summaryrefslogtreecommitdiff
path: root/compiler/rename/RnSource.lhs
blob: ca237ddfe1603fcec94678bb4353738a83c1afa9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
%
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
\section[RnSource]{Main pass of renamer}

\begin{code}
module RnSource ( 
	rnSrcDecls, addTcgDUs, 
	rnTyClDecls, 
	rnSplice, checkTH
    ) where

#include "HsVersions.h"

import {-# SOURCE #-} RnExpr( rnLExpr )

import HsSyn
import RdrName		( RdrName, isRdrDataCon, elemLocalRdrEnv, 
			  globalRdrEnvElts, GlobalRdrElt(..), isLocalGRE )
import RdrHsSyn		( extractGenericPatTyVars, extractHsRhoRdrTyVars )
import RnHsSyn
import RnTypes		( rnLHsType, rnLHsTypes, rnHsSigType, rnHsTypeFVs, rnContext )
import RnBinds		( rnTopBinds, rnMethodBinds, renameSigs, mkSigTvFn )
import RnEnv		( lookupLocalDataTcNames,
			  lookupLocatedTopBndrRn, lookupLocatedOccRn,
			  lookupOccRn, newLocalsRn, 
			  bindLocatedLocalsFV, bindPatSigTyVarsFV,
			  bindTyVarsRn, extendTyVarEnvFVRn,
			  bindLocalNames, checkDupNames, mapFvRn
			)
import RnHsDoc          ( rnHsDoc, rnMbLHsDoc )
import TcRnMonad

import HscTypes		( FixityEnv, FixItem(..), Deprecations, Deprecs(..), plusDeprecs )
import Class		( FunDep )
import Name		( Name, nameOccName )
import NameSet
import NameEnv
import OccName		( occEnvElts )
import Outputable
import SrcLoc		( Located(..), unLoc, noLoc )
import DynFlags	( DynFlag(..) )
import Maybes		( seqMaybe )
import Maybe            ( isNothing )
import Monad		( liftM, when )
import BasicTypes       ( Boxity(..) )
\end{code}

@rnSourceDecl@ `renames' declarations.
It simultaneously performs dependency analysis and precedence parsing.
It also does the following error checks:
\begin{enumerate}
\item
Checks that tyvars are used properly. This includes checking
for undefined tyvars, and tyvars in contexts that are ambiguous.
(Some of this checking has now been moved to module @TcMonoType@,
since we don't have functional dependency information at this point.)
\item
Checks that all variable occurences are defined.
\item 
Checks the @(..)@ etc constraints in the export list.
\end{enumerate}


\begin{code}
rnSrcDecls :: HsGroup RdrName -> RnM (TcGblEnv, HsGroup Name)

rnSrcDecls (HsGroup { hs_valds  = val_decls,
		      hs_tyclds = tycl_decls,
		      hs_instds = inst_decls,
                      hs_derivds = deriv_decls,
		      hs_fixds  = fix_decls,
		      hs_depds  = deprec_decls,
		      hs_fords  = foreign_decls,
		      hs_defds  = default_decls,
		      hs_ruleds = rule_decls,
          hs_docs   = docs })

 = do {		-- Deal with deprecations (returns only the extra deprecations)
	deprecs <- rnSrcDeprecDecls deprec_decls ;
	updGblEnv (\gbl -> gbl { tcg_deprecs = tcg_deprecs gbl `plusDeprecs` deprecs })
		  $ do {

		-- Deal with top-level fixity decls 
		-- (returns the total new fixity env)
        rn_fix_decls <- rnSrcFixityDecls fix_decls ;
	fix_env <- rnSrcFixityDeclsEnv rn_fix_decls ;
	updGblEnv (\gbl -> gbl { tcg_fix_env = fix_env })
		  $ do {

		-- Rename other declarations
	traceRn (text "Start rnmono") ;
	(rn_val_decls, bind_dus) <- rnTopBinds val_decls ;
	traceRn (text "finish rnmono" <+> ppr rn_val_decls) ;

		-- You might think that we could build proper def/use information
		-- for type and class declarations, but they can be involved
		-- in mutual recursion across modules, and we only do the SCC
		-- analysis for them in the type checker.
		-- So we content ourselves with gathering uses only; that
		-- means we'll only report a declaration as unused if it isn't
		-- mentioned at all.  Ah well.
	traceRn (text "Start rnTyClDecls") ;
	(rn_tycl_decls,    src_fvs1)
	   <- mapFvRn (wrapLocFstM rnTyClDecl) tycl_decls ;
	traceRn (text "finish rnTyClDecls") ;
	(rn_inst_decls,    src_fvs2)
	   <- mapFvRn (wrapLocFstM rnSrcInstDecl) inst_decls ;
	(rn_deriv_decls,    src_fvs_deriv)
	   <- mapFvRn (wrapLocFstM rnSrcDerivDecl) deriv_decls ;
	(rn_rule_decls,    src_fvs3)
	   <- mapFvRn (wrapLocFstM rnHsRuleDecl) rule_decls ;
	(rn_foreign_decls, src_fvs4)
	   <- mapFvRn (wrapLocFstM rnHsForeignDecl) foreign_decls ;
	(rn_default_decls, src_fvs5)
	   <- mapFvRn (wrapLocFstM rnDefaultDecl) default_decls ;

