summaryrefslogtreecommitdiff
path: root/ghc/compiler/deSugar/Check.lhs
blob: 964627bff8c07abbb29c2731c5a9c314ddaccd05 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
%
% (c) The GRASP/AQUA Project, Glasgow University, 1997-1998
%
% Author: Juan J. Quintela    <quintela@krilin.dc.fi.udc.es>
\section{Module @Check@ in @deSugar@}

\begin{code}


module Check ( check , ExhaustivePat ) where


import HsSyn		
import TcHsSyn		( hsPatType )
import TcType		( tcTyConAppTyCon )
import DsUtils		( EquationInfo(..), MatchResult(..), 
			  CanItFail(..), firstPat )
import MatchLit		( tidyLitPat, tidyNPat )
import Id		( Id, idType )
import DataCon		( DataCon, dataConTyCon, dataConOrigArgTys, dataConFieldLabels )
import Name             ( Name, mkInternalName, getOccName, isDataSymOcc, getName, mkVarOcc )
import TysWiredIn
import PrelNames	( unboundKey )
import TyCon            ( tyConDataCons, tupleTyConBoxity, isTupleTyCon )
import BasicTypes	( Boxity(..) )
import SrcLoc		( noSrcLoc, Located(..), unLoc, noLoc )
import UniqSet
import Util             ( takeList, splitAtList, notNull )
import Outputable
import FastString

#include "HsVersions.h"
\end{code}

This module performs checks about if one list of equations are:
\begin{itemize}
\item Overlapped
\item Non exhaustive
\end{itemize}
To discover that we go through the list of equations in a tree-like fashion.

If you like theory, a similar algorithm is described in:
\begin{quotation}
	{\em Two Techniques for Compiling Lazy Pattern Matching},
	Luc Maranguet,
	INRIA Rocquencourt (RR-2385, 1994)
\end{quotation}
The algorithm is based on the first technique, but there are some differences:
\begin{itemize}
\item We don't generate code
\item We have constructors and literals (not only literals as in the 
	  article)
\item We don't use directions, we must select the columns from 
	  left-to-right
\end{itemize}
(By the way the second technique is really similar to the one used in 
 @Match.lhs@ to generate code)

This function takes the equations of a pattern and returns:
\begin{itemize}
\item The patterns that are not recognized
\item The equations that are not overlapped
\end{itemize}
It simplify the patterns and then call @check'@ (the same semantics), and it 
needs to reconstruct the patterns again ....

The problem appear with things like:
\begin{verbatim}
  f [x,y]   = ....
  f (x:xs)  = .....
\end{verbatim}
We want to put the two patterns with the same syntax, (prefix form) and 
then all the constructors are equal:
\begin{verbatim}
  f (: x (: y []))   = ....
  f (: x xs)         = .....
\end{verbatim}
(more about that in @simplify_eqns@)

We would prefer to have a @WarningPat@ of type @String@, but Strings and the 
Pretty Printer are not friends.

We use @InPat@ in @WarningPat@ instead of @OutPat@
because we need to print the 
warning messages in the same way they are introduced, i.e. if the user 
wrote:
\begin{verbatim}
	f [x,y] = ..
\end{verbatim}
He don't want a warning message written:
\begin{verbatim}
        f (: x (: y [])) ........
\end{verbatim}
Then we need to use InPats.
\begin{quotation}
     Juan Quintela 5 JUL 1998\\
	  User-friendliness and compiler writers are no friends.
\end{quotation}

\begin{code}
type WarningPat = InPat Name
type ExhaustivePat = ([WarningPat], [(Name, [HsLit])])
type EqnNo  = Int
type EqnSet = UniqSet EqnNo


check :: [EquationInfo] -> ([ExhaustivePat], [EquationInfo])
	-- Second result is the shadowed equations
check qs = (untidy_warns, shadowed_eqns)
      where
	(warns, used_nos) = check' ([1..] `zip` map simplify_eqn qs)
	untidy_warns = map untidy_exhaustive warns 
	shadowed_eqns = [eqn | (eqn,i) <- qs `zip` [1..], 
				not (i `elementOfUniqSet` used_nos)]

untidy_exhaustive :: ExhaustivePat -> ExhaustivePat
untidy_exhaustive ([pat], messages) = 
		  ([untidy_no_pars pat], map untidy_message messages)
untidy_exhaustive (pats, messages) = 
		  (map untidy_pars pats, map untidy_message messages)

untidy_message :: (Name, [HsLit]) -> (Name, [HsLit])
untidy_message (string, lits) = (string, map untidy_lit lits)
\end{code}

