1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
|
%
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
%************************************************************************
%* *
\section[OccurAnal]{Occurrence analysis pass}
%* *
%************************************************************************
The occurrence analyser re-typechecks a core expression, returning a new
core expression with (hopefully) improved usage information.
\begin{code}
module OccurAnal (
occurAnalysePgm, occurAnalyseExpr
) where
#include "HsVersions.h"
import CoreSyn
import CoreFVs
import CoreUtils ( exprIsTrivial, isDefaultAlt )
import Coercion ( mkSymCoercion )
import Id
import IdInfo
import BasicTypes
import VarSet
import VarEnv
import Maybes ( orElse )
import Digraph ( SCC(..), stronglyConnCompFromEdgedVerticesR )
import PrelNames ( buildIdKey, foldrIdKey, runSTRepIdKey, augmentIdKey )
import Unique ( Unique )
import UniqFM ( keysUFM, intersectUFM_C, foldUFM_Directly )
import Util ( mapAndUnzip )
import Outputable
import Data.List
\end{code}
%************************************************************************
%* *
\subsection[OccurAnal-main]{Counting occurrences: main function}
%* *
%************************************************************************
Here's the externally-callable interface:
\begin{code}
occurAnalysePgm :: [CoreBind] -> [CoreBind]
occurAnalysePgm binds
= snd (go initOccEnv binds)
where
go :: OccEnv -> [CoreBind] -> (UsageDetails, [CoreBind])
go _ []
= (emptyDetails, [])
go env (bind:binds)
= (final_usage, bind' ++ binds')
where
(bs_usage, binds') = go env binds
(final_usage, bind') = occAnalBind env bind bs_usage
occurAnalyseExpr :: CoreExpr -> CoreExpr
-- Do occurrence analysis, and discard occurence info returned
occurAnalyseExpr expr = snd (occAnal initOccEnv expr)
\end{code}
%************************************************************************
%* *
\subsection[OccurAnal-main]{Counting occurrences: main function}
%* *
%************************************************************************
Bindings
~~~~~~~~
\begin{code}
occAnalBind :: OccEnv
-> CoreBind
-> UsageDetails -- Usage details of scope
-> (UsageDetails, -- Of the whole let(rec)
[CoreBind])
occAnalBind env (NonRec binder rhs) body_usage
| isTyVar binder -- A type let; we don't gather usage info
= (body_usage, [NonRec binder rhs])
| not (binder `usedIn` body_usage) -- It's not mentioned
= (body_usage, [])
| otherwise -- It's mentioned in the body
= (body_usage' +++ addRuleUsage rhs_usage binder, -- Note [Rules are extra RHSs]
[NonRec tagged_binder rhs'])
where
(body_usage', tagged_binder) = tagBinder body_usage binder
(rhs_usage, rhs') = occAnalRhs env tagged_binder rhs
\end{code}
Note [Dead code]
~~~~~~~~~~~~~~~~
Dropping dead code for recursive bindings is done in a very simple way:
the entire set of bindings is dropped if none of its binders are
mentioned in its body; otherwise none are.
This seems to miss an obvious improvement.
letrec f = ...g...
g = ...f...
in
...g...
===>
letrec f = ...g...
g = ...(...g...)...
in
...g...
Now 'f' is unused! But it's OK! Dependency analysis will sort this
out into a letrec for 'g' and a 'let' for 'f', and then 'f' will get
dropped. It isn't easy to do a perfect job in one blow. Consider
letrec f = ...g...
g = ...h...
h = ...k...
k = ...m...
m = ...m...
in
...m...
Note [Loop breaking and RULES]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Loop breaking is surprisingly subtle. First read the section 4 of
"Secrets of the GHC inliner". This describes our basic plan.
However things are made quite a bit more complicated by RULES. Remember
* Note [Rules are extra RHSs]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
A RULE for 'f' is like an extra RHS for 'f'. That way the "parent"
keeps the specialised "children" alive. If the parent dies
(because it isn't referenced any more), then the children will die
too (unless they are already referenced directly).
To that end, we build a Rec group for each cyclic strongly
connected component,
*treating f's rules as extra RHSs for 'f'*.
When we make the Rec groups we include variables free in *either*
LHS *or* RHS of the rule. The former might seems silly, but see
Note [Rule dependency info].
So in Example [eftInt], eftInt and eftIntFB will be put in the
same Rec, even though their 'main' RHSs are both non-recursive.
* Note [Rules are visible in their own rec group]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We want the rules for 'f' to be visible in f's right-hand side.
And we'd like them to be visible in other functions in f's Rec
group. E.g. in Example [Specialisation rules] we want f' rule
to be visible in both f's RHS, and fs's RHS.
This means that we must simplify the RULEs first, before looking
at any of the definitions. This is done by Simplify.simplRecBind,
when it calls addLetIdInfo.
* Note [Choosing loop breakers]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We avoid infinite inlinings by choosing loop breakers, and
ensuring that a loop breaker cuts each loop. But what is a
"loop"? In particular, a RULES is like an equation for 'f' that
is *always* inlined if it are applicable. We do *not* disable
rules for loop-breakers. It's up to whoever makes the rules to
make sure that the rules themselves alwasys terminate. See Note
[Rules for recursive functions] in Simplify.lhs
Hence, if
f's RHS mentions g, and
g has a RULE that mentions h, and
h has a RULE that mentions f
then we *must* choose f to be a loop breaker. In general, take the
free variables of f's RHS, and augment it with all the variables
reachable by RULES from those starting points. That is the whole
reason for computing rule_fv_env in occAnalBind. (Of course we
only consider free vars that are also binders in this Rec group.)
