ = False
\end{code}
%************************************************************************
%* *
Type-checking a complete interface
%* *
%************************************************************************
Suppose we discover we don't need to recompile. Then we must type
check the old interface file. This is a bit different to the
incremental type checking we do as we suck in interface files. Instead
we do things similarly as when we are typechecking source decls: we
bring into scope the type envt for the interface all at once, using a
knot. Remember, the decls aren't necessarily in dependency order --
and even if they were, the type decls might be mutually recursive.
\begin{code}
typecheckIface :: ModIface -- Get the decls from here
-> TcRnIf gbl lcl ModDetails
typecheckIface iface
= initIfaceTc iface $ \ tc_env_var -> do
-- The tc_env_var is freshly allocated, private to
-- type-checking this particular interface
{ -- Get the right set of decls and rules. If we are compiling without -O
-- we discard pragmas before typechecking, so that we don't "see"
-- information that we shouldn't. From a versioning point of view
-- It's not actually *wrong* to do so, but in fact GHCi is unable
-- to handle unboxed tuples, so it must not see unfoldings.
ignore_prags <- goptM Opt_IgnoreInterfacePragmas
-- Typecheck the decls. This is done lazily, so that the knot-tying
-- within this single module work out right. In the If monad there is
-- no global envt for the current interface; instead, the knot is tied
-- through the if_rec_types field of IfGblEnv
; names_w_things <- loadDecls ignore_prags (mi_decls iface)
; let type_env = mkNameEnv names_w_things
; writeMutVar tc_env_var type_env
-- Now do those rules, instances and annotations
; insts <- mapM tcIfaceInst (mi_insts iface)
; fam_insts <- mapM tcIfaceFamInst (mi_fam_insts iface)
; rules <- tcIfaceRules ignore_prags (mi_rules iface)
; anns <- tcIfaceAnnotations (mi_anns iface)
-- Vectorisation information
; vect_info <- tcIfaceVectInfo (mi_module iface) type_env (mi_vect_info iface)
-- Exports
; exports <- ifaceExportNames (mi_exports iface)
-- Finished
; traceIf (vcat [text "Finished typechecking interface for" <+> ppr (mi_module iface),
text "Type envt:" <+> ppr type_env])
; return $ ModDetails { md_types = type_env
, md_insts = insts
, md_fam_insts = fam_insts
, md_rules = rules
, md_anns = anns
, md_vect_info = vect_info
, md_exports = exports
}
}
\end{code}
%************************************************************************
%* *
Type and class declarations
%* *
%************************************************************************
\begin{code}
tcHiBootIface :: HscSource -> Module -> TcRn ModDetails
-- Load the hi-boot iface for the module being compiled,
-- if it indeed exists in the transitive closure of imports
-- Return the ModDetails, empty if no hi-boot iface
tcHiBootIface hsc_src mod
| isHsBoot hsc_src -- Already compiling a hs-boot file
= return emptyModDetails
| otherwise
= do { traceIf (text "loadHiBootInterface" <+> ppr mod)
; mode <- getGhcMode
; if not (isOneShot mode)
-- In --make and interactive mode, if this module has an hs-boot file
-- we'll have compiled it already, and it'll be in the HPT
--
-- We check wheher the interface is a *boot* interface.
-- It can happen (when using GHC from Visual Studio) that we
-- compile a module in TypecheckOnly mode, with a stable,
-- fully-populated HPT. In that case the boot interface isn't there
-- (it's been replaced by the mother module) so we can't check it.
-- And that's fine, because if M's ModInfo is in the HPT, then
-- it's been compiled once, and we don't need to check the boot iface
then do { hpt <- getHpt
; case lookupUFM hpt (moduleName mod) of
Just info | mi_boot (hm_iface info)
-> return (hm_details info)
_ -> return emptyModDetails }
else do
-- OK, so we're in one-shot mode.
-- In that case, we're read all the direct imports by now,
-- so eps_is_boot will record if any of our imports mention us by
-- way of hi-boot file
{ eps <- getEps
; case lookupUFM (eps_is_boot eps) (moduleName mod) of {
Nothing -> return emptyModDetails ; -- The typical case
Just (_, False) -> failWithTc moduleLoop ;
-- Someone below us imported us!
-- This is a loop with no hi-boot in the way
Just (_mod, True) -> -- There's a hi-boot interface below us
do { read_result <- findAndReadIface
need mod
True -- Hi-boot file
; case read_result of
Failed err -> failWithTc (elaborate err)
Succeeded (iface, _path) -> typecheckIface iface
}}}}
where
need = ptext (sLit "Need the hi-boot interface for") <+> ppr mod
<+> ptext (sLit "to compare against the Real Thing")
moduleLoop = ptext (sLit "Circular imports: module") <+> quotes (ppr mod)
<+> ptext (sLit "depends on itself")
elaborate err = hang (ptext (sLit "Could not find hi-boot interface for") <+>
quotes (ppr mod) <> colon) 4 err
\end{code}
%************************************************************************
%* *
Type and class declarations
%* *
%************************************************************************
When typechecking a data type decl, we *lazily* (via forkM) typecheck
the constructor argument types. This is in the hope that we may never
poke on those argument types, and hence may never need to load the
interface files for types mentioned in the arg types.
E.g.
data Foo.S = MkS Baz.T
Mabye we can get away without even loading the interface for Baz!
This is not just a performance thing. Suppose we have
data Foo.S = MkS Baz.T
data Baz.T = MkT Foo.S
(in different interface files, of course).
Now, first we load and typecheck Foo.S, and add it to the type envt.
If we do explore MkS's argument, we'll load and typecheck Baz.T.
If we explore MkT's argument we'll find Foo.S already in the envt.
If we typechecked constructor args eagerly, when loading Foo.S we'd try to
typecheck the type Baz.T. So we'd fault in Baz.T... and then need Foo.S...
which isn't done yet.
All very cunning. However, there is a rather subtle gotcha which bit
me when developing this stuff. When we typecheck the decl for S, we
extend the type envt with S, MkS, and all its implicit Ids. Suppose
(a bug, but it happened) that the list of implicit Ids depended in
turn on the constructor arg types. Then the following sequence of
events takes place:
* we build a thunk <t> for the constructor arg tys
* we build a thunk for the extended type environment (depends on <t>)
* we write the extended type envt into the global EPS mutvar
Now we look something up in the type envt
* that pulls on <t>
* which reads the global type envt out of the global EPS mutvar
* but that depends in turn on <t>
It's subtle, because, it'd work fine if we typechecked the constructor args
eagerly -- they don't need the extended type envt. They just get the extended
type envt by accident, because they look at it later.
