1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
|
%
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
\section[SimplCore]{Driver for simplifying @Core@ programs}
\begin{code}
{-# OPTIONS -fno-warn-tabs #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and
-- detab the module (please do the detabbing in a separate patch). See
-- http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces
-- for details
module SimplCore ( core2core, simplifyExpr ) where
#include "HsVersions.h"
import DynFlags
import CoreSyn
import CoreSubst
import HscTypes
import CSE ( cseProgram )
import Rules ( RuleBase, emptyRuleBase, mkRuleBase, unionRuleBase,
extendRuleBaseList, ruleCheckProgram, addSpecInfo, )
import PprCore ( pprCoreBindings, pprCoreExpr )
import OccurAnal ( occurAnalysePgm, occurAnalyseExpr )
import IdInfo
import CoreUtils ( coreBindsSize, coreBindsStats, exprSize )
import Simplify ( simplTopBinds, simplExpr )
import SimplUtils ( simplEnvForGHCi, activeRule )
import SimplEnv
import SimplMonad
import CoreMonad
import qualified ErrUtils as Err
import FloatIn ( floatInwards )
import FloatOut ( floatOutwards )
import FamInstEnv
import Id
import BasicTypes ( CompilerPhase(..), isDefaultInlinePragma )
import VarSet
import VarEnv
import LiberateCase ( liberateCase )
import SAT ( doStaticArgs )
import Specialise ( specProgram)
import SpecConstr ( specConstrProgram)
import DmdAnal ( dmdAnalPgm )
import WorkWrap ( wwTopBinds )
import Vectorise ( vectorise )
import FastString
import SrcLoc
import Util
import UniqSupply ( UniqSupply, mkSplitUniqSupply, splitUniqSupply )
import Outputable
import Control.Monad
#ifdef GHCI
import Type ( mkTyConTy )
import RdrName ( mkRdrQual )
import OccName ( mkVarOcc )
import PrelNames ( pluginTyConName )
import DynamicLoading ( forceLoadTyCon, lookupRdrNameInModule, getValueSafely )
import Module ( ModuleName )
import Panic
#endif
\end{code}
%************************************************************************
%* *
\subsection{The driver for the simplifier}
%* *
%************************************************************************
\begin{code}
core2core :: HscEnv -> ModGuts -> IO ModGuts
core2core hsc_env guts
= do { us <- mkSplitUniqSupply 's'
-- make sure all plugins are loaded
; let builtin_passes = getCoreToDo dflags
;
; (guts2, stats) <- runCoreM hsc_env hpt_rule_base us mod $
do { all_passes <- addPluginPasses dflags builtin_passes
; runCorePasses all_passes guts }
{--
; Err.dumpIfSet_dyn dflags Opt_D_dump_core_pipeline
"Plugin information" "" -- TODO FIXME: dump plugin info
--}
; Err.dumpIfSet_dyn dflags Opt_D_dump_simpl_stats
"Grand total simplifier statistics"
(pprSimplCount stats)
; return guts2 }
where
dflags = hsc_dflags hsc_env
home_pkg_rules = hptRules hsc_env (dep_mods (mg_deps guts))
hpt_rule_base = mkRuleBase home_pkg_rules
mod = mg_module guts
-- mod: get the module out of the current HscEnv so we can retrieve it from the monad.
-- This is very convienent for the users of the monad (e.g. plugins do not have to
-- consume the ModGuts to find the module) but somewhat ugly because mg_module may
-- _theoretically_ be changed during the Core pipeline (it's part of ModGuts), which
-- would mean our cached value would go out of date.