Note that when we compute this rule_fv_env, we only consider variables
free in the *RHS* of the rule, in contrast to the way we build the
Rec group in the first place (Note [Rule dependency info])
Note that in Example [eftInt], *neither* eftInt *nor* eftIntFB is
chosen as a loop breaker, because their RHSs don't mention each other.
And indeed both can be inlined safely.
Note that the edges of the graph we use for computing loop breakers
are not the same as the edges we use for computing the Rec blocks.
That's why we compute
rec_edges for the Rec block analysis
loop_breaker_edges for the loop breaker analysis
* Note [Weak loop breakers]
~~~~~~~~~~~~~~~~~~~~~~~~~
There is a last nasty wrinkle. Suppose we have
Rec { f = f_rhs
RULE f [] = g
h = h_rhs
g = h
...more...
}
Remmber that we simplify the RULES before any RHS (see Note
[Rules are visible in their own rec group] above).
So we must *not* postInlineUnconditionally 'g', even though
its RHS turns out to be trivial. (I'm assuming that 'g' is
not choosen as a loop breaker.)
We "solve" this by making g a "weak" or "rules-only" loop breaker,
with OccInfo = IAmLoopBreaker True. A normal "strong" loop breaker
has IAmLoopBreaker False. So
Inline postInlineUnconditinoally
IAmLoopBreaker False no no
IAmLoopBreaker True yes no
other yes yes
The **sole** reason for this kind of loop breaker is so that
postInlineUnconditionally does not fire. Ugh.
* Note [Rule dependency info]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
The VarSet in a SpecInfo is used for dependency analysis in the
occurrence analyser. We must track free vars in *both* lhs and rhs. Why both?
Consider
x = y
RULE f x = 4
Then if we substitute y for x, we'd better do so in the
rule's LHS too, so we'd better ensure the dependency is respected
Example [eftInt]
~~~~~~~~~~~~~~~
Example (from GHC.Enum):
eftInt :: Int# -> Int# -> [Int]
eftInt x y = ...(non-recursive)...
{-# INLINE [0] eftIntFB #-}
eftIntFB :: (Int -> r -> r) -> r -> Int# -> Int# -> r
eftIntFB c n x y = ...(non-recursive)...
{-# RULES
"eftInt" [~1] forall x y. eftInt x y = build (\ c n -> eftIntFB c n x y)
"eftIntList" [1] eftIntFB (:) [] = eftInt
#-}
Example [Specialisation rules]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this group, which is typical of what SpecConstr builds:
fs a = ....f (C a)....
f x = ....f (C a)....
{-# RULE f (C a) = fs a #-}
So 'f' and 'fs' are in the same Rec group (since f refers to fs via its RULE).
But watch out! If 'fs' is not chosen as a loop breaker, we may get an infinite loop:
- the RULE is applied in f's RHS (see Note [Self-recursive rules] in Simplify
- fs is inlined (say it's small)
- now there's another opportunity to apply the RULE
This showed up when compiling Control.Concurrent.Chan.getChanContents.
\begin{code}
occAnalBind env (Rec pairs) body_usage
= foldr occAnalRec (body_usage, []) sccs
-- For a recursive group, we
-- * occ-analyse all the RHSs
-- * compute strongly-connected components
-- * feed those components to occAnalRec
where
-------------Dependency analysis ------------------------------
bndr_set = mkVarSet (map fst pairs)
sccs :: [SCC (Node Details)]
sccs = {-# SCC "occAnalBind.scc" #-} stronglyConnCompFromEdgedVerticesR rec_edges
rec_edges :: [Node Details]
rec_edges = {-# SCC "occAnalBind.assoc" #-} map make_node pairs
make_node (bndr, rhs)
= (ND bndr rhs' rhs_usage rhs_fvs, idUnique bndr, out_edges)
where
(rhs_usage, rhs') = occAnalRhs env bndr rhs
rhs_fvs = intersectUFM_C (\b _ -> b) bndr_set rhs_usage
out_edges = keysUFM (rhs_fvs `unionVarSet` idRuleVars bndr)
-- (a -> b) means a mentions b
-- Given the usage details (a UFM that gives occ info for each free var of
-- the RHS) we can get the list of free vars -- or rather their Int keys --
-- by just extracting the keys from the finite map. Grimy, but fast.
-- Previously we had this:
-- [ bndr | bndr <- bndrs,
-- maybeToBool (lookupVarEnv rhs_usage bndr)]
-- which has n**2 cost, and this meant that edges_from alone
-- consumed 10% of total runtime!