The function @untidy@ does the reverse work of the @simplify_pat@ funcion.

\begin{code}

type NeedPars = Bool 

untidy_no_pars :: WarningPat -> WarningPat
untidy_no_pars p = untidy False p

untidy_pars :: WarningPat -> WarningPat
untidy_pars p = untidy True p

untidy :: NeedPars -> WarningPat -> WarningPat
untidy b (L loc p) = L loc (untidy' b p)
  where
    untidy' _ p@(WildPat _)   = p
    untidy' _ p@(VarPat name) = p
    untidy' _ (LitPat lit)    = LitPat (untidy_lit lit)
    untidy' _ p@(ConPatIn name (PrefixCon [])) = p
    untidy' b (ConPatIn name ps)     = pars b (L loc (ConPatIn name (untidy_con ps)))
    untidy' _ (ListPat pats ty)      = ListPat (map untidy_no_pars pats) ty
    untidy' _ (TuplePat pats boxed)  = TuplePat (map untidy_no_pars pats) boxed
    untidy' _ (PArrPat _ _)	     = panic "Check.untidy: Shouldn't get a parallel array here!"
    untidy' _ (SigPatIn _ _) 	= panic "Check.untidy: SigPat"

untidy_con (PrefixCon pats) = PrefixCon (map untidy_pars pats) 
untidy_con (InfixCon p1 p2) = InfixCon  (untidy_pars p1) (untidy_pars p2)
untidy_con (RecCon bs)      = RecCon    [(f,untidy_pars p) | (f,p) <- bs]

pars :: NeedPars -> WarningPat -> Pat Name
pars True p = ParPat p
pars _    p = unLoc p

untidy_lit :: HsLit -> HsLit
untidy_lit (HsCharPrim c) = HsChar c
untidy_lit lit 		  = lit
\end{code}

This equation is the same that check, the only difference is that the
boring work is done, that work needs to be done only once, this is
the reason top have two functions, check is the external interface,
@check'@ is called recursively.

There are several cases:

\begin{itemize} 
\item There are no equations: Everything is OK. 
\item There are only one equation, that can fail, and all the patterns are
      variables. Then that equation is used and the same equation is 
      non-exhaustive.
\item All the patterns are variables, and the match can fail, there are 
      more equations then the results is the result of the rest of equations 
      and this equation is used also.

\item The general case, if all the patterns are variables (here the match 
      can't fail) then the result is that this equation is used and this 
      equation doesn't generate non-exhaustive cases.

\item In the general case, there can exist literals ,constructors or only 
      vars in the first column, we actuate in consequence.

\end{itemize}


\begin{code}

check' :: [(EqnNo, EquationInfo)] -> ([ExhaustivePat], EqnSet)  
check' [] = ([([],[])],emptyUniqSet)

check' [(n, EqnInfo { eqn_pats = ps, eqn_rhs = MatchResult CanFail _ })] 
   | all_vars ps  = ([(takeList ps (repeat nlWildPat),[])],  unitUniqSet n)

check' ((n, EqnInfo { eqn_pats = ps, eqn_rhs = MatchResult CanFail _}) : rs)
   | all_vars ps  = (pats,  addOneToUniqSet indexs n)
  where
    (pats,indexs) = check' rs

check' qs@((n, EqnInfo { eqn_pats = ps }) : _) 
   | all_vars ps  = ([],  unitUniqSet n)
   | literals     = split_by_literals qs
   | constructors = split_by_constructor qs
   | only_vars    = first_column_only_vars qs
   | otherwise    = pprPanic "Check.check': Not implemented :-(" (ppr first_pats)
  where
     -- Note: RecPats will have been simplified to ConPats
     --       at this stage.
    first_pats   = ASSERT2( okGroup qs, pprGroup qs ) map firstPatN qs
    constructors = any is_con first_pats
    literals     = any is_lit first_pats
    only_vars    = all is_var first_pats
\end{code}

