1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
|
{-# LANGUAGE CPP #-}
--
-- (c) The GRASP/AQUA Project, Glasgow University, 1993-1998
--
--------------------------------------------------------------
-- Converting Core to STG Syntax
--------------------------------------------------------------
-- And, as we have the info in hand, we may convert some lets to
-- let-no-escapes.
module CoreToStg ( coreToStg, coreExprToStg ) where
#include "HsVersions.h"
import CoreSyn
import CoreUtils ( exprType, findDefault )
import CoreArity ( manifestArity )
import StgSyn
import Type
import RepType
import TyCon
import MkId ( coercionTokenId )
import Id
import IdInfo
import DataCon
import CostCentre ( noCCS )
import VarSet
import VarEnv
import Module
import Name ( getOccName, isExternalName, nameOccName )
import OccName ( occNameString, occNameFS )
import BasicTypes ( Arity )
import TysWiredIn ( unboxedUnitDataCon )
import Literal
import Outputable
import MonadUtils
import FastString
import Util
import DynFlags
import ForeignCall
import Demand ( isUsedOnce )
import PrimOp ( PrimCall(..) )
import UniqFM
import Data.Maybe (isJust, fromMaybe)
import Control.Monad (liftM, ap)
-- Note [Live vs free]
-- ~~~~~~~~~~~~~~~~~~~
--
-- The two are not the same. Liveness is an operational property rather
-- than a semantic one. A variable is live at a particular execution
-- point if it can be referred to directly again. In particular, a dead
-- variable's stack slot (if it has one):
--
-- - should be stubbed to avoid space leaks, and
-- - may be reused for something else.
--
-- There ought to be a better way to say this. Here are some examples:
--
-- let v = [q] \[x] -> e
-- in
-- ...v... (but no q's)
--
-- Just after the `in', v is live, but q is dead. If the whole of that
-- let expression was enclosed in a case expression, thus:
--
-- case (let v = [q] \[x] -> e in ...v...) of
-- alts[...q...]
--
-- (ie `alts' mention `q'), then `q' is live even after the `in'; because
-- we'll return later to the `alts' and need it.
--
-- Let-no-escapes make this a bit more interesting:
--
-- let-no-escape v = [q] \ [x] -> e
-- in
-- ...v...
--
-- Here, `q' is still live at the `in', because `v' is represented not by
-- a closure but by the current stack state. In other words, if `v' is
-- live then so is `q'. Furthermore, if `e' mentions an enclosing
-- let-no-escaped variable, then its free variables are also live if `v' is.
-- Note [What are these SRTs all about?]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
--
-- Consider the Core program,
--
-- fibs = go 1 1
-- where go a b = let c = a + c
-- in c : go b c
-- add x = map (\y -> x*y) fibs
--
-- In this case we have a CAF, 'fibs', which is quite large after evaluation and
-- has only one possible user, 'add'. Consequently, we want to ensure that when
-- all references to 'add' die we can garbage collect any bit of 'fibs' that we
-- have evaluated.
--
-- However, how do we know whether there are any references to 'fibs' still
-- around? Afterall, the only reference to it is buried in the code generated
-- for 'add'. The answer is that we record the CAFs referred to by a definition
-- in its info table, namely a part of it known as the Static Reference Table
-- (SRT).
--
-- Since SRTs are so common, we use a special compact encoding for them in: we
-- produce one table containing a list of CAFs in a module and then include a
-- bitmap in each info table describing which entries of this table the closure
-- references.
--
-- See also: Commentary/Rts/Storage/GC/CAFs on the GHC Wiki.
-- Note [Collecting live CAF info]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
--
-- In this pass we also collect information on which CAFs are live.
--
-- A top-level Id has CafInfo, which is
--
-- - MayHaveCafRefs, if it may refer indirectly to
-- one or more CAFs, or
-- - NoCafRefs if it definitely doesn't
--
-- The CafInfo has already been calculated during the CoreTidy pass.
--
-- During CoreToStg, we then pin onto each binding and case expression, a
-- list of Ids which represents the "live" CAFs at that point. The meaning
-- of "live" here is the same as for live variables, see above (which is
-- why it's convenient to collect CAF information here rather than elsewhere).
--
-- The later SRT pass takes these lists of Ids and uses them to construct
-- the actual nested SRTs, and replaces the lists of Ids with (offset,length)
-- pairs.
-- Note [What is a non-escaping let]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
--
-- Consider:
--
-- let x = fvs \ args -> e
-- in
-- if ... then x else
-- if ... then x else ...
--
-- `x' is used twice (so we probably can't unfold it), but when it is
-- entered, the stack is deeper than it was when the definition of `x'
-- happened. Specifically, if instead of allocating a closure for `x',
-- we saved all `x's fvs on the stack, and remembered the stack depth at
-- that moment, then whenever we enter `x' we can simply set the stack
-- pointer(s) to these remembered (compile-time-fixed) values, and jump
-- to the code for `x'.