  -- Haddock docs
	rn_docs <- mapM (wrapLocM rnDocDecl) docs ;

	let {
	   rn_group = HsGroup { hs_valds  = rn_val_decls,
			    	hs_tyclds = rn_tycl_decls,
			    	hs_instds = rn_inst_decls,
                                hs_derivds = rn_deriv_decls,
			    	hs_fixds  = rn_fix_decls,
			    	hs_depds  = [],
			    	hs_fords  = rn_foreign_decls,
			    	hs_defds  = rn_default_decls,
			    	hs_ruleds = rn_rule_decls,
            hs_docs   = rn_docs } ;

	   other_fvs = plusFVs [src_fvs1, src_fvs2, src_fvs_deriv, src_fvs3, 
				src_fvs4, src_fvs5] ;
	   src_dus = bind_dus `plusDU` usesOnly other_fvs 
		-- Note: src_dus will contain *uses* for locally-defined types
		-- and classes, but no *defs* for them.  (Because rnTyClDecl 
		-- returns only the uses.)  This is a little 
		-- surprising but it doesn't actually matter at all.
	} ;

	traceRn (text "finish rnSrc" <+> ppr rn_group) ;
	traceRn (text "finish Dus" <+> ppr src_dus ) ;
	tcg_env <- getGblEnv ;
	return (tcg_env `addTcgDUs` src_dus, rn_group)
    }}}

rnTyClDecls :: [LTyClDecl RdrName] -> RnM [LTyClDecl Name]
rnTyClDecls tycl_decls = do 
  (decls', fvs) <- mapFvRn (wrapLocFstM rnTyClDecl) tycl_decls
  return decls'

addTcgDUs :: TcGblEnv -> DefUses -> TcGblEnv 
addTcgDUs tcg_env dus = tcg_env { tcg_dus = tcg_dus tcg_env `plusDU` dus }
\end{code}


%*********************************************************
%*						 	 *
	HsDoc stuff
%*							 *
%*********************************************************

\begin{code}
rnDocDecl :: DocDecl RdrName -> RnM (DocDecl Name)
rnDocDecl (DocCommentNext doc) = do 
  rn_doc <- rnHsDoc doc
  return (DocCommentNext rn_doc)
rnDocDecl (DocCommentPrev doc) = do 
  rn_doc <- rnHsDoc doc
  return (DocCommentPrev rn_doc)
rnDocDecl (DocCommentNamed str doc) = do
  rn_doc <- rnHsDoc doc
  return (DocCommentNamed str rn_doc)
rnDocDecl (DocGroup lev doc) = do
  rn_doc <- rnHsDoc doc
  return (DocGroup lev rn_doc)
\end{code}


%*********************************************************
%*						 	 *
	Source-code fixity declarations
%*							 *
%*********************************************************

\begin{code}
rnSrcFixityDecls :: [LFixitySig RdrName] -> RnM [LFixitySig Name]
rnSrcFixityDecls fix_decls
    = do fix_decls <- mapM rnFixityDecl fix_decls
         return (concat fix_decls)

rnFixityDecl :: LFixitySig RdrName -> RnM [LFixitySig Name]
rnFixityDecl (L loc (FixitySig (L nameLoc rdr_name) fixity))
    = setSrcSpan nameLoc $
        -- GHC extension: look up both the tycon and data con 
	-- for con-like things
	-- If neither are in scope, report an error; otherwise
	-- add both to the fixity env
      do names <- lookupLocalDataTcNames rdr_name
         return [ L loc (FixitySig (L nameLoc name) fixity)
                      | name <- names ]

rnSrcFixityDeclsEnv :: [LFixitySig Name] -> RnM FixityEnv
rnSrcFixityDeclsEnv fix_decls
  = getGblEnv					`thenM` \ gbl_env ->
    foldlM rnFixityDeclEnv (tcg_fix_env gbl_env) 
	    fix_decls				 	`thenM` \ fix_env ->
    traceRn (text "fixity env" <+> pprFixEnv fix_env)	`thenM_`
    returnM fix_env

rnFixityDeclEnv :: FixityEnv -> LFixitySig Name -> RnM FixityEnv
rnFixityDeclEnv fix_env (L loc (FixitySig (L nameLoc name) fixity))
  = case lookupNameEnv fix_env name of
      Just (FixItem _ _ loc') 
	  -> do addLocErr (L nameLoc name) (dupFixityDecl loc')
    	        return fix_env
      Nothing
          -> return (extendNameEnv fix_env name fix_item)
    where fix_item = FixItem (nameOccName name) fixity nameLoc

pprFixEnv :: FixityEnv -> SDoc
pprFixEnv env 
  = pprWithCommas (\ (FixItem n f _) -> ppr f <+> ppr n)
		  (nameEnvElts env)

dupFixityDecl loc rdr_name
  = vcat [ptext SLIT("Multiple fixity declarations for") <+> quotes (ppr rdr_name),
	  ptext SLIT("also at ") <+> ppr loc
	]
\end{code}


%*********************************************************
%*						 	 *
	Source-code deprecations declarations
%*							 *
%*********************************************************

For deprecations, all we do is check that the names are in scope.
It's only imported deprecations, dealt with in RnIfaces, that we
gather them together.