\end{code}
%************************************************************************
%* *
Generating the main optimisation pipeline
%* *
%************************************************************************
\begin{code}
getCoreToDo :: DynFlags -> [CoreToDo]
getCoreToDo dflags
= core_todo
where
opt_level = optLevel dflags
phases = simplPhases dflags
max_iter = maxSimplIterations dflags
rule_check = ruleCheck dflags
strictness = gopt Opt_Strictness dflags
full_laziness = gopt Opt_FullLaziness dflags
do_specialise = gopt Opt_Specialise dflags
do_float_in = gopt Opt_FloatIn dflags
cse = gopt Opt_CSE dflags
spec_constr = gopt Opt_SpecConstr dflags
liberate_case = gopt Opt_LiberateCase dflags
static_args = gopt Opt_StaticArgumentTransformation dflags
rules_on = gopt Opt_EnableRewriteRules dflags
eta_expand_on = gopt Opt_DoLambdaEtaExpansion dflags
maybe_rule_check phase = runMaybe rule_check (CoreDoRuleCheck phase)
maybe_strictness_before phase
= runWhen (phase `elem` strictnessBefore dflags) CoreDoStrictness
base_mode = SimplMode { sm_phase = panic "base_mode"
, sm_names = []
, sm_rules = rules_on
, sm_eta_expand = eta_expand_on
, sm_inline = True
, sm_case_case = True }
simpl_phase phase names iter
= CoreDoPasses
$ [ maybe_strictness_before phase
, CoreDoSimplify iter
(base_mode { sm_phase = Phase phase
, sm_names = names })
, maybe_rule_check (Phase phase) ]
-- Vectorisation can introduce a fair few common sub expressions involving
-- DPH primitives. For example, see the Reverse test from dph-examples.
-- We need to eliminate these common sub expressions before their definitions
-- are inlined in phase 2. The CSE introduces lots of v1 = v2 bindings,
-- so we also run simpl_gently to inline them.
++ (if gopt Opt_Vectorise dflags && phase == 3
then [CoreCSE, simpl_gently]
else [])
vectorisation
= runWhen (gopt Opt_Vectorise dflags) $
CoreDoPasses [ simpl_gently, CoreDoVectorisation ]
-- By default, we have 2 phases before phase 0.
-- Want to run with inline phase 2 after the specialiser to give
-- maximum chance for fusion to work before we inline build/augment
-- in phase 1. This made a difference in 'ansi' where an
-- overloaded function wasn't inlined till too late.
-- Need phase 1 so that build/augment get
-- inlined. I found that spectral/hartel/genfft lost some useful
-- strictness in the function sumcode' if augment is not inlined
-- before strictness analysis runs
simpl_phases = CoreDoPasses [ simpl_phase phase ["main"] max_iter
| phase <- [phases, phases-1 .. 1] ]
-- initial simplify: mk specialiser happy: minimum effort please
simpl_gently = CoreDoSimplify max_iter
(base_mode { sm_phase = InitialPhase
, sm_names = ["Gentle"]
, sm_rules = rules_on -- Note [RULEs enabled in SimplGently]
, sm_inline = False
, sm_case_case = False })
-- Don't do case-of-case transformations.
-- This makes full laziness work better
core_todo =
if opt_level == 0 then
[ vectorisation
, CoreDoSimplify max_iter
(base_mode { sm_phase = Phase 0
, sm_names = ["Non-opt simplification"] })
]
else {- opt_level >= 1 -} [
-- We want to do the static argument transform before full laziness as it
-- may expose extra opportunities to float things outwards. However, to fix
-- up the output of the transformation we need at do at least one simplify
-- after this before anything else
runWhen static_args (CoreDoPasses [ simpl_gently, CoreDoStaticArgs ]),
-- We run vectorisation here for now, but we might also try to run
-- it later
vectorisation,
-- initial simplify: mk specialiser happy: minimum effort please
simpl_gently,
-- Specialisation is best done before full laziness
-- so that overloaded functions have all their dictionary lambdas manifest
runWhen do_specialise CoreDoSpecialising,
runWhen full_laziness $
CoreDoFloatOutwards FloatOutSwitches {
floatOutLambdas = Just 0,
floatOutConstants = True,
floatOutPartialApplications = False },
-- Was: gentleFloatOutSwitches
--
-- I have no idea why, but not floating constants to
-- top level is very bad in some cases.
--
-- Notably: p_ident in spectral/rewrite
-- Changing from "gentle" to "constantsOnly"
-- improved rewrite's allocation by 19%, and
-- made 0.0% difference to any other nofib
-- benchmark
--
-- Not doing floatOutPartialApplications yet, we'll do
-- that later on when we've had a chance to get more
-- accurate arity information. In fact it makes no
-- difference at all to performance if we do it here,
-- but maybe we save some unnecessary to-and-fro in
-- the simplifier.
runWhen do_float_in CoreDoFloatInwards,
simpl_phases,
-- Phase 0: allow all Ids to be inlined now
-- This gets foldr inlined before strictness analysis
-- At least 3 iterations because otherwise we land up with
-- huge dead expressions because of an infelicity in the
-- simpifier.