--
-- All of this is provided x is:
-- 1. non-updatable - it must have at least one parameter (see Note
-- [Join point abstraction]);
-- 2. guaranteed to be entered before the stack retreats -- ie x is not
-- buried in a heap-allocated closure, or passed as an argument to
-- something;
-- 3. all the enters have exactly the right number of arguments,
-- no more no less;
-- 4. all the enters are tail calls; that is, they return to the
-- caller enclosing the definition of `x'.
--
-- Under these circumstances we say that `x' is non-escaping.
--
-- An example of when (4) does not hold:
--
-- let x = ...
-- in case x of ...alts...
--
-- Here, `x' is certainly entered only when the stack is deeper than when
-- `x' is defined, but here it must return to ...alts... So we can't just
-- adjust the stack down to `x''s recalled points, because that would lost
-- alts' context.
--
-- Things can get a little more complicated. Consider:
--
-- let y = ...
-- in let x = fvs \ args -> ...y...
-- in ...x...
--
-- Now, if `x' is used in a non-escaping way in ...x..., and `y' is used in a
-- non-escaping way in ...y..., then `y' is non-escaping.
--
-- `x' can even be recursive! Eg:
--
-- letrec x = [y] \ [v] -> if v then x True else ...
-- in
-- ...(x b)...
-- --------------------------------------------------------------
-- Setting variable info: top-level, binds, RHSs
-- --------------------------------------------------------------
coreToStg :: DynFlags -> Module -> CoreProgram -> [StgBinding]
coreToStg dflags this_mod pgm
= pgm'
where (_, _, pgm') = coreTopBindsToStg dflags this_mod emptyVarEnv pgm
coreExprToStg :: CoreExpr -> StgExpr
coreExprToStg expr
= new_expr where (new_expr,_,_) = initLne emptyVarEnv (coreToStgExpr expr)
coreTopBindsToStg
:: DynFlags
-> Module
-> IdEnv HowBound -- environment for the bindings
-> CoreProgram
-> (IdEnv HowBound, FreeVarsInfo, [StgBinding])
coreTopBindsToStg _ _ env [] = (env, emptyFVInfo, [])
coreTopBindsToStg dflags this_mod env (b:bs)
= (env2, fvs2, b':bs')
where
-- Notice the mutually-recursive "knot" here:
-- env accumulates down the list of binds,
-- fvs accumulates upwards
(env1, fvs2, b' ) = coreTopBindToStg dflags this_mod env fvs1 b
(env2, fvs1, bs') = coreTopBindsToStg dflags this_mod env1 bs
coreTopBindToStg
:: DynFlags
-> Module
-> IdEnv HowBound
-> FreeVarsInfo -- Info about the body
-> CoreBind
-> (IdEnv HowBound, FreeVarsInfo, StgBinding)
coreTopBindToStg dflags this_mod env body_fvs (NonRec id rhs)
= let
env' = extendVarEnv env id how_bound
how_bound = LetBound TopLet $! manifestArity rhs
(stg_rhs, fvs') =
initLne env $ do
(stg_rhs, fvs') <- coreToTopStgRhs dflags this_mod body_fvs (id,rhs)
return (stg_rhs, fvs')
bind = StgNonRec id stg_rhs
in
ASSERT2(consistentCafInfo id bind, ppr id )
-- NB: previously the assertion printed 'rhs' and 'bind'
-- as well as 'id', but that led to a black hole
-- where printing the assertion error tripped the
-- assertion again!
(env', fvs' `unionFVInfo` body_fvs, bind)
coreTopBindToStg dflags this_mod env body_fvs (Rec pairs)
= ASSERT( not (null pairs) )
let
binders = map fst pairs
extra_env' = [ (b, LetBound TopLet $! manifestArity rhs)
| (b, rhs) <- pairs ]
env' = extendVarEnvList env extra_env'
(stg_rhss, fvs')
= initLne env' $ do
(stg_rhss, fvss') <- mapAndUnzipM (coreToTopStgRhs dflags this_mod body_fvs) pairs
let fvs' = unionFVInfos fvss'
return (stg_rhss, fvs')
bind = StgRec (zip binders stg_rhss)
in
ASSERT2(consistentCafInfo (head binders) bind, ppr binders)
(env', fvs' `unionFVInfo` body_fvs, bind)
-- Assertion helper: this checks that the CafInfo on the Id matches
-- what CoreToStg has figured out about the binding's SRT. The
-- CafInfo will be exact in all cases except when CorePrep has
-- floated out a binding, in which case it will be approximate.
