1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
|
{-
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
\section{SetLevels}
***************************
Overview
***************************
1. We attach binding levels to Core bindings, in preparation for floating
outwards (@FloatOut@).
2. We also let-ify many expressions (notably case scrutinees), so they
will have a fighting chance of being floated sensible.
3. Note [Need for cloning during float-out]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We clone the binders of any floatable let-binding, so that when it is
floated out it will be unique. Example
(let x=2 in x) + (let x=3 in x)
we must clone before floating so we get
let x1=2 in
let x2=3 in
x1+x2
NOTE: this can't be done using the uniqAway idea, because the variable
must be unique in the whole program, not just its current scope,
because two variables in different scopes may float out to the
same top level place
NOTE: Very tiresomely, we must apply this substitution to
the rules stored inside a variable too.
We do *not* clone top-level bindings, because some of them must not change,
but we *do* clone bindings that are heading for the top level
4. Note [Binder-swap during float-out]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In the expression
case x of wild { p -> ...wild... }
we substitute x for wild in the RHS of the case alternatives:
case x of wild { p -> ...x... }
This means that a sub-expression involving x is not "trapped" inside the RHS.
And it's not inconvenient because we already have a substitution.
Note that this is EXACTLY BACKWARDS from the what the simplifier does.
The simplifier tries to get rid of occurrences of x, in favour of wild,
in the hope that there will only be one remaining occurrence of x, namely
the scrutinee of the case, and we can inline it.
-}
{-# LANGUAGE CPP #-}
module SetLevels (
setLevels,
Level(..), tOP_LEVEL,
LevelledBind, LevelledExpr, LevelledBndr,
FloatSpec(..), floatSpecLevel,
incMinorLvl, ltMajLvl, ltLvl, isTopLvl
) where
#include "HsVersions.h"
import CoreSyn
import CoreMonad ( FloatOutSwitches(..) )
import CoreUtils ( exprType
, exprOkForSpeculation
, collectMakeStaticArgs
)
import CoreArity ( exprBotStrictness_maybe )
import CoreFVs -- all of it
import CoreSubst
import MkCore ( sortQuantVars )
import Id
import IdInfo
import Var
import VarSet
import VarEnv
import Literal ( litIsTrivial )
import Demand ( StrictSig, increaseStrictSigArity )
import Name ( getOccName, mkSystemVarName )
import OccName ( occNameString )
import Type ( isUnliftedType, Type, mkLamTypes, splitTyConApp_maybe )
import Kind ( isLevityPolymorphic, typeKind )
import BasicTypes ( Arity, RecFlag(..) )
import DataCon ( dataConOrigResTy )
import TysWiredIn
import UniqSupply
import Util
import Outputable
import FastString
import UniqDFM
import FV
import Data.Maybe
{-
************************************************************************
* *
\subsection{Level numbers}
* *
************************************************************************
-}
type LevelledExpr = TaggedExpr FloatSpec
type LevelledBind = TaggedBind FloatSpec
type LevelledBndr = TaggedBndr FloatSpec
data Level = Level Int -- Major level: number of enclosing value lambdas
Int -- Minor level: number of big-lambda and/or case
-- expressions between here and the nearest
-- enclosing value lambda
data FloatSpec
= FloatMe Level -- Float to just inside the binding
-- tagged with this level
| StayPut Level -- Stay where it is; binding is
-- tagged with tihs level
floatSpecLevel :: FloatSpec -> Level
floatSpecLevel (FloatMe l) = l
floatSpecLevel (StayPut l) = l
{-
The {\em level number} on a (type-)lambda-bound variable is the
nesting depth of the (type-)lambda which binds it. The outermost lambda
has level 1, so (Level 0 0) means that the variable is bound outside any lambda.
On an expression, it's the maximum level number of its free
(type-)variables. On a let(rec)-bound variable, it's the level of its
RHS. On a case-bound variable, it's the number of enclosing lambdas.
Top-level variables: level~0. Those bound on the RHS of a top-level
definition but ``before'' a lambda; e.g., the \tr{x} in (levels shown
as ``subscripts'')...
\begin{verbatim}
a_0 = let b_? = ... in
x_1 = ... b ... in ...
\end{verbatim}
The main function @lvlExpr@ carries a ``context level'' (@ctxt_lvl@).
That's meant to be the level number of the enclosing binder in the
final (floated) program. If the level number of a sub-expression is
less than that of the context, then it might be worth let-binding the
sub-expression so that it will indeed float.
If you can float to level @Level 0 0@ worth doing so because then your
allocation becomes static instead of dynamic. We always start with
context @Level 0 0@.
Note [FloatOut inside INLINE]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@InlineCtxt@ very similar to @Level 0 0@, but is used for one purpose:
to say "don't float anything out of here". That's exactly what we
want for the body of an INLINE, where we don't want to float anything
out at all. See notes with lvlMFE below.
But, check this out:
-- At one time I tried the effect of not float anything out of an InlineMe,
-- but it sometimes works badly. For example, consider PrelArr.done. It
-- has the form __inline (\d. e)
-- where e doesn't mention d. If we float this to
-- __inline (let x = e in \d. x)
-- things are bad. The inliner doesn't even inline it because it doesn't look
-- like a head-normal form. So it seems a lesser evil to let things float.
-- In SetLevels we do set the context to (Level 0 0) when we get to an InlineMe
-- which discourages floating out.
So the conclusion is: don't do any floating at all inside an InlineMe.
(In the above example, don't float the {x=e} out of the \d.)
One particular case is that of workers: we don't want to float the
call to the worker outside the wrapper, otherwise the worker might get
inlined into the floated expression, and an importing module won't see
the worker at all.