\begin{code}
rnSrcDeprecDecls :: [LDeprecDecl RdrName] -> RnM Deprecations
rnSrcDeprecDecls [] 
  = returnM NoDeprecs

rnSrcDeprecDecls decls
  = mappM (addLocM rn_deprec) decls	`thenM` \ pairs_s ->
    returnM (DeprecSome (mkNameEnv (concat pairs_s)))
 where
   rn_deprec (Deprecation rdr_name txt)
     = lookupLocalDataTcNames rdr_name	`thenM` \ names ->
       returnM [(name, (nameOccName name, txt)) | name <- names]
\end{code}

%*********************************************************
%*							*
\subsection{Source code declarations}
%*							*
%*********************************************************

\begin{code}
rnDefaultDecl (DefaultDecl tys)
  = mapFvRn (rnHsTypeFVs doc_str) tys	`thenM` \ (tys', fvs) ->
    returnM (DefaultDecl tys', fvs)
  where
    doc_str = text "In a `default' declaration"
\end{code}

%*********************************************************
%*							*
\subsection{Foreign declarations}
%*							*
%*********************************************************

\begin{code}
rnHsForeignDecl (ForeignImport name ty spec)
  = lookupLocatedTopBndrRn name	        `thenM` \ name' ->
    rnHsTypeFVs (fo_decl_msg name) ty	`thenM` \ (ty', fvs) ->
    returnM (ForeignImport name' ty' spec, fvs)

rnHsForeignDecl (ForeignExport name ty spec)
  = lookupLocatedOccRn name	        `thenM` \ name' ->
    rnHsTypeFVs (fo_decl_msg name) ty  	`thenM` \ (ty', fvs) ->
    returnM (ForeignExport name' ty' spec, fvs )
	-- NB: a foreign export is an *occurrence site* for name, so 
	--     we add it to the free-variable list.  It might, for example,
	--     be imported from another module

fo_decl_msg name = ptext SLIT("In the foreign declaration for") <+> ppr name
\end{code}


%*********************************************************
%*							*
\subsection{Instance declarations}
%*							*
%*********************************************************

\begin{code}
rnSrcInstDecl (InstDecl inst_ty mbinds uprags ats)
	-- Used for both source and interface file decls
  = rnHsSigType (text "an instance decl") inst_ty	`thenM` \ inst_ty' ->

	-- Rename the associated types
	-- The typechecker (not the renamer) checks that all 
	-- the declarations are for the right class
    let
	at_doc   = text "In the associated types of an instance declaration"
	at_names = map (head . tyClDeclNames . unLoc) ats
    in
    checkDupNames at_doc at_names		`thenM_`
    rnATInsts ats				`thenM` \ (ats', at_fvs) ->

	-- Rename the bindings
	-- The typechecker (not the renamer) checks that all 
	-- the bindings are for the right class
    let
	meth_doc    = text "In the bindings in an instance declaration"
	meth_names  = collectHsBindLocatedBinders mbinds
	(inst_tyvars, _, cls,_) = splitHsInstDeclTy (unLoc inst_ty')
    in
    checkDupNames meth_doc meth_names 	`thenM_`
    extendTyVarEnvForMethodBinds inst_tyvars (		
	-- (Slightly strangely) the forall-d tyvars scope over
	-- the method bindings too
	rnMethodBinds cls (\n->[]) 	-- No scoped tyvars
		      [] mbinds
    )						`thenM` \ (mbinds', meth_fvs) ->
	-- Rename the prags and signatures.
	-- Note that the type variables are not in scope here,
	-- so that	instance Eq a => Eq (T a) where
	--			{-# SPECIALISE instance Eq a => Eq (T [a]) #-}
	-- works OK. 
	--
	-- But the (unqualified) method names are in scope
    let 
	binders = collectHsBindBinders mbinds'
	ok_sig  = okInstDclSig (mkNameSet binders)
    in
    bindLocalNames binders (renameSigs ok_sig uprags)	`thenM` \ uprags' ->

    returnM (InstDecl inst_ty' mbinds' uprags' ats',
	     meth_fvs `plusFV` at_fvs
		      `plusFV` hsSigsFVs uprags'
		      `plusFV` extractHsTyNames inst_ty')
             -- We return the renamed associated data type declarations so
             -- that they can be entered into the list of type declarations
             -- for the binding group, but we also keep a copy in the instance.
             -- The latter is needed for well-formedness checks in the type
             -- checker (eg, to ensure that all ATs of the instance actually
             -- receive a declaration). 
	     -- NB: Even the copies in the instance declaration carry copies of
	     --     the instance context after renaming.  This is a bit
	     --     strange, but should not matter (and it would be more work
	     --     to remove the context).
\end{code}

Renaming of the associated types in instances.  

\begin{code}
rnATInsts :: [LTyClDecl RdrName] -> RnM ([LTyClDecl Name], FreeVars)
rnATInsts atDecls = 
  mapFvRn (wrapLocFstM rnATInst) atDecls
  where
    rnATInst tydecl@TyData     {} = rnTyClDecl tydecl
    rnATInst tydecl@TySynonym  {} = rnTyClDecl tydecl
    rnATInst tydecl               =
      pprPanic "RnSource.rnATInsts: invalid AT instance" 
	       (ppr (tcdName tydecl))
\end{code}