consistentCafInfo :: Id -> GenStgBinding Var Id -> Bool
consistentCafInfo id bind
= WARN( not (exact || is_sat_thing) , ppr id <+> ppr id_marked_caffy <+> ppr binding_is_caffy )
safe
where
safe = id_marked_caffy || not binding_is_caffy
exact = id_marked_caffy == binding_is_caffy
id_marked_caffy = mayHaveCafRefs (idCafInfo id)
binding_is_caffy = topStgBindHasCafRefs bind
is_sat_thing = occNameFS (nameOccName (idName id)) == fsLit "sat"
coreToTopStgRhs
:: DynFlags
-> Module
-> FreeVarsInfo -- Free var info for the scope of the binding
-> (Id,CoreExpr)
-> LneM (StgRhs, FreeVarsInfo)
coreToTopStgRhs dflags this_mod scope_fv_info (bndr, rhs)
= do { (new_rhs, rhs_fvs, _) <- coreToStgExpr rhs
; let stg_rhs = mkTopStgRhs dflags this_mod rhs_fvs bndr bndr_info new_rhs
stg_arity = stgRhsArity stg_rhs
; return (ASSERT2( arity_ok stg_arity, mk_arity_msg stg_arity) stg_rhs,
rhs_fvs) }
where
bndr_info = lookupFVInfo scope_fv_info bndr
-- It's vital that the arity on a top-level Id matches
-- the arity of the generated STG binding, else an importing
-- module will use the wrong calling convention
-- (Trac #2844 was an example where this happened)
-- NB1: we can't move the assertion further out without
-- blocking the "knot" tied in coreTopBindsToStg
-- NB2: the arity check is only needed for Ids with External
-- Names, because they are externally visible. The CorePrep
-- pass introduces "sat" things with Local Names and does
-- not bother to set their Arity info, so don't fail for those
arity_ok stg_arity
| isExternalName (idName bndr) = id_arity == stg_arity
| otherwise = True
id_arity = idArity bndr
mk_arity_msg stg_arity
= vcat [ppr bndr,
text "Id arity:" <+> ppr id_arity,
text "STG arity:" <+> ppr stg_arity]
mkTopStgRhs :: DynFlags -> Module -> FreeVarsInfo
-> Id -> StgBinderInfo -> StgExpr
-> StgRhs
mkTopStgRhs dflags this_mod = mkStgRhs' con_updateable
-- Dynamic StgConApps are updatable
where con_updateable con args = isDllConApp dflags this_mod con args
-- ---------------------------------------------------------------------------
-- Expressions
-- ---------------------------------------------------------------------------
coreToStgExpr
:: CoreExpr
-> LneM (StgExpr, -- Decorated STG expr
FreeVarsInfo, -- Its free vars (NB free, not live)
EscVarsSet) -- Its escapees, a subset of its free vars;
-- also a subset of the domain of the envt
-- because we are only interested in the escapees
-- for vars which might be turned into
-- let-no-escaped ones.
-- The second and third components can be derived in a simple bottom up pass, not
-- dependent on any decisions about which variables will be let-no-escaped or
-- not. The first component, that is, the decorated expression, may then depend
-- on these components, but it in turn is not scrutinised as the basis for any
-- decisions. Hence no black holes.
-- No LitInteger's should be left by the time this is called. CorePrep
-- should have converted them all to a real core representation.
coreToStgExpr (Lit (LitInteger {})) = panic "coreToStgExpr: LitInteger"
coreToStgExpr (Lit l) = return (StgLit l, emptyFVInfo, emptyVarSet)
coreToStgExpr (Var v) = coreToStgApp Nothing v [] []
coreToStgExpr (Coercion _) = coreToStgApp Nothing coercionTokenId [] []
coreToStgExpr expr@(App _ _)
= coreToStgApp Nothing f args ticks
where
(f, args, ticks) = myCollectArgs expr
coreToStgExpr expr@(Lam _ _)
= let
(args, body) = myCollectBinders expr
args' = filterStgBinders args
in
extendVarEnvLne [ (a, LambdaBound) | a <- args' ] $ do
(body, body_fvs, body_escs) <- coreToStgExpr body
let
fvs = args' `minusFVBinders` body_fvs
escs = body_escs `delVarSetList` args'
result_expr | null args' = body
| otherwise = StgLam args' body
return (result_expr, fvs, escs)
coreToStgExpr (Tick tick expr)
= do case tick of
HpcTick{} -> return ()
ProfNote{} -> return ()
SourceNote{} -> return ()
Breakpoint{} -> panic "coreToStgExpr: breakpoint should not happen"
(expr2, fvs, escs) <- coreToStgExpr expr
return (StgTick tick expr2, fvs, escs)
coreToStgExpr (Cast expr _)
= coreToStgExpr expr
-- Cases require a little more real work.
coreToStgExpr (Case scrut _ _ [])
= coreToStgExpr scrut
-- See Note [Empty case alternatives] in CoreSyn If the case
-- alternatives are empty, the scrutinee must diverge or raise an
-- exception, so we can just dive into it.
--
-- Of course this may seg-fault if the scrutinee *does* return. A
-- belt-and-braces approach would be to move this case into the
-- code generator, and put a return point anyway that calls a
-- runtime system error function.
coreToStgExpr (Case scrut bndr _ alts) = do
(alts2, alts_fvs, alts_escs)
<- extendVarEnvLne [(bndr, LambdaBound)] $ do
(alts2, fvs_s, escs_s) <- mapAndUnzip3M vars_alt alts
return ( alts2,
unionFVInfos fvs_s,
unionVarSets escs_s )
let
-- Determine whether the default binder is dead or not
-- This helps the code generator to avoid generating an assignment
-- for the case binder (is extremely rare cases) ToDo: remove.
bndr' | bndr `elementOfFVInfo` alts_fvs = bndr
| otherwise = bndr `setIdOccInfo` IAmDead
-- Don't consider the default binder as being 'live in alts',
-- since this is from the point of view of the case expr, where
-- the default binder is not free.
alts_fvs_wo_bndr = bndr `minusFVBinder` alts_fvs
alts_escs_wo_bndr = alts_escs `delVarSet` bndr
-- We tell the scrutinee that everything
-- live in the alts is live in it, too.