What this means is that the implicitTyThings MUST NOT DEPEND on any of
the forkM stuff.
\begin{code}
tcIfaceDecl :: Bool -- True <=> discard IdInfo on IfaceId bindings
-> IfaceDecl
-> IfL TyThing
tcIfaceDecl = tc_iface_decl NoParentTyCon
tc_iface_decl :: TyConParent -- For nested declarations
-> Bool -- True <=> discard IdInfo on IfaceId bindings
-> IfaceDecl
-> IfL TyThing
tc_iface_decl _ ignore_prags (IfaceId {ifName = occ_name, ifType = iface_type,
ifIdDetails = details, ifIdInfo = info})
= do { name <- lookupIfaceTop occ_name
; ty <- tcIfaceType iface_type
; details <- tcIdDetails ty details
; info <- tcIdInfo ignore_prags name ty info
; return (AnId (mkGlobalId details name ty info)) }
tc_iface_decl parent _ (IfaceData {ifName = occ_name,
ifCType = cType,
ifTyVars = tv_bndrs,
ifCtxt = ctxt, ifGadtSyntax = gadt_syn,
ifCons = rdr_cons,
ifRec = is_rec,
ifAxiom = mb_axiom_name })
= bindIfaceTyVars_AT tv_bndrs $ \ tyvars -> do
{ tc_name <- lookupIfaceTop occ_name
; tycon <- fixM $ \ tycon -> do
{ stupid_theta <- tcIfaceCtxt ctxt
; parent' <- tc_parent tyvars mb_axiom_name
; cons <- tcIfaceDataCons tc_name tycon tyvars rdr_cons
; return (buildAlgTyCon tc_name tyvars cType stupid_theta
cons is_rec gadt_syn parent') }
; traceIf (text "tcIfaceDecl4" <+> ppr tycon)
; return (ATyCon tycon) }
where
tc_parent :: [TyVar] -> Maybe Name -> IfL TyConParent
tc_parent _ Nothing = return parent
tc_parent tyvars (Just ax_name)
= ASSERT( isNoParent parent )
do { ax <- tcIfaceCoAxiom ax_name
; let fam_tc = coAxiomTyCon ax
ax_unbr = toUnbranchedAxiom ax
-- data families don't have branches:
branch = coAxiomSingleBranch ax_unbr
ax_tvs = coAxBranchTyVars branch
ax_lhs = coAxBranchLHS branch
subst = zipTopTvSubst ax_tvs (mkTyVarTys tyvars)
-- The subst matches the tyvar of the TyCon
-- with those from the CoAxiom. They aren't
-- necessarily the same, since the two may be
-- gotten from separate interface-file declarations
; return (FamInstTyCon ax_unbr fam_tc (substTys subst ax_lhs)) }
tc_iface_decl parent _ (IfaceSyn {ifName = occ_name, ifTyVars = tv_bndrs,
ifSynRhs = mb_rhs_ty,
ifSynKind = kind })
= bindIfaceTyVars_AT tv_bndrs $ \ tyvars -> do
{ tc_name <- lookupIfaceTop occ_name
; rhs_kind <- tcIfaceKind kind -- Note [Synonym kind loop]
; rhs <- forkM (mk_doc tc_name) $
tc_syn_rhs mb_rhs_ty
; tycon <- buildSynTyCon tc_name tyvars rhs rhs_kind parent
; return (ATyCon tycon) }
where
mk_doc n = ptext (sLit "Type syonym") <+> ppr n
tc_syn_rhs (SynFamilyTyCon a b) = return (SynFamilyTyCon a b)
tc_syn_rhs (SynonymTyCon ty) = do { rhs_ty <- tcIfaceType ty
; return (SynonymTyCon rhs_ty) }
tc_iface_decl _parent ignore_prags
(IfaceClass {ifCtxt = rdr_ctxt, ifName = tc_occ,
ifTyVars = tv_bndrs, ifFDs = rdr_fds,
ifATs = rdr_ats, ifSigs = rdr_sigs,
ifRec = tc_isrec })
-- ToDo: in hs-boot files we should really treat abstract classes specially,
-- as we do abstract tycons
= bindIfaceTyVars tv_bndrs $ \ tyvars -> do
{ tc_name <- lookupIfaceTop tc_occ
; traceIf (text "tc-iface-class1" <+> ppr tc_occ)
; ctxt <- mapM tc_sc rdr_ctxt
; traceIf (text "tc-iface-class2" <+> ppr tc_occ)
; sigs <- mapM tc_sig rdr_sigs
; fds <- mapM tc_fd rdr_fds
; traceIf (text "tc-iface-class3" <+> ppr tc_occ)
; cls <- fixM $ \ cls -> do
{ ats <- mapM (tc_at cls) rdr_ats
; traceIf (text "tc-iface-class4" <+> ppr tc_occ)
; buildClass ignore_prags tc_name tyvars ctxt fds ats sigs tc_isrec }
; return (ATyCon (classTyCon cls)) }
where
tc_sc pred = forkM (mk_sc_doc pred) (tcIfaceType pred)
-- The *length* of the superclasses is used by buildClass, and hence must
-- not be inside the thunk. But the *content* maybe recursive and hence
-- must be lazy (via forkM). Example:
-- class C (T a) => D a where
-- data T a
-- Here the associated type T is knot-tied with the class, and
-- so we must not pull on T too eagerly. See Trac #5970
mk_sc_doc pred = ptext (sLit "Superclass") <+> ppr pred
tc_sig (IfaceClassOp occ dm rdr_ty)
= do { op_name <- lookupIfaceTop occ
; op_ty <- forkM (mk_op_doc op_name rdr_ty) (tcIfaceType rdr_ty)
-- Must be done lazily for just the same reason as the
-- type of a data con; to avoid sucking in types that
-- it mentions unless it's necessary to do so
; return (op_name, dm, op_ty) }
tc_at cls (IfaceAT tc_decl defs_decls)
= do ATyCon tc <- tc_iface_decl (AssocFamilyTyCon cls) ignore_prags tc_decl
defs <- mapM tc_iface_at_def defs_decls
return (tc, defs)
tc_iface_at_def (IfaceATD tvs pat_tys ty) =
bindIfaceTyVars_AT tvs $
\tvs' -> liftM2 (\pats tys -> ATD tvs' pats tys noSrcSpan)
(mapM tcIfaceType pat_tys) (tcIfaceType ty)
mk_op_doc op_name op_ty = ptext (sLit "Class op") <+> sep [ppr op_name, ppr op_ty]
tc_fd (tvs1, tvs2) = do { tvs1' <- mapM tcIfaceTyVar tvs1
; tvs2' <- mapM tcIfaceTyVar tvs2
; return (tvs1', tvs2') }
tc_iface_decl _ _ (IfaceForeign {ifName = rdr_name, ifExtName = ext_name})
= do { name <- lookupIfaceTop rdr_name
; return (ATyCon (mkForeignTyCon name ext_name
liftedTypeKind 0)) }
tc_iface_decl _ _ (IfaceAxiom {ifName = ax_occ, ifTyCon = tc, ifAxBranches = branches})
= do { tc_name <- lookupIfaceTop ax_occ
; tc_tycon <- tcIfaceTyCon tc
; tc_branches <- mapM tc_branch branches
; let axiom = CoAxiom { co_ax_unique = nameUnique tc_name
, co_ax_name = tc_name
, co_ax_tc = tc_tycon
, co_ax_branches = toBranchList tc_branches
, co_ax_implicit = False }
; return (ACoAxiom axiom) }
where tc_branch :: IfaceAxBranch -> IfL CoAxBranch
tc_branch (IfaceAxBranch { ifaxbTyVars = tv_bndrs, ifaxbLHS = lhs, ifaxbRHS = rhs })
= bindIfaceTyVars tv_bndrs $ \ tvs -> do