-- let k = BIG in foldr k z xs
-- ==> let k = BIG in letrec go = \xs -> ...(k x).... in go xs
-- ==> let k = BIG in letrec go = \xs -> ...(BIG x).... in go xs
-- Don't stop now!
simpl_phase 0 ["main"] (max max_iter 3),
runWhen strictness (CoreDoPasses [
CoreDoStrictness,
CoreDoWorkerWrapper,
simpl_phase 0 ["post-worker-wrapper"] max_iter
]),
runWhen full_laziness $
CoreDoFloatOutwards FloatOutSwitches {
floatOutLambdas = floatLamArgs dflags,
floatOutConstants = True,
floatOutPartialApplications = True },
-- nofib/spectral/hartel/wang doubles in speed if you
-- do full laziness late in the day. It only happens
-- after fusion and other stuff, so the early pass doesn't
-- catch it. For the record, the redex is
-- f_el22 (f_el21 r_midblock)
runWhen cse CoreCSE,
-- We want CSE to follow the final full-laziness pass, because it may
-- succeed in commoning up things floated out by full laziness.
-- CSE used to rely on the no-shadowing invariant, but it doesn't any more
runWhen do_float_in CoreDoFloatInwards,
maybe_rule_check (Phase 0),
-- Case-liberation for -O2. This should be after
-- strictness analysis and the simplification which follows it.
runWhen liberate_case (CoreDoPasses [
CoreLiberateCase,
simpl_phase 0 ["post-liberate-case"] max_iter
]), -- Run the simplifier after LiberateCase to vastly
-- reduce the possiblility of shadowing
-- Reason: see Note [Shadowing] in SpecConstr.lhs
runWhen spec_constr CoreDoSpecConstr,
maybe_rule_check (Phase 0),
-- Final clean-up simplification:
simpl_phase 0 ["final"] max_iter
]
\end{code}
Loading plugins
\begin{code}
addPluginPasses :: DynFlags -> [CoreToDo] -> CoreM [CoreToDo]
#ifndef GHCI
addPluginPasses _ builtin_passes = return builtin_passes
#else
addPluginPasses dflags builtin_passes
= do { hsc_env <- getHscEnv
; named_plugins <- liftIO (loadPlugins hsc_env)
; foldM query_plug builtin_passes named_plugins }
where
query_plug todos (mod_nm, plug)
= installCoreToDos plug options todos
where
options = [ option | (opt_mod_nm, option) <- pluginModNameOpts dflags
, opt_mod_nm == mod_nm ]
loadPlugins :: HscEnv -> IO [(ModuleName, Plugin)]
loadPlugins hsc_env
= do { let to_load = pluginModNames (hsc_dflags hsc_env)
; plugins <- mapM (loadPlugin hsc_env) to_load
; return $ to_load `zip` plugins }
loadPlugin :: HscEnv -> ModuleName -> IO Plugin
loadPlugin hsc_env mod_name
= do { let plugin_rdr_name = mkRdrQual mod_name (mkVarOcc "plugin")
dflags = hsc_dflags hsc_env
; mb_name <- lookupRdrNameInModule hsc_env mod_name plugin_rdr_name
; case mb_name of {
Nothing -> throwGhcException (CmdLineError $ showSDoc dflags $ hsep
[ ptext (sLit "The module"), ppr mod_name
, ptext (sLit "did not export the plugin name")
, ppr plugin_rdr_name ]) ;
Just name ->
do { plugin_tycon <- forceLoadTyCon hsc_env pluginTyConName
; mb_plugin <- getValueSafely hsc_env name (mkTyConTy plugin_tycon)
; case mb_plugin of
Nothing -> throwGhcException (CmdLineError $ showSDoc dflags $ hsep
[ ptext (sLit "The value"), ppr name
, ptext (sLit "did not have the type")
, ppr pluginTyConName, ptext (sLit "as required")])
Just plugin -> return plugin } } }
#endif
\end{code}
%************************************************************************
%* *
The CoreToDo interpreter
%* *
%************************************************************************
\begin{code}
runCorePasses :: [CoreToDo] -> ModGuts -> CoreM ModGuts
runCorePasses passes guts
= foldM do_pass guts passes
where
do_pass guts CoreDoNothing = return guts
do_pass guts (CoreDoPasses ps) = runCorePasses ps guts
do_pass guts pass
= do { dflags <- getDynFlags
; liftIO $ showPass dflags pass
; guts' <- doCorePass dflags pass guts
; liftIO $ endPass dflags pass (mg_binds guts') (mg_rules guts')