-}
instance Outputable FloatSpec where
ppr (FloatMe l) = char 'F' <> ppr l
ppr (StayPut l) = ppr l
tOP_LEVEL :: Level
tOP_LEVEL = Level 0 0
incMajorLvl :: Level -> Level
incMajorLvl (Level major _) = Level (major + 1) 0
incMinorLvl :: Level -> Level
incMinorLvl (Level major minor) = Level major (minor+1)
maxLvl :: Level -> Level -> Level
maxLvl l1@(Level maj1 min1) l2@(Level maj2 min2)
| (maj1 > maj2) || (maj1 == maj2 && min1 > min2) = l1
| otherwise = l2
ltLvl :: Level -> Level -> Bool
ltLvl (Level maj1 min1) (Level maj2 min2)
= (maj1 < maj2) || (maj1 == maj2 && min1 < min2)
ltMajLvl :: Level -> Level -> Bool
-- Tells if one level belongs to a difft *lambda* level to another
ltMajLvl (Level maj1 _) (Level maj2 _) = maj1 < maj2
isTopLvl :: Level -> Bool
isTopLvl (Level 0 0) = True
isTopLvl _ = False
instance Outputable Level where
ppr (Level maj min) = hcat [ char '<', int maj, char ',', int min, char '>' ]
instance Eq Level where
(Level maj1 min1) == (Level maj2 min2) = maj1 == maj2 && min1 == min2
{-
************************************************************************
* *
\subsection{Main level-setting code}
* *
************************************************************************
-}
setLevels :: FloatOutSwitches
-> CoreProgram
-> UniqSupply
-> [LevelledBind]
setLevels float_lams binds us
= initLvl us (do_them init_env binds)
where
init_env = initialEnv float_lams
do_them :: LevelEnv -> [CoreBind] -> LvlM [LevelledBind]
do_them _ [] = return []
do_them env (b:bs)
= do { (lvld_bind, env') <- lvlTopBind env b
; lvld_binds <- do_them env' bs
; return (lvld_bind : lvld_binds) }
lvlTopBind :: LevelEnv -> Bind Id -> LvlM (LevelledBind, LevelEnv)
lvlTopBind env (NonRec bndr rhs)
= do { rhs' <- lvlExpr env (freeVars rhs)
; let (env', [bndr']) = substAndLvlBndrs NonRecursive env tOP_LEVEL [bndr]
; return (NonRec bndr' rhs', env') }
lvlTopBind env (Rec pairs)
= do let (bndrs,rhss) = unzip pairs
(env', bndrs') = substAndLvlBndrs Recursive env tOP_LEVEL bndrs
rhss' <- mapM (lvlExpr env' . freeVars) rhss
return (Rec (bndrs' `zip` rhss'), env')
{-
************************************************************************
* *
\subsection{Setting expression levels}
* *
************************************************************************
Note [Floating over-saturated applications]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we see (f x y), and (f x) is a redex (ie f's arity is 1),
we call (f x) an "over-saturated application"
Should we float out an over-sat app, if can escape a value lambda?
It is sometimes very beneficial (-7% runtime -4% alloc over nofib -O2).
But we don't want to do it for class selectors, because the work saved
is minimal, and the extra local thunks allocated cost money.
Arguably we could float even class-op applications if they were going to
top level -- but then they must be applied to a constant dictionary and
will almost certainly be optimised away anyway.
-}
lvlExpr :: LevelEnv -- Context
-> CoreExprWithFVs -- Input expression
-> LvlM LevelledExpr -- Result expression
{-
The @ctxt_lvl@ is, roughly, the level of the innermost enclosing
binder. Here's an example
v = \x -> ...\y -> let r = case (..x..) of
..x..
in ..
When looking at the rhs of @r@, @ctxt_lvl@ will be 1 because that's
the level of @r@, even though it's inside a level-2 @\y@. It's
important that @ctxt_lvl@ is 1 and not 2 in @r@'s rhs, because we
don't want @lvlExpr@ to turn the scrutinee of the @case@ into an MFE
--- because it isn't a *maximal* free expression.
If there were another lambda in @r@'s rhs, it would get level-2 as well.
-}
lvlExpr env (_, AnnType ty) = return (Type (CoreSubst.substTy (le_subst env) ty))
lvlExpr env (_, AnnCoercion co) = return (Coercion (substCo (le_subst env) co))
lvlExpr env (_, AnnVar v) = return (lookupVar env v)
lvlExpr _ (_, AnnLit lit) = return (Lit lit)
lvlExpr env (_, AnnCast expr (_, co)) = do
expr' <- lvlExpr env expr
return (Cast expr' (substCo (le_subst env) co))
lvlExpr env (_, AnnTick tickish expr) = do
expr' <- lvlExpr env expr
return (Tick tickish expr')
lvlExpr env expr@(_, AnnApp _ _) = do
let
(fun, args) = collectAnnArgs expr
--
case fun of
(_, AnnVar f) | floatOverSat env -- See Note [Floating over-saturated applications]
, arity > 0
, arity < n_val_args
, Nothing <- isClassOpId_maybe f ->
do
let (lapp, rargs) = left (n_val_args - arity) expr []
rargs' <- mapM (lvlMFE False env) rargs
lapp' <- lvlMFE False env lapp
return (foldl App lapp' rargs')
where
n_val_args = count (isValArg . deAnnotate) args
arity = idArity f
-- separate out the PAP that we are floating from the extra
-- arguments, by traversing the spine until we have collected
-- (n_val_args - arity) value arguments.
left 0 e rargs = (e, rargs)
left n (_, AnnApp f a) rargs
| isValArg (deAnnotate a) = left (n-1) f (a:rargs)
| otherwise = left n f (a:rargs)
left _ _ _ = panic "SetLevels.lvlExpr.left"
-- No PAPs that we can float: just carry on with the
-- arguments and the function.
_otherwise -> do
args' <- mapM (lvlMFE False env) args
fun' <- lvlExpr env fun
return (foldl App fun' args')
-- We don't split adjacent lambdas. That is, given
-- \x y -> (x+1,y)
-- we don't float to give
-- \x -> let v = x+1 in \y -> (v,y)
-- Why not? Because partial applications are fairly rare, and splitting
-- lambdas makes them more expensive.
lvlExpr env expr@(_, AnnLam {})
= do { new_body <- lvlMFE True new_env body
; return (mkLams new_bndrs new_body) }
where
(bndrs, body) = collectAnnBndrs expr
(env1, bndrs1) = substBndrsSL NonRecursive env bndrs
(new_env, new_bndrs) = lvlLamBndrs env1 (le_ctxt_lvl env) bndrs1
-- At one time we called a special verion of collectBinders,
-- which ignored coercions, because we don't want to split
-- a lambda like this (\x -> coerce t (\s -> ...))
-- This used to happen quite a bit in state-transformer programs,
-- but not nearly so much now non-recursive newtypes are transparent.
