1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
|
{-
(c) The AQUA Project, Glasgow University, 1993-1998
\section[SimplUtils]{The simplifier utilities}
-}
{-# LANGUAGE CPP #-}
module SimplUtils (
-- Rebuilding
mkLam, mkCase, prepareAlts, tryEtaExpandRhs,
-- Inlining,
preInlineUnconditionally, postInlineUnconditionally,
activeUnfolding, activeRule,
getUnfoldingInRuleMatch,
simplEnvForGHCi, updModeForStableUnfoldings, updModeForRules,
-- The continuation type
SimplCont(..), DupFlag(..), StaticEnv,
isSimplified, contIsStop,
contIsDupable, contResultType, contHoleType,
contIsTrivial, contArgs,
countArgs,
mkBoringStop, mkRhsStop, mkLazyArgStop, contIsRhsOrArg,
interestingCallContext,
-- ArgInfo
ArgInfo(..), ArgSpec(..), mkArgInfo,
addValArgTo, addCastTo, addTyArgTo,
argInfoExpr, argInfoAppArgs, pushSimplifiedArgs,
abstractFloats,
-- Utilities
isExitJoinId
) where
#include "HsVersions.h"
import GhcPrelude
import SimplEnv
import CoreMonad ( SimplMode(..), Tick(..) )
import DynFlags
import CoreSyn
import qualified CoreSubst
import PprCore
import CoreFVs
import CoreUtils
import CoreArity
import CoreUnfold
import Name
import Id
import IdInfo
import Var
import Demand
import SimplMonad
import Type hiding( substTy )
import Coercion hiding( substCo )
import DataCon ( dataConWorkId, isNullaryRepDataCon )
import VarSet
import BasicTypes
import Util
import OrdList ( isNilOL )
import MonadUtils
import Outputable
import Pair
import PrelRules
import FastString ( fsLit )
import Control.Monad ( when )
import Data.List ( sortBy )
{-
************************************************************************
* *
The SimplCont and DupFlag types
* *
************************************************************************
A SimplCont allows the simplifier to traverse the expression in a
zipper-like fashion. The SimplCont represents the rest of the expression,
"above" the point of interest.
You can also think of a SimplCont as an "evaluation context", using
that term in the way it is used for operational semantics. This is the
way I usually think of it, For example you'll often see a syntax for
evaluation context looking like
C ::= [] | C e | case C of alts | C `cast` co
That's the kind of thing we are doing here, and I use that syntax in
the comments.
Key points:
* A SimplCont describes a *strict* context (just like
evaluation contexts do). E.g. Just [] is not a SimplCont
* A SimplCont describes a context that *does not* bind
any variables. E.g. \x. [] is not a SimplCont
-}
data SimplCont
= Stop -- Stop[e] = e
OutType -- Type of the <hole>
CallCtxt -- Tells if there is something interesting about
-- the context, and hence the inliner
-- should be a bit keener (see interestingCallContext)
-- Specifically:
-- This is an argument of a function that has RULES
-- Inlining the call might allow the rule to fire
-- Never ValAppCxt (use ApplyToVal instead)
-- or CaseCtxt (use Select instead)
| CastIt -- (CastIt co K)[e] = K[ e `cast` co ]
OutCoercion -- The coercion simplified
-- Invariant: never an identity coercion
SimplCont
| ApplyToVal -- (ApplyToVal arg K)[e] = K[ e arg ]
{ sc_dup :: DupFlag -- See Note [DupFlag invariants]
, sc_arg :: InExpr -- The argument,
, sc_env :: StaticEnv -- see Note [StaticEnv invariant]
, sc_cont :: SimplCont }
| ApplyToTy -- (ApplyToTy ty K)[e] = K[ e ty ]
{ sc_arg_ty :: OutType -- Argument type
, sc_hole_ty :: OutType -- Type of the function, presumably (forall a. blah)
-- See Note [The hole type in ApplyToTy]
, sc_cont :: SimplCont }
| Select -- (Select alts K)[e] = K[ case e of alts ]
{ sc_dup :: DupFlag -- See Note [DupFlag invariants]
, sc_bndr :: InId -- case binder
, sc_alts :: [InAlt] -- Alternatives
, sc_env :: StaticEnv -- See Note [StaticEnv invariant]
, sc_cont :: SimplCont }
-- The two strict forms have no DupFlag, because we never duplicate them
| StrictBind -- (StrictBind x xs b K)[e] = let x = e in K[\xs.b]
-- or, equivalently, = K[ (\x xs.b) e ]
{ sc_dup :: DupFlag -- See Note [DupFlag invariants]
, sc_bndr :: InId
, sc_bndrs :: [InBndr]
, sc_body :: InExpr
, sc_env :: StaticEnv -- See Note [StaticEnv invariant]
, sc_cont :: SimplCont }
| StrictArg -- (StrictArg (f e1 ..en) K)[e] = K[ f e1 .. en e ]
{ sc_dup :: DupFlag -- Always Simplified or OkToDup
, sc_fun :: ArgInfo -- Specifies f, e1..en, Whether f has rules, etc
-- plus strictness flags for *further* args
, sc_cci :: CallCtxt -- Whether *this* argument position is interesting
, sc_cont :: SimplCont }
| TickIt -- (TickIt t K)[e] = K[ tick t e ]
(Tickish Id) -- Tick tickish <hole>
SimplCont
type StaticEnv = SimplEnv -- Just the static part is relevant
data DupFlag = NoDup -- Unsimplified, might be big
| Simplified -- Simplified
| OkToDup -- Simplified and small
isSimplified :: DupFlag -> Bool
isSimplified NoDup = False
isSimplified _ = True -- Invariant: the subst-env is empty
perhapsSubstTy :: DupFlag -> StaticEnv -> Type -> Type
perhapsSubstTy dup env ty
| isSimplified dup = ty
| otherwise = substTy env ty
{- Note [StaticEnv invariant]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We pair up an InExpr or InAlts with a StaticEnv, which establishes the
lexical scope for that InExpr. When we simplify that InExpr/InAlts, we
use
- Its captured StaticEnv
- Overriding its InScopeSet with the larger one at the
simplification point.
Why override the InScopeSet? Example:
(let y = ey in f) ex
By the time we simplify ex, 'y' will be in scope.
However the InScopeSet in the StaticEnv is not irrelevant: it should
include all the free vars of applying the substitution to the InExpr.
Reason: contHoleType uses perhapsSubstTy to apply the substitution to
the expression, and that (rightly) gives ASSERT failures if the InScopeSet
isn't big enough.
Note [DupFlag invariants]
~~~~~~~~~~~~~~~~~~~~~~~~~
In both (ApplyToVal dup _ env k)
and (Select dup _ _ env k)
the following invariants hold
(a) if dup = OkToDup, then continuation k is also ok-to-dup
(b) if dup = OkToDup or Simplified, the subst-env is empty
(and and hence no need to re-simplify)
-}
instance Outputable DupFlag where
ppr OkToDup = text "ok"
ppr NoDup = text "nodup"
ppr Simplified = text "simpl"
instance Outputable SimplCont where
ppr (Stop ty interesting) = text "Stop" <> brackets (ppr interesting) <+> ppr ty
ppr (CastIt co cont ) = (text "CastIt" <+> pprOptCo co) $$ ppr cont
ppr (TickIt t cont) = (text "TickIt" <+> ppr t) $$ ppr cont
ppr (ApplyToTy { sc_arg_ty = ty, sc_cont = cont })
= (text "ApplyToTy" <+> pprParendType ty) $$ ppr cont
ppr (ApplyToVal { sc_arg = arg, sc_dup = dup, sc_cont = cont })
= (text "ApplyToVal" <+> ppr dup <+> pprParendExpr arg)
$$ ppr cont
ppr (StrictBind { sc_bndr = b, sc_cont = cont })
= (text "StrictBind" <+> ppr b) $$ ppr cont
ppr (StrictArg { sc_fun = ai, sc_cont = cont })
= (text "StrictArg" <+> ppr (ai_fun ai)) $$ ppr cont
ppr (Select { sc_dup = dup, sc_bndr = bndr, sc_alts = alts, sc_env = se, sc_cont = cont })
= (text "Select" <+> ppr dup <+> ppr bndr) $$
whenPprDebug (nest 2 $ vcat [ppr (seTvSubst se), ppr alts]) $$ ppr cont
{- Note [The hole type in ApplyToTy]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The sc_hole_ty field of ApplyToTy records the type of the "hole" in the
continuation. It is absolutely necessary to compute contHoleType, but it is
not used for anything else (and hence may not be evaluated).
Why is it necessary for contHoleType? Consider the continuation
ApplyToType Int (Stop Int)
corresponding to
(<hole> @Int) :: Int
What is the type of <hole>? It could be (forall a. Int) or (forall a. a),
and there is no way to know which, so we must record it.
In a chain of applications (f @t1 @t2 @t3) we'll lazily compute exprType
for (f @t1) and (f @t1 @t2), which is potentially non-linear; but it probably
doesn't matter because we'll never compute them all.