-----------------------------
occAnalRec :: SCC (Node Details) -> (UsageDetails, [CoreBind])
-> (UsageDetails, [CoreBind])
-- The NonRec case is just like a Let (NonRec ...) above
occAnalRec (AcyclicSCC (ND bndr rhs rhs_usage _, _, _)) (body_usage, binds)
| not (bndr `usedIn` body_usage)
= (body_usage, binds)
| otherwise -- It's mentioned in the body
= (body_usage' +++ addRuleUsage rhs_usage bndr, -- Note [Rules are extra RHSs]
NonRec tagged_bndr rhs : binds)
where
(body_usage', tagged_bndr) = tagBinder body_usage bndr
-- The Rec case is the interesting one
-- See Note [Loop breaking]
occAnalRec (CyclicSCC nodes) (body_usage, binds)
| not (any (`usedIn` body_usage) bndrs) -- NB: look at body_usage, not total_usage
= (body_usage, binds) -- Dead code
| otherwise -- At this point we always build a single Rec
= (final_usage, Rec pairs : binds)
where
bndrs = [b | (ND b _ _ _, _, _) <- nodes]
bndr_set = mkVarSet bndrs
----------------------------
-- Tag the binders with their occurrence info
total_usage = foldl add_usage body_usage nodes
add_usage body_usage (ND bndr _ rhs_usage _, _, _)
= body_usage +++ addRuleUsage rhs_usage bndr
(final_usage, tagged_nodes) = mapAccumL tag_node total_usage nodes
tag_node :: UsageDetails -> Node Details -> (UsageDetails, Node Details)
-- (a) Tag the binders in the details with occ info
-- (b) Mark the binder with "weak loop-breaker" OccInfo
-- saying "no preInlineUnconditionally" if it is used
-- in any rule (lhs or rhs) of the recursive group
-- See Note [Weak loop breakers]
tag_node usage (ND bndr rhs rhs_usage rhs_fvs, k, ks)
= (usage `delVarEnv` bndr, (ND bndr2 rhs rhs_usage rhs_fvs, k, ks))
where
bndr2 | bndr `elemVarSet` all_rule_fvs = makeLoopBreaker True bndr1
| otherwise = bndr1
bndr1 = setBinderOcc usage bndr
all_rule_fvs = bndr_set `intersectVarSet` foldr (unionVarSet . idRuleVars)
emptyVarSet bndrs
----------------------------
-- Now reconstruct the cycle
pairs | no_rules = reOrderCycle tagged_nodes
| otherwise = concatMap reOrderRec (stronglyConnCompFromEdgedVerticesR loop_breaker_edges)
-- See Note [Choosing loop breakers] for looop_breaker_edges
loop_breaker_edges = map mk_node tagged_nodes
mk_node (details@(ND _ _ _ rhs_fvs), k, _) = (details, k, new_ks)
where
new_ks = keysUFM (extendFvs rule_fv_env rhs_fvs rhs_fvs)
------------------------------------
rule_fv_env :: IdEnv IdSet -- Variables from this group mentioned in RHS of rules
-- Domain is *subset* of bound vars (others have no rule fvs)
rule_fv_env = rule_loop init_rule_fvs
no_rules = null init_rule_fvs
init_rule_fvs = [(b, rule_fvs)
| b <- bndrs
, let rule_fvs = idRuleRhsVars b `intersectVarSet` bndr_set
, not (isEmptyVarSet rule_fvs)]
rule_loop :: [(Id,IdSet)] -> IdEnv IdSet -- Finds fixpoint
rule_loop fv_list
| no_change = env
| otherwise = rule_loop new_fv_list
where
env = mkVarEnv init_rule_fvs
(no_change, new_fv_list) = mapAccumL bump True fv_list
bump no_change (b,fvs)
| new_fvs `subVarSet` fvs = (no_change, (b,fvs))
| otherwise = (False, (b,new_fvs `unionVarSet` fvs))
where
new_fvs = extendFvs env emptyVarSet fvs
idRuleRhsVars :: Id -> VarSet
-- Just the variables free on the *rhs* of a rule
-- See Note [Choosing loop breakers]
idRuleRhsVars id = foldr (unionVarSet . ruleRhsFreeVars) emptyVarSet (idCoreRules id)
extendFvs :: IdEnv IdSet -> IdSet -> IdSet -> IdSet
-- (extendFVs env fvs s) returns (fvs `union` env(s))
extendFvs env fvs id_set
= foldUFM_Directly add fvs id_set
where
add uniq _ fvs
= case lookupVarEnv_Directly env uniq of
Just fvs' -> fvs' `unionVarSet` fvs
Nothing -> fvs
\end{code}
@reOrderRec@ is applied to the list of (binder,rhs) pairs for a cyclic
strongly connected component (there's guaranteed to be a cycle). It returns the
same pairs, but
a) in a better order,
b) with some of the Ids having a IAmALoopBreaker pragma
The "loop-breaker" Ids are sufficient to break all cycles in the SCC. This means
that the simplifier can guarantee not to loop provided it never records an inlining
for these no-inline guys.
Furthermore, the order of the binds is such that if we neglect dependencies
on the no-inline Ids then the binds are topologically sorted. This means
that the simplifier will generally do a good job if it works from top bottom,
recording inlinings for any Ids which aren't marked as "no-inline" as it goes.
==============
[June 98: I don't understand the following paragraphs, and I've
changed the a=b case again so that it isn't a special case any more.]
Here's a case that bit me:
letrec
a = b
b = \x. BIG
in
...a...a...a....
Re-ordering doesn't change the order of bindings, but there was no loop-breaker.
My solution was to make a=b bindings record b as Many, rather like INLINE bindings.
Perhaps something cleverer would suffice.