{ tc_lhs <- mapM tcIfaceType lhs
; tc_rhs <- tcIfaceType rhs
; let branch = CoAxBranch { cab_loc = noSrcSpan
, cab_tvs = tvs
, cab_lhs = tc_lhs
, cab_rhs = tc_rhs }
; return branch }
tcIfaceDataCons :: Name -> TyCon -> [TyVar] -> IfaceConDecls -> IfL AlgTyConRhs
tcIfaceDataCons tycon_name tycon _ if_cons
= case if_cons of
IfAbstractTyCon dis -> return (AbstractTyCon dis)
IfDataFamTyCon -> return DataFamilyTyCon
IfDataTyCon cons -> do { data_cons <- mapM tc_con_decl cons
; return (mkDataTyConRhs data_cons) }
IfNewTyCon con -> do { data_con <- tc_con_decl con
; mkNewTyConRhs tycon_name tycon data_con }
where
tc_con_decl (IfCon { ifConInfix = is_infix,
ifConUnivTvs = univ_tvs, ifConExTvs = ex_tvs,
ifConOcc = occ, ifConCtxt = ctxt, ifConEqSpec = spec,
ifConArgTys = args, ifConFields = field_lbls,
ifConStricts = if_stricts})
= bindIfaceTyVars univ_tvs $ \ univ_tyvars -> do
bindIfaceTyVars ex_tvs $ \ ex_tyvars -> do
{ name <- lookupIfaceTop occ
-- Read the context and argument types, but lazily for two reasons
-- (a) to avoid looking tugging on a recursive use of
-- the type itself, which is knot-tied
-- (b) to avoid faulting in the component types unless
-- they are really needed
; ~(eq_spec, theta, arg_tys) <- forkM (mk_doc name) $
do { eq_spec <- tcIfaceEqSpec spec
; theta <- tcIfaceCtxt ctxt
; arg_tys <- mapM tcIfaceType args
; return (eq_spec, theta, arg_tys) }
; lbl_names <- mapM lookupIfaceTop field_lbls
; stricts <- mapM tc_strict if_stricts
-- Remember, tycon is the representation tycon
; let orig_res_ty = mkFamilyTyConApp tycon
(substTyVars (mkTopTvSubst eq_spec) univ_tyvars)
; buildDataCon (pprPanic "tcIfaceDataCons: FamInstEnvs" (ppr name))
name is_infix
stricts lbl_names
univ_tyvars ex_tyvars
eq_spec theta
arg_tys orig_res_ty tycon
}
mk_doc con_name = ptext (sLit "Constructor") <+> ppr con_name
tc_strict IfNoBang = return HsNoBang
tc_strict IfStrict = return HsStrict
tc_strict IfUnpack = return (HsUnpack Nothing)
tc_strict (IfUnpackCo if_co) = do { co <- tcIfaceCo if_co
; return (HsUnpack (Just co)) }
tcIfaceEqSpec :: [(OccName, IfaceType)] -> IfL [(TyVar, Type)]
tcIfaceEqSpec spec
= mapM do_item spec
where
do_item (occ, if_ty) = do { tv <- tcIfaceTyVar (occNameFS occ)
; ty <- tcIfaceType if_ty
; return (tv,ty) }
\end{code}
Note [Synonym kind loop]
~~~~~~~~~~~~~~~~~~~~~~~~
Notice that we eagerly grab the *kind* from the interface file, but
build a forkM thunk for the *rhs* (and family stuff). To see why,
consider this (Trac #2412)
M.hs: module M where { import X; data T = MkT S }
X.hs: module X where { import {-# SOURCE #-} M; type S = T }
M.hs-boot: module M where { data T }
When kind-checking M.hs we need S's kind. But we do not want to
find S's kind from (typeKind S-rhs), because we don't want to look at
S-rhs yet! Since S is imported from X.hi, S gets just one chance to
be defined, and we must not do that until we've finished with M.T.
Solution: record S's kind in the interface file; now we can safely
look at it.
%************************************************************************
%* *
Instances
%* *
%************************************************************************
\begin{code}
tcIfaceInst :: IfaceClsInst -> IfL ClsInst
tcIfaceInst (IfaceClsInst { ifDFun = dfun_occ, ifOFlag = oflag
, ifInstCls = cls, ifInstTys = mb_tcs })
= do { dfun <- forkM (ptext (sLit "Dict fun") <+> ppr dfun_occ) $
tcIfaceExtId dfun_occ
; let mb_tcs' = map (fmap ifaceTyConName) mb_tcs
; return (mkImportedInstance cls mb_tcs' dfun oflag) }
tcIfaceFamInst :: IfaceFamInst -> IfL (FamInst Branched)
tcIfaceFamInst (IfaceFamInst { ifFamInstFam = fam, ifFamInstTys = mb_tcss
, ifFamInstGroup = group, ifFamInstAxiom = axiom_name } )
= do { axiom' <- forkM (ptext (sLit "Axiom") <+> ppr axiom_name) $
tcIfaceCoAxiom axiom_name
; let mb_tcss' = map (map (fmap ifaceTyConName)) mb_tcss
; return (mkImportedFamInst fam group mb_tcss' axiom') }
\end{code}
%************************************************************************
%* *
Rules
%* *
%************************************************************************
We move a IfaceRule from eps_rules to eps_rule_base when all its LHS free vars
are in the type environment. However, remember that typechecking a Rule may
(as a side effect) augment the type envt, and so we may need to iterate the process.
\begin{code}
tcIfaceRules :: Bool -- True <=> ignore rules
-> [IfaceRule]
-> IfL [CoreRule]
tcIfaceRules ignore_prags if_rules
| ignore_prags = return []
| otherwise = mapM tcIfaceRule if_rules
tcIfaceRule :: IfaceRule -> IfL CoreRule
tcIfaceRule (IfaceRule {ifRuleName = name, ifActivation = act, ifRuleBndrs = bndrs,
ifRuleHead = fn, ifRuleArgs = args, ifRuleRhs = rhs,
ifRuleAuto = auto })
= do { ~(bndrs', args', rhs') <-
-- Typecheck the payload lazily, in the hope it'll never be looked at
forkM (ptext (sLit "Rule") <+> ftext name) $
bindIfaceBndrs bndrs $ \ bndrs' ->
do { args' <- mapM tcIfaceExpr args
; rhs' <- tcIfaceExpr rhs
; return (bndrs', args', rhs') }
; let mb_tcs = map ifTopFreeName args
; return (Rule { ru_name = name, ru_fn = fn, ru_act = act,
ru_bndrs = bndrs', ru_args = args',
ru_rhs = occurAnalyseExpr rhs',
ru_rough = mb_tcs,
ru_auto = auto,
ru_local = False }) } -- An imported RULE is never for a local Id
-- or, even if it is (module loop, perhaps)
-- we'll just leave it in the non-local set
where
-- This function *must* mirror exactly what Rules.topFreeName does
-- We could have stored the ru_rough field in the iface file
-- but that would be redundant, I think.
