summaryrefslogtreecommitdiff
path: root/compiler/simplCore/SimplEnv.lhs
blob: d8aec03b03fe3c2dd5d4fb799366039587e7dc3a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
%
% (c) The AQUA Project, Glasgow University, 1993-1998
%
\section[SimplMonad]{The simplifier Monad}

\begin{code}
{-# LANGUAGE CPP #-}

module SimplEnv (
        InId, InBind, InExpr, InAlt, InArg, InType, InBndr, InVar,
        OutId, OutTyVar, OutBind, OutExpr, OutAlt, OutArg, OutType, OutBndr, OutVar,
        InCoercion, OutCoercion,

        -- The simplifier mode
        setMode, getMode, updMode,

        -- Environments
        SimplEnv(..), StaticEnv, pprSimplEnv,   -- Temp not abstract
        mkSimplEnv, extendIdSubst, SimplEnv.extendTvSubst, SimplEnv.extendCvSubst,
        zapSubstEnv, setSubstEnv,
        getInScope, setInScope, setInScopeSet, modifyInScope, addNewInScopeIds,
        getSimplRules,

        SimplSR(..), mkContEx, substId, lookupRecBndr,

        simplNonRecBndr, simplRecBndrs, simplLamBndr, simplLamBndrs,
        simplBinder, simplBinders, addBndrRules,
        substExpr, substTy, substTyVar, getTvSubst,
        getCvSubst, substCo, substCoVar,
        mkCoreSubst,

        -- Floats
        Floats, emptyFloats, isEmptyFloats, addNonRec, addFloats, extendFloats,
        wrapFloats, setFloats, zapFloats, addRecFloats,
        doFloatFromRhs, getFloatBinds
    ) where

#include "HsVersions.h"

import SimplMonad
import CoreMonad        ( SimplifierMode(..) )
import IdInfo
import CoreSyn
import CoreUtils
import Var
import VarEnv
import VarSet
import OrdList
import Id
import MkCore                   ( mkWildValBinder )
import TysWiredIn
import qualified CoreSubst
import qualified Type
import Type hiding              ( substTy, substTyVarBndr, substTyVar )
import qualified Coercion
import Coercion hiding          ( substCo, substTy, substCoVar, substCoVarBndr, substTyVarBndr )
import BasicTypes
import MonadUtils
import Outputable
import FastString
import Util

import Data.List
\end{code}

%************************************************************************
%*                                                                      *
\subsection[Simplify-types]{Type declarations}
%*                                                                      *
%************************************************************************

\begin{code}
type InBndr     = CoreBndr
type InVar      = Var                   -- Not yet cloned
type InId       = Id                    -- Not yet cloned
type InType     = Type                  -- Ditto
type InBind     = CoreBind
type InExpr     = CoreExpr
type InAlt      = CoreAlt
type InArg      = CoreArg
type InCoercion = Coercion

type OutBndr     = CoreBndr
type OutVar      = Var                  -- Cloned
type OutId       = Id                   -- Cloned
type OutTyVar    = TyVar                -- Cloned
type OutType     = Type                 -- Cloned
type OutCoercion = Coercion
type OutBind     = CoreBind
type OutExpr     = CoreExpr
type OutAlt      = CoreAlt
type OutArg      = CoreArg
\end{code}

%************************************************************************
%*                                                                      *
\subsubsection{The @SimplEnv@ type}
%*                                                                      *
%************************************************************************


\begin{code}
data SimplEnv
  = SimplEnv {
     ----------- Static part of the environment -----------
     -- Static in the sense of lexically scoped,
     -- wrt the original expression

        seMode      :: SimplifierMode,

        -- The current substitution
        seTvSubst   :: TvSubstEnv,      -- InTyVar |--> OutType
        seCvSubst   :: CvSubstEnv,      -- InCoVar |--> OutCoercion
        seIdSubst   :: SimplIdSubst,    -- InId    |--> OutExpr

     ----------- Dynamic part of the environment -----------
     -- Dynamic in the sense of describing the setup where
     -- the expression finally ends up