; return guts' }
doCorePass :: DynFlags -> CoreToDo -> ModGuts -> CoreM ModGuts
doCorePass _ pass@(CoreDoSimplify {}) = {-# SCC "Simplify" #-}
simplifyPgm pass
doCorePass _ CoreCSE = {-# SCC "CommonSubExpr" #-}
doPass cseProgram
doCorePass _ CoreLiberateCase = {-# SCC "LiberateCase" #-}
doPassD liberateCase
doCorePass dflags CoreDoFloatInwards = {-# SCC "FloatInwards" #-}
doPass (floatInwards dflags)
doCorePass _ (CoreDoFloatOutwards f) = {-# SCC "FloatOutwards" #-}
doPassDUM (floatOutwards f)
doCorePass _ CoreDoStaticArgs = {-# SCC "StaticArgs" #-}
doPassU doStaticArgs
doCorePass _ CoreDoStrictness = {-# SCC "Stranal" #-}
doPassDM dmdAnalPgm
doCorePass dflags CoreDoWorkerWrapper = {-# SCC "WorkWrap" #-}
doPassU (wwTopBinds dflags)
doCorePass dflags CoreDoSpecialising = {-# SCC "Specialise" #-}
specProgram dflags
doCorePass _ CoreDoSpecConstr = {-# SCC "SpecConstr" #-}
specConstrProgram
doCorePass _ CoreDoVectorisation = {-# SCC "Vectorise" #-}
vectorise
doCorePass _ CoreDoPrintCore = observe printCore
doCorePass _ (CoreDoRuleCheck phase pat) = ruleCheckPass phase pat
doCorePass _ CoreDoNothing = return
doCorePass _ (CoreDoPasses passes) = runCorePasses passes
#ifdef GHCI
doCorePass _ (CoreDoPluginPass _ pass) = {-# SCC "Plugin" #-} pass
#endif
doCorePass _ pass = pprPanic "doCorePass" (ppr pass)
\end{code}
%************************************************************************
%* *
\subsection{Core pass combinators}
%* *
%************************************************************************
\begin{code}
printCore :: DynFlags -> CoreProgram -> IO ()
printCore dflags binds
= Err.dumpIfSet dflags True "Print Core" (pprCoreBindings binds)
ruleCheckPass :: CompilerPhase -> String -> ModGuts -> CoreM ModGuts
ruleCheckPass current_phase pat guts = do
rb <- getRuleBase
dflags <- getDynFlags
liftIO $ Err.showPass dflags "RuleCheck"
liftIO $ log_action dflags dflags Err.SevDump noSrcSpan defaultDumpStyle
(ruleCheckProgram current_phase pat rb (mg_binds guts))
return guts
doPassDUM :: (DynFlags -> UniqSupply -> CoreProgram -> IO CoreProgram) -> ModGuts -> CoreM ModGuts
doPassDUM do_pass = doPassM $ \binds -> do
dflags <- getDynFlags
us <- getUniqueSupplyM
liftIO $ do_pass dflags us binds
doPassDM :: (DynFlags -> CoreProgram -> IO CoreProgram) -> ModGuts -> CoreM ModGuts
doPassDM do_pass = doPassDUM (\dflags -> const (do_pass dflags))
doPassD :: (DynFlags -> CoreProgram -> CoreProgram) -> ModGuts -> CoreM ModGuts
doPassD do_pass = doPassDM (\dflags -> return . do_pass dflags)
doPassDU :: (DynFlags -> UniqSupply -> CoreProgram -> CoreProgram) -> ModGuts -> CoreM ModGuts
doPassDU do_pass = doPassDUM (\dflags us -> return . do_pass dflags us)
doPassU :: (UniqSupply -> CoreProgram -> CoreProgram) -> ModGuts -> CoreM ModGuts
doPassU do_pass = doPassDU (const do_pass)
-- Most passes return no stats and don't change rules: these combinators
-- let us lift them to the full blown ModGuts+CoreM world
doPassM :: Monad m => (CoreProgram -> m CoreProgram) -> ModGuts -> m ModGuts
doPassM bind_f guts = do
binds' <- bind_f (mg_binds guts)
return (guts { mg_binds = binds' })
doPass :: (CoreProgram -> CoreProgram) -> ModGuts -> CoreM ModGuts
doPass bind_f guts = return $ guts { mg_binds = bind_f (mg_binds guts) }
-- Observer passes just peek; don't modify the bindings at all
observe :: (DynFlags -> CoreProgram -> IO a) -> ModGuts -> CoreM ModGuts
observe do_pass = doPassM $ \binds -> do
dflags <- getDynFlags
_ <- liftIO $ do_pass dflags binds
return binds
\end{code}
%************************************************************************
%* *
Gentle simplification
%* *
%************************************************************************
\begin{code}