************************************************************************
* *
ArgInfo and ArgSpec
* *
************************************************************************
-}
data ArgInfo
= ArgInfo {
ai_fun :: OutId, -- The function
ai_args :: [ArgSpec], -- ...applied to these args (which are in *reverse* order)
ai_type :: OutType, -- Type of (f a1 ... an)
ai_rules :: FunRules, -- Rules for this function
ai_encl :: Bool, -- Flag saying whether this function
-- or an enclosing one has rules (recursively)
-- True => be keener to inline in all args
ai_strs :: [Bool], -- Strictness of remaining arguments
-- Usually infinite, but if it is finite it guarantees
-- that the function diverges after being given
-- that number of args
ai_discs :: [Int] -- Discounts for remaining arguments; non-zero => be keener to inline
-- Always infinite
}
data ArgSpec
= ValArg OutExpr -- Apply to this (coercion or value); c.f. ApplyToVal
| TyArg { as_arg_ty :: OutType -- Apply to this type; c.f. ApplyToTy
, as_hole_ty :: OutType } -- Type of the function (presumably forall a. blah)
| CastBy OutCoercion -- Cast by this; c.f. CastIt
instance Outputable ArgSpec where
ppr (ValArg e) = text "ValArg" <+> ppr e
ppr (TyArg { as_arg_ty = ty }) = text "TyArg" <+> ppr ty
ppr (CastBy c) = text "CastBy" <+> ppr c
addValArgTo :: ArgInfo -> OutExpr -> ArgInfo
addValArgTo ai arg = ai { ai_args = ValArg arg : ai_args ai
, ai_type = applyTypeToArg (ai_type ai) arg
, ai_rules = decRules (ai_rules ai) }
addTyArgTo :: ArgInfo -> OutType -> ArgInfo
addTyArgTo ai arg_ty = ai { ai_args = arg_spec : ai_args ai
, ai_type = piResultTy poly_fun_ty arg_ty
, ai_rules = decRules (ai_rules ai) }
where
poly_fun_ty = ai_type ai
arg_spec = TyArg { as_arg_ty = arg_ty, as_hole_ty = poly_fun_ty }
addCastTo :: ArgInfo -> OutCoercion -> ArgInfo
addCastTo ai co = ai { ai_args = CastBy co : ai_args ai
, ai_type = pSnd (coercionKind co) }
argInfoAppArgs :: [ArgSpec] -> [OutExpr]
argInfoAppArgs [] = []
argInfoAppArgs (CastBy {} : _) = [] -- Stop at a cast
argInfoAppArgs (ValArg e : as) = e : argInfoAppArgs as
argInfoAppArgs (TyArg { as_arg_ty = ty } : as) = Type ty : argInfoAppArgs as
pushSimplifiedArgs :: SimplEnv -> [ArgSpec] -> SimplCont -> SimplCont
pushSimplifiedArgs _env [] k = k
pushSimplifiedArgs env (arg : args) k
= case arg of
TyArg { as_arg_ty = arg_ty, as_hole_ty = hole_ty }
-> ApplyToTy { sc_arg_ty = arg_ty, sc_hole_ty = hole_ty, sc_cont = rest }
ValArg e -> ApplyToVal { sc_arg = e, sc_env = env, sc_dup = Simplified, sc_cont = rest }
CastBy c -> CastIt c rest
where
rest = pushSimplifiedArgs env args k
-- The env has an empty SubstEnv
argInfoExpr :: OutId -> [ArgSpec] -> OutExpr
-- NB: the [ArgSpec] is reversed so that the first arg
-- in the list is the last one in the application
argInfoExpr fun rev_args
= go rev_args
where
go [] = Var fun
go (ValArg a : as) = go as `App` a
go (TyArg { as_arg_ty = ty } : as) = go as `App` Type ty
go (CastBy co : as) = mkCast (go as) co
type FunRules = Maybe (Int, [CoreRule]) -- Remaining rules for this function
-- Nothing => No rules
-- Just (n, rules) => some rules, requiring at least n more type/value args
decRules :: FunRules -> FunRules
decRules (Just (n, rules)) = Just (n-1, rules)
decRules Nothing = Nothing
mkFunRules :: [CoreRule] -> FunRules
mkFunRules [] = Nothing
mkFunRules rs = Just (n_required, rs)
where
n_required = maximum (map ruleArity rs)
{-
************************************************************************
* *
Functions on SimplCont
* *
************************************************************************
-}
mkBoringStop :: OutType -> SimplCont
mkBoringStop ty = Stop ty BoringCtxt
mkRhsStop :: OutType -> SimplCont -- See Note [RHS of lets] in CoreUnfold
mkRhsStop ty = Stop ty RhsCtxt
mkLazyArgStop :: OutType -> CallCtxt -> SimplCont
mkLazyArgStop ty cci = Stop ty cci
-------------------
contIsRhsOrArg :: SimplCont -> Bool
contIsRhsOrArg (Stop {}) = True
contIsRhsOrArg (StrictBind {}) = True
contIsRhsOrArg (StrictArg {}) = True
contIsRhsOrArg _ = False
contIsRhs :: SimplCont -> Bool
contIsRhs (Stop _ RhsCtxt) = True
contIsRhs _ = False
-------------------
contIsStop :: SimplCont -> Bool
contIsStop (Stop {}) = True
contIsStop _ = False
contIsDupable :: SimplCont -> Bool
contIsDupable (Stop {}) = True
contIsDupable (ApplyToTy { sc_cont = k }) = contIsDupable k
contIsDupable (ApplyToVal { sc_dup = OkToDup }) = True -- See Note [DupFlag invariants]
contIsDupable (Select { sc_dup = OkToDup }) = True -- ...ditto...
contIsDupable (StrictArg { sc_dup = OkToDup }) = True -- ...ditto...
contIsDupable (CastIt _ k) = contIsDupable k
contIsDupable _ = False
-------------------
contIsTrivial :: SimplCont -> Bool
contIsTrivial (Stop {}) = True
contIsTrivial (ApplyToTy { sc_cont = k }) = contIsTrivial k
contIsTrivial (ApplyToVal { sc_arg = Coercion _, sc_cont = k }) = contIsTrivial k
contIsTrivial (CastIt _ k) = contIsTrivial k
contIsTrivial _ = False
-------------------
contResultType :: SimplCont -> OutType
contResultType (Stop ty _) = ty
contResultType (CastIt _ k) = contResultType k
contResultType (StrictBind { sc_cont = k }) = contResultType k
contResultType (StrictArg { sc_cont = k }) = contResultType k
contResultType (Select { sc_cont = k }) = contResultType k
contResultType (ApplyToTy { sc_cont = k }) = contResultType k
contResultType (ApplyToVal { sc_cont = k }) = contResultType k
contResultType (TickIt _ k) = contResultType k
contHoleType :: SimplCont -> OutType
contHoleType (Stop ty _) = ty
contHoleType (TickIt _ k) = contHoleType k
contHoleType (CastIt co _) = pFst (coercionKind co)
contHoleType (StrictBind { sc_bndr = b, sc_dup = dup, sc_env = se })
= perhapsSubstTy dup se (idType b)
contHoleType (StrictArg { sc_fun = ai }) = funArgTy (ai_type ai)
contHoleType (ApplyToTy { sc_hole_ty = ty }) = ty -- See Note [The hole type in ApplyToTy]
contHoleType (ApplyToVal { sc_arg = e, sc_env = se, sc_dup = dup, sc_cont = k })
= mkVisFunTy (perhapsSubstTy dup se (exprType e))
(contHoleType k)
contHoleType (Select { sc_dup = d, sc_bndr = b, sc_env = se })
= perhapsSubstTy d se (idType b)
-------------------
countArgs :: SimplCont -> Int
-- Count all arguments, including types, coercions, and other values
countArgs (ApplyToTy { sc_cont = cont }) = 1 + countArgs cont
countArgs (ApplyToVal { sc_cont = cont }) = 1 + countArgs cont
countArgs _ = 0
contArgs :: SimplCont -> (Bool, [ArgSummary], SimplCont)
-- Summarises value args, discards type args and coercions
-- The returned continuation of the call is only used to
-- answer questions like "are you interesting?"
contArgs cont
| lone cont = (True, [], cont)
| otherwise = go [] cont
where
lone (ApplyToTy {}) = False -- See Note [Lone variables] in CoreUnfold
lone (ApplyToVal {}) = False
lone (CastIt {}) = False
lone _ = True
go args (ApplyToVal { sc_arg = arg, sc_env = se, sc_cont = k })
= go (is_interesting arg se : args) k
go args (ApplyToTy { sc_cont = k }) = go args k
go args (CastIt _ k) = go args k
go args k = (False, reverse args, k)
is_interesting arg se = interestingArg se arg
-- Do *not* use short-cutting substitution here
-- because we want to get as much IdInfo as possible
-------------------
mkArgInfo :: SimplEnv
-> Id
-> [CoreRule] -- Rules for function
-> Int -- Number of value args
-> SimplCont -- Context of the call
-> ArgInfo
mkArgInfo env fun rules n_val_args call_cont
| n_val_args < idArity fun -- Note [Unsaturated functions]
= ArgInfo { ai_fun = fun, ai_args = [], ai_type = fun_ty
, ai_rules = fun_rules
, ai_encl = False
, ai_strs = vanilla_stricts
, ai_discs = vanilla_discounts }
| otherwise
= ArgInfo { ai_fun = fun, ai_args = [], ai_type = fun_ty
, ai_rules = fun_rules
, ai_encl = interestingArgContext rules call_cont
, ai_strs = arg_stricts
, ai_discs = arg_discounts }
where
fun_ty = idType fun
fun_rules = mkFunRules rules
vanilla_discounts, arg_discounts :: [Int]
vanilla_discounts = repeat 0
arg_discounts = case idUnfolding fun of
CoreUnfolding {uf_guidance = UnfIfGoodArgs {ug_args = discounts}}
-> discounts ++ vanilla_discounts
_ -> vanilla_discounts
vanilla_stricts, arg_stricts :: [Bool]
vanilla_stricts = repeat False
arg_stricts
| not (sm_inline (seMode env))
= vanilla_stricts -- See Note [Do not expose strictness if sm_inline=False]
| otherwise
= add_type_str fun_ty $
case splitStrictSig (idStrictness fun) of
(demands, result_info)
| not (demands `lengthExceeds` n_val_args)
-> -- Enough args, use the strictness given.
-- For bottoming functions we used to pretend that the arg
-- is lazy, so that we don't treat the arg as an
-- interesting context. This avoids substituting
-- top-level bindings for (say) strings into
-- calls to error. But now we are more careful about
-- inlining lone variables, so its ok (see SimplUtils.analyseCont)
if isBotRes result_info then
map isStrictDmd demands -- Finite => result is bottom
else
map isStrictDmd demands ++ vanilla_stricts
| otherwise
-> WARN( True, text "More demands than arity" <+> ppr fun <+> ppr (idArity fun)
<+> ppr n_val_args <+> ppr demands )
vanilla_stricts -- Not enough args, or no strictness
add_type_str :: Type -> [Bool] -> [Bool]
-- If the function arg types are strict, record that in the 'strictness bits'
-- No need to instantiate because unboxed types (which dominate the strict
-- types) can't instantiate type variables.
-- add_type_str is done repeatedly (for each call);
-- might be better once-for-all in the function
-- But beware primops/datacons with no strictness
add_type_str _ [] = []
add_type_str fun_ty all_strs@(str:strs)
| Just (arg_ty, fun_ty') <- splitFunTy_maybe fun_ty -- Add strict-type info
= (str || Just False == isLiftedType_maybe arg_ty)
: add_type_str fun_ty' strs
-- If the type is levity-polymorphic, we can't know whether it's
-- strict. isLiftedType_maybe will return Just False only when
-- we're sure the type is unlifted.
| Just (_, fun_ty') <- splitForAllTy_maybe fun_ty
= add_type_str fun_ty' all_strs -- Look through foralls
| otherwise
= all_strs
{- Note [Unsaturated functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider (test eyeball/inline4)
x = a:as
y = f x
where f has arity 2. Then we do not want to inline 'x', because
it'll just be floated out again. Even if f has lots of discounts
on its first argument -- it must be saturated for these to kick in
Note [Do not expose strictness if sm_inline=False]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#15163 showed a case in which we had
{-# INLINE [1] zip #-}
zip = undefined
{-# RULES "foo" forall as bs. stream (zip as bs) = ..blah... #-}
If we expose zip's bottoming nature when simplifing the LHS of the
RULE we get
{-# RULES "foo" forall as bs.
stream (case zip of {}) = ..blah... #-}
discarding the arguments to zip. Usually this is fine, but on the
LHS of a rule it's not, because 'as' and 'bs' are now not bound on
the LHS.