Here begins the code to deal with literals, we need to split the matrix
in different matrix beginning by each literal and a last matrix with the 
rest of values.

\begin{code}
split_by_literals :: [(EqnNo, EquationInfo)] -> ([ExhaustivePat], EqnSet)
split_by_literals qs = process_literals used_lits qs
           where
             used_lits = get_used_lits qs
\end{code}

@process_explicit_literals@ is a function that process each literal that appears 
in the column of the matrix. 

\begin{code}
process_explicit_literals :: [HsLit] -> [(EqnNo, EquationInfo)] -> ([ExhaustivePat],EqnSet)
process_explicit_literals lits qs = (concat pats, unionManyUniqSets indexs)
    where                  
      pats_indexs   = map (\x -> construct_literal_matrix x qs) lits
      (pats,indexs) = unzip pats_indexs 
\end{code}


@process_literals@ calls @process_explicit_literals@ to deal with the literals 
that appears in the matrix and deal also with the rest of the cases. It 
must be one Variable to be complete.

\begin{code}

process_literals :: [HsLit] -> [(EqnNo, EquationInfo)] -> ([ExhaustivePat],EqnSet)
process_literals used_lits qs 
  | null default_eqns  = ([make_row_vars used_lits (head qs)] ++ pats,indexs)
  | otherwise          = (pats_default,indexs_default)
     where
       (pats,indexs)   = process_explicit_literals used_lits qs
       default_eqns    = ASSERT2( okGroup qs, pprGroup qs ) 
			 [remove_var q | q <- qs, is_var (firstPatN q)]
       (pats',indexs') = check' default_eqns 
       pats_default    = [(nlWildPat:ps,constraints) | (ps,constraints) <- (pats')] ++ pats 
       indexs_default  = unionUniqSets indexs' indexs
\end{code}

Here we have selected the literal and we will select all the equations that 
begins for that literal and create a new matrix.

\begin{code}
construct_literal_matrix :: HsLit -> [(EqnNo, EquationInfo)] -> ([ExhaustivePat],EqnSet)
construct_literal_matrix lit qs =
    (map (\ (xs,ys) -> (new_lit:xs,ys)) pats,indexs) 
  where
    (pats,indexs) = (check' (remove_first_column_lit lit qs)) 
    new_lit = nlLitPat lit

remove_first_column_lit :: HsLit
                        -> [(EqnNo, EquationInfo)] 
                        -> [(EqnNo, EquationInfo)]
remove_first_column_lit lit qs
  = ASSERT2( okGroup qs, pprGroup qs ) 
    [(n, shift_pat eqn) | q@(n,eqn) <- qs, is_var_lit lit (firstPatN q)]
  where
     shift_pat eqn@(EqnInfo { eqn_pats = _:ps}) = eqn { eqn_pats = ps }
     shift_pat eqn@(EqnInfo { eqn_pats = []})   = panic "Check.shift_var: no patterns"
\end{code}

This function splits the equations @qs@ in groups that deal with the 
same constructor.

\begin{code}
split_by_constructor :: [(EqnNo, EquationInfo)] -> ([ExhaustivePat], EqnSet)
split_by_constructor qs 
  | notNull unused_cons = need_default_case used_cons unused_cons qs 
  | otherwise           = no_need_default_case used_cons qs 
                       where 
                          used_cons   = get_used_cons qs 
                          unused_cons = get_unused_cons used_cons 
\end{code}

The first column of the patterns matrix only have vars, then there is 
nothing to do.

\begin{code}
first_column_only_vars :: [(EqnNo, EquationInfo)] -> ([ExhaustivePat],EqnSet)
first_column_only_vars qs = (map (\ (xs,ys) -> (nlWildPat:xs,ys)) pats,indexs)
                          where
                            (pats, indexs) = check' (map remove_var qs)
\end{code}

This equation takes a matrix of patterns and split the equations by 
constructor, using all the constructors that appears in the first column 
of the pattern matching.