simplifyExpr :: DynFlags -- includes spec of what core-to-core passes to do
-> CoreExpr
-> IO CoreExpr
-- simplifyExpr is called by the driver to simplify an
-- expression typed in at the interactive prompt
--
-- Also used by Template Haskell
simplifyExpr dflags expr
= do {
; Err.showPass dflags "Simplify"
; us <- mkSplitUniqSupply 's'
; let sz = exprSize expr
; (expr', counts) <- initSmpl dflags emptyRuleBase emptyFamInstEnvs us sz $
simplExprGently (simplEnvForGHCi dflags) expr
; Err.dumpIfSet dflags (dopt Opt_D_dump_simpl_stats dflags)
"Simplifier statistics" (pprSimplCount counts)
; Err.dumpIfSet_dyn dflags Opt_D_dump_simpl "Simplified expression"
(pprCoreExpr expr')
; return expr'
}
simplExprGently :: SimplEnv -> CoreExpr -> SimplM CoreExpr
-- Simplifies an expression
-- does occurrence analysis, then simplification
-- and repeats (twice currently) because one pass
-- alone leaves tons of crud.
-- Used (a) for user expressions typed in at the interactive prompt
-- (b) the LHS and RHS of a RULE
-- (c) Template Haskell splices
--
-- The name 'Gently' suggests that the SimplifierMode is SimplGently,
-- and in fact that is so.... but the 'Gently' in simplExprGently doesn't
-- enforce that; it just simplifies the expression twice
-- It's important that simplExprGently does eta reduction; see
-- Note [Simplifying the left-hand side of a RULE] above. The
-- simplifier does indeed do eta reduction (it's in Simplify.completeLam)
-- but only if -O is on.
simplExprGently env expr = do
expr1 <- simplExpr env (occurAnalyseExpr expr)
simplExpr env (occurAnalyseExpr expr1)
\end{code}
%************************************************************************
%* *
\subsection{The driver for the simplifier}
%* *
%************************************************************************
\begin{code}
simplifyPgm :: CoreToDo -> ModGuts -> CoreM ModGuts
simplifyPgm pass guts
= do { hsc_env <- getHscEnv
; us <- getUniqueSupplyM
; rb <- getRuleBase
; liftIOWithCount $
simplifyPgmIO pass hsc_env us rb guts }
simplifyPgmIO :: CoreToDo
-> HscEnv
-> UniqSupply
-> RuleBase
-> ModGuts
-> IO (SimplCount, ModGuts) -- New bindings
simplifyPgmIO pass@(CoreDoSimplify max_iterations mode)
hsc_env us hpt_rule_base
guts@(ModGuts { mg_module = this_mod
, mg_binds = binds, mg_rules = rules
, mg_fam_inst_env = fam_inst_env })
= do { (termination_msg, it_count, counts_out, guts')
<- do_iteration us 1 [] binds rules
; Err.dumpIfSet dflags (dump_phase && dopt Opt_D_dump_simpl_stats dflags)
"Simplifier statistics for following pass"
(vcat [text termination_msg <+> text "after" <+> ppr it_count <+> text "iterations",
blankLine,
pprSimplCount counts_out])
; return (counts_out, guts')
}
where
dflags = hsc_dflags hsc_env
dump_phase = dumpSimplPhase dflags mode
simpl_env = mkSimplEnv mode
active_rule = activeRule simpl_env
do_iteration :: UniqSupply
-> Int -- Counts iterations
-> [SimplCount] -- Counts from earlier iterations, reversed
-> CoreProgram -- Bindings in
-> [CoreRule] -- and orphan rules
-> IO (String, Int, SimplCount, ModGuts)
do_iteration us iteration_no counts_so_far binds rules
-- iteration_no is the number of the iteration we are
-- about to begin, with '1' for the first
| iteration_no > max_iterations -- Stop if we've run out of iterations
= WARN( debugIsOn && (max_iterations > 2)
, hang (ptext (sLit "Simplifier bailing out after") <+> int max_iterations
<+> ptext (sLit "iterations")
<+> (brackets $ hsep $ punctuate comma $
map (int . simplCountN) (reverse counts_so_far)))
2 (ptext (sLit "Size =") <+> ppr (coreBindsStats binds)))
-- Subtract 1 from iteration_no to get the
-- number of iterations we actually completed
return ( "Simplifier baled out", iteration_no - 1