This is a pretty pathalogical example, so I'm not losing sleep over
it, but the simplest solution was to check sm_inline; if it is False,
which it is on the LHS of a rule (see updModeForRules), then don't
make use of the strictness info for the function.
-}
{-
************************************************************************
* *
Interesting arguments
* *
************************************************************************
Note [Interesting call context]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We want to avoid inlining an expression where there can't possibly be
any gain, such as in an argument position. Hence, if the continuation
is interesting (eg. a case scrutinee, application etc.) then we
inline, otherwise we don't.
Previously some_benefit used to return True only if the variable was
applied to some value arguments. This didn't work:
let x = _coerce_ (T Int) Int (I# 3) in
case _coerce_ Int (T Int) x of
I# y -> ....
we want to inline x, but can't see that it's a constructor in a case
scrutinee position, and some_benefit is False.
Another example:
dMonadST = _/\_ t -> :Monad (g1 _@_ t, g2 _@_ t, g3 _@_ t)
.... case dMonadST _@_ x0 of (a,b,c) -> ....
we'd really like to inline dMonadST here, but we *don't* want to
inline if the case expression is just
case x of y { DEFAULT -> ... }
since we can just eliminate this case instead (x is in WHNF). Similar
applies when x is bound to a lambda expression. Hence
contIsInteresting looks for case expressions with just a single
default case.
Note [No case of case is boring]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we see
case f x of <alts>
we'd usually treat the context as interesting, to encourage 'f' to
inline. But if case-of-case is off, it's really not so interesting
after all, because we are unlikely to be able to push the case
expression into the branches of any case in f's unfolding. So, to
reduce unnecessary code expansion, we just make the context look boring.
This made a small compile-time perf improvement in perf/compiler/T6048,
and it looks plausible to me.
-}
interestingCallContext :: SimplEnv -> SimplCont -> CallCtxt
-- See Note [Interesting call context]
interestingCallContext env cont
= interesting cont
where
interesting (Select {})
| sm_case_case (getMode env) = CaseCtxt
| otherwise = BoringCtxt
-- See Note [No case of case is boring]
interesting (ApplyToVal {}) = ValAppCtxt
-- Can happen if we have (f Int |> co) y
-- If f has an INLINE prag we need to give it some
-- motivation to inline. See Note [Cast then apply]
-- in CoreUnfold
interesting (StrictArg { sc_cci = cci }) = cci
interesting (StrictBind {}) = BoringCtxt
interesting (Stop _ cci) = cci
interesting (TickIt _ k) = interesting k
interesting (ApplyToTy { sc_cont = k }) = interesting k
interesting (CastIt _ k) = interesting k
-- If this call is the arg of a strict function, the context
-- is a bit interesting. If we inline here, we may get useful
-- evaluation information to avoid repeated evals: e.g.
-- x + (y * z)
-- Here the contIsInteresting makes the '*' keener to inline,
-- which in turn exposes a constructor which makes the '+' inline.
-- Assuming that +,* aren't small enough to inline regardless.
--
-- It's also very important to inline in a strict context for things
-- like
-- foldr k z (f x)
-- Here, the context of (f x) is strict, and if f's unfolding is
-- a build it's *great* to inline it here. So we must ensure that
-- the context for (f x) is not totally uninteresting.
interestingArgContext :: [CoreRule] -> SimplCont -> Bool
-- If the argument has form (f x y), where x,y are boring,
-- and f is marked INLINE, then we don't want to inline f.
-- But if the context of the argument is
-- g (f x y)
-- where g has rules, then we *do* want to inline f, in case it
-- exposes a rule that might fire. Similarly, if the context is
-- h (g (f x x))
-- where h has rules, then we do want to inline f; hence the
-- call_cont argument to interestingArgContext
--
-- The ai-rules flag makes this happen; if it's
-- set, the inliner gets just enough keener to inline f
-- regardless of how boring f's arguments are, if it's marked INLINE
--
-- The alternative would be to *always* inline an INLINE function,
-- regardless of how boring its context is; but that seems overkill
-- For example, it'd mean that wrapper functions were always inlined
--
-- The call_cont passed to interestingArgContext is the context of
-- the call itself, e.g. g <hole> in the example above
interestingArgContext rules call_cont
= notNull rules || enclosing_fn_has_rules
where
enclosing_fn_has_rules = go call_cont
go (Select {}) = False
go (ApplyToVal {}) = False -- Shouldn't really happen
go (ApplyToTy {}) = False -- Ditto
go (StrictArg { sc_cci = cci }) = interesting cci
go (StrictBind {}) = False -- ??
go (CastIt _ c) = go c
go (Stop _ cci) = interesting cci
go (TickIt _ c) = go c
interesting RuleArgCtxt = True
interesting _ = False
{- Note [Interesting arguments]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
An argument is interesting if it deserves a discount for unfoldings
with a discount in that argument position. The idea is to avoid
unfolding a function that is applied only to variables that have no
unfolding (i.e. they are probably lambda bound): f x y z There is
little point in inlining f here.
Generally, *values* (like (C a b) and (\x.e)) deserve discounts. But
we must look through lets, eg (let x = e in C a b), because the let will
float, exposing the value, if we inline. That makes it different to
exprIsHNF.
Before 2009 we said it was interesting if the argument had *any* structure
at all; i.e. (hasSomeUnfolding v). But does too much inlining; see #3016.
But we don't regard (f x y) as interesting, unless f is unsaturated.
If it's saturated and f hasn't inlined, then it's probably not going
to now!
Note [Conlike is interesting]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
f d = ...((*) d x y)...
... f (df d')...
where df is con-like. Then we'd really like to inline 'f' so that the
rule for (*) (df d) can fire. To do this
a) we give a discount for being an argument of a class-op (eg (*) d)
b) we say that a con-like argument (eg (df d)) is interesting
-}
interestingArg :: SimplEnv -> CoreExpr -> ArgSummary
-- See Note [Interesting arguments]
interestingArg env e = go env 0 e
where
-- n is # value args to which the expression is applied
go env n (Var v)
= case substId env v of
DoneId v' -> go_var n v'
DoneEx e _ -> go (zapSubstEnv env) n e
ContEx tvs cvs ids e -> go (setSubstEnv env tvs cvs ids) n e
go _ _ (Lit {}) = ValueArg
go _ _ (Type _) = TrivArg
go _ _ (Coercion _) = TrivArg
go env n (App fn (Type _)) = go env n fn
go env n (App fn _) = go env (n+1) fn
go env n (Tick _ a) = go env n a
go env n (Cast e _) = go env n e
go env n (Lam v e)
| isTyVar v = go env n e
| n>0 = NonTrivArg -- (\x.b) e is NonTriv
| otherwise = ValueArg
go _ _ (Case {}) = NonTrivArg
go env n (Let b e) = case go env' n e of
ValueArg -> ValueArg
_ -> NonTrivArg
where
env' = env `addNewInScopeIds` bindersOf b
go_var n v
| isConLikeId v = ValueArg -- Experimenting with 'conlike' rather that
-- data constructors here
| idArity v > n = ValueArg -- Catches (eg) primops with arity but no unfolding
| n > 0 = NonTrivArg -- Saturated or unknown call
| conlike_unfolding = ValueArg -- n==0; look for an interesting unfolding
-- See Note [Conlike is interesting]
| otherwise = TrivArg -- n==0, no useful unfolding
where
conlike_unfolding = isConLikeUnfolding (idUnfolding v)
{-
************************************************************************
* *
SimplMode
* *
************************************************************************
The SimplMode controls several switches; see its definition in
CoreMonad
sm_rules :: Bool -- Whether RULES are enabled
sm_inline :: Bool -- Whether inlining is enabled
sm_case_case :: Bool -- Whether case-of-case is enabled
sm_eta_expand :: Bool -- Whether eta-expansion is enabled
-}
simplEnvForGHCi :: DynFlags -> SimplEnv
simplEnvForGHCi dflags
= mkSimplEnv $ SimplMode { sm_names = ["GHCi"]
, sm_phase = InitialPhase
, sm_dflags = dflags
, sm_rules = rules_on
, sm_inline = False
, sm_eta_expand = eta_expand_on
, sm_case_case = True }
where
rules_on = gopt Opt_EnableRewriteRules dflags
eta_expand_on = gopt Opt_DoLambdaEtaExpansion dflags
-- Do not do any inlining, in case we expose some unboxed
-- tuple stuff that confuses the bytecode interpreter
updModeForStableUnfoldings :: Activation -> SimplMode -> SimplMode
-- See Note [Simplifying inside stable unfoldings]
updModeForStableUnfoldings inline_rule_act current_mode
= current_mode { sm_phase = phaseFromActivation inline_rule_act
, sm_inline = True
, sm_eta_expand = False }
-- sm_eta_expand: see Note [No eta expansion in stable unfoldings]
-- For sm_rules, just inherit; sm_rules might be "off"
-- because of -fno-enable-rewrite-rules
where
phaseFromActivation (ActiveAfter _ n) = Phase n
phaseFromActivation _ = InitialPhase
updModeForRules :: SimplMode -> SimplMode
-- See Note [Simplifying rules]
updModeForRules current_mode
= current_mode { sm_phase = InitialPhase
, sm_inline = False -- See Note [Do not expose strictness if sm_inline=False]
, sm_rules = False
, sm_eta_expand = False }
{- Note [Simplifying rules]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When simplifying a rule LHS, refrain from /any/ inlining or applying
of other RULES.
Doing anything to the LHS is plain confusing, because it means that what the
rule matches is not what the user wrote. c.f. #10595, and #10528.
Moreover, inlining (or applying rules) on rule LHSs risks introducing
Ticks into the LHS, which makes matching trickier. #10665, #10745.
Doing this to either side confounds tools like HERMIT, which seek to reason
about and apply the RULES as originally written. See #10829.
Note [No eta expansion in stable unfoldings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we have a stable unfolding
f :: Ord a => a -> IO ()
-- Unfolding template
-- = /\a \(d:Ord a) (x:a). bla
we do not want to eta-expand to
f :: Ord a => a -> IO ()
-- Unfolding template
-- = (/\a \(d:Ord a) (x:a) (eta:State#). bla eta) |> co
because not specialisation of the overloading doesn't work properly
(see Note [Specialisation shape] in Specialise), #9509.
So we disable eta-expansion in stable unfoldings.
Note [Inlining in gentle mode]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Something is inlined if
(i) the sm_inline flag is on, AND
(ii) the thing has an INLINE pragma, AND
(iii) the thing is inlinable in the earliest phase.