We can need a default clause or not ...., it depends if we used all the 
constructors or not explicitly. The reasoning is similar to @process_literals@,
the difference is that here the default case is not always needed.

\begin{code}
no_need_default_case :: [Pat Id] -> [(EqnNo, EquationInfo)] -> ([ExhaustivePat],EqnSet)
no_need_default_case cons qs = (concat pats, unionManyUniqSets indexs)
    where                  
      pats_indexs   = map (\x -> construct_matrix x qs) cons
      (pats,indexs) = unzip pats_indexs 

need_default_case :: [Pat Id] -> [DataCon] -> [(EqnNo, EquationInfo)] -> ([ExhaustivePat],EqnSet)
need_default_case used_cons unused_cons qs 
  | null default_eqns  = (pats_default_no_eqns,indexs)
  | otherwise          = (pats_default,indexs_default)
     where
       (pats,indexs)   = no_need_default_case used_cons qs
       default_eqns    = ASSERT2( okGroup qs, pprGroup qs ) 
			 [remove_var q | q <- qs, is_var (firstPatN q)]
       (pats',indexs') = check' default_eqns 
       pats_default    = [(make_whole_con c:ps,constraints) | 
                          c <- unused_cons, (ps,constraints) <- pats'] ++ pats
       new_wilds       = make_row_vars_for_constructor (head qs)
       pats_default_no_eqns =  [(make_whole_con c:new_wilds,[]) | c <- unused_cons] ++ pats
       indexs_default  = unionUniqSets indexs' indexs

construct_matrix :: Pat Id -> [(EqnNo, EquationInfo)] -> ([ExhaustivePat],EqnSet)
construct_matrix con qs =
    (map (make_con con) pats,indexs) 
  where
    (pats,indexs) = (check' (remove_first_column con qs)) 
\end{code}

Here remove first column is more difficult that with literals due to the fact 
that constructors can have arguments.

For instance, the matrix
\begin{verbatim}
 (: x xs) y
 z        y
\end{verbatim}
is transformed in:
\begin{verbatim}
 x xs y
 _ _  y
\end{verbatim}

\begin{code}
remove_first_column :: Pat Id                -- Constructor 
                    -> [(EqnNo, EquationInfo)] 
                    -> [(EqnNo, EquationInfo)]
remove_first_column (ConPatOut (L _ con) _ _ _ (PrefixCon con_pats) _) qs
  = ASSERT2( okGroup qs, pprGroup qs ) 
    [(n, shift_var eqn) | q@(n, eqn) <- qs, is_var_con con (firstPatN q)]
  where
     new_wilds = [WildPat (hsPatType arg_pat) | arg_pat <- con_pats]
     shift_var eqn@(EqnInfo { eqn_pats = ConPatOut _ _ _ _ (PrefixCon ps') _ : ps}) 
 	= eqn { eqn_pats = map unLoc ps' ++ ps }
     shift_var eqn@(EqnInfo { eqn_pats = WildPat _ : ps })
  	= eqn { eqn_pats = new_wilds ++ ps }
     shift_var _ = panic "Check.Shift_var:No done"

make_row_vars :: [HsLit] -> (EqnNo, EquationInfo) -> ExhaustivePat
make_row_vars used_lits (_, EqnInfo { eqn_pats = pats})
   = (nlVarPat new_var:takeList (tail pats) (repeat nlWildPat),[(new_var,used_lits)])
  where 
     new_var = hash_x

hash_x = mkInternalName unboundKey {- doesn't matter much -}
		     (mkVarOcc FSLIT("#x"))
		     noSrcLoc

make_row_vars_for_constructor :: (EqnNo, EquationInfo) -> [WarningPat]
make_row_vars_for_constructor (_, EqnInfo { eqn_pats = pats}) 
  = takeList (tail pats) (repeat nlWildPat)

compare_cons :: Pat Id -> Pat Id -> Bool
compare_cons (ConPatOut (L _ id1) _ _ _ _ _) (ConPatOut (L _ id2) _ _ _ _ _) = id1 == id2  