-- The only wrinkle is that we must not be deceived by
-- type syononyms at the top of a type arg. Since
-- we can't tell at this point, we are careful not
-- to write them out in coreRuleToIfaceRule
ifTopFreeName :: IfaceExpr -> Maybe Name
ifTopFreeName (IfaceType (IfaceTyConApp tc _ )) = Just (ifaceTyConName tc)
ifTopFreeName (IfaceApp f _) = ifTopFreeName f
ifTopFreeName (IfaceExt n) = Just n
ifTopFreeName _ = Nothing
\end{code}
%************************************************************************
%* *
Annotations
%* *
%************************************************************************
\begin{code}
tcIfaceAnnotations :: [IfaceAnnotation] -> IfL [Annotation]
tcIfaceAnnotations = mapM tcIfaceAnnotation
tcIfaceAnnotation :: IfaceAnnotation -> IfL Annotation
tcIfaceAnnotation (IfaceAnnotation target serialized) = do
target' <- tcIfaceAnnTarget target
return $ Annotation {
ann_target = target',
ann_value = serialized
}
tcIfaceAnnTarget :: IfaceAnnTarget -> IfL (AnnTarget Name)
tcIfaceAnnTarget (NamedTarget occ) = do
name <- lookupIfaceTop occ
return $ NamedTarget name
tcIfaceAnnTarget (ModuleTarget mod) = do
return $ ModuleTarget mod
\end{code}
%************************************************************************
%* *
Vectorisation information
%* *
%************************************************************************
\begin{code}
-- We need access to the type environment as we need to look up information about type constructors
-- (i.e., their data constructors and whether they are class type constructors). If a vectorised
-- type constructor or class is defined in the same module as where it is vectorised, we cannot
-- look that information up from the type constructor that we obtained via a 'forkM'ed
-- 'tcIfaceTyCon' without recursively loading the interface that we are already type checking again
-- and again and again...
--
tcIfaceVectInfo :: Module -> TypeEnv -> IfaceVectInfo -> IfL VectInfo
tcIfaceVectInfo mod typeEnv (IfaceVectInfo
{ ifaceVectInfoVar = vars
, ifaceVectInfoTyCon = tycons
, ifaceVectInfoTyConReuse = tyconsReuse
, ifaceVectInfoScalarVars = scalarVars
, ifaceVectInfoScalarTyCons = scalarTyCons
})
= do { let scalarTyConsSet = mkNameSet scalarTyCons
; vVars <- mapM vectVarMapping vars
; let varsSet = mkVarSet (map fst vVars)
; tyConRes1 <- mapM (vectTyConVectMapping varsSet) tycons
; tyConRes2 <- mapM (vectTyConReuseMapping varsSet) tyconsReuse
; vScalarVars <- mapM vectVar scalarVars
; let (vTyCons, vDataCons, vScSels) = unzip3 (tyConRes1 ++ tyConRes2)
; return $ VectInfo
{ vectInfoVar = mkVarEnv vVars `extendVarEnvList` concat vScSels
, vectInfoTyCon = mkNameEnv vTyCons
, vectInfoDataCon = mkNameEnv (concat vDataCons)
, vectInfoScalarVars = mkVarSet vScalarVars
, vectInfoScalarTyCons = scalarTyConsSet
}
}
where
vectVarMapping name
= do { vName <- lookupOrig mod (mkLocalisedOccName mod mkVectOcc name)
; var <- forkM (ptext (sLit "vect var") <+> ppr name) $
tcIfaceExtId name
; vVar <- forkM (ptext (sLit "vect vVar [mod =") <+>
ppr mod <> ptext (sLit "; nameModule =") <+>
ppr (nameModule name) <> ptext (sLit "]") <+> ppr vName) $
tcIfaceExtId vName
; return (var, (var, vVar))
}
-- where
-- lookupLocalOrExternalId name
-- = do { let mb_id = lookupTypeEnv typeEnv name
-- ; case mb_id of
-- -- id is local
-- Just (AnId id) -> return id
-- -- name is not an Id => internal inconsistency
-- Just _ -> notAnIdErr
-- -- Id is external
-- Nothing -> tcIfaceExtId name
-- }
--
-- notAnIdErr = pprPanic "TcIface.tcIfaceVectInfo: not an id" (ppr name)
vectVar name
= forkM (ptext (sLit "vect scalar var") <+> ppr name) $
tcIfaceExtId name
vectTyConVectMapping vars name
= do { vName <- lookupOrig mod (mkLocalisedOccName mod mkVectTyConOcc name)
; vectTyConMapping vars name vName
}
vectTyConReuseMapping vars name
= vectTyConMapping vars name name
vectTyConMapping vars name vName
= do { tycon <- lookupLocalOrExternalTyCon name
; vTycon <- forkM (ptext (sLit "vTycon of") <+> ppr vName) $
lookupLocalOrExternalTyCon vName
-- Map the data constructors of the original type constructor to those of the
-- vectorised type constructor /unless/ the type constructor was vectorised
-- abstractly; if it was vectorised abstractly, the workers of its data constructors
-- do not appear in the set of vectorised variables.
--
-- NB: This is lazy! We don't pull at the type constructors before we actually use
-- the data constructor mapping.
; let isAbstract | isClassTyCon tycon = False
| datacon:_ <- tyConDataCons tycon
= not $ dataConWrapId datacon `elemVarSet` vars
| otherwise = True
vDataCons | isAbstract = []
| otherwise = [ (dataConName datacon, (datacon, vDatacon))
| (datacon, vDatacon) <- zip (tyConDataCons tycon)
(tyConDataCons vTycon)
]
-- Map the (implicit) superclass and methods selectors as they don't occur in
-- the var map.
vScSels | Just cls <- tyConClass_maybe tycon
, Just vCls <- tyConClass_maybe vTycon
= [ (sel, (sel, vSel))
| (sel, vSel) <- zip (classAllSelIds cls) (classAllSelIds vCls)
]
| otherwise
= []
; return ( (name, (tycon, vTycon)) -- (T, T_v)
, vDataCons -- list of (Ci, Ci_v)
, vScSels -- list of (seli, seli_v)
)
}
where
-- we need a fully defined version of the type constructor to be able to extract
-- its data constructors etc.