For the method bindings in class and instance decls, we extend the 
type variable environment iff -fglasgow-exts

\begin{code}
extendTyVarEnvForMethodBinds tyvars thing_inside
  = doptM Opt_GlasgowExts			`thenM` \ opt_GlasgowExts ->
    if opt_GlasgowExts then
	extendTyVarEnvFVRn (map hsLTyVarName tyvars) thing_inside
    else
	thing_inside
\end{code}

%*********************************************************
%*							*
\subsection{Stand-alone deriving declarations}
%*							*
%*********************************************************

\begin{code}
rnSrcDerivDecl :: DerivDecl RdrName -> RnM (DerivDecl Name, FreeVars)
rnSrcDerivDecl (DerivDecl ty)
  = do ty' <- rnLHsType (text "a deriving decl") ty
       let fvs = extractHsTyNames ty'
       return (DerivDecl ty', fvs)
\end{code}

%*********************************************************
%*							*
\subsection{Rules}
%*							*
%*********************************************************

\begin{code}
rnHsRuleDecl (HsRule rule_name act vars lhs fv_lhs rhs fv_rhs)
  = bindPatSigTyVarsFV (collectRuleBndrSigTys vars)	$

    bindLocatedLocalsFV doc (map get_var vars)		$ \ ids ->
    mapFvRn rn_var (vars `zip` ids)		`thenM` \ (vars', fv_vars) ->

    rnLExpr lhs					`thenM` \ (lhs', fv_lhs') ->
    rnLExpr rhs					`thenM` \ (rhs', fv_rhs') ->

    checkValidRule rule_name ids lhs' fv_lhs'	`thenM_`

    returnM (HsRule rule_name act vars' lhs' fv_lhs' rhs' fv_rhs',
	     fv_vars `plusFV` fv_lhs' `plusFV` fv_rhs')
  where
    doc = text "In the transformation rule" <+> ftext rule_name
  
    get_var (RuleBndr v)      = v
    get_var (RuleBndrSig v _) = v

    rn_var (RuleBndr (L loc v), id)
	= returnM (RuleBndr (L loc id), emptyFVs)
    rn_var (RuleBndrSig (L loc v) t, id)
	= rnHsTypeFVs doc t	`thenM` \ (t', fvs) ->
	  returnM (RuleBndrSig (L loc id) t', fvs)

badRuleVar name var
  = sep [ptext SLIT("Rule") <+> doubleQuotes (ftext name) <> colon,
	 ptext SLIT("Forall'd variable") <+> quotes (ppr var) <+> 
		ptext SLIT("does not appear on left hand side")]
\end{code}

Note [Rule LHS validity checking]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Check the shape of a transformation rule LHS.  Currently we only allow
LHSs of the form @(f e1 .. en)@, where @f@ is not one of the
@forall@'d variables.  

We used restrict the form of the 'ei' to prevent you writing rules
with LHSs with a complicated desugaring (and hence unlikely to match);
(e.g. a case expression is not allowed: too elaborate.)

But there are legitimate non-trivial args ei, like sections and
lambdas.  So it seems simmpler not to check at all, and that is why
check_e is commented out.
	
\begin{code}
checkValidRule rule_name ids lhs' fv_lhs'
  = do 	{ 	-- Check for the form of the LHS
	  case (validRuleLhs ids lhs') of
		Nothing  -> return ()
		Just bad -> failWithTc (badRuleLhsErr rule_name lhs' bad)

		-- Check that LHS vars are all bound
	; let bad_vars = [var | var <- ids, not (var `elemNameSet` fv_lhs')]
	; mappM (addErr . badRuleVar rule_name) bad_vars }

validRuleLhs :: [Name] -> LHsExpr Name -> Maybe (HsExpr Name)
-- Nothing => OK
-- Just e  => Not ok, and e is the offending expression
validRuleLhs foralls lhs
  = checkl lhs
  where
    checkl (L loc e) = check e

    check (OpApp e1 op _ e2)		  = checkl op `seqMaybe` checkl_e e1 `seqMaybe` checkl_e e2
    check (HsApp e1 e2) 		  = checkl e1 `seqMaybe` checkl_e e2
    check (HsVar v) | v `notElem` foralls = Nothing
    check other				  = Just other 	-- Failure

	-- Check an argument
    checkl_e (L loc e) = Nothing 	-- Was (check_e e); see Note [Rule LHS validity checking]

{-	Commented out; see Note [Rule LHS validity checking] above 
    check_e (HsVar v)     = Nothing
    check_e (HsPar e) 	  = checkl_e e
    check_e (HsLit e) 	  = Nothing
    check_e (HsOverLit e) = Nothing

    check_e (OpApp e1 op _ e2) 	 = checkl_e e1 `seqMaybe` checkl_e op `seqMaybe` checkl_e e2
    check_e (HsApp e1 e2)      	 = checkl_e e1 `seqMaybe` checkl_e e2
    check_e (NegApp e _)       	 = checkl_e e
    check_e (ExplicitList _ es)	 = checkl_es es
    check_e (ExplicitTuple es _) = checkl_es es
    check_e other		 = Just other	-- Fails

    checkl_es es = foldr (seqMaybe . checkl_e) Nothing es
-}

badRuleLhsErr name lhs bad_e
  = sep [ptext SLIT("Rule") <+> ftext name <> colon,
	 nest 4 (vcat [ptext SLIT("Illegal expression:") <+> ppr bad_e, 
		       ptext SLIT("in left-hand side:") <+> ppr lhs])]
    $$
    ptext SLIT("LHS must be of form (f e1 .. en) where f is not forall'd")
\end{code}


%*********************************************************
%*							*
\subsection{Type, class and iface sig declarations}
%*							*
%*********************************************************

@rnTyDecl@ uses the `global name function' to create a new type
declaration in which local names have been replaced by their original
names, reporting any unknown names.