remove_dups :: [Pat Id] -> [Pat Id]
remove_dups []     = []
remove_dups (x:xs) | or (map (\y -> compare_cons x y) xs) = remove_dups  xs
                   | otherwise                            = x : remove_dups xs

get_used_cons :: [(EqnNo, EquationInfo)] -> [Pat Id]
get_used_cons qs = remove_dups [pat | q <- qs, let pat = firstPatN q, 
				      isConPatOut pat]

isConPatOut (ConPatOut {}) = True
isConPatOut other	   = False

remove_dups' :: [HsLit] -> [HsLit] 
remove_dups' []                   = []
remove_dups' (x:xs) | x `elem` xs = remove_dups' xs
                    | otherwise   = x : remove_dups' xs 


get_used_lits :: [(EqnNo, EquationInfo)] -> [HsLit]
get_used_lits qs = remove_dups' all_literals
	         where
	           all_literals = get_used_lits' qs

get_used_lits' :: [(EqnNo, EquationInfo)] -> [HsLit]
get_used_lits' [] = []
get_used_lits' (q:qs) 
  | LitPat lit     <- first_pat = lit : get_used_lits qs
  | NPat lit _ _ _ <- first_pat = over_lit_lit lit : get_used_lits qs
  | otherwise		        = get_used_lits qs
  where
    first_pat = firstPatN q

over_lit_lit :: HsOverLit id -> HsLit
-- Get a representative HsLit to stand for the OverLit
-- It doesn't matter which one, because they will only be compared
-- with other HsLits gotten in the same way
over_lit_lit (HsIntegral i   _) = HsIntPrim   i
over_lit_lit (HsFractional f _) = HsFloatPrim f

get_unused_cons :: [Pat Id] -> [DataCon]
get_unused_cons used_cons = unused_cons
     where
       (ConPatOut _ _ _ _ _ ty) = head used_cons
       ty_con 		      = tcTyConAppTyCon ty		-- Newtype observable
       all_cons        	      = tyConDataCons ty_con
       used_cons_as_id 	      = map (\ (ConPatOut (L _ d) _ _ _ _ _) -> d) used_cons
       unused_cons     	      = uniqSetToList
		 (mkUniqSet all_cons `minusUniqSet` mkUniqSet used_cons_as_id) 

all_vars :: [Pat Id] -> Bool
all_vars []             = True
all_vars (WildPat _:ps) = all_vars ps
all_vars _              = False

remove_var :: (EqnNo, EquationInfo) -> (EqnNo, EquationInfo)
remove_var (n, eqn@(EqnInfo { eqn_pats = WildPat _ : ps})) = (n, eqn { eqn_pats = ps })
remove_var _  = panic "Check.remove_var: equation does not begin with a variable"

-----------------------
eqnPats :: (EqnNo, EquationInfo) -> [Pat Id]
eqnPats (_, eqn) = eqn_pats eqn

okGroup :: [(EqnNo, EquationInfo)] -> Bool
-- True if all equations have at least one pattern, and
-- all have the same number of patterns
okGroup [] = True
okGroup (e:es) = n_pats > 0 && and [length (eqnPats e) == n_pats | e <- es]
	       where
		 n_pats = length (eqnPats e)

-- Half-baked print
pprGroup es = vcat (map pprEqnInfo es)
pprEqnInfo e = ppr (eqnPats e)


firstPatN :: (EqnNo, EquationInfo) -> Pat Id
firstPatN (_, eqn) = firstPat eqn

is_con :: Pat Id -> Bool
is_con (ConPatOut _ _ _ _ _ _) = True
is_con _                     = False

is_lit :: Pat Id -> Bool
is_lit (LitPat _)      = True
is_lit (NPat _ _ _ _)  = True
is_lit _               = False

is_var :: Pat Id -> Bool
is_var (WildPat _) = True
is_var _           = False

is_var_con :: DataCon -> Pat Id -> Bool
is_var_con con (WildPat _)                          = True
is_var_con con (ConPatOut (L _ id) _ _ _ _ _) | id == con = True
is_var_con con _                                    = False

is_var_lit :: HsLit -> Pat Id -> Bool
is_var_lit lit (WildPat _)	 = True
is_var_lit lit (LitPat lit')     = lit == lit'
is_var_lit lit (NPat lit' _ _ _) = lit == over_lit_lit lit'
is_var_lit lit _                 = False
\end{code}

The difference beteewn @make_con@ and @make_whole_con@ is that
@make_wole_con@ creates a new constructor with all their arguments, and
@make_con@ takes a list of argumntes, creates the contructor getting their
arguments from the list. See where \fbox{\ ???\ } are used for details.