Example of why (iii) is important:
{-# INLINE [~1] g #-}
g = ...
{-# INLINE f #-}
f x = g (g x)
If we were to inline g into f's inlining, then an importing module would
never be able to do
f e --> g (g e) ---> RULE fires
because the stable unfolding for f has had g inlined into it.
On the other hand, it is bad not to do ANY inlining into an
stable unfolding, because then recursive knots in instance declarations
don't get unravelled.
However, *sometimes* SimplGently must do no call-site inlining at all
(hence sm_inline = False). Before full laziness we must be careful
not to inline wrappers, because doing so inhibits floating
e.g. ...(case f x of ...)...
==> ...(case (case x of I# x# -> fw x#) of ...)...
==> ...(case x of I# x# -> case fw x# of ...)...
and now the redex (f x) isn't floatable any more.
The no-inlining thing is also important for Template Haskell. You might be
compiling in one-shot mode with -O2; but when TH compiles a splice before
running it, we don't want to use -O2. Indeed, we don't want to inline
anything, because the byte-code interpreter might get confused about
unboxed tuples and suchlike.
Note [Simplifying inside stable unfoldings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We must take care with simplification inside stable unfoldings (which come from
INLINE pragmas).
First, consider the following example
let f = \pq -> BIG
in
let g = \y -> f y y
{-# INLINE g #-}
in ...g...g...g...g...g...
Now, if that's the ONLY occurrence of f, it might be inlined inside g,
and thence copied multiple times when g is inlined. HENCE we treat
any occurrence in a stable unfolding as a multiple occurrence, not a single
one; see OccurAnal.addRuleUsage.
Second, we do want *do* to some modest rules/inlining stuff in stable
unfoldings, partly to eliminate senseless crap, and partly to break
the recursive knots generated by instance declarations.
However, suppose we have
{-# INLINE <act> f #-}
f = <rhs>
meaning "inline f in phases p where activation <act>(p) holds".
Then what inlinings/rules can we apply to the copy of <rhs> captured in
f's stable unfolding? Our model is that literally <rhs> is substituted for
f when it is inlined. So our conservative plan (implemented by
updModeForStableUnfoldings) is this:
-------------------------------------------------------------
When simplifying the RHS of a stable unfolding, set the phase
to the phase in which the stable unfolding first becomes active
-------------------------------------------------------------
That ensures that
a) Rules/inlinings that *cease* being active before p will
not apply to the stable unfolding, consistent with it being
inlined in its *original* form in phase p.
b) Rules/inlinings that only become active *after* p will
not apply to the stable unfolding, again to be consistent with
inlining the *original* rhs in phase p.
For example,
{-# INLINE f #-}
f x = ...g...
{-# NOINLINE [1] g #-}
g y = ...
{-# RULE h g = ... #-}
Here we must not inline g into f's RHS, even when we get to phase 0,
because when f is later inlined into some other module we want the
rule for h to fire.
Similarly, consider
{-# INLINE f #-}
f x = ...g...
g y = ...
and suppose that there are auto-generated specialisations and a strictness
wrapper for g. The specialisations get activation AlwaysActive, and the
strictness wrapper get activation (ActiveAfter 0). So the strictness
wrepper fails the test and won't be inlined into f's stable unfolding. That
means f can inline, expose the specialised call to g, so the specialisation
rules can fire.
A note about wrappers
~~~~~~~~~~~~~~~~~~~~~
It's also important not to inline a worker back into a wrapper.
A wrapper looks like
wraper = inline_me (\x -> ...worker... )
Normally, the inline_me prevents the worker getting inlined into
the wrapper (initially, the worker's only call site!). But,
if the wrapper is sure to be called, the strictness analyser will
mark it 'demanded', so when the RHS is simplified, it'll get an ArgOf
continuation.
-}
activeUnfolding :: SimplMode -> Id -> Bool
activeUnfolding mode id
| isCompulsoryUnfolding (realIdUnfolding id)
= True -- Even sm_inline can't override compulsory unfoldings
| otherwise
= isActive (sm_phase mode) (idInlineActivation id)
&& sm_inline mode
-- `or` isStableUnfolding (realIdUnfolding id)
-- Inline things when
-- (a) they are active
-- (b) sm_inline says so, except that for stable unfoldings
-- (ie pragmas) we inline anyway
getUnfoldingInRuleMatch :: SimplEnv -> InScopeEnv
-- When matching in RULE, we want to "look through" an unfolding
-- (to see a constructor) if *rules* are on, even if *inlinings*
-- are not. A notable example is DFuns, which really we want to
-- match in rules like (op dfun) in gentle mode. Another example
-- is 'otherwise' which we want exprIsConApp_maybe to be able to
-- see very early on
getUnfoldingInRuleMatch env
= (in_scope, id_unf)
where
in_scope = seInScope env
mode = getMode env
id_unf id | unf_is_active id = idUnfolding id
| otherwise = NoUnfolding
unf_is_active id
| not (sm_rules mode) = -- active_unfolding_minimal id
isStableUnfolding (realIdUnfolding id)
-- Do we even need to test this? I think this InScopeEnv
-- is only consulted if activeRule returns True, which
-- never happens if sm_rules is False
| otherwise = isActive (sm_phase mode) (idInlineActivation id)
----------------------
activeRule :: SimplMode -> Activation -> Bool
-- Nothing => No rules at all
activeRule mode
| not (sm_rules mode) = \_ -> False -- Rewriting is off
| otherwise = isActive (sm_phase mode)
{-
************************************************************************
* *
preInlineUnconditionally
* *
************************************************************************
preInlineUnconditionally
~~~~~~~~~~~~~~~~~~~~~~~~
@preInlineUnconditionally@ examines a bndr to see if it is used just
once in a completely safe way, so that it is safe to discard the
binding inline its RHS at the (unique) usage site, REGARDLESS of how
big the RHS might be. If this is the case we don't simplify the RHS
first, but just inline it un-simplified.
This is much better than first simplifying a perhaps-huge RHS and then
inlining and re-simplifying it. Indeed, it can be at least quadratically
better. Consider
x1 = e1
x2 = e2[x1]
x3 = e3[x2]
...etc...
xN = eN[xN-1]
We may end up simplifying e1 N times, e2 N-1 times, e3 N-3 times etc.
This can happen with cascades of functions too:
f1 = \x1.e1
f2 = \xs.e2[f1]
f3 = \xs.e3[f3]
...etc...
THE MAIN INVARIANT is this:
---- preInlineUnconditionally invariant -----
IF preInlineUnconditionally chooses to inline x = <rhs>
THEN doing the inlining should not change the occurrence
info for the free vars of <rhs>
----------------------------------------------
For example, it's tempting to look at trivial binding like
x = y
and inline it unconditionally. But suppose x is used many times,
but this is the unique occurrence of y. Then inlining x would change
y's occurrence info, which breaks the invariant. It matters: y
might have a BIG rhs, which will now be dup'd at every occurrenc of x.
Even RHSs labelled InlineMe aren't caught here, because there might be
no benefit from inlining at the call site.
[Sept 01] Don't unconditionally inline a top-level thing, because that
can simply make a static thing into something built dynamically. E.g.
x = (a,b)
main = \s -> h x
[Remember that we treat \s as a one-shot lambda.] No point in
inlining x unless there is something interesting about the call site.
But watch out: if you aren't careful, some useful foldr/build fusion
can be lost (most notably in spectral/hartel/parstof) because the
foldr didn't see the build. Doing the dynamic allocation isn't a big
deal, in fact, but losing the fusion can be. But the right thing here
seems to be to do a callSiteInline based on the fact that there is
something interesting about the call site (it's strict). Hmm. That
seems a bit fragile.
Conclusion: inline top level things gaily until Phase 0 (the last
phase), at which point don't.
Note [pre/postInlineUnconditionally in gentle mode]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Even in gentle mode we want to do preInlineUnconditionally. The
reason is that too little clean-up happens if you don't inline
use-once things. Also a bit of inlining is *good* for full laziness;
it can expose constant sub-expressions. Example in
spectral/mandel/Mandel.hs, where the mandelset function gets a useful
let-float if you inline windowToViewport
However, as usual for Gentle mode, do not inline things that are
inactive in the initial stages. See Note [Gentle mode].
Note [Stable unfoldings and preInlineUnconditionally]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Surprisingly, do not pre-inline-unconditionally Ids with INLINE pragmas!
Example
{-# INLINE f #-}
f :: Eq a => a -> a
f x = ...
fInt :: Int -> Int
fInt = f Int dEqInt
...fInt...fInt...fInt...
Here f occurs just once, in the RHS of fInt. But if we inline it there
it might make fInt look big, and we'll lose the opportunity to inline f
at each of fInt's call sites. The INLINE pragma will only inline when
the application is saturated for exactly this reason; and we don't
want PreInlineUnconditionally to second-guess it. A live example is
#3736.
c.f. Note [Stable unfoldings and postInlineUnconditionally]
NB: if the pragma is INLINEABLE, then we don't want to behave in
this special way -- an INLINEABLE pragma just says to GHC "inline this
if you like". But if there is a unique occurrence, we want to inline
the stable unfolding, not the RHS.
Note [Top-level bottoming Ids]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Don't inline top-level Ids that are bottoming, even if they are used just
once, because FloatOut has gone to some trouble to extract them out.
Inlining them won't make the program run faster!
Note [Do not inline CoVars unconditionally]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Coercion variables appear inside coercions, and the RHS of a let-binding
is a term (not a coercion) so we can't necessarily inline the latter in
the former.
-}
preInlineUnconditionally
:: SimplEnv -> TopLevelFlag -> InId
-> InExpr -> StaticEnv -- These two go together
-> Maybe SimplEnv -- Returned env has extended substitution
-- Precondition: rhs satisfies the let/app invariant
-- See Note [CoreSyn let/app invariant] in CoreSyn
-- Reason: we don't want to inline single uses, or discard dead bindings,
-- for unlifted, side-effect-ful bindings
preInlineUnconditionally env top_lvl bndr rhs rhs_env
| not pre_inline_unconditionally = Nothing
| not active = Nothing
| isTopLevel top_lvl && isBottomingId bndr = Nothing -- Note [Top-level bottoming Ids]
| isCoVar bndr = Nothing -- Note [Do not inline CoVars unconditionally]
| isExitJoinId bndr = Nothing -- Note [Do not inline exit join points]
-- in module Exitify
| not (one_occ (idOccInfo bndr)) = Nothing
| not (isStableUnfolding unf) = Just (extend_subst_with rhs)
-- Note [Stable unfoldings and preInlineUnconditionally]
| isInlinablePragma inline_prag
, Just inl <- maybeUnfoldingTemplate unf = Just (extend_subst_with inl)
| otherwise = Nothing
where
unf = idUnfolding bndr
extend_subst_with inl_rhs = extendIdSubst env bndr (mkContEx rhs_env inl_rhs)
one_occ IAmDead = True -- Happens in ((\x.1) v)
one_occ (OneOcc { occ_one_br = True -- One textual occurrence
, occ_in_lam = in_lam
, occ_int_cxt = int_cxt })
| not in_lam = isNotTopLevel top_lvl || early_phase
| otherwise = int_cxt && canInlineInLam rhs
one_occ _ = False
pre_inline_unconditionally = gopt Opt_SimplPreInlining (seDynFlags env)
mode = getMode env
active = isActive (sm_phase mode) (inlinePragmaActivation inline_prag)
-- See Note [pre/postInlineUnconditionally in gentle mode]
inline_prag = idInlinePragma bndr
-- Be very careful before inlining inside a lambda, because (a) we must not
-- invalidate occurrence information, and (b) we want to avoid pushing a
-- single allocation (here) into multiple allocations (inside lambda).