===============
\begin{code}
type Node details = (details, Unique, [Unique]) -- The Ints are gotten from the Unique,
-- which is gotten from the Id.
data Details = ND Id -- Binder
CoreExpr -- RHS
UsageDetails -- Full usage from RHS (*not* including rules)
IdSet -- Other binders from this Rec group mentioned on RHS
-- (derivable from UsageDetails but cached here)
reOrderRec :: SCC (Node Details)
-> [(Id,CoreExpr)]
-- Sorted into a plausible order. Enough of the Ids have
-- IAmALoopBreaker pragmas that there are no loops left.
reOrderRec (AcyclicSCC (ND bndr rhs _ _, _, _)) = [(bndr, rhs)]
reOrderRec (CyclicSCC cycle) = reOrderCycle cycle
reOrderCycle :: [Node Details] -> [(Id,CoreExpr)]
reOrderCycle []
= panic "reOrderCycle"
reOrderCycle [bind] -- Common case of simple self-recursion
= [(makeLoopBreaker False bndr, rhs)]
where
(ND bndr rhs _ _, _, _) = bind
reOrderCycle (bind : binds)
= -- Choose a loop breaker, mark it no-inline,
-- do SCC analysis on the rest, and recursively sort them out
concatMap reOrderRec (stronglyConnCompFromEdgedVerticesR unchosen) ++
[(makeLoopBreaker False bndr, rhs)]
where
(chosen_bind, unchosen) = choose_loop_breaker bind (score bind) [] binds
ND bndr rhs _ _ = chosen_bind
-- This loop looks for the bind with the lowest score
-- to pick as the loop breaker. The rest accumulate in
choose_loop_breaker (details,_,_) _loop_sc acc []
= (details, acc) -- Done
choose_loop_breaker loop_bind loop_sc acc (bind : binds)
| sc < loop_sc -- Lower score so pick this new one
= choose_loop_breaker bind sc (loop_bind : acc) binds
| otherwise -- No lower so don't pick it
= choose_loop_breaker loop_bind loop_sc (bind : acc) binds
where
sc = score bind
score :: Node Details -> Int -- Higher score => less likely to be picked as loop breaker
score (ND bndr rhs _ _, _, _)
| workerExists (idWorkerInfo bndr) = 10
-- Note [Worker inline loop]
| exprIsTrivial rhs = 5 -- Practically certain to be inlined
-- Used to have also: && not (isExportedId bndr)
-- But I found this sometimes cost an extra iteration when we have
-- rec { d = (a,b); a = ...df...; b = ...df...; df = d }
-- where df is the exported dictionary. Then df makes a really
-- bad choice for loop breaker
| is_con_app rhs = 3 -- Data types help with cases
-- Note [conapp]
-- If an Id is marked "never inline" then it makes a great loop breaker
-- The only reason for not checking that here is that it is rare
-- and I've never seen a situation where it makes a difference,
-- so it probably isn't worth the time to test on every binder
-- | isNeverActive (idInlinePragma bndr) = -10
| inlineCandidate bndr rhs = 2 -- Likely to be inlined
-- Note [Inline candidates]
| not (neverUnfold (idUnfolding bndr)) = 1
-- the Id has some kind of unfolding
| otherwise = 0
inlineCandidate :: Id -> CoreExpr -> Bool
inlineCandidate _ (Note InlineMe _) = True
inlineCandidate id _ = isOneOcc (idOccInfo id)
-- Note [conapp]
--
-- It's really really important to inline dictionaries. Real
-- example (the Enum Ordering instance from GHC.Base):
--
-- rec f = \ x -> case d of (p,q,r) -> p x
-- g = \ x -> case d of (p,q,r) -> q x
-- d = (v, f, g)
--
-- Here, f and g occur just once; but we can't inline them into d.
-- On the other hand we *could* simplify those case expressions if
-- we didn't stupidly choose d as the loop breaker.
-- But we won't because constructor args are marked "Many".
-- Inlining dictionaries is really essential to unravelling
-- the loops in static numeric dictionaries, see GHC.Float.
-- Cheap and cheerful; the simplifer moves casts out of the way
-- The lambda case is important to spot x = /\a. C (f a)
-- which comes up when C is a dictionary constructor and
-- f is a default method.
-- Example: the instance for Show (ST s a) in GHC.ST
--
-- However we *also* treat (\x. C p q) as a con-app-like thing,
-- Note [Closure conversion]
is_con_app (Var v) = isDataConWorkId v
is_con_app (App f _) = is_con_app f
is_con_app (Lam _ e) = is_con_app e
is_con_app (Note _ e) = is_con_app e
is_con_app _ = False
makeLoopBreaker :: Bool -> Id -> Id
-- Set the loop-breaker flag
-- See Note [Weak loop breakers]
makeLoopBreaker weak bndr = setIdOccInfo bndr (IAmALoopBreaker weak)
\end{code}
Note [Worker inline loop]
~~~~~~~~~~~~~~~~~~~~~~~~
Never choose a wrapper as the loop breaker! Because
wrappers get auto-generated inlinings when importing, and
that can lead to an infinite inlining loop. For example:
rec {
$wfoo x = ....foo x....
{-loop brk-} foo x = ...$wfoo x...
}
The interface file sees the unfolding for $wfoo, and sees that foo is
strict (and hence it gets an auto-generated wrapper). Result: an
infinite inlining in the importing scope. So be a bit careful if you
change this. A good example is Tree.repTree in
nofib/spectral/minimax. If the repTree wrapper is chosen as the loop
breaker then compiling Game.hs goes into an infinite loop (this
happened when we gave is_con_app a lower score than inline candidates).
Note [Closure conversion]
~~~~~~~~~~~~~~~~~~~~~~~~~
We treat (\x. C p q) as a high-score candidate in the letrec scoring algorithm.
The immediate motivation came from the result of a closure-conversion transformation
which generated code like this:
data Clo a b = forall c. Clo (c -> a -> b) c
($:) :: Clo a b -> a -> b
Clo f env $: x = f env x
rec { plus = Clo plus1 ()
; plus1 _ n = Clo plus2 n
; plus2 Zero n = n
; plus2 (Succ m) n = Succ (plus $: m $: n) }
If we inline 'plus' and 'plus1', everything unravels nicely. But if
we choose 'plus1' as the loop breaker (which is entirely possible
otherwise), the loop does not unravel nicely.