lookupLocalOrExternalTyCon name
= do { let mb_tycon = lookupTypeEnv typeEnv name
; case mb_tycon of
-- tycon is local
Just (ATyCon tycon) -> return tycon
-- name is not a tycon => internal inconsistency
Just _ -> notATyConErr
-- tycon is external
Nothing -> tcIfaceTyCon (IfaceTc name)
}
notATyConErr = pprPanic "TcIface.tcIfaceVectInfo: not a tycon" (ppr name)
\end{code}
%************************************************************************
%* *
Types
%* *
%************************************************************************
\begin{code}
tcIfaceType :: IfaceType -> IfL Type
tcIfaceType (IfaceTyVar n) = do { tv <- tcIfaceTyVar n; return (TyVarTy tv) }
tcIfaceType (IfaceAppTy t1 t2) = do { t1' <- tcIfaceType t1; t2' <- tcIfaceType t2; return (AppTy t1' t2') }
tcIfaceType (IfaceLitTy l) = do { l1 <- tcIfaceTyLit l; return (LitTy l1) }
tcIfaceType (IfaceFunTy t1 t2) = do { t1' <- tcIfaceType t1; t2' <- tcIfaceType t2; return (FunTy t1' t2') }
tcIfaceType (IfaceTyConApp tc tks) = do { tc' <- tcIfaceTyCon tc
; tks' <- tcIfaceTcArgs (tyConKind tc') tks
; return (mkTyConApp tc' tks') }
tcIfaceType (IfaceForAllTy tv t) = bindIfaceTyVar tv $ \ tv' -> do { t' <- tcIfaceType t; return (ForAllTy tv' t') }
tcIfaceType t@(IfaceCoConApp {}) = pprPanic "tcIfaceType" (ppr t)
tcIfaceTypes :: [IfaceType] -> IfL [Type]
tcIfaceTypes tys = mapM tcIfaceType tys
tcIfaceTcArgs :: Kind -> [IfaceType] -> IfL [Type]
tcIfaceTcArgs _ []
= return []
tcIfaceTcArgs kind (tk:tks)
= case splitForAllTy_maybe kind of
Nothing -> tcIfaceTypes (tk:tks)
Just (_, kind') -> do { k' <- tcIfaceKind tk
; tks' <- tcIfaceTcArgs kind' tks
; return (k':tks') }
-----------------------------------------
tcIfaceCtxt :: IfaceContext -> IfL ThetaType
tcIfaceCtxt sts = mapM tcIfaceType sts
-----------------------------------------
tcIfaceTyLit :: IfaceTyLit -> IfL TyLit
tcIfaceTyLit (IfaceNumTyLit n) = return (NumTyLit n)
tcIfaceTyLit (IfaceStrTyLit n) = return (StrTyLit n)
-----------------------------------------
tcIfaceKind :: IfaceKind -> IfL Kind -- See Note [Checking IfaceTypes vs IfaceKinds]
tcIfaceKind (IfaceTyVar n) = do { tv <- tcIfaceTyVar n; return (TyVarTy tv) }
tcIfaceKind (IfaceAppTy t1 t2) = do { t1' <- tcIfaceKind t1; t2' <- tcIfaceKind t2; return (AppTy t1' t2') }
tcIfaceKind (IfaceFunTy t1 t2) = do { t1' <- tcIfaceKind t1; t2' <- tcIfaceKind t2; return (FunTy t1' t2') }
tcIfaceKind (IfaceTyConApp tc ts) = do { tc' <- tcIfaceKindCon tc; ts' <- tcIfaceKinds ts; return (mkTyConApp tc' ts') }
tcIfaceKind (IfaceForAllTy tv t) = bindIfaceTyVar tv $ \ tv' -> do { t' <- tcIfaceKind t; return (ForAllTy tv' t') }
tcIfaceKind t = pprPanic "tcIfaceKind" (ppr t) -- IfaceCoApp, IfaceLitTy
tcIfaceKinds :: [IfaceKind] -> IfL [Kind]
tcIfaceKinds tys = mapM tcIfaceKind tys
\end{code}
Note [Checking IfaceTypes vs IfaceKinds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We need to know whether we are checking a *type* or a *kind*.
Consider module M where
Proxy :: forall k. k -> *
data T = T
and consider the two IfaceTypes
M.Proxy * M.T{tc}
M.Proxy 'M.T{tc} 'M.T(d}
The first is conventional, but in the latter we use the promoted
type constructor (as a kind) and data constructor (as a type). However,
the Name of the promoted type constructor is just M.T; it's the *same name*
as the ordinary type constructor.
We could add a "promoted" flag to an IfaceTyCon, but that's a bit heavy.
Instead we use context to distinguish, as in the source language.
- When checking a kind, we look up M.T{tc} and promote it
- When checking a type, we look up M.T{tc} and don't promote it
and M.T{d} and promote it
See tcIfaceKindCon and tcIfaceKTyCon respectively
This context business is why we need tcIfaceTcArgs.
%************************************************************************
%* *
Coercions
%* *
%************************************************************************
\begin{code}
tcIfaceCo :: IfaceType -> IfL Coercion
tcIfaceCo (IfaceTyVar n) = mkCoVarCo <$> tcIfaceCoVar n
tcIfaceCo (IfaceAppTy t1 t2) = mkAppCo <$> tcIfaceCo t1 <*> tcIfaceCo t2
tcIfaceCo (IfaceFunTy t1 t2) = mkFunCo <$> tcIfaceCo t1 <*> tcIfaceCo t2
tcIfaceCo (IfaceTyConApp tc ts) = mkTyConAppCo <$> tcIfaceTyCon tc <*> mapM tcIfaceCo ts
tcIfaceCo t@(IfaceLitTy _) = mkReflCo <$> tcIfaceType t
tcIfaceCo (IfaceCoConApp tc ts) = tcIfaceCoApp tc ts
tcIfaceCo (IfaceForAllTy tv t) = bindIfaceTyVar tv $ \ tv' ->
mkForAllCo tv' <$> tcIfaceCo t
tcIfaceCoApp :: IfaceCoCon -> [IfaceType] -> IfL Coercion
tcIfaceCoApp IfaceReflCo [t] = Refl <$> tcIfaceType t
tcIfaceCoApp (IfaceCoAx n i) ts = AxiomInstCo <$> tcIfaceCoAxiom n
<*> pure i
<*> mapM tcIfaceCo ts
tcIfaceCoApp IfaceUnsafeCo [t1,t2] = UnsafeCo <$> tcIfaceType t1 <*> tcIfaceType t2