-- Inlining a *function* with a single *saturated* call would be ok, mind you.
-- || (if is_cheap && not (canInlineInLam rhs) then pprTrace "preinline" (ppr bndr <+> ppr rhs) ok else ok)
-- where
-- is_cheap = exprIsCheap rhs
-- ok = is_cheap && int_cxt
-- int_cxt The context isn't totally boring
-- E.g. let f = \ab.BIG in \y. map f xs
-- Don't want to substitute for f, because then we allocate
-- its closure every time the \y is called
-- But: let f = \ab.BIG in \y. map (f y) xs
-- Now we do want to substitute for f, even though it's not
-- saturated, because we're going to allocate a closure for
-- (f y) every time round the loop anyhow.
-- canInlineInLam => free vars of rhs are (Once in_lam) or Many,
-- so substituting rhs inside a lambda doesn't change the occ info.
-- Sadly, not quite the same as exprIsHNF.
canInlineInLam (Lit _) = True
canInlineInLam (Lam b e) = isRuntimeVar b || canInlineInLam e
canInlineInLam (Tick t e) = not (tickishIsCode t) && canInlineInLam e
canInlineInLam _ = False
-- not ticks. Counting ticks cannot be duplicated, and non-counting
-- ticks around a Lam will disappear anyway.
early_phase = case sm_phase mode of
Phase 0 -> False
_ -> True
-- If we don't have this early_phase test, consider
-- x = length [1,2,3]
-- The full laziness pass carefully floats all the cons cells to
-- top level, and preInlineUnconditionally floats them all back in.
-- Result is (a) static allocation replaced by dynamic allocation
-- (b) many simplifier iterations because this tickles
-- a related problem; only one inlining per pass
--
-- On the other hand, I have seen cases where top-level fusion is
-- lost if we don't inline top level thing (e.g. string constants)
-- Hence the test for phase zero (which is the phase for all the final
-- simplifications). Until phase zero we take no special notice of
-- top level things, but then we become more leery about inlining
-- them.
{-
************************************************************************
* *
postInlineUnconditionally
* *
************************************************************************
postInlineUnconditionally
~~~~~~~~~~~~~~~~~~~~~~~~~
@postInlineUnconditionally@ decides whether to unconditionally inline
a thing based on the form of its RHS; in particular if it has a
trivial RHS. If so, we can inline and discard the binding altogether.
NB: a loop breaker has must_keep_binding = True and non-loop-breakers
only have *forward* references. Hence, it's safe to discard the binding
NOTE: This isn't our last opportunity to inline. We're at the binding
site right now, and we'll get another opportunity when we get to the
occurrence(s)
Note that we do this unconditional inlining only for trival RHSs.
Don't inline even WHNFs inside lambdas; doing so may simply increase
allocation when the function is called. This isn't the last chance; see
NOTE above.
NB: Even inline pragmas (e.g. IMustBeINLINEd) are ignored here Why?
Because we don't even want to inline them into the RHS of constructor
arguments. See NOTE above
NB: At one time even NOINLINE was ignored here: if the rhs is trivial
it's best to inline it anyway. We often get a=E; b=a from desugaring,
with both a and b marked NOINLINE. But that seems incompatible with
our new view that inlining is like a RULE, so I'm sticking to the 'active'
story for now.
-}
postInlineUnconditionally
:: SimplEnv -> TopLevelFlag
-> OutId -- The binder (*not* a CoVar), including its unfolding
-> OccInfo -- From the InId
-> OutExpr
-> Bool
-- Precondition: rhs satisfies the let/app invariant
-- See Note [CoreSyn let/app invariant] in CoreSyn
-- Reason: we don't want to inline single uses, or discard dead bindings,
-- for unlifted, side-effect-ful bindings
postInlineUnconditionally env top_lvl bndr occ_info rhs
| not active = False
| isWeakLoopBreaker occ_info = False -- If it's a loop-breaker of any kind, don't inline
-- because it might be referred to "earlier"
| isStableUnfolding unfolding = False -- Note [Stable unfoldings and postInlineUnconditionally]
| isTopLevel top_lvl = False -- Note [Top level and postInlineUnconditionally]
| exprIsTrivial rhs = True
| otherwise
= case occ_info of
-- The point of examining occ_info here is that for *non-values*
-- that occur outside a lambda, the call-site inliner won't have
-- a chance (because it doesn't know that the thing
-- only occurs once). The pre-inliner won't have gotten
-- it either, if the thing occurs in more than one branch
-- So the main target is things like
-- let x = f y in
-- case v of
-- True -> case x of ...
-- False -> case x of ...
-- This is very important in practice; e.g. wheel-seive1 doubles
-- in allocation if you miss this out
OneOcc { occ_in_lam = in_lam, occ_int_cxt = int_cxt }
-- OneOcc => no code-duplication issue
-> smallEnoughToInline dflags unfolding -- Small enough to dup
-- ToDo: consider discount on smallEnoughToInline if int_cxt is true
--
-- NB: Do NOT inline arbitrarily big things, even if one_br is True
-- Reason: doing so risks exponential behaviour. We simplify a big
-- expression, inline it, and simplify it again. But if the
-- very same thing happens in the big expression, we get
-- exponential cost!
-- PRINCIPLE: when we've already simplified an expression once,
-- make sure that we only inline it if it's reasonably small.
&& (not in_lam ||
-- Outside a lambda, we want to be reasonably aggressive
-- about inlining into multiple branches of case
-- e.g. let x = <non-value>
-- in case y of { C1 -> ..x..; C2 -> ..x..; C3 -> ... }
-- Inlining can be a big win if C3 is the hot-spot, even if
-- the uses in C1, C2 are not 'interesting'
-- An example that gets worse if you add int_cxt here is 'clausify'
(isCheapUnfolding unfolding && int_cxt))
-- isCheap => acceptable work duplication; in_lam may be true
-- int_cxt to prevent us inlining inside a lambda without some
-- good reason. See the notes on int_cxt in preInlineUnconditionally
IAmDead -> True -- This happens; for example, the case_bndr during case of
-- known constructor: case (a,b) of x { (p,q) -> ... }
-- Here x isn't mentioned in the RHS, so we don't want to
-- create the (dead) let-binding let x = (a,b) in ...
_ -> False
-- Here's an example that we don't handle well:
-- let f = if b then Left (\x.BIG) else Right (\y.BIG)
-- in \y. ....case f of {...} ....
-- Here f is used just once, and duplicating the case work is fine (exprIsCheap).
-- But
-- - We can't preInlineUnconditionally because that woud invalidate
-- the occ info for b.
-- - We can't postInlineUnconditionally because the RHS is big, and
-- that risks exponential behaviour
-- - We can't call-site inline, because the rhs is big
-- Alas!
where
unfolding = idUnfolding bndr
dflags = seDynFlags env
active = isActive (sm_phase (getMode env)) (idInlineActivation bndr)
-- See Note [pre/postInlineUnconditionally in gentle mode]
{-
Note [Top level and postInlineUnconditionally]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We don't do postInlineUnconditionally for top-level things (even for
ones that are trivial):
* Doing so will inline top-level error expressions that have been
carefully floated out by FloatOut. More generally, it might
replace static allocation with dynamic.
* Even for trivial expressions there's a problem. Consider
{-# RULE "foo" forall (xs::[T]). reverse xs = ruggle xs #-}
blah xs = reverse xs
ruggle = sort
In one simplifier pass we might fire the rule, getting
blah xs = ruggle xs
but in *that* simplifier pass we must not do postInlineUnconditionally
on 'ruggle' because then we'll have an unbound occurrence of 'ruggle'
If the rhs is trivial it'll be inlined by callSiteInline, and then
the binding will be dead and discarded by the next use of OccurAnal
* There is less point, because the main goal is to get rid of local
bindings used in multiple case branches.
* The inliner should inline trivial things at call sites anyway.
* The Id might be exported. We could check for that separately,
but since we aren't going to postInlineUnconditionally /any/
top-level bindings, we don't need to test.
Note [Stable unfoldings and postInlineUnconditionally]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Do not do postInlineUnconditionally if the Id has a stable unfolding,
otherwise we lose the unfolding. Example
-- f has stable unfolding with rhs (e |> co)
-- where 'e' is big
f = e |> co
Then there's a danger we'll optimise to
f' = e
f = f' |> co
and now postInlineUnconditionally, losing the stable unfolding on f. Now f'
won't inline because 'e' is too big.
c.f. Note [Stable unfoldings and preInlineUnconditionally]
************************************************************************
* *
Rebuilding a lambda
* *
************************************************************************
-}
mkLam :: SimplEnv -> [OutBndr] -> OutExpr -> SimplCont -> SimplM OutExpr
-- mkLam tries three things
-- a) eta reduction, if that gives a trivial expression
-- b) eta expansion [only if there are some value lambdas]
mkLam _env [] body _cont
= return body
mkLam env bndrs body cont
= do { dflags <- getDynFlags
; mkLam' dflags bndrs body }
where
mkLam' :: DynFlags -> [OutBndr] -> OutExpr -> SimplM OutExpr
mkLam' dflags bndrs (Cast body co)
| not (any bad bndrs)
-- Note [Casts and lambdas]
= do { lam <- mkLam' dflags bndrs body
; return (mkCast lam (mkPiCos Representational bndrs co)) }
where
co_vars = tyCoVarsOfCo co
bad bndr = isCoVar bndr && bndr `elemVarSet` co_vars
mkLam' dflags bndrs body@(Lam {})
= mkLam' dflags (bndrs ++ bndrs1) body1
where
(bndrs1, body1) = collectBinders body
mkLam' dflags bndrs (Tick t expr)
| tickishFloatable t
= mkTick t <$> mkLam' dflags bndrs expr
mkLam' dflags bndrs body
| gopt Opt_DoEtaReduction dflags
, Just etad_lam <- tryEtaReduce bndrs body
= do { tick (EtaReduction (head bndrs))
; return etad_lam }
| not (contIsRhs cont) -- See Note [Eta-expanding lambdas]
, sm_eta_expand (getMode env)
, any isRuntimeVar bndrs
, let body_arity = exprEtaExpandArity dflags body
, body_arity > 0
= do { tick (EtaExpansion (head bndrs))
; let res = mkLams bndrs (etaExpand body_arity body)
; traceSmpl "eta expand" (vcat [text "before" <+> ppr (mkLams bndrs body)
, text "after" <+> ppr res])
; return res }
| otherwise
= return (mkLams bndrs body)
{-
Note [Eta expanding lambdas]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In general we *do* want to eta-expand lambdas. Consider
f (\x -> case x of (a,b) -> \s -> blah)
where 's' is a state token, and hence can be eta expanded. This
showed up in the code for GHc.IO.Handle.Text.hPutChar, a rather
important function!