-- [See SetLevels rev 1.50 for a version with this approach.]
lvlExpr env (_, AnnLet bind body)
= do { (bind', new_env) <- lvlBind env bind
; body' <- lvlExpr new_env body
-- No point in going via lvlMFE here. If the binding is alive
-- (mentioned in body), and the whole let-expression doesn't
-- float, then neither will the body
; return (Let bind' body') }
lvlExpr env (_, AnnCase scrut case_bndr ty alts)
= do { scrut' <- lvlMFE True env scrut
; lvlCase env (freeVarsOf scrut) scrut' case_bndr ty alts }
-------------------------------------------
lvlCase :: LevelEnv -- Level of in-scope names/tyvars
-> DVarSet -- Free vars of input scrutinee
-> LevelledExpr -- Processed scrutinee
-> Id -> Type -- Case binder and result type
-> [CoreAltWithFVs] -- Input alternatives
-> LvlM LevelledExpr -- Result expression
lvlCase env scrut_fvs scrut' case_bndr ty alts
| [(con@(DataAlt {}), bs, body)] <- alts
, exprOkForSpeculation scrut' -- See Note [Check the output scrutinee for okForSpec]
, not (isTopLvl dest_lvl) -- Can't have top-level cases
, not (floatTopLvlOnly env) -- Can float anywhere
= -- See Note [Floating cases]
-- Always float the case if possible
-- Unlike lets we don't insist that it escapes a value lambda
do { (env1, (case_bndr' : bs')) <- cloneCaseBndrs env dest_lvl (case_bndr : bs)
; let rhs_env = extendCaseBndrEnv env1 case_bndr scrut'
; body' <- lvlMFE True rhs_env body
; let alt' = (con, [TB b (StayPut dest_lvl) | b <- bs'], body')
; return (Case scrut' (TB case_bndr' (FloatMe dest_lvl)) ty [alt']) }
| otherwise -- Stays put
= do { let (alts_env1, [case_bndr']) = substAndLvlBndrs NonRecursive env incd_lvl [case_bndr]
alts_env = extendCaseBndrEnv alts_env1 case_bndr scrut'
; alts' <- mapM (lvl_alt alts_env) alts
; return (Case scrut' case_bndr' ty alts') }
where
incd_lvl = incMinorLvl (le_ctxt_lvl env)
dest_lvl = maxFvLevel (const True) env scrut_fvs
-- Don't abstact over type variables, hence const True
lvl_alt alts_env (con, bs, rhs)
= do { rhs' <- lvlMFE True new_env rhs
; return (con, bs', rhs') }
where
(new_env, bs') = substAndLvlBndrs NonRecursive alts_env incd_lvl bs
{-
Note [Floating cases]
~~~~~~~~~~~~~~~~~~~~~
Consider this:
data T a = MkT !a
f :: T Int -> blah
f x vs = case x of { MkT y ->
let f vs = ...(case y of I# w -> e)...f..
in f vs
Here we can float the (case y ...) out , because y is sure
to be evaluated, to give
f x vs = case x of { MkT y ->
caes y of I# w ->
let f vs = ...(e)...f..
in f vs
That saves unboxing it every time round the loop. It's important in
some DPH stuff where we really want to avoid that repeated unboxing in
the inner loop.
Things to note
* We can't float a case to top level
* It's worth doing this float even if we don't float
the case outside a value lambda. Example
case x of {
MkT y -> (case y of I# w2 -> ..., case y of I# w2 -> ...)
If we floated the cases out we could eliminate one of them.
* We only do this with a single-alternative case
Note [Check the output scrutinee for okForSpec]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this:
case x of y {
A -> ....(case y of alts)....
}
Because of the binder-swap, the inner case will get substituted to
(case x of ..). So when testing whether the scrutinee is
okForSpecuation we must be careful to test the *result* scrutinee ('x'
in this case), not the *input* one 'y'. The latter *is* ok for
speculation here, but the former is not -- and indeed we can't float
the inner case out, at least not unless x is also evaluated at its
binding site.
That's why we apply exprOkForSpeculation to scrut' and not to scrut.
-}
lvlMFE :: Bool -- True <=> strict context [body of case or let]
-> LevelEnv -- Level of in-scope names/tyvars
-> CoreExprWithFVs -- input expression
-> LvlM LevelledExpr -- Result expression
-- lvlMFE is just like lvlExpr, except that it might let-bind
-- the expression, so that it can itself be floated.
lvlMFE _ env (_, AnnType ty)
= return (Type (CoreSubst.substTy (le_subst env) ty))
-- No point in floating out an expression wrapped in a coercion or note
-- If we do we'll transform lvl = e |> co
-- to lvl' = e; lvl = lvl' |> co
-- and then inline lvl. Better just to float out the payload.
lvlMFE strict_ctxt env (_, AnnTick t e)
= do { e' <- lvlMFE strict_ctxt env e
; return (Tick t e') }
lvlMFE strict_ctxt env (_, AnnCast e (_, co))
= do { e' <- lvlMFE strict_ctxt env e
; return (Cast e' (substCo (le_subst env) co)) }
-- Note [Case MFEs]
lvlMFE True env e@(_, AnnCase {})
= lvlExpr env e -- Don't share cases
lvlMFE strict_ctxt env ann_expr
| floatTopLvlOnly env && not (isTopLvl dest_lvl)
-- Only floating to the top level is allowed.
|| isLevityPolymorphic (typeKind expr_ty)
-- We can't let-bind levity polymorphic expressions
-- See Note [Levity polymorphism invariants] in CoreSyn
|| notWorthFloating expr abs_vars
|| not float_me
= -- Don't float it out
lvlExpr env ann_expr
| Just (wrap_float, wrap_use)
<- canFloat_maybe rhs_env strict_ctxt float_is_lam expr_ty
= do { expr1 <- lvlExpr rhs_env ann_expr
; let abs_expr = mkLams abs_vars_w_lvls (wrap_float expr1)
; var <- newLvlVar abs_expr
; let var2 = annotateBotStr var float_n_lams mb_bot_str
; return (Let (NonRec (TB var2 (FloatMe dest_lvl)) abs_expr)
(wrap_use (mkVarApps (Var var2) abs_vars))) }
| otherwise
= lvlExpr env ann_expr
where
expr = deAnnotate ann_expr
expr_ty = exprType expr
fvs = freeVarsOf ann_expr
is_bot = isJust mb_bot_str
mb_bot_str = exprBotStrictness_maybe expr
-- See Note [Bottoming floats]
-- esp Bottoming floats (2)
dest_lvl = destLevel env fvs (isFunction ann_expr) is_bot
abs_vars = abstractVars dest_lvl env fvs
float_is_lam = float_n_lams > 0 -- The floated thing will be a value lambda
float_n_lams = count isId abs_vars -- so nothing is shared; the only benefit
-- is getting it to the top level
(rhs_env, abs_vars_w_lvls) = lvlLamBndrs env dest_lvl abs_vars
-- A decision to float entails let-binding this thing, and we only do
-- that if we'll escape a value lambda, or will go to the top level.