(scrut2, scrut_fvs, _scrut_escs) <- coreToStgExpr scrut
return (
StgCase scrut2 bndr' (mkStgAltType bndr alts) alts2,
scrut_fvs `unionFVInfo` alts_fvs_wo_bndr,
alts_escs_wo_bndr `unionVarSet` getFVSet scrut_fvs
-- You might think we should have scrut_escs, not
-- (getFVSet scrut_fvs), but actually we can't call, and
-- then return from, a let-no-escape thing.
)
where
vars_alt (con, binders, rhs)
| DataAlt c <- con, c == unboxedUnitDataCon
= -- This case is a bit smelly.
-- See Note [Nullary unboxed tuple] in Type.hs
-- where a nullary tuple is mapped to (State# World#)
ASSERT( null binders )
do { (rhs2, rhs_fvs, rhs_escs) <- coreToStgExpr rhs
; return ((DEFAULT, [], rhs2), rhs_fvs, rhs_escs) }
| otherwise
= let -- Remove type variables
binders' = filterStgBinders binders
in
extendVarEnvLne [(b, LambdaBound) | b <- binders'] $ do
(rhs2, rhs_fvs, rhs_escs) <- coreToStgExpr rhs
return ( (con, binders', rhs2),
binders' `minusFVBinders` rhs_fvs,
rhs_escs `delVarSetList` binders' )
-- ToDo: remove the delVarSet;
-- since escs won't include any of these binders
-- Lets not only take quite a bit of work, but this is where we convert
-- then to let-no-escapes, if we wish.
-- (Meanwhile, we don't expect to see let-no-escapes...)
coreToStgExpr (Let bind body) = do
(new_let, fvs, escs, _)
<- mfix (\ ~(_, _, _, no_binder_escapes) ->
coreToStgLet no_binder_escapes bind body
)
return (new_let, fvs, escs)
coreToStgExpr e = pprPanic "coreToStgExpr" (ppr e)
mkStgAltType :: Id -> [CoreAlt] -> AltType
mkStgAltType bndr alts = case repType (idType bndr) of
UnaryRep rep_ty -> case tyConAppTyCon_maybe rep_ty of
Just tc | isUnliftedTyCon tc -> PrimAlt tc
| isAbstractTyCon tc -> look_for_better_tycon
| isAlgTyCon tc -> AlgAlt tc
| otherwise -> ASSERT2( _is_poly_alt_tycon tc, ppr tc )
PolyAlt
Nothing -> PolyAlt
MultiRep slots -> MultiValAlt (length slots)
where
_is_poly_alt_tycon tc
= isFunTyCon tc
|| isPrimTyCon tc -- "Any" is lifted but primitive
|| isFamilyTyCon tc -- Type family; e.g. Any, or arising from strict
-- function application where argument has a
-- type-family type
-- Sometimes, the TyCon is a AbstractTyCon which may not have any
-- constructors inside it. Then we may get a better TyCon by
-- grabbing the one from a constructor alternative
-- if one exists.
look_for_better_tycon
| ((DataAlt con, _, _) : _) <- data_alts =
AlgAlt (dataConTyCon con)
| otherwise =
ASSERT(null data_alts)
PolyAlt
where
(data_alts, _deflt) = findDefault alts
-- ---------------------------------------------------------------------------
-- Applications
-- ---------------------------------------------------------------------------
coreToStgApp
:: Maybe UpdateFlag -- Just upd <=> this application is
-- the rhs of a thunk binding
-- x = [...] \upd [] -> the_app
-- with specified update flag
-> Id -- Function
-> [CoreArg] -- Arguments
-> [Tickish Id] -- Debug ticks
-> LneM (StgExpr, FreeVarsInfo, EscVarsSet)
coreToStgApp _ f args ticks = do
(args', args_fvs, ticks') <- coreToStgArgs args
how_bound <- lookupVarLne f
let
n_val_args = valArgCount args
not_letrec_bound = not (isLetBound how_bound)
fun_fvs = singletonFVInfo f how_bound fun_occ
-- e.g. (f :: a -> int) (x :: a)
-- Here the free variables are "f", "x" AND the type variable "a"
-- coreToStgArgs will deal with the arguments recursively
-- Mostly, the arity info of a function is in the fn's IdInfo
-- But new bindings introduced by CoreSat may not have no
-- arity info; it would do us no good anyway. For example:
-- let f = \ab -> e in f
-- No point in having correct arity info for f!
-- Hence the hasArity stuff below.