@occAnalRhs@ deals with the question of bindings where the Id is marked
by an INLINE pragma. For these we record that anything which occurs
in its RHS occurs many times. This pessimistically assumes that ths
inlined binder also occurs many times in its scope, but if it doesn't
we'll catch it next time round. At worst this costs an extra simplifier pass.
ToDo: try using the occurrence info for the inline'd binder.
[March 97] We do the same for atomic RHSs. Reason: see notes with reOrderRec.
[June 98, SLPJ] I've undone this change; I don't understand it. See notes with reOrderRec.
\begin{code}
occAnalRhs :: OccEnv
-> Id -> CoreExpr -- Binder and rhs
-- For non-recs the binder is alrady tagged
-- with occurrence info
-> (UsageDetails, CoreExpr)
occAnalRhs env id rhs
= occAnal ctxt rhs
where
ctxt | certainly_inline id = env
| otherwise = rhsCtxt
-- Note that we generally use an rhsCtxt. This tells the occ anal n
-- that it's looking at an RHS, which has an effect in occAnalApp
--
-- But there's a problem. Consider
-- x1 = a0 : []
-- x2 = a1 : x1
-- x3 = a2 : x2
-- g = f x3
-- First time round, it looks as if x1 and x2 occur as an arg of a
-- let-bound constructor ==> give them a many-occurrence.
-- But then x3 is inlined (unconditionally as it happens) and
-- next time round, x2 will be, and the next time round x1 will be
-- Result: multiple simplifier iterations. Sigh.
-- Crude solution: use rhsCtxt for things that occur just once...
certainly_inline id = case idOccInfo id of
OneOcc in_lam one_br _ -> not in_lam && one_br
_ -> False
\end{code}
\begin{code}
addRuleUsage :: UsageDetails -> Id -> UsageDetails
-- Add the usage from RULES in Id to the usage
addRuleUsage usage id
= foldVarSet add usage (idRuleVars id)
where
add v u = addOneOcc u v NoOccInfo -- Give a non-committal binder info
-- (i.e manyOcc) because many copies
-- of the specialised thing can appear
\end{code}
Expressions
~~~~~~~~~~~
\begin{code}
occAnal :: OccEnv
-> CoreExpr
-> (UsageDetails, -- Gives info only about the "interesting" Ids
CoreExpr)
occAnal _ (Type t) = (emptyDetails, Type t)
occAnal env (Var v) = (mkOneOcc env v False, Var v)
-- At one stage, I gathered the idRuleVars for v here too,
-- which in a way is the right thing to do.
-- But that went wrong right after specialisation, when
-- the *occurrences* of the overloaded function didn't have any
-- rules in them, so the *specialised* versions looked as if they
-- weren't used at all.
\end{code}
We regard variables that occur as constructor arguments as "dangerousToDup":
\begin{verbatim}
module A where
f x = let y = expensive x in
let z = (True,y) in
(case z of {(p,q)->q}, case z of {(p,q)->q})
\end{verbatim}
We feel free to duplicate the WHNF (True,y), but that means
that y may be duplicated thereby.
If we aren't careful we duplicate the (expensive x) call!
Constructors are rather like lambdas in this way.
\begin{code}
occAnal _ expr@(Lit _) = (emptyDetails, expr)
\end{code}
\begin{code}
occAnal env (Note InlineMe body)
= case occAnal env body of { (usage, body') ->
(mapVarEnv markMany usage, Note InlineMe body')
}
occAnal env (Note note@(SCC _) body)
= case occAnal env body of { (usage, body') ->
(mapVarEnv markInsideSCC usage, Note note body')
}
occAnal env (Note note body)
= case occAnal env body of { (usage, body') ->
(usage, Note note body')
}
occAnal env (Cast expr co)
= case occAnal env expr of { (usage, expr') ->
(markRhsUds env True usage, Cast expr' co)
-- If we see let x = y `cast` co
-- then mark y as 'Many' so that we don't
-- immediately inline y again.
}
\end{code}
\begin{code}
occAnal env app@(App _ _)
= occAnalApp env (collectArgs app)
-- Ignore type variables altogether
-- (a) occurrences inside type lambdas only not marked as InsideLam
-- (b) type variables not in environment
occAnal env (Lam x body) | isTyVar x
= case occAnal env body of { (body_usage, body') ->
(body_usage, Lam x body')
}
-- For value lambdas we do a special hack. Consider
-- (\x. \y. ...x...)
-- If we did nothing, x is used inside the \y, so would be marked
-- as dangerous to dup. But in the common case where the abstraction
-- is applied to two arguments this is over-pessimistic.
-- So instead, we just mark each binder with its occurrence
-- info in the *body* of the multiple lambda.
-- Then, the simplifier is careful when partially applying lambdas.
occAnal env expr@(Lam _ _)
= case occAnal env_body body of { (body_usage, body') ->
let
(final_usage, tagged_binders) = tagBinders body_usage binders
-- URGH! Sept 99: we don't seem to be able to use binders' here, because
-- we get linear-typed things in the resulting program that we can't handle yet.