Renaming type variables is a pain. Because they now contain uniques,
it is necessary to pass in an association list which maps a parsed
tyvar to its @Name@ representation.
In some cases (type signatures of values),
it is even necessary to go over the type first
in order to get the set of tyvars used by it, make an assoc list,
and then go over it again to rename the tyvars!
However, we can also do some scoping checks at the same time.

\begin{code}
rnTyClDecl (ForeignType {tcdLName = name, tcdFoType = fo_type, tcdExtName = ext_name})
  = lookupLocatedTopBndrRn name		`thenM` \ name' ->
    returnM (ForeignType {tcdLName = name', tcdFoType = fo_type, tcdExtName = ext_name},
	     emptyFVs)

-- all flavours of type family declarations ("type family", "newtype fanily",
-- and "data family")
rnTyClDecl (tydecl@TyFamily {}) =
  rnFamily tydecl bindTyVarsRn

-- "data", "newtype", "data instance, and "newtype instance" declarations
rnTyClDecl (tydecl@TyData {tcdND = new_or_data, tcdCtxt = context, 
			   tcdLName = tycon, tcdTyVars = tyvars, 
			   tcdTyPats = typatsMaybe, tcdCons = condecls, 
			   tcdKindSig = sig, tcdDerivs = derivs})
  | is_vanilla	          -- Normal Haskell data type decl
  = ASSERT( isNothing sig )	-- In normal H98 form, kind signature on the 
				-- data type is syntactically illegal
    bindTyVarsRn data_doc tyvars		$ \ tyvars' ->
    do	{ tycon' <- if isFamInstDecl tydecl
		    then lookupLocatedOccRn     tycon -- may be imported family
		    else lookupLocatedTopBndrRn tycon
	; context' <- rnContext data_doc context
	; typats' <- rnTyPats data_doc typatsMaybe
	; (derivs', deriv_fvs) <- rn_derivs derivs
	; checkDupNames data_doc con_names
	; condecls' <- rnConDecls (unLoc tycon') condecls
	; returnM (TyData {tcdND = new_or_data, tcdCtxt = context', 
			   tcdLName = tycon', tcdTyVars = tyvars', 
			   tcdTyPats = typats', tcdKindSig = Nothing, 
			   tcdCons = condecls', tcdDerivs = derivs'}, 
		   delFVs (map hsLTyVarName tyvars')	$
	     	   extractHsCtxtTyNames context'	`plusFV`
	     	   plusFVs (map conDeclFVs condecls')   `plusFV`
	     	   deriv_fvs				`plusFV`
		   (if isFamInstDecl tydecl
		   then unitFV (unLoc tycon')	-- type instance => use
		   else emptyFVs)) 
        }

  | otherwise	          -- GADT
  = ASSERT( none typatsMaybe )    -- GADTs cannot have type patterns for now
    do	{ tycon' <- if isFamInstDecl tydecl
		    then lookupLocatedOccRn     tycon -- may be imported family
		    else lookupLocatedTopBndrRn tycon
	; checkTc (null (unLoc context)) (badGadtStupidTheta tycon)
    	; tyvars' <- bindTyVarsRn data_doc tyvars 
				  (\ tyvars' -> return tyvars')
		-- For GADTs, the type variables in the declaration 
		-- do not scope over the constructor signatures
		-- 	data T a where { T1 :: forall b. b-> b }
	; (derivs', deriv_fvs) <- rn_derivs derivs
	; checkDupNames data_doc con_names
	; condecls' <- rnConDecls (unLoc tycon') condecls
	; returnM (TyData {tcdND = new_or_data, tcdCtxt = noLoc [], 
			   tcdLName = tycon', tcdTyVars = tyvars', 
			   tcdTyPats = Nothing, tcdKindSig = sig,
			   tcdCons = condecls', tcdDerivs = derivs'}, 
	     	   plusFVs (map conDeclFVs condecls') `plusFV` 
		   deriv_fvs			      `plusFV`
		   (if isFamInstDecl tydecl
		   then unitFV (unLoc tycon')	-- type instance => use
		   else emptyFVs))
        }
  where
    is_vanilla = case condecls of	-- Yuk
		     [] 		   -> True
		     L _ (ConDecl { con_res = ResTyH98 }) : _  -> True
		     other		   -> False

    none Nothing   = True
    none (Just []) = True
    none _         = False

    data_doc = text "In the data type declaration for" <+> quotes (ppr tycon)
    con_names = map con_names_helper condecls

    con_names_helper (L _ c) = con_name c

    rn_derivs Nothing   = returnM (Nothing, emptyFVs)
    rn_derivs (Just ds) = rnLHsTypes data_doc ds	`thenM` \ ds' -> 
			  returnM (Just ds', extractHsTyNames_s ds')