tcIfaceCoApp IfaceSymCo [t] = SymCo <$> tcIfaceCo t
tcIfaceCoApp IfaceTransCo [t1,t2] = TransCo <$> tcIfaceCo t1 <*> tcIfaceCo t2
tcIfaceCoApp IfaceInstCo [t1,t2] = InstCo <$> tcIfaceCo t1 <*> tcIfaceType t2
tcIfaceCoApp (IfaceNthCo d) [t] = NthCo d <$> tcIfaceCo t
tcIfaceCoApp (IfaceLRCo lr) [t] = LRCo lr <$> tcIfaceCo t
tcIfaceCoApp cc ts = pprPanic "toIfaceCoApp" (ppr cc <+> ppr ts)
tcIfaceCoVar :: FastString -> IfL CoVar
tcIfaceCoVar = tcIfaceLclId
\end{code}
%************************************************************************
%* *
Core
%* *
%************************************************************************
\begin{code}
tcIfaceExpr :: IfaceExpr -> IfL CoreExpr
tcIfaceExpr (IfaceType ty)
= Type <$> tcIfaceType ty
tcIfaceExpr (IfaceCo co)
= Coercion <$> tcIfaceCo co
tcIfaceExpr (IfaceCast expr co)
= Cast <$> tcIfaceExpr expr <*> tcIfaceCo co
tcIfaceExpr (IfaceLcl name)
= Var <$> tcIfaceLclId name
tcIfaceExpr (IfaceExt gbl)
= Var <$> tcIfaceExtId gbl
tcIfaceExpr (IfaceLit lit)
= do lit' <- tcIfaceLit lit
return (Lit lit')
tcIfaceExpr (IfaceFCall cc ty) = do
ty' <- tcIfaceType ty
u <- newUnique
dflags <- getDynFlags
return (Var (mkFCallId dflags u cc ty'))
tcIfaceExpr (IfaceTuple boxity args) = do
args' <- mapM tcIfaceExpr args
-- Put the missing type arguments back in
let con_args = map (Type . exprType) args' ++ args'
return (mkApps (Var con_id) con_args)
where
arity = length args
con_id = dataConWorkId (tupleCon boxity arity)
tcIfaceExpr (IfaceLam bndr body)
= bindIfaceBndr bndr $ \bndr' ->
Lam bndr' <$> tcIfaceExpr body
tcIfaceExpr (IfaceApp fun arg)
= App <$> tcIfaceExpr fun <*> tcIfaceExpr arg
tcIfaceExpr (IfaceECase scrut ty)
= do { scrut' <- tcIfaceExpr scrut
; ty' <- tcIfaceType ty
; return (castBottomExpr scrut' ty') }
tcIfaceExpr (IfaceCase scrut case_bndr alts) = do
scrut' <- tcIfaceExpr scrut
case_bndr_name <- newIfaceName (mkVarOccFS case_bndr)
let
scrut_ty = exprType scrut'
case_bndr' = mkLocalId case_bndr_name scrut_ty
tc_app = splitTyConApp scrut_ty
-- NB: Won't always succeed (polymoprhic case)
-- but won't be demanded in those cases
-- NB: not tcSplitTyConApp; we are looking at Core here
-- look through non-rec newtypes to find the tycon that
-- corresponds to the datacon in this case alternative
extendIfaceIdEnv [case_bndr'] $ do
alts' <- mapM (tcIfaceAlt scrut' tc_app) alts
return (Case scrut' case_bndr' (coreAltsType alts') alts')
tcIfaceExpr (IfaceLet (IfaceNonRec (IfLetBndr fs ty info) rhs) body)
= do { name <- newIfaceName (mkVarOccFS fs)
; ty' <- tcIfaceType ty
; id_info <- tcIdInfo False {- Don't ignore prags; we are inside one! -}
name ty' info
; let id = mkLocalIdWithInfo name ty' id_info
; rhs' <- tcIfaceExpr rhs
; body' <- extendIfaceIdEnv [id] (tcIfaceExpr body)
; return (Let (NonRec id rhs') body') }
tcIfaceExpr (IfaceLet (IfaceRec pairs) body)
= do { ids <- mapM tc_rec_bndr (map fst pairs)
; extendIfaceIdEnv ids $ do
{ pairs' <- zipWithM tc_pair pairs ids
; body' <- tcIfaceExpr body
; return (Let (Rec pairs') body') } }
where
tc_rec_bndr (IfLetBndr fs ty _)
= do { name <- newIfaceName (mkVarOccFS fs)
; ty' <- tcIfaceType ty
; return (mkLocalId name ty') }
tc_pair (IfLetBndr _ _ info, rhs) id
= do { rhs' <- tcIfaceExpr rhs
; id_info <- tcIdInfo False {- Don't ignore prags; we are inside one! -}
(idName id) (idType id) info
; return (setIdInfo id id_info, rhs') }
tcIfaceExpr (IfaceTick tickish expr) = do
expr' <- tcIfaceExpr expr
tickish' <- tcIfaceTickish tickish
return (Tick tickish' expr')
-------------------------
tcIfaceTickish :: IfaceTickish -> IfM lcl (Tickish Id)
tcIfaceTickish (IfaceHpcTick modl ix) = return (HpcTick modl ix)
tcIfaceTickish (IfaceSCC cc tick push) = return (ProfNote cc tick push)
-------------------------
tcIfaceLit :: Literal -> IfL Literal
-- Integer literals deserialise to (LitInteger i <error thunk>)
-- so tcIfaceLit just fills in the type.
-- See Note [Integer literals] in Literal
tcIfaceLit (LitInteger i _)
= do t <- tcIfaceTyCon (IfaceTc integerTyConName)
return (mkLitInteger i (mkTyConTy t))
tcIfaceLit lit = return lit
-------------------------
tcIfaceAlt :: CoreExpr -> (TyCon, [Type])
-> (IfaceConAlt, [FastString], IfaceExpr)
-> IfL (AltCon, [TyVar], CoreExpr)
tcIfaceAlt _ _ (IfaceDefault, names, rhs)
= ASSERT( null names ) do
rhs' <- tcIfaceExpr rhs
return (DEFAULT, [], rhs')
tcIfaceAlt _ _ (IfaceLitAlt lit, names, rhs)
= ASSERT( null names ) do
lit' <- tcIfaceLit lit
rhs' <- tcIfaceExpr rhs
return (LitAlt lit', [], rhs')
-- A case alternative is made quite a bit more complicated
-- by the fact that we omit type annotations because we can
-- work them out. True enough, but its not that easy!