-- (e.g. PrelShow) TODO
really_final_usage = if linear then
final_usage
else
mapVarEnv markInsideLam final_usage
in
(really_final_usage,
mkLams tagged_binders body') }
where
env_body = vanillaCtxt -- Body is (no longer) an RhsContext
(binders, body) = collectBinders expr
binders' = oneShotGroup env binders
linear = all is_one_shot binders'
is_one_shot b = isId b && isOneShotBndr b
occAnal env (Case scrut bndr ty alts)
= case occ_anal_scrut scrut alts of { (scrut_usage, scrut') ->
case mapAndUnzip occ_anal_alt alts of { (alts_usage_s, alts') ->
let
alts_usage = foldr1 combineAltsUsageDetails alts_usage_s
alts_usage' = addCaseBndrUsage alts_usage
(alts_usage1, tagged_bndr) = tagBinder alts_usage' bndr
total_usage = scrut_usage +++ alts_usage1
in
total_usage `seq` (total_usage, Case scrut' tagged_bndr ty alts') }}
where
-- Note [Case binder usage]
-- ~~~~~~~~~~~~~~~~~~~~~~~~
-- The case binder gets a usage of either "many" or "dead", never "one".
-- Reason: we like to inline single occurrences, to eliminate a binding,
-- but inlining a case binder *doesn't* eliminate a binding.
-- We *don't* want to transform
-- case x of w { (p,q) -> f w }
-- into
-- case x of w { (p,q) -> f (p,q) }
addCaseBndrUsage usage = case lookupVarEnv usage bndr of
Nothing -> usage
Just _ -> extendVarEnv usage bndr NoOccInfo
alt_env = setVanillaCtxt env
-- Consider x = case v of { True -> (p,q); ... }
-- Then it's fine to inline p and q
bndr_swap = case scrut of
Var v -> Just (v, Var bndr)
Cast (Var v) co -> Just (v, Cast (Var bndr) (mkSymCoercion co))
_other -> Nothing
occ_anal_alt = occAnalAlt alt_env bndr bndr_swap
occ_anal_scrut (Var v) (alt1 : other_alts)
| not (null other_alts) || not (isDefaultAlt alt1)
= (mkOneOcc env v True, Var v) -- The 'True' says that the variable occurs
-- in an interesting context; the case has
-- at least one non-default alternative
occ_anal_scrut scrut _alts
= occAnal vanillaCtxt scrut -- No need for rhsCtxt
occAnal env (Let bind body)
= case occAnal env body of { (body_usage, body') ->
case occAnalBind env bind body_usage of { (final_usage, new_binds) ->
(final_usage, mkLets new_binds body') }}
occAnalArgs :: OccEnv -> [CoreExpr] -> (UsageDetails, [CoreExpr])
occAnalArgs _env args
= case mapAndUnzip (occAnal arg_env) args of { (arg_uds_s, args') ->
(foldr (+++) emptyDetails arg_uds_s, args')}
where
arg_env = vanillaCtxt
\end{code}
Applications are dealt with specially because we want
the "build hack" to work.
\begin{code}
occAnalApp :: OccEnv
-> (Expr CoreBndr, [Arg CoreBndr])
-> (UsageDetails, Expr CoreBndr)
occAnalApp env (Var fun, args)
= case args_stuff of { (args_uds, args') ->
let
final_args_uds = markRhsUds env is_pap args_uds
in
(fun_uds +++ final_args_uds, mkApps (Var fun) args') }
where
fun_uniq = idUnique fun
fun_uds = mkOneOcc env fun (valArgCount args > 0)
is_pap = isDataConWorkId fun || valArgCount args < idArity fun
-- Hack for build, fold, runST
args_stuff | fun_uniq == buildIdKey = appSpecial env 2 [True,True] args
| fun_uniq == augmentIdKey = appSpecial env 2 [True,True] args
| fun_uniq == foldrIdKey = appSpecial env 3 [False,True] args
| fun_uniq == runSTRepIdKey = appSpecial env 2 [True] args
-- (foldr k z xs) may call k many times, but it never
-- shares a partial application of k; hence [False,True]
-- This means we can optimise
-- foldr (\x -> let v = ...x... in \y -> ...v...) z xs
-- by floating in the v
| otherwise = occAnalArgs env args
occAnalApp env (fun, args)
= case occAnal (addAppCtxt env args) fun of { (fun_uds, fun') ->
-- The addAppCtxt is a bit cunning. One iteration of the simplifier
-- often leaves behind beta redexs like
-- (\x y -> e) a1 a2
-- Here we would like to mark x,y as one-shot, and treat the whole
-- thing much like a let. We do this by pushing some True items
-- onto the context stack.
case occAnalArgs env args of { (args_uds, args') ->
let
final_uds = fun_uds +++ args_uds
in
(final_uds, mkApps fun' args') }}
markRhsUds :: OccEnv -- Check if this is a RhsEnv
-> Bool -- and this is true
-> UsageDetails -- The do markMany on this
-> UsageDetails
-- We mark the free vars of the argument of a constructor or PAP
-- as "many", if it is the RHS of a let(rec).
-- This means that nothing gets inlined into a constructor argument
-- position, which is what we want. Typically those constructor
-- arguments are just variables, or trivial expressions.
--
-- This is the *whole point* of the isRhsEnv predicate
markRhsUds env is_pap arg_uds
| isRhsEnv env && is_pap = mapVarEnv markMany arg_uds
| otherwise = arg_uds
appSpecial :: OccEnv
-> Int -> CtxtTy -- Argument number, and context to use for it
-> [CoreExpr]
-> (UsageDetails, [CoreExpr])
appSpecial env n ctxt args
= go n args
where
arg_env = vanillaCtxt
go _ [] = (emptyDetails, []) -- Too few args
go 1 (arg:args) -- The magic arg
= case occAnal (setCtxt arg_env ctxt) arg of { (arg_uds, arg') ->
case occAnalArgs env args of { (args_uds, args') ->
(arg_uds +++ args_uds, arg':args') }}
go n (arg:args)
= case occAnal arg_env arg of { (arg_uds, arg') ->
case go (n-1) args of { (args_uds, args') ->
(arg_uds +++ args_uds, arg':args') }}
\end{code}
Note [Binder swap]
~~~~~~~~~~~~~~~~~~
We do these two transformations right here:
(1) case x of b { pi -> ri }
==>
case x of b { pi -> let x=b in ri }
(2) case (x |> co) of b { pi -> ri }
==>
case (x |> co) of b { pi -> let x = b |> sym co in ri }
Why (2)? See Note [Ccase of cast]
In both cases, in a particular alternative (pi -> ri), we only
add the binding if
(a) x occurs free in (pi -> ri)
(ie it occurs in ri, but is not bound in pi)
(b) the pi does not bind b (or the free vars of co)
(c) x is not a
We need (a) and (b) for the inserted binding to be correct.