        -- The current set of in-scope variables
        -- They are all OutVars, and all bound in this module
        seInScope   :: InScopeSet,      -- OutVars only
                -- Includes all variables bound by seFloats
        seFloats    :: Floats
                -- See Note [Simplifier floats]
    }

type StaticEnv = SimplEnv       -- Just the static part is relevant

pprSimplEnv :: SimplEnv -> SDoc
-- Used for debugging; selective
pprSimplEnv env
  = vcat [ptext (sLit "TvSubst:") <+> ppr (seTvSubst env),
          ptext (sLit "IdSubst:") <+> ppr (seIdSubst env),
          ptext (sLit "InScope:") <+> vcat (map ppr_one in_scope_vars)
    ]
  where
   in_scope_vars = varEnvElts (getInScopeVars (seInScope env))
   ppr_one v | isId v = ppr v <+> ppr (idUnfolding v)
             | otherwise = ppr v

type SimplIdSubst = IdEnv SimplSR       -- IdId |--> OutExpr
        -- See Note [Extending the Subst] in CoreSubst

data SimplSR
  = DoneEx OutExpr              -- Completed term
  | DoneId OutId                -- Completed term variable
  | ContEx TvSubstEnv           -- A suspended substitution
           CvSubstEnv
           SimplIdSubst
           InExpr

instance Outputable SimplSR where
  ppr (DoneEx e) = ptext (sLit "DoneEx") <+> ppr e
  ppr (DoneId v) = ptext (sLit "DoneId") <+> ppr v
  ppr (ContEx _tv _cv _id e) = vcat [ptext (sLit "ContEx") <+> ppr e {-,
                                ppr (filter_env tv), ppr (filter_env id) -}]
        -- where
        -- fvs = exprFreeVars e
        -- filter_env env = filterVarEnv_Directly keep env
        -- keep uniq _ = uniq `elemUFM_Directly` fvs
\end{code}

Note [SimplEnv invariants]
~~~~~~~~~~~~~~~~~~~~~~~~~~
seInScope:
        The in-scope part of Subst includes *all* in-scope TyVars and Ids
        The elements of the set may have better IdInfo than the
        occurrences of in-scope Ids, and (more important) they will
        have a correctly-substituted type.  So we use a lookup in this
        set to replace occurrences

        The Ids in the InScopeSet are replete with their Rules,
        and as we gather info about the unfolding of an Id, we replace
        it in the in-scope set.

        The in-scope set is actually a mapping OutVar -> OutVar, and
        in case expressions we sometimes bind

seIdSubst:
        The substitution is *apply-once* only, because InIds and OutIds
        can overlap.
        For example, we generally omit mappings
                a77 -> a77
        from the substitution, when we decide not to clone a77, but it's quite
        legitimate to put the mapping in the substitution anyway.

        Furthermore, consider
                let x = case k of I# x77 -> ... in
                let y = case k of I# x77 -> ... in ...
        and suppose the body is strict in both x and y.  Then the simplifier
        will pull the first (case k) to the top; so the second (case k) will
        cancel out, mapping x77 to, well, x77!  But one is an in-Id and the
        other is an out-Id.

        Of course, the substitution *must* applied! Things in its domain
        simply aren't necessarily bound in the result.

* substId adds a binding (DoneId new_id) to the substitution if
        the Id's unique has changed

  Note, though that the substitution isn't necessarily extended
  if the type of the Id changes.  Why not?  Because of the next point:

* We *always, always* finish by looking up in the in-scope set
  any variable that doesn't get a DoneEx or DoneVar hit in the substitution.
  Reason: so that we never finish up with a "old" Id in the result.
  An old Id might point to an old unfolding and so on... which gives a space
  leak.

  [The DoneEx and DoneVar hits map to "new" stuff.]

* It follows that substExpr must not do a no-op if the substitution is empty.
  substType is free to do so, however.

* When we come to a let-binding (say) we generate new IdInfo, including an
  unfolding, attach it to the binder, and add this newly adorned binder to
  the in-scope set.  So all subsequent occurrences of the binder will get
  mapped to the full-adorned binder, which is also the one put in the
  binding site.

* The in-scope "set" usually maps x->x; we use it simply for its domain.
  But sometimes we have two in-scope Ids that are synomyms, and should
  map to the same target:  x->x, y->x.  Notably:
        case y of x { ... }
  That's why the "set" is actually a VarEnv Var


\begin{code}
mkSimplEnv :: SimplifierMode -> SimplEnv
mkSimplEnv mode
  = SimplEnv { seMode = mode
             , seInScope = init_in_scope
             , seFloats = emptyFloats
             , seTvSubst = emptyVarEnv
             , seCvSubst = emptyVarEnv
             , seIdSubst = emptyVarEnv }
        -- The top level "enclosing CC" is "SUBSUMED".

init_in_scope :: InScopeSet
init_in_scope = mkInScopeSet (unitVarSet (mkWildValBinder unitTy))
              -- See Note [WildCard binders]
\end{code}

Note [WildCard binders]
~~~~~~~~~~~~~~~~~~~~~~~
The program to be simplified may have wild binders
    case e of wild { p -> ... }
We want to *rename* them away, so that there are no
occurrences of 'wild-id' (with wildCardKey).  The easy
way to do that is to start of with a representative
Id in the in-scope set

