1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
|
%
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1996
%
\section[CoreUtils]{Utility functions on @Core@ syntax}
\begin{code}
module CoreUtils (
coreExprType, coreAltsType, coreExprCc,
substCoreExpr, substCoreBindings
, mkCoreIfThenElse
, argToExpr
, unTagBinders, unTagBindersAlts
, maybeErrorApp
, nonErrorRHSs
, squashableDictishCcExpr
) where
#include "HsVersions.h"
import CoreSyn
import CostCentre ( isDictCC, CostCentre, noCostCentre )
import Id ( idType, mkSysLocal, isBottomingId,
toplevelishId, mkIdWithNewUniq, applyTypeEnvToId,
dataConRepType,
addOneToIdEnv, growIdEnvList, lookupIdEnv,
isNullIdEnv, IdEnv, Id
)
import Literal ( literalType, isNoRepLit, Literal(..) )
import Maybes ( catMaybes, maybeToBool )
import PprCore
import PrimOp ( primOpType, PrimOp(..) )
import SrcLoc ( noSrcLoc )
import TyVar ( cloneTyVar,
isEmptyTyVarEnv, addToTyVarEnv, TyVarEnv,
TyVar, GenTyVar
)
import Type ( mkFunTy, mkForAllTy, mkTyVarTy,
splitFunTy_maybe, applyTy, isUnpointedType,
splitSigmaTy, splitFunTys, instantiateTy,
Type
)
import TysWiredIn ( trueDataCon, falseDataCon )
import Unique ( Unique )
import BasicTypes ( Unused )
import UniqSupply ( initUs, returnUs, thenUs,
mapUs, mapAndUnzipUs, getUnique,
UniqSM, UniqSupply
)
import Util ( zipEqual )
import Outputable
type TypeEnv = TyVarEnv Type
\end{code}
%************************************************************************
%* *
\subsection{Find the type of a Core atom/expression}
%* *
%************************************************************************
\begin{code}
coreExprType :: CoreExpr -> Type
coreExprType (Var var) = idType var
coreExprType (Lit lit) = literalType lit
coreExprType (Let _ body) = coreExprType body
coreExprType (SCC _ expr) = coreExprType expr
coreExprType (Case _ alts) = coreAltsType alts
coreExprType (Coerce _ ty _) = ty -- that's the whole point!
-- a Con is a fully-saturated application of a data constructor
-- a Prim is <ditto> of a PrimOp
coreExprType (Con con args) =
-- pprTrace "appTyArgs" (hsep [ppr con, semi,
-- ppr con_ty, semi,
-- ppr args]) $
applyTypeToArgs con_ty args
where
con_ty = dataConRepType con
coreExprType (Prim op args) = applyTypeToArgs (primOpType op) args
coreExprType (Lam (ValBinder binder) expr)
= idType binder `mkFunTy` coreExprType expr
coreExprType (Lam (TyBinder tyvar) expr)
= mkForAllTy tyvar (coreExprType expr)
coreExprType (App expr (TyArg ty))
=
-- pprTrace "appTy1" (hsep [ppr fun_ty, space, ppr ty]) $
applyTy fun_ty ty
where
fun_ty = coreExprType expr
coreExprType (App expr val_arg)
= ASSERT(isValArg val_arg)
let
fun_ty = coreExprType expr
in
case (splitFunTy_maybe fun_ty) of
Just (_, result_ty) -> result_ty
#ifdef DEBUG
Nothing -> pprPanic "coreExprType:\n"
(vcat [ppr fun_ty, ppr (App expr val_arg)])
#endif
\end{code}
\begin{code}
coreAltsType :: CoreCaseAlts -> Type
coreAltsType (AlgAlts [] deflt) = default_ty deflt
coreAltsType (AlgAlts ((_,_,rhs1):_) _) = coreExprType rhs1
coreAltsType (PrimAlts [] deflt) = default_ty deflt
coreAltsType (PrimAlts ((_,rhs1):_) _) = coreExprType rhs1
default_ty NoDefault = panic "coreExprType:Case:default_ty"
default_ty (BindDefault _ rhs) = coreExprType rhs
\end{code}
\begin{code}
applyTypeToArgs op_ty args = foldl applyTypeToArg op_ty args
applyTypeToArg op_ty (TyArg ty) = applyTy op_ty ty
applyTypeToArg op_ty val_or_lit_arg = case (splitFunTy_maybe op_ty) of
Just (_, res_ty) -> res_ty
\end{code}
coreExprCc gets the cost centre enclosing an expression, if any.