We need to reconstruct the patterns (make the constructors infix and
similar) at the same time that we create the constructors.

You can tell tuple constructors using
\begin{verbatim}
        Id.isTupleCon
\end{verbatim}
You can see if one constructor is infix with this clearer code :-))))))))))
\begin{verbatim}
        Lex.isLexConSym (Name.occNameString (Name.getOccName con))
\end{verbatim}

       Rather clumsy but it works. (Simon Peyton Jones)


We don't mind the @nilDataCon@ because it doesn't change the way to
print the messsage, we are searching only for things like: @[1,2,3]@,
not @x:xs@ ....

In @reconstruct_pat@ we want to ``undo'' the work
that we have done in @simplify_pat@.
In particular:
\begin{tabular}{lll}
	@((,) x y)@   & returns to be & @(x, y)@
\\      @((:) x xs)@  & returns to be & @(x:xs)@
\\      @(x:(...:[])@ & returns to be & @[x,...]@
\end{tabular}
%
The difficult case is the third one becouse we need to follow all the
contructors until the @[]@ to know that we need to use the second case,
not the second. \fbox{\ ???\ }
%
\begin{code}
isInfixCon con = isDataSymOcc (getOccName con)

is_nil (ConPatIn con (PrefixCon [])) = unLoc con == getName nilDataCon
is_nil _               		     = False

is_list (ListPat _ _) = True
is_list _             = False

return_list id q = id == consDataCon && (is_nil q || is_list q) 

make_list p q | is_nil q    = ListPat [p] placeHolderType
make_list p (ListPat ps ty) = ListPat (p:ps) ty
make_list _ _               = panic "Check.make_list: Invalid argument"

make_con :: Pat Id -> ExhaustivePat -> ExhaustivePat           
make_con (ConPatOut (L _ id) _ _ _ _ _) (lp:lq:ps, constraints) 
     | return_list id q = (noLoc (make_list lp q) : ps, constraints)
     | isInfixCon id    = (nlInfixConPat (getName id) lp lq : ps, constraints) 
   where q  = unLoc lq	

make_con (ConPatOut (L _ id) _ _ _ (PrefixCon pats) _) (ps, constraints) 
      | isTupleTyCon tc  = (noLoc (TuplePat pats_con (tupleTyConBoxity tc)) : rest_pats, constraints) 
      | isPArrFakeCon id = (noLoc (PArrPat pats_con placeHolderType)        : rest_pats, constraints) 
      | otherwise        = (nlConPat name pats_con      : rest_pats, constraints)
    where 
	name     	      = getName id
	(pats_con, rest_pats) = splitAtList pats ps
	tc	    	      = dataConTyCon id

-- reconstruct parallel array pattern
--
--  * don't check for the type only; we need to make sure that we are really
--   dealing with one of the fake constructors and not with the real
--   representation 

make_whole_con :: DataCon -> WarningPat
make_whole_con con | isInfixCon con = nlInfixConPat name nlWildPat nlWildPat
                   | otherwise      = nlConPat name pats
                where 
                  name   = getName con
                  pats   = [nlWildPat | t <- dataConOrigArgTys con]
\end{code}

This equation makes the same thing as @tidy@ in @Match.lhs@, the
difference is that here we can do all the tidy in one place and in the
@Match@ tidy it must be done one column each time due to bookkeeping 
constraints.