The eta-expansion will never happen unless we do it now. (Well, it's
possible that CorePrep will do it, but CorePrep only has a half-baked
eta-expander that can't deal with casts. So it's much better to do it
here.)
However, when the lambda is let-bound, as the RHS of a let, we have a
better eta-expander (in the form of tryEtaExpandRhs), so we don't
bother to try expansion in mkLam in that case; hence the contIsRhs
guard.
NB: We check the SimplEnv (sm_eta_expand), not DynFlags.
See Note [No eta expansion in stable unfoldings]
Note [Casts and lambdas]
~~~~~~~~~~~~~~~~~~~~~~~~
Consider
(\x. (\y. e) `cast` g1) `cast` g2
There is a danger here that the two lambdas look separated, and the
full laziness pass might float an expression to between the two.
So this equation in mkLam' floats the g1 out, thus:
(\x. e `cast` g1) --> (\x.e) `cast` (tx -> g1)
where x:tx.
In general, this floats casts outside lambdas, where (I hope) they
might meet and cancel with some other cast:
\x. e `cast` co ===> (\x. e) `cast` (tx -> co)
/\a. e `cast` co ===> (/\a. e) `cast` (/\a. co)
/\g. e `cast` co ===> (/\g. e) `cast` (/\g. co)
(if not (g `in` co))
Notice that it works regardless of 'e'. Originally it worked only
if 'e' was itself a lambda, but in some cases that resulted in
fruitless iteration in the simplifier. A good example was when
compiling Text.ParserCombinators.ReadPrec, where we had a definition
like (\x. Get `cast` g)
where Get is a constructor with nonzero arity. Then mkLam eta-expanded
the Get, and the next iteration eta-reduced it, and then eta-expanded
it again.
Note also the side condition for the case of coercion binders.
It does not make sense to transform
/\g. e `cast` g ==> (/\g.e) `cast` (/\g.g)
because the latter is not well-kinded.
************************************************************************
* *
Eta expansion
* *
************************************************************************
-}
tryEtaExpandRhs :: SimplMode -> OutId -> OutExpr
-> SimplM (Arity, Bool, OutExpr)
-- See Note [Eta-expanding at let bindings]
-- If tryEtaExpandRhs rhs = (n, is_bot, rhs') then
-- (a) rhs' has manifest arity n
-- (b) if is_bot is True then rhs' applied to n args is guaranteed bottom
tryEtaExpandRhs mode bndr rhs
| Just join_arity <- isJoinId_maybe bndr
= do { let (join_bndrs, join_body) = collectNBinders join_arity rhs
; return (count isId join_bndrs, exprIsBottom join_body, rhs) }
-- Note [Do not eta-expand join points]
-- But do return the correct arity and bottom-ness, because
-- these are used to set the bndr's IdInfo (#15517)
-- Note [idArity for join points]
| otherwise
= do { (new_arity, is_bot, new_rhs) <- try_expand
; WARN( new_arity < old_id_arity,
(text "Arity decrease:" <+> (ppr bndr <+> ppr old_id_arity
<+> ppr old_arity <+> ppr new_arity) $$ ppr new_rhs) )
-- Note [Arity decrease] in Simplify
return (new_arity, is_bot, new_rhs) }
where
try_expand
| exprIsTrivial rhs
= return (exprArity rhs, False, rhs)
| sm_eta_expand mode -- Provided eta-expansion is on
, new_arity > old_arity -- And the current manifest arity isn't enough
= do { tick (EtaExpansion bndr)
; return (new_arity, is_bot, etaExpand new_arity rhs) }
| otherwise
= return (old_arity, is_bot && new_arity == old_arity, rhs)
dflags = sm_dflags mode
old_arity = exprArity rhs -- See Note [Do not expand eta-expand PAPs]
old_id_arity = idArity bndr
(new_arity1, is_bot) = findRhsArity dflags bndr rhs old_arity
new_arity2 = idCallArity bndr
new_arity = max new_arity1 new_arity2
{-
Note [Eta-expanding at let bindings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We now eta expand at let-bindings, which is where the payoff comes.
The most significant thing is that we can do a simple arity analysis
(in CoreArity.findRhsArity), which we can't do for free-floating lambdas
One useful consequence of not eta-expanding lambdas is this example:
genMap :: C a => ...
{-# INLINE genMap #-}
genMap f xs = ...
myMap :: D a => ...
{-# INLINE myMap #-}
myMap = genMap
Notice that 'genMap' should only inline if applied to two arguments.
In the stable unfolding for myMap we'll have the unfolding
(\d -> genMap Int (..d..))
We do not want to eta-expand to
(\d f xs -> genMap Int (..d..) f xs)
because then 'genMap' will inline, and it really shouldn't: at least
as far as the programmer is concerned, it's not applied to two
arguments!
Note [Do not eta-expand join points]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Similarly to CPR (see Note [Don't CPR join points] in WorkWrap), a join point
stands well to gain from its outer binding's eta-expansion, and eta-expanding a
join point is fraught with issues like how to deal with a cast:
let join $j1 :: IO ()
$j1 = ...
$j2 :: Int -> IO ()
$j2 n = if n > 0 then $j1
else ...
=>
let join $j1 :: IO ()
$j1 = (\eta -> ...)
`cast` N:IO :: State# RealWorld -> (# State# RealWorld, ())
~ IO ()
$j2 :: Int -> IO ()
$j2 n = (\eta -> if n > 0 then $j1
else ...)
`cast` N:IO :: State# RealWorld -> (# State# RealWorld, ())
~ IO ()
The cast here can't be pushed inside the lambda (since it's not casting to a
function type), so the lambda has to stay, but it can't because it contains a
reference to a join point. In fact, $j2 can't be eta-expanded at all. Rather
than try and detect this situation (and whatever other situations crop up!), we
don't bother; again, any surrounding eta-expansion will improve these join
points anyway, since an outer cast can *always* be pushed inside. By the time
CorePrep comes around, the code is very likely to look more like this:
let join $j1 :: State# RealWorld -> (# State# RealWorld, ())
$j1 = (...) eta
$j2 :: Int -> State# RealWorld -> (# State# RealWorld, ())
$j2 = if n > 0 then $j1
else (...) eta
Note [idArity for join points]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Because of Note [Do not eta-expand join points] we have it that the idArity
of a join point is always (less than or) equal to the join arity.
Essentially, for join points we set `idArity $j = count isId join_lam_bndrs`.
It really can be less if there are type-level binders in join_lam_bndrs.
Note [Do not eta-expand PAPs]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We used to have old_arity = manifestArity rhs, which meant that we
would eta-expand even PAPs. But this gives no particular advantage,
and can lead to a massive blow-up in code size, exhibited by #9020.
Suppose we have a PAP
foo :: IO ()
foo = returnIO ()
Then we can eta-expand do
foo = (\eta. (returnIO () |> sym g) eta) |> g
where
g :: IO () ~ State# RealWorld -> (# State# RealWorld, () #)
But there is really no point in doing this, and it generates masses of
coercions and whatnot that eventually disappear again. For T9020, GHC
allocated 6.6G beore, and 0.8G afterwards; and residency dropped from
1.8G to 45M.
But note that this won't eta-expand, say
f = \g -> map g
Does it matter not eta-expanding such functions? I'm not sure. Perhaps
strictness analysis will have less to bite on?
************************************************************************
* *
\subsection{Floating lets out of big lambdas}
* *
************************************************************************
Note [Floating and type abstraction]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this:
x = /\a. C e1 e2
We'd like to float this to
y1 = /\a. e1
y2 = /\a. e2
x = /\a. C (y1 a) (y2 a)
for the usual reasons: we want to inline x rather vigorously.
You may think that this kind of thing is rare. But in some programs it is
common. For example, if you do closure conversion you might get:
data a :-> b = forall e. (e -> a -> b) :$ e
f_cc :: forall a. a :-> a
f_cc = /\a. (\e. id a) :$ ()
Now we really want to inline that f_cc thing so that the
construction of the closure goes away.
So I have elaborated simplLazyBind to understand right-hand sides that look
like
/\ a1..an. body
and treat them specially. The real work is done in SimplUtils.abstractFloats,
but there is quite a bit of plumbing in simplLazyBind as well.
The same transformation is good when there are lets in the body:
/\abc -> let(rec) x = e in b
==>
let(rec) x' = /\abc -> let x = x' a b c in e
in
/\abc -> let x = x' a b c in b
This is good because it can turn things like:
let f = /\a -> letrec g = ... g ... in g
into
letrec g' = /\a -> ... g' a ...
in
let f = /\ a -> g' a
which is better. In effect, it means that big lambdas don't impede
let-floating.
This optimisation is CRUCIAL in eliminating the junk introduced by
desugaring mutually recursive definitions. Don't eliminate it lightly!
[May 1999] If we do this transformation *regardless* then we can
end up with some pretty silly stuff. For example,
let
st = /\ s -> let { x1=r1 ; x2=r2 } in ...
in ..
becomes
let y1 = /\s -> r1
y2 = /\s -> r2
st = /\s -> ...[y1 s/x1, y2 s/x2]
in ..
Unless the "..." is a WHNF there is really no point in doing this.
Indeed it can make things worse. Suppose x1 is used strictly,
and is of the form
x1* = case f y of { (a,b) -> e }
If we abstract this wrt the tyvar we then can't do the case inline
as we would normally do.
That's why the whole transformation is part of the same process that
floats let-bindings and constructor arguments out of RHSs. In particular,
it is guarded by the doFloatFromRhs call in simplLazyBind.
Note [Which type variables to abstract over]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Abstract only over the type variables free in the rhs wrt which the
new binding is abstracted. Note that
* The naive approach of abstracting wrt the
tyvars free in the Id's /type/ fails. Consider:
/\ a b -> let t :: (a,b) = (e1, e2)
x :: a = fst t
in ...
Here, b isn't free in x's type, but we must nevertheless
abstract wrt b as well, because t's type mentions b.