It looks inside lambdas because (scc "foo" \x.e) = \x.scc "foo" e
\begin{code}
coreExprCc :: GenCoreExpr val_bdr val_occ flexi -> CostCentre
coreExprCc (SCC cc e) = cc
coreExprCc (Lam _ e) = coreExprCc e
coreExprCc other = noCostCentre
\end{code}
%************************************************************************
%* *
\subsection{Routines to manufacture bits of @CoreExpr@}
%* *
%************************************************************************
\begin{code}
mkCoreIfThenElse (Var bool) then_expr else_expr
| bool == trueDataCon = then_expr
| bool == falseDataCon = else_expr
mkCoreIfThenElse guard then_expr else_expr
= Case guard
(AlgAlts [ (trueDataCon, [], then_expr),
(falseDataCon, [], else_expr) ]
NoDefault )
\end{code}
For making @Apps@ and @Lets@, we must take appropriate evasive
action if the thing being bound has unboxed type. @mkCoApp@ requires
a name supply to do its work.
@mkCoApps@, @mkCoCon@ and @mkCoPrim@ also handle the
arguments-must-be-atoms constraint.
\begin{code}
data CoreArgOrExpr
= AnArg CoreArg
| AnExpr CoreExpr
mkCoApps :: CoreExpr -> [CoreArgOrExpr] -> UniqSM CoreExpr
mkCoCon :: Id -> [CoreArgOrExpr] -> UniqSM CoreExpr
mkCoPrim :: PrimOp -> [CoreArgOrExpr] -> UniqSM CoreExpr
mkCoApps fun args = co_thing (mkGenApp fun) args
mkCoCon con args = co_thing (Con con) args
mkCoPrim op args = co_thing (Prim op) args
co_thing :: ([CoreArg] -> CoreExpr)
-> [CoreArgOrExpr]
-> UniqSM CoreExpr
co_thing thing arg_exprs
= mapAndUnzipUs expr_to_arg arg_exprs `thenUs` \ (args, maybe_binds) ->
returnUs (mkCoLetsUnboxedToCase (catMaybes maybe_binds) (thing args))
where
expr_to_arg :: CoreArgOrExpr
-> UniqSM (CoreArg, Maybe CoreBinding)
expr_to_arg (AnArg arg) = returnUs (arg, Nothing)
expr_to_arg (AnExpr (Var v)) = returnUs (VarArg v, Nothing)
expr_to_arg (AnExpr (Lit l)) = returnUs (LitArg l, Nothing)
expr_to_arg (AnExpr other_expr)
= let
e_ty = coreExprType other_expr
in
getUnique `thenUs` \ uniq ->
let
new_var = mkSysLocal SLIT("a") uniq e_ty noSrcLoc
in
returnUs (VarArg new_var, Just (NonRec new_var other_expr))
\end{code}
\begin{code}
argToExpr ::
GenCoreArg val_occ flexi -> GenCoreExpr val_bdr val_occ flexi
argToExpr (VarArg v) = Var v
argToExpr (LitArg lit) = Lit lit
\end{code}
All the following functions operate on binders, perform a uniform
transformation on them; ie. the function @(\ x -> (x,False))@
annotates all binders with False.
\begin{code}
unTagBinders :: GenCoreExpr (Id,tag) bdee flexi -> GenCoreExpr Id bdee flexi
unTagBinders expr = bop_expr fst expr
unTagBindersAlts :: GenCoreCaseAlts (Id,tag) bdee flexi -> GenCoreCaseAlts Id bdee flexi
unTagBindersAlts alts = bop_alts fst alts
\end{code}
\begin{code}
bop_expr :: (a -> b) -> GenCoreExpr a bdee flexi -> GenCoreExpr b bdee flexi
bop_expr f (Var b) = Var b
bop_expr f (Lit lit) = Lit lit
bop_expr f (Con con args) = Con con args
bop_expr f (Prim op args) = Prim op args
bop_expr f (Lam binder expr) = Lam (bop_binder f binder) (bop_expr f expr)
bop_expr f (App expr arg) = App (bop_expr f expr) arg
bop_expr f (SCC label expr) = SCC label (bop_expr f expr)
bop_expr f (Coerce c ty e) = Coerce c ty (bop_expr f e)
bop_expr f (Let bind expr) = Let (bop_bind f bind) (bop_expr f expr)
bop_expr f (Case expr alts) = Case (bop_expr f expr) (bop_alts f alts)
bop_binder f (ValBinder v) = ValBinder (f v)
bop_binder f (TyBinder t) = TyBinder t
bop_bind f (NonRec b e) = NonRec (f b) (bop_expr f e)
bop_bind f (Rec pairs) = Rec [(f b, bop_expr f e) | (b, e) <- pairs]
bop_alts f (AlgAlts alts deflt)
= AlgAlts [ (con, [f b | b <- binders], bop_expr f e)
| (con, binders, e) <- alts ]
(bop_deflt f deflt)
bop_alts f (PrimAlts alts deflt)
= PrimAlts [ (lit, bop_expr f e) | (lit, e) <- alts ]
(bop_deflt f deflt)
bop_deflt f (NoDefault) = NoDefault
bop_deflt f (BindDefault b expr) = BindDefault (f b) (bop_expr f expr)
\end{code}
OLD (but left here because of the nice example): @singleAlt@ checks
whether a bunch of case alternatives is actually just one alternative.