tcIfaceAlt scrut (tycon, inst_tys) (IfaceDataAlt data_occ, arg_strs, rhs)
= do { con <- tcIfaceDataCon data_occ
; when (debugIsOn && not (con `elem` tyConDataCons tycon))
(failIfM (ppr scrut $$ ppr con $$ ppr tycon $$ ppr (tyConDataCons tycon)))
; tcIfaceDataAlt con inst_tys arg_strs rhs }
tcIfaceDataAlt :: DataCon -> [Type] -> [FastString] -> IfaceExpr
-> IfL (AltCon, [TyVar], CoreExpr)
tcIfaceDataAlt con inst_tys arg_strs rhs
= do { us <- newUniqueSupply
; let uniqs = uniqsFromSupply us
; let (ex_tvs, arg_ids)
= dataConRepFSInstPat arg_strs uniqs con inst_tys
; rhs' <- extendIfaceTyVarEnv ex_tvs $
extendIfaceIdEnv arg_ids $
tcIfaceExpr rhs
; return (DataAlt con, ex_tvs ++ arg_ids, rhs') }
\end{code}
\begin{code}
tcExtCoreBindings :: [IfaceBinding] -> IfL CoreProgram -- Used for external core
tcExtCoreBindings [] = return []
tcExtCoreBindings (b:bs) = do_one b (tcExtCoreBindings bs)
do_one :: IfaceBinding -> IfL [CoreBind] -> IfL [CoreBind]
do_one (IfaceNonRec bndr rhs) thing_inside
= do { rhs' <- tcIfaceExpr rhs
; bndr' <- newExtCoreBndr bndr
; extendIfaceIdEnv [bndr'] $ do
{ core_binds <- thing_inside
; return (NonRec bndr' rhs' : core_binds) }}
do_one (IfaceRec pairs) thing_inside
= do { bndrs' <- mapM newExtCoreBndr bndrs
; extendIfaceIdEnv bndrs' $ do
{ rhss' <- mapM tcIfaceExpr rhss
; core_binds <- thing_inside
; return (Rec (bndrs' `zip` rhss') : core_binds) }}
where
(bndrs,rhss) = unzip pairs
\end{code}
%************************************************************************
%* *
IdInfo
%* *
%************************************************************************
\begin{code}
tcIdDetails :: Type -> IfaceIdDetails -> IfL IdDetails
tcIdDetails _ IfVanillaId = return VanillaId
tcIdDetails ty (IfDFunId ns)
= return (DFunId ns (isNewTyCon (classTyCon cls)))
where
(_, _, cls, _) = tcSplitDFunTy ty
tcIdDetails _ (IfRecSelId tc naughty)
= do { tc' <- tcIfaceTyCon tc
; return (RecSelId { sel_tycon = tc', sel_naughty = naughty }) }
tcIdInfo :: Bool -> Name -> Type -> IfaceIdInfo -> IfL IdInfo
tcIdInfo ignore_prags name ty info
| ignore_prags = return vanillaIdInfo
| otherwise = case info of
NoInfo -> return vanillaIdInfo
HasInfo info -> foldlM tcPrag init_info info
where
-- Set the CgInfo to something sensible but uninformative before
-- we start; default assumption is that it has CAFs
init_info = vanillaIdInfo
tcPrag :: IdInfo -> IfaceInfoItem -> IfL IdInfo
tcPrag info HsNoCafRefs = return (info `setCafInfo` NoCafRefs)
tcPrag info (HsArity arity) = return (info `setArityInfo` arity)
tcPrag info (HsStrictness str) = return (info `setStrictnessInfo` str)
tcPrag info (HsInline prag) = return (info `setInlinePragInfo` prag)
-- The next two are lazy, so they don't transitively suck stuff in
tcPrag info (HsUnfold lb if_unf)
= do { unf <- tcUnfolding name ty info if_unf
; let info1 | lb = info `setOccInfo` strongLoopBreaker
| otherwise = info
; return (info1 `setUnfoldingInfoLazily` unf) }
\end{code}
\begin{code}
tcUnfolding :: Name -> Type -> IdInfo -> IfaceUnfolding -> IfL Unfolding
tcUnfolding name _ info (IfCoreUnfold stable if_expr)
= do { dflags <- getDynFlags
; mb_expr <- tcPragExpr name if_expr
; let unf_src = if stable then InlineStable else InlineRhs
; return (case mb_expr of
Nothing -> NoUnfolding
Just expr -> mkUnfolding dflags unf_src
True {- Top level -}
is_bottoming
expr) }
where
-- Strictness should occur before unfolding!
is_bottoming = isBottomingSig $ strictnessInfo info
tcUnfolding name _ _ (IfCompulsory if_expr)
= do { mb_expr <- tcPragExpr name if_expr
; return (case mb_expr of
Nothing -> NoUnfolding
Just expr -> mkCompulsoryUnfolding expr) }
tcUnfolding name _ _ (IfInlineRule arity unsat_ok boring_ok if_expr)
= do { mb_expr <- tcPragExpr name if_expr
; return (case mb_expr of
Nothing -> NoUnfolding
Just expr -> mkCoreUnfolding InlineStable True expr arity
(UnfWhen unsat_ok boring_ok))
}
tcUnfolding name dfun_ty _ (IfDFunUnfold ops)
= do { mb_ops1 <- forkM_maybe doc $ mapM tc_arg ops
; return (case mb_ops1 of
Nothing -> noUnfolding
Just ops1 -> mkDFunUnfolding dfun_ty ops1) }
where
doc = text "Class ops for dfun" <+> ppr name
tc_arg (DFunPolyArg e) = do { e' <- tcIfaceExpr e; return (DFunPolyArg e') }
tc_arg (DFunLamArg i) = return (DFunLamArg i)
tcUnfolding name ty info (IfExtWrapper arity wkr)
= tcIfaceWrapper name ty info arity (tcIfaceExtId wkr)
tcUnfolding name ty info (IfLclWrapper arity wkr)
= tcIfaceWrapper name ty info arity (tcIfaceLclId wkr)
-------------
tcIfaceWrapper :: Name -> Type -> IdInfo -> Arity -> IfL Id -> IfL Unfolding
tcIfaceWrapper name ty info arity get_worker
= do { mb_wkr_id <- forkM_maybe doc get_worker
; us <- newUniqueSupply
; dflags <- getDynFlags
; return (case mb_wkr_id of
Nothing -> noUnfolding
Just wkr_id -> make_inline_rule dflags wkr_id us) }
where
doc = text "Worker for" <+> ppr name
make_inline_rule dflags wkr_id us
= mkWwInlineRule wkr_id
(initUs_ us (mkWrapper dflags ty strict_sig) wkr_id)
arity
-- Again we rely here on strictness info
-- always appearing before unfolding
strict_sig = strictnessInfo info
\end{code}
For unfoldings we try to do the job lazily, so that we never type check
an unfolding that isn't going to be looked at.
\begin{code}
tcPragExpr :: Name -> IfaceExpr -> IfL (Maybe CoreExpr)
tcPragExpr name expr
= forkM_maybe doc $ do
core_expr' <- tcIfaceExpr expr
-- Check for type consistency in the unfolding
whenGOptM Opt_DoCoreLinting $ do
in_scope <- get_in_scope
case lintUnfolding noSrcLoc in_scope core_expr' of
Nothing -> return ()
Just fail_msg -> do { mod <- getIfModule
; pprPanic "Iface Lint failure"
(vcat [ ptext (sLit "In interface for") <+> ppr mod
, hang doc 2 fail_msg
, ppr name <+> equals <+> ppr core_expr'
, ptext (sLit "Iface expr =") <+> ppr expr ]) }
return core_expr'
where
doc = text "Unfolding of" <+> ppr name
get_in_scope :: IfL [Var] -- Totally disgusting; but just for linting
get_in_scope
= do { (gbl_env, lcl_env) <- getEnvs
; rec_ids <- case if_rec_types gbl_env of
Nothing -> return []
Just (_, get_env) -> do
{ type_env <- setLclEnv () get_env
; return (typeEnvIds type_env) }
; return (varEnvElts (if_tv_env lcl_env) ++
varEnvElts (if_id_env lcl_env) ++
rec_ids) }
\end{code}
%************************************************************************
%* *
Getting from Names to TyThings
%* *
%************************************************************************
\begin{code}
tcIfaceGlobal :: Name -> IfL TyThing
tcIfaceGlobal name
| Just thing <- wiredInNameTyThing_maybe name
-- Wired-in things include TyCons, DataCons, and Ids
-- Even though we are in an interface file, we want to make
-- sure the instances and RULES of this thing (particularly TyCon) are loaded
-- Imagine: f :: Double -> Double
= do { ifCheckWiredInThing thing; return thing }
| otherwise
= do { env <- getGblEnv
; case if_rec_types env of { -- Note [Tying the knot]
Just (mod, get_type_env)
| nameIsLocalOrFrom mod name
-> do -- It's defined in the module being compiled
{ type_env <- setLclEnv () get_type_env -- yuk
; case lookupNameEnv type_env name of
Just thing -> return thing
Nothing -> pprPanic "tcIfaceGlobal (local): not found:"
(ppr name $$ ppr type_env) }
; _ -> do
{ hsc_env <- getTopEnv
; mb_thing <- liftIO (lookupTypeHscEnv hsc_env name)
; case mb_thing of {
Just thing -> return thing ;
Nothing -> do
{ mb_thing <- importDecl name -- It's imported; go get it
; case mb_thing of
Failed err -> failIfM err
Succeeded thing -> return thing
}}}}}
-- Note [Tying the knot]
-- ~~~~~~~~~~~~~~~~~~~~~
-- The if_rec_types field is used in two situations:
--
-- a) Compiling M.hs, which indiretly imports Foo.hi, which mentions M.T
-- Then we look up M.T in M's type environment, which is splatted into if_rec_types
-- after we've built M's type envt.