-- NB: f_arity is only consulted for LetBound things
f_arity = stgArity f how_bound
saturated = f_arity <= n_val_args
fun_occ
| not_letrec_bound = noBinderInfo -- Uninteresting variable
| f_arity > 0 && saturated = stgSatOcc -- Saturated or over-saturated function call
| otherwise = stgUnsatOcc -- Unsaturated function or thunk
fun_escs
| not_letrec_bound = emptyVarSet -- Only letrec-bound escapees are interesting
| f_arity == n_val_args = emptyVarSet -- A function *or thunk* with an exactly
-- saturated call doesn't escape
-- (let-no-escape applies to 'thunks' too)
| otherwise = unitVarSet f -- Inexact application; it does escape
-- At the moment of the call:
-- either the function is *not* let-no-escaped, in which case
-- nothing is live except live_in_cont
-- or the function *is* let-no-escaped in which case the
-- variables it uses are live, but still the function
-- itself is not. PS. In this case, the function's
-- live vars should already include those of the
-- continuation, but it does no harm to just union the
-- two regardless.
res_ty = exprType (mkApps (Var f) args)
app = case idDetails f of
DataConWorkId dc
| saturated -> StgConApp dc args'
(dropRuntimeRepArgs (fromMaybe [] (tyConAppArgs_maybe res_ty)))
-- Some primitive operator that might be implemented as a library call.
PrimOpId op -> ASSERT( saturated )
StgOpApp (StgPrimOp op) args' res_ty
-- A call to some primitive Cmm function.
FCallId (CCall (CCallSpec (StaticTarget _ lbl (Just pkgId) True)
PrimCallConv _))
-> ASSERT( saturated )
StgOpApp (StgPrimCallOp (PrimCall lbl pkgId)) args' res_ty
-- A regular foreign call.
FCallId call -> ASSERT( saturated )
StgOpApp (StgFCallOp call (idUnique f)) args' res_ty
TickBoxOpId {} -> pprPanic "coreToStg TickBox" $ ppr (f,args')
_other -> StgApp f args'
fvs = fun_fvs `unionFVInfo` args_fvs
vars = fun_escs `unionVarSet` (getFVSet args_fvs)
-- All the free vars of the args are disqualified
-- from being let-no-escaped.
tapp = foldr StgTick app (ticks ++ ticks')
-- Forcing these fixes a leak in the code generator, noticed while
-- profiling for trac #4367
app `seq` fvs `seq` seqVarSet vars `seq` return (
tapp,
fvs,
vars
)
-- ---------------------------------------------------------------------------
-- Argument lists
-- This is the guy that turns applications into A-normal form
-- ---------------------------------------------------------------------------
coreToStgArgs :: [CoreArg] -> LneM ([StgArg], FreeVarsInfo, [Tickish Id])
coreToStgArgs []
= return ([], emptyFVInfo, [])
coreToStgArgs (Type _ : args) = do -- Type argument
(args', fvs, ts) <- coreToStgArgs args
return (args', fvs, ts)
coreToStgArgs (Coercion _ : args) -- Coercion argument; replace with place holder
= do { (args', fvs, ts) <- coreToStgArgs args
; return (StgVarArg coercionTokenId : args', fvs, ts) }
coreToStgArgs (Tick t e : args)
= ASSERT( not (tickishIsCode t) )
do { (args', fvs, ts) <- coreToStgArgs (e : args)
; return (args', fvs, t:ts) }
coreToStgArgs (arg : args) = do -- Non-type argument
(stg_args, args_fvs, ticks) <- coreToStgArgs args
(arg', arg_fvs, _escs) <- coreToStgExpr arg
let
fvs = args_fvs `unionFVInfo` arg_fvs
(aticks, arg'') = stripStgTicksTop tickishFloatable arg'
stg_arg = case arg'' of
StgApp v [] -> StgVarArg v
StgConApp con [] _ -> StgVarArg (dataConWorkId con)
StgLit lit -> StgLitArg lit
_ -> pprPanic "coreToStgArgs" (ppr arg)
-- WARNING: what if we have an argument like (v `cast` co)
-- where 'co' changes the representation type?
-- (This really only happens if co is unsafe.)
-- Then all the getArgAmode stuff in CgBindery will set the
-- cg_rep of the CgIdInfo based on the type of v, rather
-- than the type of 'co'.
-- This matters particularly when the function is a primop
-- or foreign call.
-- Wanted: a better solution than this hacky warning
let
arg_ty = exprType arg
stg_arg_ty = stgArgType stg_arg
bad_args = (isUnliftedType arg_ty && not (isUnliftedType stg_arg_ty))
|| (map typePrimRep (repTypeArgs arg_ty)
/= map typePrimRep (repTypeArgs stg_arg_ty))
-- In GHCi we coerce an argument of type BCO# (unlifted) to HValue (lifted),
-- and pass it to a function expecting an HValue (arg_ty). This is ok because
-- we can treat an unlifted value as lifted. But the other way round
-- we complain.