There can be be *occurrences* of wild-id.  For example,
MkCore.mkCoreApp transforms
   e (a /# b)   -->   case (a /# b) of wild { DEFAULT -> e wild }
This is ok provided 'wild' isn't free in 'e', and that's the delicate
thing. Generally, you want to run the simplifier to get rid of the
wild-ids before doing much else.

It's a very dark corner of GHC.  Maybe it should be cleaned up.

\begin{code}
getMode :: SimplEnv -> SimplifierMode
getMode env = seMode env

setMode :: SimplifierMode -> SimplEnv -> SimplEnv
setMode mode env = env { seMode = mode }

updMode :: (SimplifierMode -> SimplifierMode) -> SimplEnv -> SimplEnv
updMode upd env = env { seMode = upd (seMode env) }

---------------------
extendIdSubst :: SimplEnv -> Id -> SimplSR -> SimplEnv
extendIdSubst env@(SimplEnv {seIdSubst = subst}) var res
  = ASSERT2( isId var && not (isCoVar var), ppr var )
    env {seIdSubst = extendVarEnv subst var res}

extendTvSubst :: SimplEnv -> TyVar -> Type -> SimplEnv
extendTvSubst env@(SimplEnv {seTvSubst = subst}) var res
  = env {seTvSubst = extendVarEnv subst var res}

extendCvSubst :: SimplEnv -> CoVar -> Coercion -> SimplEnv
extendCvSubst env@(SimplEnv {seCvSubst = subst}) var res
  = env {seCvSubst = extendVarEnv subst var res}

---------------------
getInScope :: SimplEnv -> InScopeSet
getInScope env = seInScope env

setInScopeSet :: SimplEnv -> InScopeSet -> SimplEnv
setInScopeSet env in_scope = env {seInScope = in_scope}

setInScope :: SimplEnv -> SimplEnv -> SimplEnv
-- Set the in-scope set, and *zap* the floats
setInScope env env_with_scope
  = env { seInScope = seInScope env_with_scope,
          seFloats = emptyFloats }

setFloats :: SimplEnv -> SimplEnv -> SimplEnv
-- Set the in-scope set *and* the floats
setFloats env env_with_floats
  = env { seInScope = seInScope env_with_floats,
          seFloats  = seFloats  env_with_floats }

addNewInScopeIds :: SimplEnv -> [CoreBndr] -> SimplEnv
        -- The new Ids are guaranteed to be freshly allocated
addNewInScopeIds env@(SimplEnv { seInScope = in_scope, seIdSubst = id_subst }) vs
  = env { seInScope = in_scope `extendInScopeSetList` vs,
          seIdSubst = id_subst `delVarEnvList` vs }
        -- Why delete?  Consider
        --      let x = a*b in (x, \x -> x+3)
        -- We add [x |-> a*b] to the substitution, but we must
        -- _delete_ it from the substitution when going inside
        -- the (\x -> ...)!

modifyInScope :: SimplEnv -> CoreBndr -> SimplEnv
-- The variable should already be in scope, but
-- replace the existing version with this new one
-- which has more information
modifyInScope env@(SimplEnv {seInScope = in_scope}) v
  = env {seInScope = extendInScopeSet in_scope v}