It specifically {\em ignores} alternatives which consist of just a
call to @error@, because they won't result in any code duplication.
Example:
\begin{verbatim}
case (case <something> of
True -> <rhs>
False -> error "Foo") of
<alts>
===>
case <something> of
True -> case <rhs> of
<alts>
False -> case error "Foo" of
<alts>
===>
case <something> of
True -> case <rhs> of
<alts>
False -> error "Foo"
\end{verbatim}
Notice that the \tr{<alts>} don't get duplicated.
\begin{code}
nonErrorRHSs :: GenCoreCaseAlts a Id Unused -> [GenCoreExpr a Id Unused]
nonErrorRHSs alts
= filter not_error_app (find_rhss alts)
where
find_rhss (AlgAlts as deflt) = [rhs | (_,_,rhs) <- as] ++ deflt_rhs deflt
find_rhss (PrimAlts as deflt) = [rhs | (_,rhs) <- as] ++ deflt_rhs deflt
deflt_rhs NoDefault = []
deflt_rhs (BindDefault _ rhs) = [rhs]
not_error_app rhs
= case (maybeErrorApp rhs Nothing) of
Just _ -> False
Nothing -> True
\end{code}
maybeErrorApp checks whether an expression is of the form
error ty args
If so, it returns
Just (error ty' args)
where ty' is supplied as an argument to maybeErrorApp.
Here's where it is useful:
case (error ty "Foo" e1 e2) of <alts>
===>
error ty' "Foo"
where ty' is the type of any of the alternatives. You might think
this never occurs, but see the comments on the definition of
@singleAlt@.
Note: we *avoid* the case where ty' might end up as a primitive type:
this is very uncool (totally wrong).
NOTICE: in the example above we threw away e1 and e2, but not the
string "Foo". How did we know to do that?
Answer: for now anyway, we only handle the case of a function whose
type is of form
bottomingFn :: forall a. t1 -> ... -> tn -> a
^---------------------^ NB!
Furthermore, we only count a bottomingApp if the function is applied
to more than n args. If so, we transform:
bottomingFn ty e1 ... en en+1 ... em
to
bottomingFn ty' e1 ... en
That is, we discard en+1 .. em
\begin{code}
maybeErrorApp
:: GenCoreExpr a Id Unused -- Expr to look at
-> Maybe Type -- Just ty => a result type *already cloned*;
-- Nothing => don't know result ty; we
-- *pretend* that the result ty won't be
-- primitive -- somebody later must
-- ensure this.
-> Maybe (GenCoreExpr b Id Unused)
maybeErrorApp expr result_ty_maybe
= case (collectArgs expr) of
(Var fun, [ty], other_args)
| isBottomingId fun
&& maybeToBool result_ty_maybe -- we *know* the result type
-- (otherwise: live a fairy-tale existence...)
&& not (isUnpointedType result_ty) ->
case (splitSigmaTy (idType fun)) of
([tyvar], [], tau_ty) ->
case (splitFunTys tau_ty) of { (arg_tys, res_ty) ->
let
n_args_to_keep = length arg_tys
args_to_keep = take n_args_to_keep other_args
in
if (res_ty == mkTyVarTy tyvar)
&& n_args_to_keep <= length other_args
then
-- Phew! We're in business
Just (mkGenApp (Var fun) (TyArg result_ty : args_to_keep))
else
Nothing
}
other -> Nothing -- Function type wrong shape
other -> Nothing
where
Just result_ty = result_ty_maybe
\end{code}
\begin{code}
squashableDictishCcExpr :: CostCentre -> GenCoreExpr a b c -> Bool
squashableDictishCcExpr cc expr
= if not (isDictCC cc) then
False -- that was easy...