Since t is floated too, we'd end up with the bogus:
poly_t = /\ a b -> (e1, e2)
poly_x = /\ a -> fst (poly_t a *b*)
* We must do closeOverKinds. Example (#10934):
f = /\k (f:k->*) (a:k). let t = AccFailure @ (f a) in ...
Here we want to float 't', but we must remember to abstract over
'k' as well, even though it is not explicitly mentioned in the RHS,
otherwise we get
t = /\ (f:k->*) (a:k). AccFailure @ (f a)
which is obviously bogus.
-}
abstractFloats :: DynFlags -> TopLevelFlag -> [OutTyVar] -> SimplFloats
-> OutExpr -> SimplM ([OutBind], OutExpr)
abstractFloats dflags top_lvl main_tvs floats body
= ASSERT( notNull body_floats )
ASSERT( isNilOL (sfJoinFloats floats) )
do { (subst, float_binds) <- mapAccumLM abstract empty_subst body_floats
; return (float_binds, CoreSubst.substExpr (text "abstract_floats1") subst body) }
where
is_top_lvl = isTopLevel top_lvl
main_tv_set = mkVarSet main_tvs
body_floats = letFloatBinds (sfLetFloats floats)
empty_subst = CoreSubst.mkEmptySubst (sfInScope floats)
abstract :: CoreSubst.Subst -> OutBind -> SimplM (CoreSubst.Subst, OutBind)
abstract subst (NonRec id rhs)
= do { (poly_id1, poly_app) <- mk_poly1 tvs_here id
; let (poly_id2, poly_rhs) = mk_poly2 poly_id1 tvs_here rhs'
subst' = CoreSubst.extendIdSubst subst id poly_app
; return (subst', NonRec poly_id2 poly_rhs) }
where
rhs' = CoreSubst.substExpr (text "abstract_floats2") subst rhs
-- tvs_here: see Note [Which type variables to abstract over]
tvs_here = scopedSort $
filter (`elemVarSet` main_tv_set) $
closeOverKindsList $
exprSomeFreeVarsList isTyVar rhs'
abstract subst (Rec prs)
= do { (poly_ids, poly_apps) <- mapAndUnzipM (mk_poly1 tvs_here) ids
; let subst' = CoreSubst.extendSubstList subst (ids `zip` poly_apps)
poly_pairs = [ mk_poly2 poly_id tvs_here rhs'
| (poly_id, rhs) <- poly_ids `zip` rhss
, let rhs' = CoreSubst.substExpr (text "abstract_floats")
subst' rhs ]
; return (subst', Rec poly_pairs) }
where
(ids,rhss) = unzip prs
-- For a recursive group, it's a bit of a pain to work out the minimal
-- set of tyvars over which to abstract:
-- /\ a b c. let x = ...a... in
-- letrec { p = ...x...q...
-- q = .....p...b... } in
-- ...
-- Since 'x' is abstracted over 'a', the {p,q} group must be abstracted
-- over 'a' (because x is replaced by (poly_x a)) as well as 'b'.
-- Since it's a pain, we just use the whole set, which is always safe
--
-- If you ever want to be more selective, remember this bizarre case too:
-- x::a = x
-- Here, we must abstract 'x' over 'a'.
tvs_here = scopedSort main_tvs
mk_poly1 :: [TyVar] -> Id -> SimplM (Id, CoreExpr)
mk_poly1 tvs_here var
= do { uniq <- getUniqueM
; let poly_name = setNameUnique (idName var) uniq -- Keep same name
poly_ty = mkInvForAllTys tvs_here (idType var) -- But new type of course
poly_id = transferPolyIdInfo var tvs_here $ -- Note [transferPolyIdInfo] in Id.hs
mkLocalIdOrCoVar poly_name poly_ty
; return (poly_id, mkTyApps (Var poly_id) (mkTyVarTys tvs_here)) }
-- In the olden days, it was crucial to copy the occInfo of the original var,
-- because we were looking at occurrence-analysed but as yet unsimplified code!
-- In particular, we mustn't lose the loop breakers. BUT NOW we are looking
-- at already simplified code, so it doesn't matter
--
-- It's even right to retain single-occurrence or dead-var info:
-- Suppose we started with /\a -> let x = E in B
-- where x occurs once in B. Then we transform to:
-- let x' = /\a -> E in /\a -> let x* = x' a in B
-- where x* has an INLINE prag on it. Now, once x* is inlined,
-- the occurrences of x' will be just the occurrences originally
-- pinned on x.
mk_poly2 :: Id -> [TyVar] -> CoreExpr -> (Id, CoreExpr)
mk_poly2 poly_id tvs_here rhs
= (poly_id `setIdUnfolding` unf, poly_rhs)
where
poly_rhs = mkLams tvs_here rhs
unf = mkUnfolding dflags InlineRhs is_top_lvl False poly_rhs
-- We want the unfolding. Consider
-- let
-- x = /\a. let y = ... in Just y
-- in body
-- Then we float the y-binding out (via abstractFloats and addPolyBind)
-- but 'x' may well then be inlined in 'body' in which case we'd like the
-- opportunity to inline 'y' too.
{-
Note [Abstract over coercions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If a coercion variable (g :: a ~ Int) is free in the RHS, then so is the
type variable a. Rather than sort this mess out, we simply bale out and abstract
wrt all the type variables if any of them are coercion variables.
Historical note: if you use let-bindings instead of a substitution, beware of this:
-- Suppose we start with:
--
-- x = /\ a -> let g = G in E
--
-- Then we'll float to get
--
-- x = let poly_g = /\ a -> G
-- in /\ a -> let g = poly_g a in E
--
-- But now the occurrence analyser will see just one occurrence
-- of poly_g, not inside a lambda, so the simplifier will
-- PreInlineUnconditionally poly_g back into g! Badk to square 1!
-- (I used to think that the "don't inline lone occurrences" stuff
-- would stop this happening, but since it's the *only* occurrence,
-- PreInlineUnconditionally kicks in first!)
--
-- Solution: put an INLINE note on g's RHS, so that poly_g seems
-- to appear many times. (NB: mkInlineMe eliminates
-- such notes on trivial RHSs, so do it manually.)
************************************************************************
* *
prepareAlts
* *
************************************************************************
prepareAlts tries these things:
1. Eliminate alternatives that cannot match, including the
DEFAULT alternative.
2. If the DEFAULT alternative can match only one possible constructor,
then make that constructor explicit.
e.g.
case e of x { DEFAULT -> rhs }
===>
case e of x { (a,b) -> rhs }
where the type is a single constructor type. This gives better code
when rhs also scrutinises x or e.
3. Returns a list of the constructors that cannot holds in the
DEFAULT alternative (if there is one)
Here "cannot match" includes knowledge from GADTs
It's a good idea to do this stuff before simplifying the alternatives, to
avoid simplifying alternatives we know can't happen, and to come up with
the list of constructors that are handled, to put into the IdInfo of the
case binder, for use when simplifying the alternatives.
Eliminating the default alternative in (1) isn't so obvious, but it can
happen:
data Colour = Red | Green | Blue
f x = case x of
Red -> ..
Green -> ..
DEFAULT -> h x
h y = case y of
Blue -> ..
DEFAULT -> [ case y of ... ]
If we inline h into f, the default case of the inlined h can't happen.
If we don't notice this, we may end up filtering out *all* the cases
of the inner case y, which give us nowhere to go!
-}
prepareAlts :: OutExpr -> OutId -> [InAlt] -> SimplM ([AltCon], [InAlt])
-- The returned alternatives can be empty, none are possible
prepareAlts scrut case_bndr' alts
| Just (tc, tys) <- splitTyConApp_maybe (varType case_bndr')
-- Case binder is needed just for its type. Note that as an
-- OutId, it has maximum information; this is important.
-- Test simpl013 is an example
= do { us <- getUniquesM
; let (idcs1, alts1) = filterAlts tc tys imposs_cons alts
(yes2, alts2) = refineDefaultAlt us tc tys idcs1 alts1
(yes3, idcs3, alts3) = combineIdenticalAlts idcs1 alts2
-- "idcs" stands for "impossible default data constructors"
-- i.e. the constructors that can't match the default case
; when yes2 $ tick (FillInCaseDefault case_bndr')
; when yes3 $ tick (AltMerge case_bndr')
; return (idcs3, alts3) }
| otherwise -- Not a data type, so nothing interesting happens
= return ([], alts)
where
imposs_cons = case scrut of
Var v -> otherCons (idUnfolding v)
_ -> []
{-
************************************************************************
* *
mkCase
* *
************************************************************************
mkCase tries these things
* Note [Nerge nested cases]
* Note [Eliminate identity case]
* Note [Scrutinee constant folding]
Note [Merge Nested Cases]
~~~~~~~~~~~~~~~~~~~~~~~~~
case e of b { ==> case e of b {
p1 -> rhs1 p1 -> rhs1
... ...
pm -> rhsm pm -> rhsm
_ -> case b of b' { pn -> let b'=b in rhsn
pn -> rhsn ...
... po -> let b'=b in rhso
po -> rhso _ -> let b'=b in rhsd
_ -> rhsd
}
which merges two cases in one case when -- the default alternative of
the outer case scrutises the same variable as the outer case. This
transformation is called Case Merging. It avoids that the same
variable is scrutinised multiple times.
Note [Eliminate Identity Case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
case e of ===> e
True -> True;
False -> False
and similar friends.
Note [Scrutinee Constant Folding]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
case x op# k# of _ { ===> case x of _ {
a1# -> e1 (a1# inv_op# k#) -> e1
a2# -> e2 (a2# inv_op# k#) -> e2
... ...
DEFAULT -> ed DEFAULT -> ed
where (x op# k#) inv_op# k# == x
And similarly for commuted arguments and for some unary operations.
The purpose of this transformation is not only to avoid an arithmetic
operation at runtime but to allow other transformations to apply in cascade.
Example with the "Merge Nested Cases" optimization (from #12877):
main = case t of t0
0## -> ...
DEFAULT -> case t0 `minusWord#` 1## of t1
0## -> ...
DEFAUT -> case t1 `minusWord#` 1## of t2
0## -> ...
DEFAULT -> case t2 `minusWord#` 1## of _
0## -> ...
DEFAULT -> ...
becomes:
main = case t of _
0## -> ...
1## -> ...
2## -> ...
3## -> ...
DEFAULT -> ...
There are some wrinkles
* Do not apply caseRules if there is just a single DEFAULT alternative
case e +# 3# of b { DEFAULT -> rhs }
If we applied the transformation here we would (stupidly) get
case a of b' { DEFAULT -> let b = e +# 3# in rhs }
and now the process may repeat, because that let will really
be a case.