---------------------
zapSubstEnv :: SimplEnv -> SimplEnv
zapSubstEnv env = env {seTvSubst = emptyVarEnv, seCvSubst = emptyVarEnv, seIdSubst = emptyVarEnv}

setSubstEnv :: SimplEnv -> TvSubstEnv -> CvSubstEnv -> SimplIdSubst -> SimplEnv
setSubstEnv env tvs cvs ids = env { seTvSubst = tvs, seCvSubst = cvs, seIdSubst = ids }

mkContEx :: SimplEnv -> InExpr -> SimplSR
mkContEx (SimplEnv { seTvSubst = tvs, seCvSubst = cvs, seIdSubst = ids }) e = ContEx tvs cvs ids e
\end{code}



%************************************************************************
%*                                                                      *
\subsection{Floats}
%*                                                                      *
%************************************************************************

Note [Simplifier floats]
~~~~~~~~~~~~~~~~~~~~~~~~~
The Floats is a bunch of bindings, classified by a FloatFlag.

* All of them satisfy the let/app invariant

Examples

  NonRec x (y:ys)       FltLifted
  Rec [(x,rhs)]         FltLifted

  NonRec x* (p:q)       FltOKSpec   -- RHS is WHNF.  Question: why not FltLifted?
  NonRec x# (y +# 3)    FltOkSpec   -- Unboxed, but ok-for-spec'n

  NonRec x* (f y)       FltCareful  -- Strict binding; might fail or diverge

Can't happen:
  NonRec x# (a /# b)    -- Might fail; does not satisfy let/app
  NonRec x# (f y)       -- Might diverge; does not satisfy let/app

\begin{code}
data Floats = Floats (OrdList OutBind) FloatFlag
        -- See Note [Simplifier floats]

data FloatFlag
  = FltLifted   -- All bindings are lifted and lazy
                --  Hence ok to float to top level, or recursive

  | FltOkSpec   -- All bindings are FltLifted *or*
                --      strict (perhaps because unlifted,
                --      perhaps because of a strict binder),
                --        *and* ok-for-speculation
                --  Hence ok to float out of the RHS
                --  of a lazy non-recursive let binding
                --  (but not to top level, or into a rec group)

  | FltCareful  -- At least one binding is strict (or unlifted)
                --      and not guaranteed cheap
                --      Do not float these bindings out of a lazy let

instance Outputable Floats where
  ppr (Floats binds ff) = ppr ff $$ ppr (fromOL binds)

instance Outputable FloatFlag where
  ppr FltLifted = ptext (sLit "FltLifted")
  ppr FltOkSpec = ptext (sLit "FltOkSpec")
  ppr FltCareful = ptext (sLit "FltCareful")

andFF :: FloatFlag -> FloatFlag -> FloatFlag
andFF FltCareful _          = FltCareful
andFF FltOkSpec  FltCareful = FltCareful
andFF FltOkSpec  _          = FltOkSpec
andFF FltLifted  flt        = flt

doFloatFromRhs :: TopLevelFlag -> RecFlag -> Bool -> OutExpr -> SimplEnv -> Bool
-- If you change this function look also at FloatIn.noFloatFromRhs
doFloatFromRhs lvl rec str rhs (SimplEnv {seFloats = Floats fs ff})
  =  not (isNilOL fs) && want_to_float && can_float
  where
     want_to_float = isTopLevel lvl || exprIsCheap rhs || exprIsExpandable rhs 
                     -- See Note [Float when cheap or expandable]
     can_float = case ff of
                   FltLifted  -> True
                   FltOkSpec  -> isNotTopLevel lvl && isNonRec rec
                   FltCareful -> isNotTopLevel lvl && isNonRec rec && str
\end{code}

Note [Float when cheap or expandable]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We want to float a let from a let if the residual RHS is
   a) cheap, such as (\x. blah)
   b) expandable, such as (f b) if f is CONLIKE
But there are 