-- We also want to check if a pointer is cast to a non-ptr etc
WARN( bad_args, text "Dangerous-looking argument. Probable cause: bad unsafeCoerce#" $$ ppr arg )
return (stg_arg : stg_args, fvs, ticks ++ aticks)
-- ---------------------------------------------------------------------------
-- The magic for lets:
-- ---------------------------------------------------------------------------
coreToStgLet
:: Bool -- True <=> yes, we are let-no-escaping this let
-> CoreBind -- bindings
-> CoreExpr -- body
-> LneM (StgExpr, -- new let
FreeVarsInfo, -- variables free in the whole let
EscVarsSet, -- variables that escape from the whole let
Bool) -- True <=> none of the binders in the bindings
-- is among the escaping vars
coreToStgLet let_no_escape bind body = do
(bind2, bind_fvs, bind_escs,
body2, body_fvs, body_escs)
<- mfix $ \ ~(_, _, _, _, rec_body_fvs, _) -> do
( bind2, bind_fvs, bind_escs, env_ext)
<- vars_bind rec_body_fvs bind
-- Do the body
extendVarEnvLne env_ext $ do
(body2, body_fvs, body_escs) <- coreToStgExpr body
return (bind2, bind_fvs, bind_escs,
body2, body_fvs, body_escs)
-- Compute the new let-expression
let
new_let | let_no_escape = StgLetNoEscape bind2 body2
| otherwise = StgLet bind2 body2
free_in_whole_let
= binders `minusFVBinders` (bind_fvs `unionFVInfo` body_fvs)
real_bind_escs = if let_no_escape then
bind_escs
else
getFVSet bind_fvs
-- Everything escapes which is free in the bindings
let_escs = (real_bind_escs `unionVarSet` body_escs) `delVarSetList` binders
all_escs = bind_escs `unionVarSet` body_escs -- Still includes binders of
-- this let(rec)
no_binder_escapes = isEmptyVarSet (set_of_binders `intersectVarSet` all_escs)
-- Debugging code as requested by Andrew Kennedy
checked_no_binder_escapes
| debugIsOn && not no_binder_escapes && any is_join_var binders
= pprTrace "Interesting! A join var that isn't let-no-escaped" (ppr binders)
False
| otherwise = no_binder_escapes
-- Mustn't depend on the passed-in let_no_escape flag, since
-- no_binder_escapes is used by the caller to derive the flag!
return (
new_let,
free_in_whole_let,
let_escs,
checked_no_binder_escapes
)
where
set_of_binders = mkVarSet binders
binders = bindersOf bind
mk_binding binder rhs
= (binder, LetBound NestedLet (manifestArity rhs))
vars_bind :: FreeVarsInfo -- Free var info for body of binding
-> CoreBind
-> LneM (StgBinding,
FreeVarsInfo,
EscVarsSet, -- free vars; escapee vars
[(Id, HowBound)]) -- extension to environment
vars_bind body_fvs (NonRec binder rhs) = do
(rhs2, bind_fvs, escs) <- coreToStgRhs body_fvs (binder,rhs)
let
env_ext_item = mk_binding binder rhs
return (StgNonRec binder rhs2,
bind_fvs, escs, [env_ext_item])
vars_bind body_fvs (Rec pairs)
= mfix $ \ ~(_, rec_rhs_fvs, _, _) ->
let
rec_scope_fvs = unionFVInfo body_fvs rec_rhs_fvs
binders = map fst pairs
env_ext = [ mk_binding b rhs
| (b,rhs) <- pairs ]
in
extendVarEnvLne env_ext $ do
(rhss2, fvss, escss)
<- mapAndUnzip3M (coreToStgRhs rec_scope_fvs) pairs
let
bind_fvs = unionFVInfos fvss
escs = unionVarSets escss
return (StgRec (binders `zip` rhss2),
bind_fvs, escs, env_ext)
is_join_var :: Id -> Bool
-- A hack (used only for compiler debuggging) to tell if
-- a variable started life as a join point ($j)
is_join_var j = occNameString (getOccName j) == "$j"
coreToStgRhs :: FreeVarsInfo -- Free var info for the scope of the binding
-> (Id,CoreExpr)
-> LneM (StgRhs, FreeVarsInfo, EscVarsSet)
coreToStgRhs scope_fv_info (bndr, rhs) = do
(new_rhs, rhs_fvs, rhs_escs) <- coreToStgExpr rhs
return (mkStgRhs rhs_fvs bndr bndr_info new_rhs,
rhs_fvs, rhs_escs)
where
bndr_info = lookupFVInfo scope_fv_info bndr
mkStgRhs :: FreeVarsInfo -> Id -> StgBinderInfo -> StgExpr -> StgRhs
mkStgRhs = mkStgRhs' con_updateable
where con_updateable _ _ = False
mkStgRhs' :: (DataCon -> [StgArg] -> Bool)
-> FreeVarsInfo -> Id -> StgBinderInfo -> StgExpr -> StgRhs
mkStgRhs' con_updateable rhs_fvs bndr binder_info rhs
| StgLam bndrs body <- rhs
= StgRhsClosure noCCS binder_info
(getFVs rhs_fvs)
ReEntrant
bndrs body
| StgConApp con args _ <- unticked_rhs
, not (con_updateable con args)
= -- CorePrep does this right, but just to make sure
ASSERT(not (isUnboxedTupleCon con || isUnboxedSumCon con))
StgRhsCon noCCS con args
| otherwise
= StgRhsClosure noCCS binder_info
(getFVs rhs_fvs)
upd_flag [] rhs
where
(_, unticked_rhs) = stripStgTicksTop (not . tickishIsCode) rhs
upd_flag | isUsedOnce (idDemandInfo bndr) = SingleEntry
| otherwise = Updatable
{-
SDM: disabled. Eval/Apply can't handle functions with arity zero very
well; and making these into simple non-updatable thunks breaks other
assumptions (namely that they will be entered only once).
upd_flag | isPAP env rhs = ReEntrant
| otherwise = Updatable
-- Detect thunks which will reduce immediately to PAPs, and make them
-- non-updatable. This has several advantages:
--
-- - the non-updatable thunk behaves exactly like the PAP,
--
-- - the thunk is more efficient to enter, because it is
-- specialised to the task.