float_me = (dest_lvl `ltMajLvl` (le_ctxt_lvl env) -- Escapes a value lambda
&& not float_is_lam) -- See Note [Escaping a value lambda]
|| (isTopLvl dest_lvl -- Only float if we are going to the top level
&& floatConsts env -- and the floatConsts flag is on
&& not strict_ctxt) -- Don't float from a strict context
-- We are keen to float something to the top level, even if it does not
-- escape a lambda, because then it needs no allocation. But it's controlled
-- by a flag, because doing this too early loses opportunities for RULES
-- which (needless to say) are important in some nofib programs
-- (gcd is an example).
--
-- Beware:
-- concat = /\ a -> foldr ..a.. (++) []
-- was getting turned into
-- lvl = /\ a -> foldr ..a.. (++) []
-- concat = /\ a -> lvl a
-- which is pretty stupid. Hence the strict_ctxt test
canFloat_maybe :: LevelEnv
-> Bool -- Strict context
-> Bool -- The float has a value lambda
-> Type
-> Maybe ( LevelledExpr -> LevelledExpr -- Wrep the flaot
, LevelledExpr -> LevelledExpr) -- Wrap the use
-- See Note [Floating MFEs of unlifted type]
canFloat_maybe env strict_ctxt float_is_lam expr_ty
| float_is_lam || not (isUnliftedType expr_ty)
= Just (id, id) -- No wrapping needed if the type is lifted, or
-- if we are wrapping it in one or more value lambdas
-- OK, so the float has an unlifted type and no value lambdas
| strict_ctxt
, Just (tc, _) <- splitTyConApp_maybe expr_ty
, Just dc <- boxingDataCon_maybe tc
, let dc_res_ty = dataConOrigResTy dc -- No free type variables
[bx_bndr, ubx_bndr] = mkTemplateLocals [dc_res_ty, expr_ty]
l1 = incMinorLvl (le_ctxt_lvl env)
l2 = incMinorLvl l1
= Just ( \e -> Case e (TB ubx_bndr (StayPut l1)) dc_res_ty
[(DEFAULT, [], mkConApp dc [Var ubx_bndr])]
, \e -> Case e (TB bx_bndr (StayPut l1)) expr_ty
[(DataAlt dc, [TB ubx_bndr (StayPut l2)], Var ubx_bndr)] )
| otherwise -- e.g. do not float unboxed tuples
= Nothing
{- Note [Floating MFEs of unlifted type]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have
case f x of (r::Int#) -> blah
we'd like to float (f x). But it's not trivial because it has type
Int#, and we don't want to evaluate it to early. But we can instead
float a boxed version
y = case f x of r -> I# r
and replace the original (f x) with
case (case y of I# r -> r) of r -> blah
Being able to float unboxed expressions is sometimes important; see
Trac #12603. I'm not sure how /often/ it is important, but it's
not hard to achieve.
We only do it for a fixed collection of types for which we have a
convenient boxing constructor (see boxingDataCon_maybe). In
particular we /don't/ do it for unboxed tuples; it's better to float
the components of the tuple individually.
The work is done by canFloat_maybe, which constructs both the code
that wraps the floating binding, and the code to appear at the
original use site.
I did experiment with a form of boxing that works for any type, namely
wrapping in a function. In our example
let y = case f x of r -> \v. f x
in case y void of r -> blah
It works fine, but it's 50% slower (based on some crude benchmarking).
I suppose we could do it for types not covered by boxingDataCon_maybe,
but it's more code and I'll wait to see if anyone wants it.
Note [Bottoming floats]
~~~~~~~~~~~~~~~~~~~~~~~
If we see
f = \x. g (error "urk")
we'd like to float the call to error, to get
lvl = error "urk"
f = \x. g lvl
* Bottoming floats (1): Furthermore, we want to float a bottoming
expression even if it has free variables:
f = \x. g (let v = h x in error ("urk" ++ v))
Then we'd like to abstact over 'x' can float the whole arg of g:
lvl = \x. let v = h x in error ("urk" ++ v)
f = \x. g (lvl x)
To achieve this we pass is_bot to destLevel
* Bottoming floats (2): And we'd like to do this even if it's a
function that guarantees to return bottom:
f = \x. ....(\y z. if x then error y else error z)....
===>
lvl = \x y z. if b then error y else error z
f = \x. ...(lvl x)...
To achieve this we use exprBotStrictness_maybe, which spots
an expression that diverges after applying some arguments
See Maessen's paper 1999 "Bottom extraction: factoring error handling out
of functional programs" (unpublished I think).
When we do this, we set the strictness and arity of the new bottoming
Id, *immediately*, for three reasons:
* To prevent the abstracted thing being immediately inlined back in again
via preInlineUnconditionally. The latter has a test for bottoming Ids
to stop inlining them, so we'd better make sure it *is* a bottoming Id!
* So that it's properly exposed as such in the interface file, even if
this is all happening after strictness analysis.
* In case we do CSE with the same expression that *is* marked bottom
lvl = error "urk"
x{str=bot) = error "urk"
Here we don't want to replace 'x' with 'lvl', else we may get Lint
errors, e.g. via a case with empty alternatives: (case x of {})
Lint complains unless the scrutinee of such a case is clearly bottom.
This was reported in Trac #11290. But since the whole bottoming-float
thing is based on the cheap-and-cheerful exprIsBottom, I'm not sure
that it'll nail all such cases.
Note [Bottoming floats: eta expansion] c.f Note [Bottoming floats]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Tiresomely, though, the simplifier has an invariant that the manifest
arity of the RHS should be the same as the arity; but we can't call
etaExpand during SetLevels because it works over a decorated form of
CoreExpr. So we do the eta expansion later, in FloatOut.
Note [Case MFEs]
~~~~~~~~~~~~~~~~
We don't float a case expression as an MFE from a strict context. Why not?
Because in doing so we share a tiny bit of computation (the switch) but
in exchange we build a thunk, which is bad. This case reduces allocation
by 7% in spectral/puzzle (a rather strange benchmark) and 1.2% in real/fem.