else
squashable expr -- note: quite like the "atomic_rhs" stuff in simplifier
where
squashable (Var _) = True
squashable (Con _ _) = True -- I think so... WDP 94/09
squashable (Prim _ _) = True -- ditto
squashable (App f a)
| notValArg a = squashable f
squashable other = False
\end{code}
%************************************************************************
%* *
\subsection{Core-renaming utils}
%* *
%************************************************************************
\begin{code}
substCoreBindings :: ValEnv
-> TypeEnv -- TyVar=>Type
-> [CoreBinding]
-> UniqSM [CoreBinding]
substCoreExpr :: ValEnv
-> TypeEnv -- TyVar=>Type
-> CoreExpr
-> UniqSM CoreExpr
substCoreBindings venv tenv binds
-- if the envs are empty, then avoid doing anything
= if (isNullIdEnv venv && isEmptyTyVarEnv tenv) then
returnUs binds
else
do_CoreBindings venv tenv binds
substCoreExpr venv tenv expr
= if (isNullIdEnv venv && isEmptyTyVarEnv tenv) then
returnUs expr
else
do_CoreExpr venv tenv expr
\end{code}
The equiv code for @Types@ is in @TyUtils@.
Because binders aren't necessarily unique: we don't do @plusEnvs@
(which check for duplicates); rather, we use the shadowing version,
@growIdEnv@ (and shorthand @addOneToIdEnv@).
@do_CoreBindings@ takes into account the semantics of a list of
@CoreBindings@---things defined early in the list are visible later in
the list, but not vice versa.
\begin{code}
type ValEnv = IdEnv CoreExpr
do_CoreBindings :: ValEnv
-> TypeEnv
-> [CoreBinding]
-> UniqSM [CoreBinding]
do_CoreBinding :: ValEnv
-> TypeEnv
-> CoreBinding
-> UniqSM (CoreBinding, ValEnv)
do_CoreBindings venv tenv [] = returnUs []
do_CoreBindings venv tenv (b:bs)
= do_CoreBinding venv tenv b `thenUs` \ (new_b, new_venv) ->
do_CoreBindings new_venv tenv bs `thenUs` \ new_bs ->
returnUs (new_b : new_bs)
do_CoreBinding venv tenv (NonRec binder rhs)
= do_CoreExpr venv tenv rhs `thenUs` \ new_rhs ->
dup_binder tenv binder `thenUs` \ (new_binder, (old, new)) ->
-- now plug new bindings into envs
let new_venv = addOneToIdEnv venv old new in
returnUs (NonRec new_binder new_rhs, new_venv)
do_CoreBinding venv tenv (Rec binds)
= -- for letrec, we plug in new bindings BEFORE cloning rhss
mapAndUnzipUs (dup_binder tenv) binders `thenUs` \ (new_binders, new_maps) ->
let new_venv = growIdEnvList venv new_maps in
mapUs (do_CoreExpr new_venv tenv) rhss `thenUs` \ new_rhss ->
returnUs (Rec (zipEqual "do_CoreBinding" new_binders new_rhss), new_venv)
where
(binders, rhss) = unzip binds
\end{code}
\begin{code}
do_CoreArg :: ValEnv
-> TypeEnv
-> CoreArg
-> UniqSM CoreArgOrExpr
do_CoreArg venv tenv a@(VarArg v)
= returnUs (
case (lookupIdEnv venv v) of
Nothing -> AnArg a
Just expr -> AnExpr expr
)
do_CoreArg venv tenv (TyArg ty)
= returnUs (AnArg (TyArg (instantiateTy tenv ty)))
do_CoreArg venv tenv other_arg = returnUs (AnArg other_arg)
\end{code}
\begin{code}
do_CoreExpr :: ValEnv
-> TypeEnv
-> CoreExpr
-> UniqSM CoreExpr
do_CoreExpr venv tenv orig_expr@(Var var)
= returnUs (
case (lookupIdEnv venv var) of
Nothing -> --false:ASSERT(toplevelishId var) (SIGH)
orig_expr
Just expr -> expr
)
do_CoreExpr venv tenv e@(Lit _) = returnUs e
do_CoreExpr venv tenv (Con con as)
= mapUs (do_CoreArg venv tenv) as `thenUs` \ new_as ->
mkCoCon con new_as
do_CoreExpr venv tenv (Prim op as)
= mapUs (do_CoreArg venv tenv) as `thenUs` \ new_as ->
do_PrimOp op `thenUs` \ new_op ->
mkCoPrim new_op new_as
where
do_PrimOp (CCallOp label is_asm may_gc arg_tys result_ty)
= let
new_arg_tys = map (instantiateTy tenv) arg_tys
new_result_ty = instantiateTy tenv result_ty
in
returnUs (CCallOp label is_asm may_gc new_arg_tys new_result_ty)
do_PrimOp other_op = returnUs other_op
do_CoreExpr venv tenv (Lam (ValBinder binder) expr)
= dup_binder tenv binder `thenUs` \(new_binder, (old,new)) ->
let new_venv = addOneToIdEnv venv old new in
do_CoreExpr new_venv tenv expr `thenUs` \ new_expr ->
returnUs (Lam (ValBinder new_binder) new_expr)
do_CoreExpr venv tenv (Lam (TyBinder tyvar) expr)
= dup_tyvar tyvar `thenUs` \ (new_tyvar, (old, new)) ->
let
new_tenv = addToTyVarEnv tenv old new
in
do_CoreExpr venv new_tenv expr `thenUs` \ new_expr ->
returnUs (Lam (TyBinder new_tyvar) new_expr)
do_CoreExpr venv tenv (App expr arg)
= do_CoreExpr venv tenv expr `thenUs` \ new_expr ->
do_CoreArg venv tenv arg `thenUs` \ new_arg ->
mkCoApps new_expr [new_arg] -- ToDo: more efficiently?