, totalise counts_so_far
, guts { mg_binds = binds, mg_rules = rules } )
-- Try and force thunks off the binds; significantly reduces
-- space usage, especially with -O. JRS, 000620.
| let sz = coreBindsSize binds
, sz == sz -- Force it
= do {
-- Occurrence analysis
let { -- During the 'InitialPhase' (i.e., before vectorisation), we need to make sure
-- that the right-hand sides of vectorisation declarations are taken into
-- account during occurence analysis.
maybeVects = case sm_phase mode of
InitialPhase -> mg_vect_decls guts
_ -> []
; tagged_binds = {-# SCC "OccAnal" #-}
occurAnalysePgm this_mod active_rule rules maybeVects binds
} ;
Err.dumpIfSet_dyn dflags Opt_D_dump_occur_anal "Occurrence analysis"
(pprCoreBindings tagged_binds);
-- Get any new rules, and extend the rule base
-- See Note [Overall plumbing for rules] in Rules.lhs
-- We need to do this regularly, because simplification can
-- poke on IdInfo thunks, which in turn brings in new rules
-- behind the scenes. Otherwise there's a danger we'll simply
-- miss the rules for Ids hidden inside imported inlinings
eps <- hscEPS hsc_env ;
let { rule_base1 = unionRuleBase hpt_rule_base (eps_rule_base eps)
; rule_base2 = extendRuleBaseList rule_base1 rules
; simpl_binds = {-# SCC "SimplTopBinds" #-}
simplTopBinds simpl_env tagged_binds
; fam_envs = (eps_fam_inst_env eps, fam_inst_env) } ;
-- Simplify the program
(env1, counts1) <- initSmpl dflags rule_base2 fam_envs us1 sz simpl_binds ;
let { binds1 = getFloatBinds env1
; rules1 = substRulesForImportedIds (mkCoreSubst (text "imp-rules") env1) rules
} ;
-- Stop if nothing happened; don't dump output
if isZeroSimplCount counts1 then
return ( "Simplifier reached fixed point", iteration_no
, totalise (counts1 : counts_so_far) -- Include "free" ticks
, guts { mg_binds = binds1, mg_rules = rules1 } )
else do {
-- Short out indirections
-- We do this *after* at least one run of the simplifier
-- because indirection-shorting uses the export flag on *occurrences*
-- and that isn't guaranteed to be ok until after the first run propagates
-- stuff from the binding site to its occurrences
--
-- ToDo: alas, this means that indirection-shorting does not happen at all
-- if the simplifier does nothing (not common, I know, but unsavoury)
let { binds2 = {-# SCC "ZapInd" #-} shortOutIndirections binds1 } ;
-- Dump the result of this iteration
end_iteration dflags pass iteration_no counts1 binds2 rules1 ;
-- Loop
do_iteration us2 (iteration_no + 1) (counts1:counts_so_far) binds2 rules1
} }
| otherwise = panic "do_iteration"
where
(us1, us2) = splitUniqSupply us
-- Remember the counts_so_far are reversed
totalise :: [SimplCount] -> SimplCount
totalise = foldr (\c acc -> acc `plusSimplCount` c)
(zeroSimplCount dflags)
simplifyPgmIO _ _ _ _ _ = panic "simplifyPgmIO"
-------------------
end_iteration :: DynFlags -> CoreToDo -> Int
-> SimplCount -> CoreProgram -> [CoreRule] -> IO ()
end_iteration dflags pass iteration_no counts binds rules
= do { dumpPassResult dflags mb_flag hdr pp_counts binds rules
; lintPassResult dflags pass binds }
where
mb_flag | dopt Opt_D_dump_simpl_iterations dflags = Just Opt_D_dump_simpl_phases
| otherwise = Nothing
-- Show details if Opt_D_dump_simpl_iterations is on
hdr = ptext (sLit "Simplifier iteration=") <> int iteration_no
pp_counts = vcat [ ptext (sLit "---- Simplifier counts for") <+> hdr
, pprSimplCount counts
, ptext (sLit "---- End of simplifier counts for") <+> hdr ]
\end{code}
%************************************************************************
%* *
Shorting out indirections
%* *
%************************************************************************
If we have this:
x_local = <expression>
...bindings...