* The type of the scrutinee might change. E.g.
case tagToEnum (x :: Int#) of (b::Bool)
False -> e1
True -> e2
==>
case x of (b'::Int#)
DEFAULT -> e1
1# -> e2
* The case binder may be used in the right hand sides, so we need
to make a local binding for it, if it is alive. e.g.
case e +# 10# of b
DEFAULT -> blah...b...
44# -> blah2...b...
===>
case e of b'
DEFAULT -> let b = b' +# 10# in blah...b...
34# -> let b = 44# in blah2...b...
Note that in the non-DEFAULT cases we know what to bind 'b' to,
whereas in the DEFAULT case we must reconstruct the original value.
But NB: we use b'; we do not duplicate 'e'.
* In dataToTag we might need to make up some fake binders;
see Note [caseRules for dataToTag] in PrelRules
-}
mkCase, mkCase1, mkCase2, mkCase3
:: DynFlags
-> OutExpr -> OutId
-> OutType -> [OutAlt] -- Alternatives in standard (increasing) order
-> SimplM OutExpr
--------------------------------------------------
-- 1. Merge Nested Cases
--------------------------------------------------
mkCase dflags scrut outer_bndr alts_ty ((DEFAULT, _, deflt_rhs) : outer_alts)
| gopt Opt_CaseMerge dflags
, (ticks, Case (Var inner_scrut_var) inner_bndr _ inner_alts)
<- stripTicksTop tickishFloatable deflt_rhs
, inner_scrut_var == outer_bndr
= do { tick (CaseMerge outer_bndr)
; let wrap_alt (con, args, rhs) = ASSERT( outer_bndr `notElem` args )
(con, args, wrap_rhs rhs)
-- Simplifier's no-shadowing invariant should ensure
-- that outer_bndr is not shadowed by the inner patterns
wrap_rhs rhs = Let (NonRec inner_bndr (Var outer_bndr)) rhs
-- The let is OK even for unboxed binders,
wrapped_alts | isDeadBinder inner_bndr = inner_alts
| otherwise = map wrap_alt inner_alts
merged_alts = mergeAlts outer_alts wrapped_alts
-- NB: mergeAlts gives priority to the left
-- case x of
-- A -> e1
-- DEFAULT -> case x of
-- A -> e2
-- B -> e3
-- When we merge, we must ensure that e1 takes
-- precedence over e2 as the value for A!
; fmap (mkTicks ticks) $
mkCase1 dflags scrut outer_bndr alts_ty merged_alts
}
-- Warning: don't call mkCase recursively!
-- Firstly, there's no point, because inner alts have already had
-- mkCase applied to them, so they won't have a case in their default
-- Secondly, if you do, you get an infinite loop, because the bindCaseBndr
-- in munge_rhs may put a case into the DEFAULT branch!
mkCase dflags scrut bndr alts_ty alts = mkCase1 dflags scrut bndr alts_ty alts
--------------------------------------------------
-- 2. Eliminate Identity Case
--------------------------------------------------
mkCase1 _dflags scrut case_bndr _ alts@((_,_,rhs1) : _) -- Identity case
| all identity_alt alts
= do { tick (CaseIdentity case_bndr)
; return (mkTicks ticks $ re_cast scrut rhs1) }
where
ticks = concatMap (stripTicksT tickishFloatable . thdOf3) (tail alts)
identity_alt (con, args, rhs) = check_eq rhs con args
check_eq (Cast rhs co) con args -- See Note [RHS casts]
= not (any (`elemVarSet` tyCoVarsOfCo co) args) && check_eq rhs con args
check_eq (Tick t e) alt args
= tickishFloatable t && check_eq e alt args
check_eq (Lit lit) (LitAlt lit') _ = lit == lit'
check_eq (Var v) _ _ | v == case_bndr = True
check_eq (Var v) (DataAlt con) args
| null arg_tys, null args = v == dataConWorkId con
-- Optimisation only
check_eq rhs (DataAlt con) args = cheapEqExpr' tickishFloatable rhs $
mkConApp2 con arg_tys args
check_eq _ _ _ = False
arg_tys = tyConAppArgs (idType case_bndr)
-- Note [RHS casts]
-- ~~~~~~~~~~~~~~~~
-- We've seen this:
-- case e of x { _ -> x `cast` c }
-- And we definitely want to eliminate this case, to give
-- e `cast` c
-- So we throw away the cast from the RHS, and reconstruct
-- it at the other end. All the RHS casts must be the same
-- if (all identity_alt alts) holds.
--
-- Don't worry about nested casts, because the simplifier combines them
re_cast scrut (Cast rhs co) = Cast (re_cast scrut rhs) co
re_cast scrut _ = scrut
mkCase1 dflags scrut bndr alts_ty alts = mkCase2 dflags scrut bndr alts_ty alts
--------------------------------------------------
-- 2. Scrutinee Constant Folding
--------------------------------------------------
mkCase2 dflags scrut bndr alts_ty alts
| -- See Note [Scrutinee Constant Folding]
case alts of -- Not if there is just a DEFAULT alternative
[(DEFAULT,_,_)] -> False
_ -> True
, gopt Opt_CaseFolding dflags
, Just (scrut', tx_con, mk_orig) <- caseRules dflags scrut
= do { bndr' <- newId (fsLit "lwild") (exprType scrut')
; alts' <- mapMaybeM (tx_alt tx_con mk_orig bndr') alts
-- mapMaybeM: discard unreachable alternatives
-- See Note [Unreachable caseRules alternatives]
-- in PrelRules
; mkCase3 dflags scrut' bndr' alts_ty $
add_default (re_sort alts')
}
| otherwise
= mkCase3 dflags scrut bndr alts_ty alts
where
-- We need to keep the correct association between the scrutinee and its
-- binder if the latter isn't dead. Hence we wrap rhs of alternatives with
-- "let bndr = ... in":
--
-- case v + 10 of y =====> case v of y
-- 20 -> e1 10 -> let y = 20 in e1
-- DEFAULT -> e2 DEFAULT -> let y = v + 10 in e2
--
-- Other transformations give: =====> case v of y'
-- 10 -> let y = 20 in e1
-- DEFAULT -> let y = y' + 10 in e2
--
-- This wrapping is done in tx_alt; we use mk_orig, returned by caseRules,
-- to construct an expression equivalent to the original one, for use
-- in the DEFAULT case
tx_alt :: (AltCon -> Maybe AltCon) -> (Id -> CoreExpr) -> Id
-> CoreAlt -> SimplM (Maybe CoreAlt)
tx_alt tx_con mk_orig new_bndr (con, bs, rhs)
= case tx_con con of
Nothing -> return Nothing
Just con' -> do { bs' <- mk_new_bndrs new_bndr con'
; return (Just (con', bs', rhs')) }
where
rhs' | isDeadBinder bndr = rhs
| otherwise = bindNonRec bndr orig_val rhs
orig_val = case con of
DEFAULT -> mk_orig new_bndr
LitAlt l -> Lit l
DataAlt dc -> mkConApp2 dc (tyConAppArgs (idType bndr)) bs
mk_new_bndrs new_bndr (DataAlt dc)
| not (isNullaryRepDataCon dc)
= -- For non-nullary data cons we must invent some fake binders
-- See Note [caseRules for dataToTag] in PrelRules
do { us <- getUniquesM
; let (ex_tvs, arg_ids) = dataConRepInstPat us dc
(tyConAppArgs (idType new_bndr))
; return (ex_tvs ++ arg_ids) }
mk_new_bndrs _ _ = return []
re_sort :: [CoreAlt] -> [CoreAlt]
-- Sort the alternatives to re-establish
-- CoreSyn Note [Case expression invariants]
re_sort alts = sortBy cmpAlt alts
add_default :: [CoreAlt] -> [CoreAlt]
-- See Note [Literal cases]
add_default ((LitAlt {}, bs, rhs) : alts) = (DEFAULT, bs, rhs) : alts
add_default alts = alts
{- Note [Literal cases]
~~~~~~~~~~~~~~~~~~~~~~~
If we have
case tagToEnum (a ># b) of
False -> e1
True -> e2
then caseRules for TagToEnum will turn it into
case tagToEnum (a ># b) of
0# -> e1
1# -> e2
Since the case is exhaustive (all cases are) we can convert it to
case tagToEnum (a ># b) of
DEFAULT -> e1
1# -> e2
This may generate sligthtly better code (although it should not, since
all cases are exhaustive) and/or optimise better. I'm not certain that
it's necessary, but currenty we do make this change. We do it here,
NOT in the TagToEnum rules (see "Beware" in Note [caseRules for tagToEnum]
in PrelRules)
-}
--------------------------------------------------
-- Catch-all
--------------------------------------------------
mkCase3 _dflags scrut bndr alts_ty alts
= return (Case scrut bndr alts_ty alts)
-- See Note [Exitification] and Note [Do not inline exit join points] in Exitify.hs
-- This lives here (and not in Id) because occurrence info is only valid on
-- InIds, so it's crucial that isExitJoinId is only called on freshly
-- occ-analysed code. It's not a generic function you can call anywhere.
isExitJoinId :: Var -> Bool
isExitJoinId id = isJoinId id && isOneOcc (idOccInfo id) && occ_in_lam (idOccInfo id)
{-
Note [Dead binders]
~~~~~~~~~~~~~~~~~~~~
Note that dead-ness is maintained by the simplifier, so that it is
accurate after simplification as well as before.
Note [Cascading case merge]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Case merging should cascade in one sweep, because it
happens bottom-up
case e of a {
DEFAULT -> case a of b
DEFAULT -> case b of c {
DEFAULT -> e
A -> ea
B -> eb
C -> ec
==>
case e of a {
DEFAULT -> case a of b
DEFAULT -> let c = b in e
A -> let c = b in ea
B -> eb
C -> ec
==>
case e of a {
DEFAULT -> let b = a in let c = b in e
A -> let b = a in let c = b in ea
B -> let b = a in eb
C -> ec
However here's a tricky case that we still don't catch, and I don't
see how to catch it in one pass:
case x of c1 { I# a1 ->
case a1 of c2 ->
0 -> ...
DEFAULT -> case x of c3 { I# a2 ->
case a2 of ...
After occurrence analysis (and its binder-swap) we get this
case x of c1 { I# a1 ->
let x = c1 in -- Binder-swap addition
case a1 of c2 ->
0 -> ...
DEFAULT -> case x of c3 { I# a2 ->
case a2 of ...
When we simplify the inner case x, we'll see that
x=c1=I# a1. So we'll bind a2 to a1, and get
case x of c1 { I# a1 ->
case a1 of c2 ->
0 -> ...
DEFAULT -> case a1 of ...
This is corect, but we can't do a case merge in this sweep
because c2 /= a1. Reason: the binding c1=I# a1 went inwards
without getting changed to c1=I# c2.
I don't think this is worth fixing, even if I knew how. It'll
all come out in the next pass anyway.
-}
|