-- "type" and "type instance" declarations
rnTyClDecl tydecl@(TySynonym {tcdLName = name, tcdTyVars = tyvars,
			      tcdTyPats = typatsMaybe, tcdSynRhs = ty})
  = bindTyVarsRn syn_doc tyvars		        $ \ tyvars' ->
    do { name' <- if isFamInstDecl tydecl
		  then lookupLocatedOccRn     name -- may be imported family
		  else lookupLocatedTopBndrRn name
       ; typats' <- rnTyPats syn_doc typatsMaybe
       ; (ty', fvs) <- rnHsTypeFVs syn_doc ty
       ; returnM (TySynonym {tcdLName = name', tcdTyVars = tyvars', 
			     tcdTyPats = typats', tcdSynRhs = ty'},
	          delFVs (map hsLTyVarName tyvars') $
		  fvs			      `plusFV`
		   (if isFamInstDecl tydecl
		   then unitFV (unLoc name')	-- type instance => use
		   else emptyFVs))
       }
  where
    syn_doc = text "In the declaration for type synonym" <+> quotes (ppr name)

rnTyClDecl (ClassDecl {tcdCtxt = context, tcdLName = cname, 
		       tcdTyVars = tyvars, tcdFDs = fds, tcdSigs = sigs, 
		       tcdMeths = mbinds, tcdATs = ats, tcdDocs = docs})
  = do	{ cname' <- lookupLocatedTopBndrRn cname

	-- Tyvars scope over superclass context and method signatures
	; (tyvars', context', fds', ats', ats_fvs, sigs')
	    <- bindTyVarsRn cls_doc tyvars $ \ tyvars' -> do
	     { context' <- rnContext cls_doc context
	     ; fds' <- rnFds cls_doc fds
	     ; (ats', ats_fvs) <- rnATs ats
	     ; sigs' <- renameSigs okClsDclSig sigs
	     ; return   (tyvars', context', fds', ats', ats_fvs, sigs') }

	-- Check for duplicates among the associated types
	; let at_rdr_names_w_locs = [tcdLName ty | L _ ty <- ats]
	; checkDupNames at_doc at_rdr_names_w_locs

	-- Check the signatures
	-- First process the class op sigs (op_sigs), then the fixity sigs (non_op_sigs).
	; let sig_rdr_names_w_locs = [op | L _ (TypeSig op _) <- sigs]
	; checkDupNames sig_doc sig_rdr_names_w_locs
		-- Typechecker is responsible for checking that we only
		-- give default-method bindings for things in this class.
		-- The renamer *could* check this for class decls, but can't
		-- for instance decls.

   	-- The newLocals call is tiresome: given a generic class decl
	--	class C a where
	--	  op :: a -> a
	--	  op {| x+y |} (Inl a) = ...
	--	  op {| x+y |} (Inr b) = ...
	--	  op {| a*b |} (a*b)   = ...
	-- we want to name both "x" tyvars with the same unique, so that they are
	-- easy to group together in the typechecker.  
	; (mbinds', meth_fvs) 
	    <- extendTyVarEnvForMethodBinds tyvars' $ do
	    { name_env <- getLocalRdrEnv
	    ; let meth_rdr_names_w_locs = collectHsBindLocatedBinders mbinds
	          gen_rdr_tyvars_w_locs = [ tv | tv <- extractGenericPatTyVars mbinds,
	    		 		         not (unLoc tv `elemLocalRdrEnv` name_env) ]
	    ; checkDupNames meth_doc meth_rdr_names_w_locs
	    ; gen_tyvars <- newLocalsRn gen_rdr_tyvars_w_locs
	    ; rnMethodBinds (unLoc cname') (mkSigTvFn sigs') gen_tyvars mbinds }

  -- Haddock docs 
	; docs' <- mapM (wrapLocM rnDocDecl) docs

	; return (ClassDecl { tcdCtxt = context', tcdLName = cname', 
			      tcdTyVars = tyvars', tcdFDs = fds', tcdSigs = sigs',
			      tcdMeths = mbinds', tcdATs = ats', tcdDocs = docs'},

	     	  delFVs (map hsLTyVarName tyvars')	$
	     	  extractHsCtxtTyNames context'	    	`plusFV`
	     	  plusFVs (map extractFunDepNames (map unLoc fds'))  `plusFV`
	     	  hsSigsFVs sigs'		  	`plusFV`
	     	  meth_fvs				`plusFV`
	     	  ats_fvs) }
  where
    meth_doc = text "In the default-methods for class"	<+> ppr cname
    cls_doc  = text "In the declaration for class" 	<+> ppr cname
    sig_doc  = text "In the signatures for class"  	<+> ppr cname
    at_doc   = text "In the associated types for class"	<+> ppr cname

badGadtStupidTheta tycon
  = vcat [ptext SLIT("No context is allowed on a GADT-style data declaration"),
	  ptext SLIT("(You can put a context on each contructor, though.)")]
\end{code}