Doesn't change any other allocation at all.
-}
annotateBotStr :: Id -> Arity -> Maybe (Arity, StrictSig) -> Id
-- See Note [Bottoming floats] for why we want to add
-- bottoming information right now
--
-- n_extra are the number of extra value arguments added during floating
annotateBotStr id n_extra mb_str
= case mb_str of
Nothing -> id
Just (arity, sig) -> id `setIdArity` (arity + n_extra)
`setIdStrictness` (increaseStrictSigArity n_extra sig)
notWorthFloating :: CoreExpr -> [Var] -> Bool
-- Returns True if the expression would be replaced by
-- something bigger than it is now. For example:
-- abs_vars = tvars only: return True if e is trivial,
-- but False for anything bigger
-- abs_vars = [x] (an Id): return True for trivial, or an application (f x)
-- but False for (f x x)
--
-- One big goal is that floating should be idempotent. Eg if
-- we replace e with (lvl79 x y) and then run FloatOut again, don't want
-- to replace (lvl79 x y) with (lvl83 x y)!
notWorthFloating e abs_vars
= go e (count isId abs_vars)
where
go (Var {}) n = n >= 0
go (Lit lit) n = ASSERT( n==0 )
litIsTrivial lit -- Note [Floating literals]
go (Tick t e) n = not (tickishIsCode t) && go e n
go (Cast e _) n = go e n
go (App e arg) n
| (Type {}) <- arg = go e n
| (Coercion {}) <- arg = go e n
| n==0 = False
| is_triv arg = go e (n-1)
| otherwise = False
go _ _ = False
is_triv (Lit {}) = True -- Treat all literals as trivial
is_triv (Var {}) = True -- (ie not worth floating)
is_triv (Cast e _) = is_triv e
is_triv (App e (Type {})) = is_triv e
is_triv (App e (Coercion {})) = is_triv e
is_triv (Tick t e) = not (tickishIsCode t) && is_triv e
is_triv _ = False
{-
Note [Floating literals]
~~~~~~~~~~~~~~~~~~~~~~~~
It's important to float Integer literals, so that they get shared,
rather than being allocated every time round the loop.
Hence the litIsTrivial.
We'd *like* to share MachStr literal strings too, mainly so we could
CSE them, but alas can't do so directly because they are unlifted.
Note [Escaping a value lambda]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We want to float even cheap expressions out of value lambdas,
because that saves allocation. Consider
f = \x. .. (\y.e) ...
Then we'd like to avoid allocating the (\y.e) every time we call f,
(assuming e does not mention x). An example where this really makes a
difference is simplrun009.
Another reason it's good is because it makes SpecContr fire on functions.
Consider
f = \x. ....(f (\y.e))....
After floating we get
lvl = \y.e
f = \x. ....(f lvl)...
and that is much easier for SpecConstr to generate a robust
specialisation for.
However, if we are wrapping the thing in extra value lambdas (in
abs_vars), then nothing is saved. E.g.
f = \xyz. ...(e1[y],e2)....
If we float
lvl = \y. (e1[y],e2)
f = \xyz. ...(lvl y)...
we have saved nothing: one pair will still be allocated for each
call of 'f'. Hence the (not float_is_lam) in float_me.
************************************************************************
* *
\subsection{Bindings}
* *
************************************************************************
The binding stuff works for top level too.
-}
lvlBind :: LevelEnv
-> CoreBindWithFVs
-> LvlM (LevelledBind, LevelEnv)
lvlBind env (AnnNonRec bndr rhs)
| isTyVar bndr -- Don't do anything for TyVar binders
-- (simplifier gets rid of them pronto)
|| isCoVar bndr -- Difficult to fix up CoVar occurrences (see extendPolyLvlEnv)
-- so we will ignore this case for now
|| not (profitableFloat env dest_lvl)
|| (isTopLvl dest_lvl && isUnliftedType (idType bndr))
-- We can't float an unlifted binding to top level, so we don't
-- float it at all. It's a bit brutal, but unlifted bindings
-- aren't expensive either
= -- No float
do { rhs' <- lvlExpr env rhs
; let bind_lvl = incMinorLvl (le_ctxt_lvl env)
(env', [bndr']) = substAndLvlBndrs NonRecursive env bind_lvl [bndr]
; return (NonRec bndr' rhs', env') }
-- Otherwise we are going to float
| null abs_vars
= do { -- No type abstraction; clone existing binder
rhs' <- lvlExpr (setCtxtLvl env dest_lvl) rhs
; (env', [bndr']) <- cloneLetVars NonRecursive env dest_lvl [bndr]
; let bndr2 = annotateBotStr bndr' 0 mb_bot_str
; return (NonRec (TB bndr2 (FloatMe dest_lvl)) rhs', env') }
| otherwise
= do { -- Yes, type abstraction; create a new binder, extend substitution, etc
rhs' <- lvlFloatRhs abs_vars dest_lvl env rhs
; (env', [bndr']) <- newPolyBndrs dest_lvl env abs_vars [bndr]
; let bndr2 = annotateBotStr bndr' n_extra mb_bot_str
; return (NonRec (TB bndr2 (FloatMe dest_lvl)) rhs', env') }
where
rhs_fvs = freeVarsOf rhs
bind_fvs = rhs_fvs `unionDVarSet` dIdFreeVars bndr
abs_vars = abstractVars dest_lvl env bind_fvs
dest_lvl = destLevel env bind_fvs (isFunction rhs) is_bot
mb_bot_str = exprBotStrictness_maybe (deAnnotate rhs)
-- See Note [Bottoming floats]
-- esp Bottoming floats (2)
is_bot = isJust mb_bot_str
n_extra = count isId abs_vars
lvlBind env (AnnRec pairs)
| floatTopLvlOnly env && not (isTopLvl dest_lvl)
-- Only floating to the top level is allowed.