--
-- - we save one update frame, one stg_update_PAP, one update
-- and lots of PAP_enters.
--
-- - in the case where the thunk is top-level, we save building
-- a black hole and futhermore the thunk isn't considered to
-- be a CAF any more, so it doesn't appear in any SRTs.
--
-- We do it here, because the arity information is accurate, and we need
-- to do it before the SRT pass to save the SRT entries associated with
-- any top-level PAPs.
isPAP env (StgApp f args) = listLengthCmp args arity == LT -- idArity f > length args
where
arity = stgArity f (lookupBinding env f)
isPAP env _ = False
-}
{- ToDo:
upd = if isOnceDem dem
then (if isNotTop toplev
then SingleEntry -- HA! Paydirt for "dem"
else
(if debugIsOn then trace "WARNING: SE CAFs unsupported, forcing UPD instead" else id) $
Updatable)
else Updatable
-- For now we forbid SingleEntry CAFs; they tickle the
-- ASSERT in rts/Storage.c line 215 at newCAF() re mut_link,
-- and I don't understand why. There's only one SE_CAF (well,
-- only one that tickled a great gaping bug in an earlier attempt
-- at ClosureInfo.getEntryConvention) in the whole of nofib,
-- specifically Main.lvl6 in spectral/cryptarithm2.
-- So no great loss. KSW 2000-07.
-}
-- ---------------------------------------------------------------------------
-- A little monad for this let-no-escaping pass
-- ---------------------------------------------------------------------------
-- There's a lot of stuff to pass around, so we use this LneM monad to
-- help. All the stuff here is only passed *down*.
newtype LneM a = LneM
{ unLneM :: IdEnv HowBound
-> a
}
type EscVarsSet = IdSet
data HowBound
= ImportBound -- Used only as a response to lookupBinding; never
-- exists in the range of the (IdEnv HowBound)
| LetBound -- A let(rec) in this module
LetInfo -- Whether top level or nested
Arity -- Its arity (local Ids don't have arity info at this point)
| LambdaBound -- Used for both lambda and case
deriving (Eq)
data LetInfo
= TopLet -- top level things
| NestedLet
deriving (Eq)
isLetBound :: HowBound -> Bool
isLetBound (LetBound _ _) = True
isLetBound _ = False
topLevelBound :: HowBound -> Bool
topLevelBound ImportBound = True
topLevelBound (LetBound TopLet _) = True
topLevelBound _ = False
-- For a let(rec)-bound variable, x, we record LiveInfo, the set of
-- variables that are live if x is live. This LiveInfo comprises
-- (a) dynamic live variables (ones with a non-top-level binding)
-- (b) static live variabes (CAFs or things that refer to CAFs)
--
-- For "normal" variables (a) is just x alone. If x is a let-no-escaped
-- variable then x is represented by a code pointer and a stack pointer
-- (well, one for each stack). So all of the variables needed in the
-- execution of x are live if x is, and are therefore recorded in the
-- LetBound constructor; x itself *is* included.
--
-- The set of dynamic live variables is guaranteed ot have no further
-- let-no-escaped variables in it.
-- The std monad functions:
initLne :: IdEnv HowBound -> LneM a -> a
initLne env m = unLneM m env
{-# INLINE thenLne #-}
{-# INLINE returnLne #-}
returnLne :: a -> LneM a
returnLne e = LneM $ \_ -> e
thenLne :: LneM a -> (a -> LneM b) -> LneM b
thenLne m k = LneM $ \env
-> unLneM (k (unLneM m env)) env
instance Functor LneM where
fmap = liftM
instance Applicative LneM where
pure = returnLne
(<*>) = ap
instance Monad LneM where
(>>=) = thenLne
instance MonadFix LneM where
mfix expr = LneM $ \env ->
let result = unLneM (expr result) env
in result
-- Functions specific to this monad:
extendVarEnvLne :: [(Id, HowBound)] -> LneM a -> LneM a
extendVarEnvLne ids_w_howbound expr
= LneM $ \env
-> unLneM expr (extendVarEnvList env ids_w_howbound)
lookupVarLne :: Id -> LneM HowBound
lookupVarLne v = LneM $ \env -> lookupBinding env v
lookupBinding :: IdEnv HowBound -> Id -> HowBound
lookupBinding env v = case lookupVarEnv env v of
Just xx -> xx
Nothing -> ASSERT2( isGlobalId v, ppr v ) ImportBound
-- ---------------------------------------------------------------------------
-- Free variable information
-- ---------------------------------------------------------------------------
type FreeVarsInfo = VarEnv (Var, HowBound, StgBinderInfo)
-- The Var is so we can gather up the free variables
-- as a set.