%*********************************************************
%*							*
\subsection{Support code for type/data declarations}
%*							*
%*********************************************************

\begin{code}
-- Although, we are processing type patterns here, all type variables will
-- already be in scope (they are the same as in the 'tcdTyVars' field of the
-- type declaration to which these patterns belong)
--
rnTyPats :: SDoc -> Maybe [LHsType RdrName] -> RnM (Maybe [LHsType Name])
rnTyPats _   Nothing       = return Nothing
rnTyPats doc (Just typats) = liftM Just $ rnLHsTypes doc typats

rnConDecls :: Name -> [LConDecl RdrName] -> RnM [LConDecl Name]
rnConDecls tycon condecls
  = mappM (wrapLocM rnConDecl) condecls

rnConDecl :: ConDecl RdrName -> RnM (ConDecl Name)
rnConDecl (ConDecl name expl tvs cxt details res_ty mb_doc)
  = do	{ addLocM checkConName name

	; new_name <- lookupLocatedTopBndrRn name
	; name_env <- getLocalRdrEnv
	
	-- For H98 syntax, the tvs are the existential ones
	-- For GADT syntax, the tvs are all the quantified tyvars
	-- Hence the 'filter' in the ResTyH98 case only
	; let not_in_scope  = not . (`elemLocalRdrEnv` name_env) . unLoc
	      arg_tys       = hsConArgs details
	      implicit_tvs  = case res_ty of
	      	    		ResTyH98 -> filter not_in_scope $
						get_rdr_tvs arg_tys
	      	    		ResTyGADT ty -> get_rdr_tvs (ty : arg_tys)
	      tvs' = case expl of
	        	Explicit -> tvs
		    	Implicit -> userHsTyVarBndrs implicit_tvs

	; mb_doc' <- rnMbLHsDoc mb_doc 

	; bindTyVarsRn doc tvs' $ \new_tyvars -> do
	{ new_context <- rnContext doc cxt
        ; new_details <- rnConDetails doc details
        ; (new_details', new_res_ty)  <- rnConResult doc new_details res_ty
        ; return (ConDecl new_name expl new_tyvars new_context new_details' new_res_ty mb_doc') }}
 where
    doc = text "In the definition of data constructor" <+> quotes (ppr name)
    get_rdr_tvs tys  = extractHsRhoRdrTyVars cxt (noLoc (HsTupleTy Boxed tys))

rnConResult _ details ResTyH98 = return (details, ResTyH98)

rnConResult doc details (ResTyGADT ty) = do
    ty' <- rnHsSigType doc ty
    let (arg_tys, res_ty) = splitHsFunType ty'
	-- We can split it up, now the renamer has dealt with fixities
    case details of
	PrefixCon _xs -> ASSERT( null _xs ) return (PrefixCon arg_tys, ResTyGADT res_ty)
	RecCon fields -> return (details, ResTyGADT ty')
	InfixCon {}   -> panic "rnConResult"

rnConDetails doc (PrefixCon tys)
  = mappM (rnLHsType doc) tys	`thenM` \ new_tys  ->
    returnM (PrefixCon new_tys)

rnConDetails doc (InfixCon ty1 ty2)
  = rnLHsType doc ty1  		`thenM` \ new_ty1 ->
    rnLHsType doc ty2  		`thenM` \ new_ty2 ->
    returnM (InfixCon new_ty1 new_ty2)

rnConDetails doc (RecCon fields)
  = checkDupNames doc field_names	`thenM_`
    mappM (rnField doc) fields		`thenM` \ new_fields ->
    returnM (RecCon new_fields)
  where
    field_names = [ name | HsRecField name _ _ <- fields ]

-- Document comments are renamed to Nothing here
rnField doc (HsRecField name ty haddock_doc)
  = lookupLocatedTopBndrRn name	`thenM` \ new_name ->
    rnLHsType doc ty		`thenM` \ new_ty ->
    rnMbLHsDoc haddock_doc      `thenM` \ new_haddock_doc ->
    returnM (HsRecField new_name new_ty new_haddock_doc) 

-- Rename family declarations
--
-- * This function is parametrised by the routine handling the index
--   variables.  On the toplevel, these are defining occurences, whereas they
--   are usage occurences for associated types.
--
rnFamily :: TyClDecl RdrName 
         -> (SDoc -> [LHsTyVarBndr RdrName] -> 
	     ([LHsTyVarBndr Name] -> RnM (TyClDecl Name, FreeVars)) ->
	     RnM (TyClDecl Name, FreeVars))
         -> RnM (TyClDecl Name, FreeVars)

rnFamily (tydecl@TyFamily {tcdFlavour = flavour, 
			   tcdLName = tycon, tcdTyVars = tyvars}) 
        bindIdxVars =
      do { checkM (isDataFlavour flavour                      -- for synonyms,
		   || not (null tyvars)) $ addErr needOneIdx  -- #indexes >= 1
	 ; bindIdxVars (family_doc tycon) tyvars $ \tyvars' -> do {
	 ; tycon' <- lookupLocatedTopBndrRn tycon
	 ; returnM (TyFamily {tcdFlavour = flavour, tcdLName = tycon', 
			      tcdTyVars = tyvars', tcdKind = tcdKind tydecl}, 
		    emptyFVs) 
         } }
      where
        isDataFlavour (DataFamily _) = True
	isDataFlavour _		     = False

family_doc tycon = text "In the family declaration for" <+> quotes (ppr tycon)
needOneIdx = text "Type family declarations requires at least one type index"