x_exported = x_local
where x_exported is exported, and x_local is not, then we replace it with this:
x_exported = <expression>
x_local = x_exported
...bindings...
Without this we never get rid of the x_exported = x_local thing. This
save a gratuitous jump (from \tr{x_exported} to \tr{x_local}), and
makes strictness information propagate better. This used to happen in
the final phase, but it's tidier to do it here.
Note [Transferring IdInfo]
~~~~~~~~~~~~~~~~~~~~~~~~~~
We want to propagage any useful IdInfo on x_local to x_exported.
STRICTNESS: if we have done strictness analysis, we want the strictness info on
x_local to transfer to x_exported. Hence the copyIdInfo call.
RULES: we want to *add* any RULES for x_local to x_exported.
Note [Messing up the exported Id's RULES]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We must be careful about discarding (obviously) or even merging the
RULES on the exported Id. The example that went bad on me at one stage
was this one:
iterate :: (a -> a) -> a -> [a]
[Exported]
iterate = iterateList
iterateFB c f x = x `c` iterateFB c f (f x)
iterateList f x = x : iterateList f (f x)
[Not exported]
{-# RULES
"iterate" forall f x. iterate f x = build (\c _n -> iterateFB c f x)
"iterateFB" iterateFB (:) = iterateList
#-}
This got shorted out to:
iterateList :: (a -> a) -> a -> [a]
iterateList = iterate
iterateFB c f x = x `c` iterateFB c f (f x)
iterate f x = x : iterate f (f x)
{-# RULES
"iterate" forall f x. iterate f x = build (\c _n -> iterateFB c f x)
"iterateFB" iterateFB (:) = iterate
#-}
And now we get an infinite loop in the rule system
iterate f x -> build (\cn -> iterateFB c f x)
-> iterateFB (:) f x
-> iterate f x
Old "solution":
use rule switching-off pragmas to get rid
of iterateList in the first place
But in principle the user *might* want rules that only apply to the Id
he says. And inline pragmas are similar
{-# NOINLINE f #-}
f = local
local = <stuff>
Then we do not want to get rid of the NOINLINE.
Hence hasShortableIdinfo.
Note [Rules and indirection-zapping]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Problem: what if x_exported has a RULE that mentions something in ...bindings...?
Then the things mentioned can be out of scope! Solution
a) Make sure that in this pass the usage-info from x_exported is
available for ...bindings...
b) If there are any such RULES, rec-ify the entire top-level.
It'll get sorted out next time round
Other remarks
~~~~~~~~~~~~~
If more than one exported thing is equal to a local thing (i.e., the
local thing really is shared), then we do one only:
\begin{verbatim}
x_local = ....
x_exported1 = x_local
x_exported2 = x_local
==>
x_exported1 = ....
x_exported2 = x_exported1
\end{verbatim}
We rely on prior eta reduction to simplify things like
\begin{verbatim}
x_exported = /\ tyvars -> x_local tyvars
==>
x_exported = x_local
\end{verbatim}
Hence,there's a possibility of leaving unchanged something like this:
\begin{verbatim}
x_local = ....