Notice that (a) rapidly becomes false, so no bindings are injected.
Notice the deliberate shadowing of 'x'. But we must call localiseId
on 'x' first, in case it's a GlobalId, or has an External Name.
See, for example, SimplEnv Note [Global Ids in the substitution].
For the alternatives where we inject the binding, we can transfer
all x's OccInfo to b. And that is the point.
The reason for doing these transformations here is because it allows
us to adjust the OccInfo for 'x' and 'b' as we go.
* Suppose the only occurrences of 'x' are the scrutinee and in the
ri; then this transformation makes it occur just once, and hence
get inlined right away.
* If we do this in the Simplifier, we don't know whether 'x' is used
in ri, so we are forced to pessimistically zap b's OccInfo even
though it is typically dead (ie neither it nor x appear in the
ri). There's nothing actually wrong with zapping it, except that
it's kind of nice to know which variables are dead. My nose
tells me to keep this information as robustly as possible.
The Maybe (Id,CoreExpr) passed to occAnalAlt is the extra let-binding
{x=b}; it's Nothing if the binder-swap doesn't happen.
Note [Case of cast]
~~~~~~~~~~~~~~~~~~~
Consider case (x `cast` co) of b { I# ->
... (case (x `cast` co) of {...}) ...
We'd like to eliminate the inner case. That is the motivation for
equation (2) in Note [Binder swap]. When we get to the inner case, we
inline x, cancel the casts, and away we go.
Note [Binders in case alternatives]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
case x of y { (a,b) -> f y }
We treat 'a', 'b' as dead, because they don't physically occur in the
case alternative. (Indeed, a variable is dead iff it doesn't occur in
its scope in the output of OccAnal.) This invariant is It really
helpe to know when binders are unused. See esp the call to
isDeadBinder in Simplify.mkDupableAlt
In this example, though, the Simplifier will bring 'a' and 'b' back to
life, beause it binds 'y' to (a,b) (imagine got inlined and
scrutinised y).
\begin{code}
occAnalAlt :: OccEnv
-> CoreBndr
-> Maybe (Id, CoreExpr) -- Note [Binder swap]
-> CoreAlt
-> (UsageDetails, Alt IdWithOccInfo)
occAnalAlt env case_bndr mb_scrut_var (con, bndrs, rhs)
= case occAnal env rhs of { (rhs_usage, rhs') ->
let
(alt_usg, tagged_bndrs) = tagBinders rhs_usage bndrs
bndrs' = tagged_bndrs -- See Note [Binders in case alternatives]
in
case mb_scrut_var of
Just (scrut_var, scrut_rhs) -- See Note [Binder swap]
| scrut_var `localUsedIn` alt_usg -- (a) Fast path, usually false
, not (any shadowing bndrs) -- (b)
-> (addOneOcc usg_wo_scrut case_bndr NoOccInfo,
-- See Note [Case binder usage] for the NoOccInfo
(con, bndrs', Let (NonRec scrut_var' scrut_rhs) rhs'))
where
(usg_wo_scrut, scrut_var') = tagBinder alt_usg (localiseId scrut_var)
-- Note the localiseId; we're making a new binding
-- for it, and it might have an External Name, or
-- even be a GlobalId
shadowing bndr = bndr `elemVarSet` rhs_fvs
rhs_fvs = exprFreeVars scrut_rhs
_other -> (alt_usg, (con, bndrs', rhs')) }
\end{code}
%************************************************************************
%* *
\subsection[OccurAnal-types]{OccEnv}
%* *
%************************************************************************
\begin{code}
data OccEnv
= OccEnv OccEncl -- Enclosing context information
CtxtTy -- Tells about linearity
-- OccEncl is used to control whether to inline into constructor arguments
-- For example:
-- x = (p,q) -- Don't inline p or q
-- y = /\a -> (p a, q a) -- Still don't inline p or q
-- z = f (p,q) -- Do inline p,q; it may make a rule fire
-- So OccEncl tells enought about the context to know what to do when
-- we encounter a contructor application or PAP.
data OccEncl
= OccRhs -- RHS of let(rec), albeit perhaps inside a type lambda
-- Don't inline into constructor args here
| OccVanilla -- Argument of function, body of lambda, scruintee of case etc.