--
-- b) In ghc --make, during the upsweep, we encounter M.hs, whose interface M.hi
-- is up to date. So we call typecheckIface on M.hi. This splats M.T into
-- if_rec_types so that the (lazily typechecked) decls see all the other decls
--
-- In case (b) it's important to do the if_rec_types check *before* looking in the HPT
-- Because if M.hs also has M.hs-boot, M.T will *already be* in the HPT, but in its
-- emasculated form (e.g. lacking data constructors).
tcIfaceTyCon :: IfaceTyCon -> IfL TyCon
tcIfaceTyCon (IfaceTc name)
= do { thing <- tcIfaceGlobal name
; case thing of -- A "type constructor" can be a promoted data constructor
-- c.f. Trac #5881
ATyCon tc -> return tc
ADataCon dc -> return (promoteDataCon dc)
_ -> pprPanic "tcIfaceTyCon" (ppr name $$ ppr thing) }
tcIfaceKindCon :: IfaceTyCon -> IfL TyCon
tcIfaceKindCon (IfaceTc name)
= do { thing <- tcIfaceGlobal name
; case thing of -- A "type constructor" here is a promoted type constructor
-- c.f. Trac #5881
ATyCon tc
| isSuperKind (tyConKind tc) -> return tc -- Mainly just '*' or 'AnyK'
| otherwise -> return (promoteTyCon tc)
_ -> pprPanic "tcIfaceKindCon" (ppr name $$ ppr thing) }
tcIfaceCoAxiom :: Name -> IfL (CoAxiom Branched)
tcIfaceCoAxiom name = do { thing <- tcIfaceGlobal name
; return (tyThingCoAxiom thing) }
tcIfaceDataCon :: Name -> IfL DataCon
tcIfaceDataCon name = do { thing <- tcIfaceGlobal name
; case thing of
ADataCon dc -> return dc
_ -> pprPanic "tcIfaceExtDC" (ppr name$$ ppr thing) }
tcIfaceExtId :: Name -> IfL Id
tcIfaceExtId name = do { thing <- tcIfaceGlobal name
; case thing of
AnId id -> return id
_ -> pprPanic "tcIfaceExtId" (ppr name$$ ppr thing) }
\end{code}
%************************************************************************
%* *
Bindings
%* *
%************************************************************************
\begin{code}
bindIfaceBndr :: IfaceBndr -> (CoreBndr -> IfL a) -> IfL a
bindIfaceBndr (IfaceIdBndr (fs, ty)) thing_inside
= do { name <- newIfaceName (mkVarOccFS fs)
; ty' <- tcIfaceType ty
; let id = mkLocalId name ty'
; extendIfaceIdEnv [id] (thing_inside id) }
bindIfaceBndr (IfaceTvBndr bndr) thing_inside
= bindIfaceTyVar bndr thing_inside
bindIfaceBndrs :: [IfaceBndr] -> ([CoreBndr] -> IfL a) -> IfL a
bindIfaceBndrs [] thing_inside = thing_inside []
bindIfaceBndrs (b:bs) thing_inside
= bindIfaceBndr b $ \ b' ->
bindIfaceBndrs bs $ \ bs' ->
thing_inside (b':bs')
-----------------------
newExtCoreBndr :: IfaceLetBndr -> IfL Id
newExtCoreBndr (IfLetBndr var ty _) -- Ignoring IdInfo for now
= do { mod <- getIfModule
; name <- newGlobalBinder mod (mkVarOccFS var) noSrcSpan
; ty' <- tcIfaceType ty
; return (mkLocalId name ty') }
-----------------------
bindIfaceTyVar :: IfaceTvBndr -> (TyVar -> IfL a) -> IfL a
bindIfaceTyVar (occ,kind) thing_inside
= do { name <- newIfaceName (mkTyVarOccFS occ)
; tyvar <- mk_iface_tyvar name kind
; extendIfaceTyVarEnv [tyvar] (thing_inside tyvar) }
bindIfaceTyVars :: [IfaceTvBndr] -> ([TyVar] -> IfL a) -> IfL a
bindIfaceTyVars bndrs thing_inside
= do { names <- newIfaceNames (map mkTyVarOccFS occs)
; let (kis_kind, tys_kind) = span isSuperIfaceKind kinds
(kis_name, tys_name) = splitAt (length kis_kind) names
-- We need to bring the kind variables in scope since type
-- variables may mention them.
; kvs <- zipWithM mk_iface_tyvar kis_name kis_kind
; extendIfaceTyVarEnv kvs $ do
{ tvs <- zipWithM mk_iface_tyvar tys_name tys_kind
; extendIfaceTyVarEnv tvs (thing_inside (kvs ++ tvs)) } }
where
(occs,kinds) = unzip bndrs
isSuperIfaceKind :: IfaceKind -> Bool
isSuperIfaceKind (IfaceTyConApp (IfaceTc n) []) = n == superKindTyConName
isSuperIfaceKind _ = False
mk_iface_tyvar :: Name -> IfaceKind -> IfL TyVar
mk_iface_tyvar name ifKind
= do { kind <- tcIfaceKind ifKind
; return (Var.mkTyVar name kind) }
bindIfaceTyVars_AT :: [IfaceTvBndr] -> ([TyVar] -> IfL a) -> IfL a
-- Used for type variable in nested associated data/type declarations
-- where some of the type variables are already in scope
-- class C a where { data T a b }
-- Here 'a' is in scope when we look at the 'data T'
bindIfaceTyVars_AT [] thing_inside
= thing_inside []
bindIfaceTyVars_AT (b@(tv_occ,_) : bs) thing_inside
= do { mb_tv <- lookupIfaceTyVar tv_occ
; let bind_b :: (TyVar -> IfL a) -> IfL a
bind_b = case mb_tv of
Just b' -> \k -> k b'
Nothing -> bindIfaceTyVar b
; bind_b $ \b' ->
bindIfaceTyVars_AT bs $ \bs' ->
thing_inside (b':bs') }
\end{code}
|