x_exported1 = x_local Int
\end{verbatim}
By the time we've thrown away the types in STG land this
could be eliminated. But I don't think it's very common
and it's dangerous to do this fiddling in STG land
because we might elminate a binding that's mentioned in the
unfolding for something.
\begin{code}
type IndEnv = IdEnv Id -- Maps local_id -> exported_id
shortOutIndirections :: CoreProgram -> CoreProgram
shortOutIndirections binds
| isEmptyVarEnv ind_env = binds
| no_need_to_flatten = binds' -- See Note [Rules and indirect-zapping]
| otherwise = [Rec (flattenBinds binds')] -- for this no_need_to_flatten stuff
where
ind_env = makeIndEnv binds
exp_ids = varSetElems ind_env -- These exported Ids are the subjects
exp_id_set = mkVarSet exp_ids -- of the indirection-elimination
no_need_to_flatten = all (null . specInfoRules . idSpecialisation) exp_ids
binds' = concatMap zap binds
zap (NonRec bndr rhs) = [NonRec b r | (b,r) <- zapPair (bndr,rhs)]
zap (Rec pairs) = [Rec (concatMap zapPair pairs)]
zapPair (bndr, rhs)
| bndr `elemVarSet` exp_id_set = []
| Just exp_id <- lookupVarEnv ind_env bndr = [(transferIdInfo exp_id bndr, rhs),
(bndr, Var exp_id)]
| otherwise = [(bndr,rhs)]
makeIndEnv :: [CoreBind] -> IndEnv
makeIndEnv binds
= foldr add_bind emptyVarEnv binds
where
add_bind :: CoreBind -> IndEnv -> IndEnv
add_bind (NonRec exported_id rhs) env = add_pair (exported_id, rhs) env
add_bind (Rec pairs) env = foldr add_pair env pairs
add_pair :: (Id,CoreExpr) -> IndEnv -> IndEnv
add_pair (exported_id, Var local_id) env
| shortMeOut env exported_id local_id = extendVarEnv env local_id exported_id
add_pair _ env = env
-----------------
shortMeOut :: IndEnv -> Id -> Id -> Bool
shortMeOut ind_env exported_id local_id
-- The if-then-else stuff is just so I can get a pprTrace to see
-- how often I don't get shorting out becuase of IdInfo stuff
= if isExportedId exported_id && -- Only if this is exported
isLocalId local_id && -- Only if this one is defined in this
-- module, so that we *can* change its
-- binding to be the exported thing!
not (isExportedId local_id) && -- Only if this one is not itself exported,
-- since the transformation will nuke it
not (local_id `elemVarEnv` ind_env) -- Only if not already substituted for
then
if hasShortableIdInfo exported_id
then True -- See Note [Messing up the exported Id's IdInfo]
else WARN( True, ptext (sLit "Not shorting out:") <+> ppr exported_id )
False
else
False
-----------------
hasShortableIdInfo :: Id -> Bool
-- True if there is no user-attached IdInfo on exported_id,
-- so we can safely discard it
-- See Note [Messing up the exported Id's IdInfo]
hasShortableIdInfo id
= isEmptySpecInfo (specInfo info)
&& isDefaultInlinePragma (inlinePragInfo info)
&& not (isStableUnfolding (unfoldingInfo info))
where
info = idInfo id
-----------------
transferIdInfo :: Id -> Id -> Id
-- See Note [Transferring IdInfo]
-- If we have
-- lcl_id = e; exp_id = lcl_id
-- and lcl_id has useful IdInfo, we don't want to discard it by going
-- gbl_id = e; lcl_id = gbl_id
-- Instead, transfer IdInfo from lcl_id to exp_id
-- Overwriting, rather than merging, seems to work ok.
transferIdInfo exported_id local_id
= modifyIdInfo transfer exported_id
where
local_info = idInfo local_id
transfer exp_info = exp_info `setStrictnessInfo` strictnessInfo local_info
`setUnfoldingInfo` unfoldingInfo local_info
`setInlinePragInfo` inlinePragInfo local_info
`setSpecInfo` addSpecInfo (specInfo exp_info) new_info
new_info = setSpecInfoHead (idName exported_id)
(specInfo local_info)
-- Remember to set the function-name field of the
-- rules as we transfer them from one function to another
\end{code}
|