  - cheap things that are not expandable (eg \x. expensive)
  - expandable things that are not cheap (eg (f b) where b is CONLIKE)
so we must take the 'or' of the two.

\begin{code}
emptyFloats :: Floats
emptyFloats = Floats nilOL FltLifted

unitFloat :: OutBind -> Floats
-- This key function constructs a singleton float with the right form
unitFloat bind = Floats (unitOL bind) (flag bind)
  where
    flag (Rec {})                = FltLifted
    flag (NonRec bndr rhs)
      | not (isStrictId bndr)    = FltLifted
      | exprOkForSpeculation rhs = FltOkSpec  -- Unlifted, and lifted but ok-for-spec (eg HNF)
      | otherwise                = ASSERT2( not (isUnLiftedType (idType bndr)), ppr bndr )
                                   FltCareful
      -- Unlifted binders can only be let-bound if exprOkForSpeculation holds

addNonRec :: SimplEnv -> OutId -> OutExpr -> SimplEnv
-- Add a non-recursive binding and extend the in-scope set
-- The latter is important; the binder may already be in the
-- in-scope set (although it might also have been created with newId)
-- but it may now have more IdInfo
addNonRec env id rhs
  = id `seq`   -- This seq forces the Id, and hence its IdInfo,
               -- and hence any inner substitutions
    env { seFloats = seFloats env `addFlts` unitFloat (NonRec id rhs),
          seInScope = extendInScopeSet (seInScope env) id }

extendFloats :: SimplEnv -> OutBind -> SimplEnv
-- Add these bindings to the floats, and extend the in-scope env too
extendFloats env bind
  = env { seFloats  = seFloats env `addFlts` unitFloat bind,
          seInScope = extendInScopeSetList (seInScope env) bndrs }
  where
    bndrs = bindersOf bind

addFloats :: SimplEnv -> SimplEnv -> SimplEnv
-- Add the floats for env2 to env1;
-- *plus* the in-scope set for env2, which is bigger
-- than that for env1
addFloats env1 env2
  = env1 {seFloats = seFloats env1 `addFlts` seFloats env2,
          seInScope = seInScope env2 }

addFlts :: Floats -> Floats -> Floats
addFlts (Floats bs1 l1) (Floats bs2 l2)
  = Floats (bs1 `appOL` bs2) (l1 `andFF` l2)

zapFloats :: SimplEnv -> SimplEnv
zapFloats env = env { seFloats = emptyFloats }

addRecFloats :: SimplEnv -> SimplEnv -> SimplEnv
-- Flattens the floats from env2 into a single Rec group,
-- prepends the floats from env1, and puts the result back in env2
-- This is all very specific to the way recursive bindings are
-- handled; see Simplify.simplRecBind
addRecFloats env1 env2@(SimplEnv {seFloats = Floats bs ff})
  = ASSERT2( case ff of { FltLifted -> True; _ -> False }, ppr (fromOL bs) )
    env2 {seFloats = seFloats env1 `addFlts` unitFloat (Rec (flattenBinds (fromOL bs)))}

wrapFloats :: SimplEnv -> OutExpr -> OutExpr
-- Wrap the floats around the expression; they should all
-- satisfy the let/app invariant, so mkLets should do the job just fine
wrapFloats (SimplEnv {seFloats = Floats bs _}) body
  = foldrOL Let body bs

getFloatBinds :: SimplEnv -> [CoreBind]
getFloatBinds (SimplEnv {seFloats = Floats bs _})
  = fromOL bs

isEmptyFloats :: SimplEnv -> Bool
isEmptyFloats (SimplEnv {seFloats = Floats bs _})
  = isNilOL bs
\end{code}

-- mapFloats commented out: used only in a commented-out bit of Simplify,
-- concerning ticks
--
-- mapFloats :: SimplEnv -> ((Id,CoreExpr) -> (Id,CoreExpr)) -> SimplEnv
-- mapFloats env@SimplEnv { seFloats = Floats fs ff } fun
--    = env { seFloats = Floats (mapOL app fs) ff }
--    where
--     app (NonRec b e) = case fun (b,e) of (b',e') -> NonRec b' e'
--     app (Rec bs)     = Rec (map fun bs)


%************************************************************************