|| not (profitableFloat env dest_lvl)
= do { let bind_lvl = incMinorLvl (le_ctxt_lvl env)
(env', bndrs') = substAndLvlBndrs Recursive env bind_lvl bndrs
; rhss' <- mapM (lvlExpr env') rhss
; return (Rec (bndrs' `zip` rhss'), env') }
| null abs_vars
= do { (new_env, new_bndrs) <- cloneLetVars Recursive env dest_lvl bndrs
; new_rhss <- mapM (lvlExpr (setCtxtLvl new_env dest_lvl)) rhss
; return ( Rec ([TB b (FloatMe dest_lvl) | b <- new_bndrs] `zip` new_rhss)
, new_env) }
-- ToDo: when enabling the floatLambda stuff,
-- I think we want to stop doing this
| [(bndr,rhs)] <- pairs
, count isId abs_vars > 1
= do -- Special case for self recursion where there are
-- several variables carried around: build a local loop:
-- poly_f = \abs_vars. \lam_vars . letrec f = \lam_vars. rhs in f lam_vars
-- This just makes the closures a bit smaller. If we don't do
-- this, allocation rises significantly on some programs
--
-- We could elaborate it for the case where there are several
-- mutually functions, but it's quite a bit more complicated
--
-- This all seems a bit ad hoc -- sigh
let (rhs_env, abs_vars_w_lvls) = lvlLamBndrs env dest_lvl abs_vars
rhs_lvl = le_ctxt_lvl rhs_env
(rhs_env', [new_bndr]) <- cloneLetVars Recursive rhs_env rhs_lvl [bndr]
let
(lam_bndrs, rhs_body) = collectAnnBndrs rhs
(body_env1, lam_bndrs1) = substBndrsSL NonRecursive rhs_env' lam_bndrs
(body_env2, lam_bndrs2) = lvlLamBndrs body_env1 rhs_lvl lam_bndrs1
new_rhs_body <- lvlExpr body_env2 rhs_body
(poly_env, [poly_bndr]) <- newPolyBndrs dest_lvl env abs_vars [bndr]
return (Rec [(TB poly_bndr (FloatMe dest_lvl)
, mkLams abs_vars_w_lvls $
mkLams lam_bndrs2 $
Let (Rec [( TB new_bndr (StayPut rhs_lvl)
, mkLams lam_bndrs2 new_rhs_body)])
(mkVarApps (Var new_bndr) lam_bndrs1))]
, poly_env)
| otherwise -- Non-null abs_vars
= do { (new_env, new_bndrs) <- newPolyBndrs dest_lvl env abs_vars bndrs
; new_rhss <- mapM (lvlFloatRhs abs_vars dest_lvl new_env) rhss
; return ( Rec ([TB b (FloatMe dest_lvl) | b <- new_bndrs] `zip` new_rhss)
, new_env) }
where
(bndrs,rhss) = unzip pairs
-- Finding the free vars of the binding group is annoying
bind_fvs = ((unionDVarSets [ freeVarsOf rhs | (_, rhs) <- pairs])
`unionDVarSet`
(fvDVarSet $ unionsFV [ idFVs bndr
| (bndr, (_,_)) <- pairs]))
`delDVarSetList`
bndrs
dest_lvl = destLevel env bind_fvs (all isFunction rhss) False
abs_vars = abstractVars dest_lvl env bind_fvs
profitableFloat :: LevelEnv -> Level -> Bool
profitableFloat env dest_lvl
= (dest_lvl `ltMajLvl` le_ctxt_lvl env) -- Escapes a value lambda
|| isTopLvl dest_lvl -- Going all the way to top level
----------------------------------------------------
-- Three help functions for the type-abstraction case
lvlFloatRhs :: [OutVar] -> Level -> LevelEnv -> CoreExprWithFVs
-> UniqSM (Expr LevelledBndr)
lvlFloatRhs abs_vars dest_lvl env rhs
= do { body' <- lvlExpr rhs_env body
; return (mkLams all_bndrs_w_lvls body') }
where
(bndrs, body) = collectAnnBndrs rhs
(env1, bndrs1) = substBndrsSL NonRecursive env bndrs
all_bndrs = abs_vars ++ bndrs1
(rhs_env, all_bndrs_w_lvls) = lvlLamBndrs env1 dest_lvl all_bndrs
-- The important thing here is that we call lvlLamBndrs on
-- all these binders at once (abs_vars and bndrs), so they
-- all get the same major level. Otherwise we create stupid
-- let-bindings inside, joyfully thinking they can float; but
-- in the end they don't because we never float bindings in
-- between lambdas
{-
************************************************************************
* *
\subsection{Deciding floatability}
* *
************************************************************************
-}
substAndLvlBndrs :: RecFlag -> LevelEnv -> Level -> [InVar] -> (LevelEnv, [LevelledBndr])
substAndLvlBndrs is_rec env lvl bndrs
= lvlBndrs subst_env lvl subst_bndrs
where
(subst_env, subst_bndrs) = substBndrsSL is_rec env bndrs
substBndrsSL :: RecFlag -> LevelEnv -> [InVar] -> (LevelEnv, [OutVar])
-- So named only to avoid the name clash with CoreSubst.substBndrs
substBndrsSL is_rec env@(LE { le_subst = subst, le_env = id_env }) bndrs
= ( env { le_subst = subst'
, le_env = foldl add_id id_env (bndrs `zip` bndrs') }
, bndrs')
where
(subst', bndrs') = case is_rec of
NonRecursive -> substBndrs subst bndrs
Recursive -> substRecBndrs subst bndrs
lvlLamBndrs :: LevelEnv -> Level -> [OutVar] -> (LevelEnv, [LevelledBndr])
-- Compute the levels for the binders of a lambda group
lvlLamBndrs env lvl bndrs
= lvlBndrs env new_lvl bndrs
where
new_lvl | any is_major bndrs = incMajorLvl lvl
| otherwise = incMinorLvl lvl
is_major bndr = isId bndr && not (isProbablyOneShotLambda bndr)
-- The "probably" part says "don't float things out of a
-- probable one-shot lambda"
-- See Note [Computing one-shot info] in Demand.hs
lvlBndrs :: LevelEnv -> Level -> [CoreBndr] -> (LevelEnv, [LevelledBndr])
-- The binders returned are exactly the same as the ones passed,
-- apart from applying the substitution, but they are now paired
-- with a (StayPut level)
--
-- The returned envt has ctxt_lvl updated to the new_lvl
--
-- All the new binders get the same level, because
-- any floating binding is either going to float past
-- all or none. We never separate binders.
lvlBndrs env@(LE { le_lvl_env = lvl_env }) new_lvl bndrs
= ( env { le_ctxt_lvl = new_lvl
, le_lvl_env = addLvls new_lvl lvl_env bndrs }
, lvld_bndrs)
where
lvld_bndrs = [TB bndr (StayPut new_lvl) | bndr <- bndrs]
-- Destination level is the max Id level of the expression
-- (We'll abstract the type variables, if any.)