--
-- The HowBound info just saves repeated lookups;
-- we look up just once when we encounter the occurrence.
-- INVARIANT: Any ImportBound Ids are HaveCafRef Ids
-- Imported Ids without CAF refs are simply
-- not put in the FreeVarsInfo for an expression.
-- See singletonFVInfo and freeVarsToLiveVars
--
-- StgBinderInfo records how it occurs; notably, we
-- are interested in whether it only occurs in saturated
-- applications, because then we don't need to build a
-- curried version.
-- If f is mapped to noBinderInfo, that means
-- that f *is* mentioned (else it wouldn't be in the
-- IdEnv at all), but perhaps in an unsaturated applications.
--
-- All case/lambda-bound things are also mapped to
-- noBinderInfo, since we aren't interested in their
-- occurrence info.
--
-- For ILX we track free var info for type variables too;
-- hence VarEnv not IdEnv
emptyFVInfo :: FreeVarsInfo
emptyFVInfo = emptyVarEnv
singletonFVInfo :: Id -> HowBound -> StgBinderInfo -> FreeVarsInfo
-- Don't record non-CAF imports at all, to keep free-var sets small
singletonFVInfo id ImportBound info
| mayHaveCafRefs (idCafInfo id) = unitVarEnv id (id, ImportBound, info)
| otherwise = emptyVarEnv
singletonFVInfo id how_bound info = unitVarEnv id (id, how_bound, info)
unionFVInfo :: FreeVarsInfo -> FreeVarsInfo -> FreeVarsInfo
unionFVInfo fv1 fv2 = plusVarEnv_C plusFVInfo fv1 fv2
unionFVInfos :: [FreeVarsInfo] -> FreeVarsInfo
unionFVInfos fvs = foldr unionFVInfo emptyFVInfo fvs
minusFVBinders :: [Id] -> FreeVarsInfo -> FreeVarsInfo
minusFVBinders vs fv = foldr minusFVBinder fv vs
minusFVBinder :: Id -> FreeVarsInfo -> FreeVarsInfo
minusFVBinder v fv = fv `delVarEnv` v
-- When removing a binder, remember to add its type variables
-- c.f. CoreFVs.delBinderFV
elementOfFVInfo :: Id -> FreeVarsInfo -> Bool
elementOfFVInfo id fvs = isJust (lookupVarEnv fvs id)
lookupFVInfo :: FreeVarsInfo -> Id -> StgBinderInfo
-- Find how the given Id is used.
-- Externally visible things may be used any old how
lookupFVInfo fvs id
| isExternalName (idName id) = noBinderInfo
| otherwise = case lookupVarEnv fvs id of
Nothing -> noBinderInfo
Just (_,_,info) -> info
-- Non-top-level things only, both type variables and ids
getFVs :: FreeVarsInfo -> [Var]
getFVs fvs = [id | (id, how_bound, _) <- nonDetEltsUFM fvs,
-- It's OK to use nonDetEltsUFM here because we're not aiming for
-- bit-for-bit determinism.
-- See Note [Unique Determinism and code generation]
not (topLevelBound how_bound) ]
getFVSet :: FreeVarsInfo -> VarSet
getFVSet fvs = mkVarSet (getFVs fvs)
plusFVInfo :: (Var, HowBound, StgBinderInfo)
-> (Var, HowBound, StgBinderInfo)
-> (Var, HowBound, StgBinderInfo)
plusFVInfo (id1,hb1,info1) (id2,hb2,info2)
= ASSERT(id1 == id2 && hb1 == hb2)
(id1, hb1, combineStgBinderInfo info1 info2)
-- Misc.
filterStgBinders :: [Var] -> [Var]
filterStgBinders bndrs = filter isId bndrs
myCollectBinders :: Expr Var -> ([Var], Expr Var)
myCollectBinders expr
= go [] expr
where
go bs (Lam b e) = go (b:bs) e
go bs (Cast e _) = go bs e
go bs e = (reverse bs, e)
myCollectArgs :: CoreExpr -> (Id, [CoreArg], [Tickish Id])
-- We assume that we only have variables
-- in the function position by now
myCollectArgs expr
= go expr [] []
where
go (Var v) as ts = (v, as, ts)
go (App f a) as ts = go f (a:as) ts
go (Tick t e) as ts = ASSERT( all isTypeArg as )
go e as (t:ts) -- ticks can appear in type apps
go (Cast e _) as ts = go e as ts
go (Lam b e) as ts
| isTyVar b = go e as ts -- Note [Collect args]
go _ _ _ = pprPanic "CoreToStg.myCollectArgs" (ppr expr)
-- Note [Collect args]
-- ~~~~~~~~~~~~~~~~~~~
--
-- This big-lambda case occurred following a rather obscure eta expansion.
-- It all seems a bit yukky to me.
stgArity :: Id -> HowBound -> Arity
stgArity _ (LetBound _ arity) = arity
stgArity f ImportBound = idArity f
stgArity _ LambdaBound = 0
|