%*                                                                      *
                Substitution of Vars
%*                                                                      *
%************************************************************************

Note [Global Ids in the substitution]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We look up even a global (eg imported) Id in the substitution. Consider
   case X.g_34 of b { (a,b) ->  ... case X.g_34 of { (p,q) -> ...} ... }
The binder-swap in the occurrence analyser will add a binding
for a LocalId version of g (with the same unique though):
   case X.g_34 of b { (a,b) ->  let g_34 = b in
                                ... case X.g_34 of { (p,q) -> ...} ... }
So we want to look up the inner X.g_34 in the substitution, where we'll
find that it has been substituted by b.  (Or conceivably cloned.)

\begin{code}
substId :: SimplEnv -> InId -> SimplSR
-- Returns DoneEx only on a non-Var expression
substId (SimplEnv { seInScope = in_scope, seIdSubst = ids }) v
  = case lookupVarEnv ids v of  -- Note [Global Ids in the substitution]
        Nothing               -> DoneId (refine in_scope v)
        Just (DoneId v)       -> DoneId (refine in_scope v)
        Just (DoneEx (Var v)) -> DoneId (refine in_scope v)
        Just res              -> res    -- DoneEx non-var, or ContEx

        -- Get the most up-to-date thing from the in-scope set
        -- Even though it isn't in the substitution, it may be in
        -- the in-scope set with better IdInfo
refine :: InScopeSet -> Var -> Var
refine in_scope v
  | isLocalId v = case lookupInScope in_scope v of
                  Just v' -> v'
                  Nothing -> WARN( True, ppr v ) v  -- This is an error!
  | otherwise = v

lookupRecBndr :: SimplEnv -> InId -> OutId
-- Look up an Id which has been put into the envt by simplRecBndrs,
-- but where we have not yet done its RHS
lookupRecBndr (SimplEnv { seInScope = in_scope, seIdSubst = ids }) v
  = case lookupVarEnv ids v of
        Just (DoneId v) -> v
        Just _ -> pprPanic "lookupRecBndr" (ppr v)
        Nothing -> refine in_scope v
\end{code}


%************************************************************************
%*                                                                      *
\section{Substituting an Id binder}
%*                                                                      *
%************************************************************************


These functions are in the monad only so that they can be made strict via seq.

\begin{code}
simplBinders, simplLamBndrs
        :: SimplEnv -> [InBndr] -> SimplM (SimplEnv, [OutBndr])
simplBinders  env bndrs = mapAccumLM simplBinder  env bndrs
simplLamBndrs env bndrs = mapAccumLM simplLamBndr env bndrs

-------------
simplBinder :: SimplEnv -> InBndr -> SimplM (SimplEnv, OutBndr)
-- Used for lambda and case-bound variables
-- Clone Id if necessary, substitute type
-- Return with IdInfo already substituted, but (fragile) occurrence info zapped
-- The substitution is extended only if the variable is cloned, because
-- we *don't* need to use it to track occurrence info.
simplBinder env bndr
  | isTyVar bndr  = do  { let (env', tv) = substTyVarBndr env bndr
                        ; seqTyVar tv `seq` return (env', tv) }
  | otherwise     = do  { let (env', id) = substIdBndr env bndr
                        ; seqId id `seq` return (env', id) }

-------------
simplLamBndr :: SimplEnv -> Var -> SimplM (SimplEnv, Var)
-- Used for lambda binders.  These sometimes have unfoldings added by