destLevel :: LevelEnv -> DVarSet
-> Bool -- True <=> is function
-> Bool -- True <=> is bottom
-> Level
destLevel env fvs is_function is_bot
| is_bot = tOP_LEVEL -- Send bottoming bindings to the top
-- regardless; see Note [Bottoming floats]
-- Esp Bottoming floats (1)
| Just n_args <- floatLams env
, n_args > 0 -- n=0 case handled uniformly by the 'otherwise' case
, is_function
, countFreeIds fvs <= n_args
= tOP_LEVEL -- Send functions to top level; see
-- the comments with isFunction
| otherwise = maxFvLevel isId env fvs -- Max over Ids only; the tyvars
-- will be abstracted
isFunction :: CoreExprWithFVs -> Bool
-- The idea here is that we want to float *functions* to
-- the top level. This saves no work, but
-- (a) it can make the host function body a lot smaller,
-- and hence inlinable.
-- (b) it can also save allocation when the function is recursive:
-- h = \x -> letrec f = \y -> ...f...y...x...
-- in f x
-- becomes
-- f = \x y -> ...(f x)...y...x...
-- h = \x -> f x x
-- No allocation for f now.
-- We may only want to do this if there are sufficiently few free
-- variables. We certainly only want to do it for values, and not for
-- constructors. So the simple thing is just to look for lambdas
isFunction (_, AnnLam b e) | isId b = True
| otherwise = isFunction e
-- isFunction (_, AnnTick _ e) = isFunction e -- dubious
isFunction _ = False
countFreeIds :: DVarSet -> Int
countFreeIds = nonDetFoldUDFM add 0
-- It's OK to use nonDetFoldUDFM here because we're just counting things.
where
add :: Var -> Int -> Int
add v n | isId v = n+1
| otherwise = n
{-
************************************************************************
* *
\subsection{Free-To-Level Monad}
* *
************************************************************************
-}
data LevelEnv
= LE { le_switches :: FloatOutSwitches
, le_ctxt_lvl :: Level -- The current level
, le_lvl_env :: VarEnv Level -- Domain is *post-cloned* TyVars and Ids
, le_subst :: Subst -- Domain is pre-cloned TyVars and Ids
-- The Id -> CoreExpr in the Subst is ignored
-- (since we want to substitute a LevelledExpr for
-- an Id via le_env) but we do use the Co/TyVar substs
, le_env :: IdEnv ([OutVar], LevelledExpr) -- Domain is pre-cloned Ids
}
-- We clone let- and case-bound variables so that they are still
-- distinct when floated out; hence the le_subst/le_env.
-- (see point 3 of the module overview comment).
-- We also use these envs when making a variable polymorphic
-- because we want to float it out past a big lambda.
--
-- The le_subst and le_env always implement the same mapping, but the
-- le_subst maps to CoreExpr and the le_env to LevelledExpr
-- Since the range is always a variable or type application,
-- there is never any difference between the two, but sadly
-- the types differ. The le_subst is used when substituting in
-- a variable's IdInfo; the le_env when we find a Var.
--
-- In addition the le_env records a list of tyvars free in the
-- type application, just so we don't have to call freeVars on
-- the type application repeatedly.
--
-- The domain of the both envs is *pre-cloned* Ids, though
--
-- The domain of the le_lvl_env is the *post-cloned* Ids
initialEnv :: FloatOutSwitches -> LevelEnv
initialEnv float_lams
= LE { le_switches = float_lams
, le_ctxt_lvl = tOP_LEVEL
, le_lvl_env = emptyVarEnv
, le_subst = emptySubst
, le_env = emptyVarEnv }
addLvl :: Level -> VarEnv Level -> OutVar -> VarEnv Level
addLvl dest_lvl env v' = extendVarEnv env v' dest_lvl
addLvls :: Level -> VarEnv Level -> [OutVar] -> VarEnv Level
addLvls dest_lvl env vs = foldl (addLvl dest_lvl) env vs
floatLams :: LevelEnv -> Maybe Int
floatLams le = floatOutLambdas (le_switches le)
floatConsts :: LevelEnv -> Bool
floatConsts le = floatOutConstants (le_switches le)
floatOverSat :: LevelEnv -> Bool
floatOverSat le = floatOutOverSatApps (le_switches le)
floatTopLvlOnly :: LevelEnv -> Bool
floatTopLvlOnly le = floatToTopLevelOnly (le_switches le)
setCtxtLvl :: LevelEnv -> Level -> LevelEnv
setCtxtLvl env lvl = env { le_ctxt_lvl = lvl }
-- extendCaseBndrEnv adds the mapping case-bndr->scrut-var if it can
-- See Note [Binder-swap during float-out]
extendCaseBndrEnv :: LevelEnv
-> Id -- Pre-cloned case binder
-> Expr LevelledBndr -- Post-cloned scrutinee
-> LevelEnv
extendCaseBndrEnv le@(LE { le_subst = subst, le_env = id_env })
case_bndr (Var scrut_var)
= le { le_subst = extendSubstWithVar subst case_bndr scrut_var
, le_env = add_id id_env (case_bndr, scrut_var) }
extendCaseBndrEnv env _ _ = env
maxFvLevel :: (Var -> Bool) -> LevelEnv -> DVarSet -> Level
maxFvLevel max_me (LE { le_lvl_env = lvl_env, le_env = id_env }) var_set
= foldDVarSet max_in tOP_LEVEL var_set
where
max_in in_var lvl
= foldr max_out lvl (case lookupVarEnv id_env in_var of
Just (abs_vars, _) -> abs_vars
Nothing -> [in_var])
max_out out_var lvl
| max_me out_var = case lookupVarEnv lvl_env out_var of
Just lvl' -> maxLvl lvl' lvl
Nothing -> lvl
| otherwise = lvl -- Ignore some vars depending on max_me
lookupVar :: LevelEnv -> Id -> LevelledExpr
lookupVar le v = case lookupVarEnv (le_env le) v of
Just (_, expr) -> expr
_ -> Var v
abstractVars :: Level -> LevelEnv -> DVarSet -> [OutVar]
-- Find the variables in fvs, free vars of the target expression,
-- whose level is greater than the destination level
-- These are the ones we are going to abstract out
--
-- Note that to get reproducible builds, the variables need to be
-- abstracted in deterministic order, not dependent on the values of
-- Uniques. This is achieved by using DVarSets, deterministic free
-- variable computation and deterministic sort.