\begin{code}

simplify_eqn :: EquationInfo -> EquationInfo
simplify_eqn eqn = eqn { eqn_pats = map simplify_pat (eqn_pats eqn) }

simplify_lpat :: LPat Id -> LPat Id  
simplify_lpat p = fmap simplify_pat p

simplify_pat :: Pat Id -> Pat Id
simplify_pat pat@(WildPat gt) = pat
simplify_pat (VarPat id)      = WildPat (idType id) 
simplify_pat (VarPatOut id _) = WildPat (idType id) 	-- Ignore the bindings
simplify_pat (ParPat p)       = unLoc (simplify_lpat p)
simplify_pat (LazyPat p)      = unLoc (simplify_lpat p)
simplify_pat (AsPat id p)     = unLoc (simplify_lpat p)
simplify_pat (SigPatOut p _)  = unLoc (simplify_lpat p)	-- I'm not sure this is right

simplify_pat (ConPatOut (L loc id) tvs dicts binds ps ty) 
  = ConPatOut (L loc id) tvs dicts binds (simplify_con id ps) ty

simplify_pat (ListPat ps ty) = 
  unLoc $ foldr (\ x y -> mkPrefixConPat consDataCon [x,y] list_ty)
	                          (mkNilPat list_ty)
	                          (map simplify_lpat ps)
         where list_ty = mkListTy ty

-- introduce fake parallel array constructors to be able to handle parallel
-- arrays with the existing machinery for constructor pattern
--
simplify_pat (PArrPat ps ty)
  = mk_simple_con_pat (parrFakeCon (length ps))
		      (PrefixCon (map simplify_lpat ps)) 
		      (mkPArrTy ty)

simplify_pat (TuplePat ps boxity)
  = mk_simple_con_pat (tupleCon boxity arity)
		      (PrefixCon (map simplify_lpat ps))
		      (mkTupleTy boxity arity (map hsPatType ps))
  where
    arity = length ps

-- unpack string patterns fully, so we can see when they overlap with
-- each other, or even explicit lists of Chars.
simplify_pat pat@(LitPat (HsString s)) = 
   foldr (\c pat -> mk_simple_con_pat consDataCon (PrefixCon [mk_char_lit c,noLoc pat]) stringTy)
	 (mk_simple_con_pat nilDataCon (PrefixCon []) stringTy) (unpackFS s)
  where
    mk_char_lit c = noLoc (mk_simple_con_pat charDataCon (PrefixCon [nlLitPat (HsCharPrim c)]) charTy)

simplify_pat pat@(LitPat lit) = unLoc (tidyLitPat lit (noLoc pat))

simplify_pat pat@(NPat lit mb_neg _ lit_ty) = unLoc (tidyNPat lit mb_neg lit_ty (noLoc pat))

simplify_pat (NPlusKPat id hslit hsexpr1 hsexpr2)
   = WildPat (idType (unLoc id))

simplify_pat (DictPat dicts methods)
  = case num_of_d_and_ms of
       0 -> simplify_pat (TuplePat [] Boxed) 
       1 -> simplify_pat (head dict_and_method_pats) 
       _ -> simplify_pat (TuplePat (map noLoc dict_and_method_pats) Boxed)
    where
       num_of_d_and_ms	 = length dicts + length methods
       dict_and_method_pats = map VarPat (dicts ++ methods)

mk_simple_con_pat con args ty = ConPatOut (noLoc con) [] [] emptyLHsBinds args ty

-----------------
simplify_con con (PrefixCon ps)   = PrefixCon (map simplify_lpat ps)
simplify_con con (InfixCon p1 p2) = PrefixCon [simplify_lpat p1, simplify_lpat p2]
simplify_con con (RecCon fs)      
  | null fs   = PrefixCon [nlWildPat | t <- dataConOrigArgTys con]
		-- Special case for null patterns; maybe not a record at all
  | otherwise = PrefixCon (map (simplify_lpat.snd) all_pats)
  where
     -- pad out all the missing fields with WildPats.
    field_pats = map (\ f -> (f, nlWildPat)) (dataConFieldLabels con)
    all_pats = foldr (\ (id,p) acc -> insertNm (getName (unLoc id)) p acc)
		     field_pats fs
       
    insertNm nm p [] = [(nm,p)]
    insertNm nm p (x@(n,_):xs)
      | nm == n    = (nm,p):xs
      | otherwise  = x : insertNm nm p xs
\end{code}