-- the worker/wrapper pass that must be preserved, because they can't
-- be reconstructed from context.  For example:
--      f x = case x of (a,b) -> fw a b x
--      fw a b x{=(a,b)} = ...
-- The "{=(a,b)}" is an unfolding we can't reconstruct otherwise.
simplLamBndr env bndr
  | isId bndr && hasSomeUnfolding old_unf = seqId id2 `seq` return (env2, id2)  -- Special case
  | otherwise                             = simplBinder env bndr                -- Normal case
  where
    old_unf = idUnfolding bndr
    (env1, id1) = substIdBndr env bndr
    id2  = id1 `setIdUnfolding` substUnfolding env old_unf
    env2 = modifyInScope env1 id2

---------------
simplNonRecBndr :: SimplEnv -> InBndr -> SimplM (SimplEnv, OutBndr)
-- A non-recursive let binder
simplNonRecBndr env id
  = do  { let (env1, id1) = substIdBndr env id
        ; seqId id1 `seq` return (env1, id1) }

---------------
simplRecBndrs :: SimplEnv -> [InBndr] -> SimplM SimplEnv
-- Recursive let binders
simplRecBndrs env@(SimplEnv {}) ids
  = do  { let (env1, ids1) = mapAccumL substIdBndr env ids
        ; seqIds ids1 `seq` return env1 }

---------------
substIdBndr :: SimplEnv -> InBndr -> (SimplEnv, OutBndr)
-- Might be a coercion variable
substIdBndr env bndr
  | isCoVar bndr  = substCoVarBndr env bndr
  | otherwise     = substNonCoVarIdBndr env bndr

---------------
substNonCoVarIdBndr
   :: SimplEnv
   -> InBndr    -- Env and binder to transform
   -> (SimplEnv, OutBndr)
-- Clone Id if necessary, substitute its type
-- Return an Id with its
--      * Type substituted
--      * UnfoldingInfo, Rules, WorkerInfo zapped
--      * Fragile OccInfo (only) zapped: Note [Robust OccInfo]
--      * Robust info, retained especially arity and demand info,
--         so that they are available to occurrences that occur in an
--         earlier binding of a letrec
--
-- For the robust info, see Note [Arity robustness]
--
-- Augment the substitution  if the unique changed
-- Extend the in-scope set with the new Id
--
-- Similar to CoreSubst.substIdBndr, except that
--      the type of id_subst differs
--      all fragile info is zapped
substNonCoVarIdBndr env@(SimplEnv { seInScope = in_scope, seIdSubst = id_subst })
                    old_id
  = ASSERT2( not (isCoVar old_id), ppr old_id )
    (env { seInScope = in_scope `extendInScopeSet` new_id,
           seIdSubst = new_subst }, new_id)
  where
    id1    = uniqAway in_scope old_id
    id2    = substIdType env id1
    new_id = zapFragileIdInfo id2       -- Zaps rules, worker-info, unfolding
                                        -- and fragile OccInfo

        -- Extend the substitution if the unique has changed,
        -- or there's some useful occurrence information
        -- See the notes with substTyVarBndr for the delSubstEnv
    new_subst | new_id /= old_id
              = extendVarEnv id_subst old_id (DoneId new_id)
              | otherwise
              = delVarEnv id_subst old_id
\end{code}

\begin{code}
------------------------------------
seqTyVar :: TyVar -> ()
seqTyVar b = b `seq` ()

seqId :: Id -> ()
seqId id = seqType (idType id)  `seq`
           idInfo id            `seq`
           ()

seqIds :: [Id] -> ()
seqIds []       = ()
seqIds (id:ids) = seqId id `seq` seqIds ids
\end{code}


Note [Arity robustness]
~~~~~~~~~~~~~~~~~~~~~~~
We *do* transfer the arity from from the in_id of a let binding to the
out_id.  This is important, so that the arity of an Id is visible in
its own RHS.  For example:
        f = \x. ....g (\y. f y)....
We can eta-reduce the arg to g, because f is a value.  But that
needs to be visible.