-- See Note [Unique Determinism] in Unique for explanation of why
-- Uniques are not deterministic.
abstractVars dest_lvl (LE { le_subst = subst, le_lvl_env = lvl_env }) in_fvs
= -- NB: sortQuantVars might not put duplicates next to each other
map zap $ sortQuantVars $ uniq
[out_var | out_fv <- dVarSetElems (substDVarSet subst in_fvs)
, out_var <- dVarSetElems (close out_fv)
, abstract_me out_var ]
-- NB: it's important to call abstract_me only on the OutIds the
-- come from substDVarSet (not on fv, which is an InId)
where
uniq :: [Var] -> [Var]
-- Remove duplicates, preserving order
uniq = dVarSetElems . mkDVarSet
abstract_me v = case lookupVarEnv lvl_env v of
Just lvl -> dest_lvl `ltLvl` lvl
Nothing -> False
-- We are going to lambda-abstract, so nuke any IdInfo,
-- and add the tyvars of the Id (if necessary)
zap v | isId v = WARN( isStableUnfolding (idUnfolding v) ||
not (isEmptyRuleInfo (idSpecialisation v)),
text "absVarsOf: discarding info on" <+> ppr v )
setIdInfo v vanillaIdInfo
| otherwise = v
close :: Var -> DVarSet -- Close over variables free in the type
-- Result includes the input variable itself
close v = foldDVarSet (unionDVarSet . close)
(unitDVarSet v)
(fvDVarSet $ varTypeTyCoFVs v)
type LvlM result = UniqSM result
initLvl :: UniqSupply -> UniqSM a -> a
initLvl = initUs_
newPolyBndrs :: Level -> LevelEnv -> [OutVar] -> [InId] -> UniqSM (LevelEnv, [OutId])
-- The envt is extended to bind the new bndrs to dest_lvl, but
-- the ctxt_lvl is unaffected
newPolyBndrs dest_lvl
env@(LE { le_lvl_env = lvl_env, le_subst = subst, le_env = id_env })
abs_vars bndrs
= ASSERT( all (not . isCoVar) bndrs ) -- What would we add to the CoSubst in this case. No easy answer.
do { uniqs <- getUniquesM
; let new_bndrs = zipWith mk_poly_bndr bndrs uniqs
bndr_prs = bndrs `zip` new_bndrs
env' = env { le_lvl_env = addLvls dest_lvl lvl_env new_bndrs
, le_subst = foldl add_subst subst bndr_prs
, le_env = foldl add_id id_env bndr_prs }
; return (env', new_bndrs) }
where
add_subst env (v, v') = extendIdSubst env v (mkVarApps (Var v') abs_vars)
add_id env (v, v') = extendVarEnv env v ((v':abs_vars), mkVarApps (Var v') abs_vars)
mk_poly_bndr bndr uniq = transferPolyIdInfo bndr abs_vars $ -- Note [transferPolyIdInfo] in Id.hs
mkSysLocalOrCoVar (mkFastString str) uniq poly_ty
where
str = "poly_" ++ occNameString (getOccName bndr)
poly_ty = mkLamTypes abs_vars (CoreSubst.substTy subst (idType bndr))
newLvlVar :: LevelledExpr -- The RHS of the new binding
-> LvlM Id
newLvlVar lvld_rhs
= do { uniq <- getUniqueM
; return (mk_id uniq rhs_ty) }
where
de_tagged_rhs = deTagExpr lvld_rhs
rhs_ty = exprType de_tagged_rhs
mk_id uniq rhs_ty
-- See Note [Grand plan for static forms] in SimplCore.
| isJust $ collectMakeStaticArgs $ snd $
collectTyBinders de_tagged_rhs
= mkExportedVanillaId (mkSystemVarName uniq (mkFastString "static_ptr"))
rhs_ty
| otherwise
= mkLocalIdOrCoVar (mkSystemVarName uniq (mkFastString "lvl")) rhs_ty
cloneCaseBndrs :: LevelEnv -> Level -> [Var] -> LvlM (LevelEnv, [Var])
cloneCaseBndrs env@(LE { le_subst = subst, le_lvl_env = lvl_env, le_env = id_env })
new_lvl vs
= do { us <- getUniqueSupplyM
; let (subst', vs') = cloneBndrs subst us vs
env' = env { le_ctxt_lvl = new_lvl
, le_lvl_env = addLvls new_lvl lvl_env vs'
, le_subst = subst'
, le_env = foldl add_id id_env (vs `zip` vs') }
; return (env', vs') }
cloneLetVars :: RecFlag -> LevelEnv -> Level -> [Var] -> LvlM (LevelEnv, [Var])
-- See Note [Need for cloning during float-out]
-- Works for Ids bound by let(rec)
-- The dest_lvl is attributed to the binders in the new env,
-- but cloneVars doesn't affect the ctxt_lvl of the incoming env
cloneLetVars is_rec
env@(LE { le_subst = subst, le_lvl_env = lvl_env, le_env = id_env })
dest_lvl vs
= do { us <- getUniqueSupplyM
; let (subst', vs1) = case is_rec of
NonRecursive -> cloneBndrs subst us vs
Recursive -> cloneRecIdBndrs subst us vs
vs2 = map zap_demand_info vs1 -- See Note [Zapping the demand info]
prs = vs `zip` vs2
env' = env { le_lvl_env = addLvls dest_lvl lvl_env vs2
, le_subst = subst'
, le_env = foldl add_id id_env prs }
; return (env', vs2) }
add_id :: IdEnv ([Var], LevelledExpr) -> (Var, Var) -> IdEnv ([Var], LevelledExpr)
add_id id_env (v, v1)
| isTyVar v = delVarEnv id_env v
| otherwise = extendVarEnv id_env v ([v1], ASSERT(not (isCoVar v1)) Var v1)
zap_demand_info :: Var -> Var
zap_demand_info v
| isId v = zapIdDemandInfo v
| otherwise = v
{-
Note [Zapping the demand info]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
VERY IMPORTANT: we must zap the demand info if the thing is going to
float out, because it may be less demanded than at its original
binding site. Eg
f :: Int -> Int
f x = let v = 3*4 in v+x
Here v is strict; but if we float v to top level, it isn't any more.
-}
|