do_CoreExpr venv tenv (Case expr alts)
= do_CoreExpr venv tenv expr `thenUs` \ new_expr ->
do_alts venv tenv alts `thenUs` \ new_alts ->
returnUs (Case new_expr new_alts)
where
do_alts venv tenv (AlgAlts alts deflt)
= mapUs (do_boxed_alt venv tenv) alts `thenUs` \ new_alts ->
do_default venv tenv deflt `thenUs` \ new_deflt ->
returnUs (AlgAlts new_alts new_deflt)
where
do_boxed_alt venv tenv (con, binders, expr)
= mapAndUnzipUs (dup_binder tenv) binders `thenUs` \ (new_binders, new_vmaps) ->
let new_venv = growIdEnvList venv new_vmaps in
do_CoreExpr new_venv tenv expr `thenUs` \ new_expr ->
returnUs (con, new_binders, new_expr)
do_alts venv tenv (PrimAlts alts deflt)
= mapUs (do_unboxed_alt venv tenv) alts `thenUs` \ new_alts ->
do_default venv tenv deflt `thenUs` \ new_deflt ->
returnUs (PrimAlts new_alts new_deflt)
where
do_unboxed_alt venv tenv (lit, expr)
= do_CoreExpr venv tenv expr `thenUs` \ new_expr ->
returnUs (lit, new_expr)
do_default venv tenv NoDefault = returnUs NoDefault
do_default venv tenv (BindDefault binder expr)
= dup_binder tenv binder `thenUs` \ (new_binder, (old, new)) ->
let new_venv = addOneToIdEnv venv old new in
do_CoreExpr new_venv tenv expr `thenUs` \ new_expr ->
returnUs (BindDefault new_binder new_expr)
do_CoreExpr venv tenv (Let core_bind expr)
= do_CoreBinding venv tenv core_bind `thenUs` \ (new_bind, new_venv) ->
-- and do the body of the let
do_CoreExpr new_venv tenv expr `thenUs` \ new_expr ->
returnUs (Let new_bind new_expr)
do_CoreExpr venv tenv (SCC label expr)
= do_CoreExpr venv tenv expr `thenUs` \ new_expr ->
returnUs (SCC label new_expr)
do_CoreExpr venv tenv (Coerce c ty expr)
= do_CoreExpr venv tenv expr `thenUs` \ new_expr ->
returnUs (Coerce c (instantiateTy tenv ty) new_expr)
\end{code}
\begin{code}
dup_tyvar :: TyVar -> UniqSM (TyVar, (TyVar, Type))
dup_tyvar tyvar
= getUnique `thenUs` \ uniq ->
let new_tyvar = cloneTyVar tyvar uniq in
returnUs (new_tyvar, (tyvar, mkTyVarTy new_tyvar))
-- same thing all over again --------------------
dup_binder :: TypeEnv -> Id -> UniqSM (Id, (Id, CoreExpr))
dup_binder tenv b
= if (toplevelishId b) then
-- binder is "top-level-ish"; -- it should *NOT* be renamed
-- ToDo: it's unsavoury that we return something to heave in env
returnUs (b, (b, Var b))
else -- otherwise, the full business
getUnique `thenUs` \ uniq ->
let
new_b1 = mkIdWithNewUniq b uniq
new_b2 = applyTypeEnvToId tenv new_b1
in
returnUs (new_b2, (b, Var new_b2))
\end{code}
|