This interacts with the 'state hack' too:
        f :: Bool -> IO Int
        f = \x. case x of
                  True  -> f y
                  False -> \s -> ...
Can we eta-expand f?  Only if we see that f has arity 1, and then we
take advantage of the 'state hack' on the result of
(f y) :: State# -> (State#, Int) to expand the arity one more.

There is a disadvantage though.  Making the arity visible in the RHS
allows us to eta-reduce
        f = \x -> f x
to
        f = f
which technically is not sound.   This is very much a corner case, so
I'm not worried about it.  Another idea is to ensure that f's arity
never decreases; its arity started as 1, and we should never eta-reduce
below that.


Note [Robust OccInfo]
~~~~~~~~~~~~~~~~~~~~~
It's important that we *do* retain the loop-breaker OccInfo, because
that's what stops the Id getting inlined infinitely, in the body of
the letrec.


Note [Rules in a letrec]
~~~~~~~~~~~~~~~~~~~~~~~~
After creating fresh binders for the binders of a letrec, we
substitute the RULES and add them back onto the binders; this is done
*before* processing any of the RHSs.  This is important.  Manuel found
cases where he really, really wanted a RULE for a recursive function
to apply in that function's own right-hand side.

See Note [Loop breaking and RULES] in OccAnal.


\begin{code}
addBndrRules :: SimplEnv -> InBndr -> OutBndr -> (SimplEnv, OutBndr)
-- Rules are added back into the bin
addBndrRules env in_id out_id
  | isEmptySpecInfo old_rules = (env, out_id)
  | otherwise = (modifyInScope env final_id, final_id)
  where
    subst     = mkCoreSubst (text "local rules") env
    old_rules = idSpecialisation in_id
    new_rules = CoreSubst.substSpec subst out_id old_rules
    final_id  = out_id `setIdSpecialisation` new_rules
\end{code}


%************************************************************************
%*                                                                      *
                Impedence matching to type substitution
%*                                                                      *
%************************************************************************

\begin{code}
getTvSubst :: SimplEnv -> TvSubst
getTvSubst (SimplEnv { seInScope = in_scope, seTvSubst = tv_env })
  = mkTvSubst in_scope tv_env

getCvSubst :: SimplEnv -> CvSubst
getCvSubst (SimplEnv { seInScope = in_scope, seTvSubst = tv_env, seCvSubst = cv_env })
  = CvSubst in_scope tv_env cv_env

substTy :: SimplEnv -> Type -> Type
substTy env ty = Type.substTy (getTvSubst env) ty

substTyVar :: SimplEnv -> TyVar -> Type
substTyVar env tv = Type.substTyVar (getTvSubst env) tv

substTyVarBndr :: SimplEnv -> TyVar -> (SimplEnv, TyVar)
substTyVarBndr env tv
  = case Type.substTyVarBndr (getTvSubst env) tv of
        (TvSubst in_scope' tv_env', tv')
           -> (env { seInScope = in_scope', seTvSubst = tv_env' }, tv')

substCoVar :: SimplEnv -> CoVar -> Coercion
substCoVar env tv = Coercion.substCoVar (getCvSubst env) tv

substCoVarBndr :: SimplEnv -> CoVar -> (SimplEnv, CoVar)
substCoVarBndr env cv
  = case Coercion.substCoVarBndr (getCvSubst env) cv of
        (CvSubst in_scope' tv_env' cv_env', cv')
           -> (env { seInScope = in_scope', seTvSubst = tv_env', seCvSubst = cv_env' }, cv')

substCo :: SimplEnv -> Coercion -> Coercion
substCo env co = Coercion.substCo (getCvSubst env) co

-- When substituting in rules etc we can get CoreSubst to do the work
-- But CoreSubst uses a simpler form of IdSubstEnv, so we must impedence-match
-- here.  I think the this will not usually result in a lot of work;
-- the substitutions are typically small, and laziness will avoid work in many cases.

mkCoreSubst  :: SDoc -> SimplEnv -> CoreSubst.Subst
mkCoreSubst doc (SimplEnv { seInScope = in_scope, seTvSubst = tv_env, seCvSubst = cv_env, seIdSubst = id_env })
  = mk_subst tv_env cv_env id_env
  where
    mk_subst tv_env cv_env id_env = CoreSubst.mkSubst in_scope tv_env cv_env (mapVarEnv fiddle id_env)

    fiddle (DoneEx e)          = e
    fiddle (DoneId v)          = Var v
    fiddle (ContEx tv cv id e) = CoreSubst.substExpr (text "mkCoreSubst" <+> doc) (mk_subst tv cv id) e
                                                -- Don't shortcut here

------------------
substIdType :: SimplEnv -> Id -> Id
substIdType (SimplEnv { seInScope = in_scope,  seTvSubst = tv_env }) id
  | isEmptyVarEnv tv_env || isEmptyVarSet (tyVarsOfType old_ty) = id
  | otherwise = Id.setIdType id (Type.substTy (TvSubst in_scope tv_env) old_ty)
                -- The tyVarsOfType is cheaper than it looks
                -- because we cache the free tyvars of the type
                -- in a Note in the id's type itself
  where
    old_ty = idType id

------------------
substExpr :: SDoc -> SimplEnv -> CoreExpr -> CoreExpr
substExpr doc env
  = CoreSubst.substExpr (text "SimplEnv.substExpr1" <+> doc)
                        (mkCoreSubst (text "SimplEnv.substExpr2" <+> doc) env)
  -- Do *not* short-cut in the case of an empty substitution
  -- See Note [SimplEnv invariants]

substUnfolding :: SimplEnv -> Unfolding -> Unfolding
substUnfolding env unf = CoreSubst.substUnfolding (mkCoreSubst (text "subst-unfolding") env) unf
  -- Do *not* short-cut in the case of an empty substitution
  -- See Note [SimplEnv invariants]
\end{code}