-- Rename associated type declarations (in classes)
--
-- * This can be family declarations and (default) type instances
--
rnATs :: [LTyClDecl RdrName] -> RnM ([LTyClDecl Name], FreeVars)
rnATs ats = mapFvRn (wrapLocFstM rn_at) ats
  where
    rn_at (tydecl@TyFamily  {}) = rnFamily tydecl lookupIdxVars
    rn_at (tydecl@TySynonym {}) = 
      do
        checkM (isNothing (tcdTyPats tydecl)) $ addErr noPatterns
        rnTyClDecl tydecl
    rn_at _                      = panic "RnSource.rnATs: invalid TyClDecl"

    lookupIdxVars _ tyvars cont = 
      do { checkForDups tyvars;
	 ; tyvars' <- mappM lookupIdxVar tyvars
	 ; cont tyvars'
	 }
    -- Type index variables must be class parameters, which are the only
    -- type variables in scope at this point.
    lookupIdxVar (L l tyvar) =
      do
	name' <- lookupOccRn (hsTyVarName tyvar)
	return $ L l (replaceTyVarName tyvar name')

    -- Type variable may only occur once.
    --
    checkForDups [] = return ()
    checkForDups (L loc tv:ltvs) = 
      do { setSrcSpan loc $
	     when (hsTyVarName tv `ltvElem` ltvs) $
	       addErr (repeatedTyVar tv)
	 ; checkForDups ltvs
	 }

    rdrName `ltvElem` [] = False
    rdrName `ltvElem` (L _ tv:ltvs)
      | rdrName == hsTyVarName tv = True
      | otherwise		  = rdrName `ltvElem` ltvs

noPatterns = text "Default definition for an associated synonym cannot have"
	     <+> text "type pattern"

repeatedTyVar tv = ptext SLIT("Illegal repeated type variable") <+>
		   quotes (ppr tv)

-- This data decl will parse OK
--	data T = a Int
-- treating "a" as the constructor.
-- It is really hard to make the parser spot this malformation.
-- So the renamer has to check that the constructor is legal
--
-- We can get an operator as the constructor, even in the prefix form:
--	data T = :% Int Int
-- from interface files, which always print in prefix form

checkConName name = checkErr (isRdrDataCon name) (badDataCon name)

badDataCon name
   = hsep [ptext SLIT("Illegal data constructor name"), quotes (ppr name)]
\end{code}


%*********************************************************
%*							*
\subsection{Support code to rename types}
%*							*
%*********************************************************

\begin{code}
rnFds :: SDoc -> [Located (FunDep RdrName)] -> RnM [Located (FunDep Name)]

rnFds doc fds
  = mappM (wrapLocM rn_fds) fds
  where
    rn_fds (tys1, tys2)
      =	rnHsTyVars doc tys1		`thenM` \ tys1' ->
	rnHsTyVars doc tys2		`thenM` \ tys2' ->
	returnM (tys1', tys2')

rnHsTyVars doc tvs  = mappM (rnHsTyvar doc) tvs
rnHsTyvar doc tyvar = lookupOccRn tyvar
\end{code}


%*********************************************************
%*							*
		Splices
%*							*
%*********************************************************

Note [Splices]
~~~~~~~~~~~~~~
Consider
	f = ...
	h = ...$(thing "f")...

The splice can expand into literally anything, so when we do dependency
analysis we must assume that it might mention 'f'.  So we simply treat
all locally-defined names as mentioned by any splice.  This is terribly
brutal, but I don't see what else to do.  For example, it'll mean
that every locally-defined thing will appear to be used, so no unused-binding
warnings.  But if we miss the dependency, then we might typecheck 'h' before 'f',
and that will crash the type checker because 'f' isn't in scope.

Currently, I'm not treating a splice as also mentioning every import,
which is a bit inconsistent -- but there are a lot of them.  We might
thereby get some bogus unused-import warnings, but we won't crash the
type checker.  Not very satisfactory really.

\begin{code}
rnSplice :: HsSplice RdrName -> RnM (HsSplice Name, FreeVars)
rnSplice (HsSplice n expr)
  = do	{ checkTH expr "splice"
	; loc  <- getSrcSpanM
	; [n'] <- newLocalsRn [L loc n]
	; (expr', fvs) <- rnLExpr expr

	-- Ugh!  See Note [Splices] above
	; lcl_rdr <- getLocalRdrEnv
	; gbl_rdr <- getGlobalRdrEnv
	; let gbl_names = mkNameSet [gre_name gre | gre <- globalRdrEnvElts gbl_rdr, 
						    isLocalGRE gre]
	      lcl_names = mkNameSet (occEnvElts lcl_rdr)

	; return (HsSplice n' expr', fvs `plusFV` lcl_names `plusFV` gbl_names) }

#ifdef GHCI 
checkTH e what = returnM ()	-- OK
#else
checkTH e what 	-- Raise an error in a stage-1 compiler
  = addErr (vcat [ptext SLIT("Template Haskell") <+> text what <+>  
	          ptext SLIT("illegal in a stage-1 compiler"),
	          nest 2 (ppr e)])
#endif   
\end{code}