-- Do inline into constructor args here
type CtxtTy = [Bool]
-- [] No info
--
-- True:ctxt Analysing a function-valued expression that will be
-- applied just once
--
-- False:ctxt Analysing a function-valued expression that may
-- be applied many times; but when it is,
-- the CtxtTy inside applies
initOccEnv :: OccEnv
initOccEnv = OccEnv OccRhs []
vanillaCtxt :: OccEnv
vanillaCtxt = OccEnv OccVanilla []
rhsCtxt :: OccEnv
rhsCtxt = OccEnv OccRhs []
isRhsEnv :: OccEnv -> Bool
isRhsEnv (OccEnv OccRhs _) = True
isRhsEnv (OccEnv OccVanilla _) = False
setVanillaCtxt :: OccEnv -> OccEnv
setVanillaCtxt (OccEnv OccRhs ctxt_ty) = OccEnv OccVanilla ctxt_ty
setVanillaCtxt other_env = other_env
setCtxt :: OccEnv -> CtxtTy -> OccEnv
setCtxt (OccEnv encl _) ctxt = OccEnv encl ctxt
oneShotGroup :: OccEnv -> [CoreBndr] -> [CoreBndr]
-- The result binders have one-shot-ness set that they might not have had originally.
-- This happens in (build (\cn -> e)). Here the occurrence analyser
-- linearity context knows that c,n are one-shot, and it records that fact in
-- the binder. This is useful to guide subsequent float-in/float-out tranformations
oneShotGroup (OccEnv _encl ctxt) bndrs
= go ctxt bndrs []
where
go _ [] rev_bndrs = reverse rev_bndrs
go (lin_ctxt:ctxt) (bndr:bndrs) rev_bndrs
| isId bndr = go ctxt bndrs (bndr':rev_bndrs)
where
bndr' | lin_ctxt = setOneShotLambda bndr
| otherwise = bndr
go ctxt (bndr:bndrs) rev_bndrs = go ctxt bndrs (bndr:rev_bndrs)
addAppCtxt :: OccEnv -> [Arg CoreBndr] -> OccEnv
addAppCtxt (OccEnv encl ctxt) args
= OccEnv encl (replicate (valArgCount args) True ++ ctxt)
\end{code}
%************************************************************************
%* *
\subsection[OccurAnal-types]{OccEnv}
%* *
%************************************************************************
\begin{code}
type UsageDetails = IdEnv OccInfo -- A finite map from ids to their usage
-- INVARIANT: never IAmDead
-- (Deadness is signalled by not being in the map at all)
(+++), combineAltsUsageDetails
:: UsageDetails -> UsageDetails -> UsageDetails
(+++) usage1 usage2
= plusVarEnv_C addOccInfo usage1 usage2
combineAltsUsageDetails usage1 usage2
= plusVarEnv_C orOccInfo usage1 usage2
addOneOcc :: UsageDetails -> Id -> OccInfo -> UsageDetails
addOneOcc usage id info
= plusVarEnv_C addOccInfo usage (unitVarEnv id info)
-- ToDo: make this more efficient
emptyDetails :: UsageDetails
emptyDetails = (emptyVarEnv :: UsageDetails)
localUsedIn, usedIn :: Id -> UsageDetails -> Bool
v `localUsedIn` details = v `elemVarEnv` details
v `usedIn` details = isExportedId v || v `localUsedIn` details
type IdWithOccInfo = Id
tagBinders :: UsageDetails -- Of scope
-> [Id] -- Binders
-> (UsageDetails, -- Details with binders removed
[IdWithOccInfo]) -- Tagged binders
tagBinders usage binders
= let
usage' = usage `delVarEnvList` binders
uss = map (setBinderOcc usage) binders
in
usage' `seq` (usage', uss)
tagBinder :: UsageDetails -- Of scope
-> Id -- Binders
-> (UsageDetails, -- Details with binders removed
IdWithOccInfo) -- Tagged binders
tagBinder usage binder
= let
usage' = usage `delVarEnv` binder
binder' = setBinderOcc usage binder
in
usage' `seq` (usage', binder')
setBinderOcc :: UsageDetails -> CoreBndr -> CoreBndr
setBinderOcc usage bndr
| isTyVar bndr = bndr
| isExportedId bndr = case idOccInfo bndr of
NoOccInfo -> bndr
_ -> setIdOccInfo bndr NoOccInfo
-- Don't use local usage info for visible-elsewhere things
-- BUT *do* erase any IAmALoopBreaker annotation, because we're
-- about to re-generate it and it shouldn't be "sticky"
| otherwise = setIdOccInfo bndr occ_info
where
occ_info = lookupVarEnv usage bndr `orElse` IAmDead
\end{code}
%************************************************************************
%* *
\subsection{Operations over OccInfo}
%* *
%************************************************************************
\begin{code}
mkOneOcc :: OccEnv -> Id -> InterestingCxt -> UsageDetails
mkOneOcc _env id int_cxt
| isLocalId id = unitVarEnv id (OneOcc False True int_cxt)
| otherwise = emptyDetails
markMany, markInsideLam, markInsideSCC :: OccInfo -> OccInfo
markMany _ = NoOccInfo
markInsideSCC occ = markMany occ
markInsideLam (OneOcc _ one_br int_cxt) = OneOcc True one_br int_cxt
markInsideLam occ = occ
addOccInfo, orOccInfo :: OccInfo -> OccInfo -> OccInfo
addOccInfo a1 a2 = ASSERT( not (isDeadOcc a1 || isDeadOcc a2) )
NoOccInfo -- Both branches are at least One
-- (Argument is never IAmDead)
-- (orOccInfo orig new) is used
-- when combining occurrence info from branches of a case
orOccInfo (OneOcc in_lam1 _ int_cxt1)
(OneOcc in_lam2 _ int_cxt2)
= OneOcc (in_lam1 || in_lam2)
False -- False, because it occurs in both branches
(int_cxt1 && int_cxt2)
orOccInfo a1 a2 = ASSERT( not (isDeadOcc a1 || isDeadOcc a2) )
NoOccInfo
\end{code}
|