summaryrefslogtreecommitdiff
path: root/ghc/compiler/deSugar/DsExpr.lhs
blob: 42f5adde6229a36a8f55103e69ae002ef0739aff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
%
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
\section[DsExpr]{Matching expressions (Exprs)}

\begin{code}
module DsExpr ( dsExpr, dsLExpr, dsLet, dsLit ) where

#include "HsVersions.h"


import Match		( matchWrapper, matchSimply )
import MatchLit		( dsLit )
import DsBinds		( dsHsBinds, AutoScc(..) )
import DsGRHSs		( dsGuarded )
import DsListComp	( dsListComp, dsPArrComp )
import DsUtils		( mkErrorAppDs, mkStringLit, mkConsExpr, mkNilExpr,
			  mkCoreTupTy, selectMatchVarL,
			  dsReboundNames, lookupReboundName )
import DsArrows		( dsProcExpr )
import DsMonad

#ifdef GHCI
	-- Template Haskell stuff iff bootstrapped
import DsMeta		( dsBracket )
#endif

import HsSyn
import TcHsSyn		( hsPatType )

-- NB: The desugarer, which straddles the source and Core worlds, sometimes
--     needs to see source types (newtypes etc), and sometimes not
--     So WATCH OUT; check each use of split*Ty functions.
-- Sigh.  This is a pain.

import TcType		( tcSplitAppTy, tcSplitFunTys, tcTyConAppArgs,
			  tcSplitTyConApp, isUnLiftedType, Type,
			  mkAppTy )
import Type		( splitFunTys )
import CoreSyn
import CoreUtils	( exprType, mkIfThenElse, bindNonRec )

import FieldLabel	( FieldLabel, fieldLabelTyCon )
import CostCentre	( mkUserCC )
import Id		( Id, idType, idName, recordSelectorFieldLabel )
import PrelInfo		( rEC_CON_ERROR_ID, iRREFUT_PAT_ERROR_ID )
import DataCon		( DataCon, dataConWrapId, dataConFieldLabels, dataConInstOrigArgTys )
import DataCon		( isExistentialDataCon )
import Name		( Name )
import TyCon		( tyConDataCons )
import TysWiredIn	( tupleCon )
import BasicTypes	( RecFlag(..), Boxity(..), ipNameName )
import PrelNames	( toPName,
			  returnMName, bindMName, thenMName, failMName,
			  mfixName )
import SrcLoc		( Located(..), unLoc, getLoc, noLoc )
import Util		( zipEqual, zipWithEqual )
import Bag		( bagToList )
import Outputable
import FastString
\end{code}


%************************************************************************
%*									*
\subsection{dsLet}
%*									*
%************************************************************************

@dsLet@ is a match-result transformer, taking the @MatchResult@ for the body
and transforming it into one for the let-bindings enclosing the body.

This may seem a bit odd, but (source) let bindings can contain unboxed
binds like
\begin{verbatim}
	C x# = e
\end{verbatim}
This must be transformed to a case expression and, if the type has
more than one constructor, may fail.

\begin{code}
dsLet :: [HsBindGroup Id] -> CoreExpr -> DsM CoreExpr
dsLet groups body = foldlDs dsBindGroup body (reverse groups)

dsBindGroup :: CoreExpr -> HsBindGroup Id -> DsM CoreExpr
dsBindGroup body (HsIPBinds binds)
  = foldlDs dsIPBind body binds
  where
    dsIPBind body (L _ (IPBind n e))
        = dsLExpr e	`thenDs` \ e' ->
	  returnDs (Let (NonRec (ipNameName n) e') body)

-- Special case for bindings which bind unlifted variables
-- We need to do a case right away, rather than building
-- a tuple and doing selections.
-- Silently ignore INLINE pragmas...
dsBindGroup body bind@(HsBindGroup hsbinds sigs is_rec)
  | [L _ (AbsBinds [] [] exports inlines binds)] <- bagToList hsbinds,
    or [isUnLiftedType (idType g) | (_, g, l) <- exports]
  = ASSERT (case is_rec of {NonRecursive -> True; other -> False})
	-- Unlifted bindings are always non-recursive
	-- and are always a Fun or Pat monobind
	--
	-- ToDo: in some bizarre case it's conceivable that there
	--       could be dict binds in the 'binds'.  (See the notes
	--	 below.  Then pattern-match would fail.  Urk.)
    let
      body_w_exports		   = foldr bind_export body exports
      bind_export (tvs, g, l) body = ASSERT( null tvs )
				     bindNonRec g (Var l) body

      mk_error_app pat = mkErrorAppDs iRREFUT_PAT_ERROR_ID
				    (exprType body)
				    (showSDoc (ppr pat))
    in
    case bagToList binds of
      [L loc (FunBind (L _ fun) _ matches)]
	-> putSrcSpanDs loc				$
	   matchWrapper (FunRhs (idName fun)) matches 	`thenDs` \ (args, rhs) ->
	   ASSERT( null args )	-- Functions aren't lifted
	   returnDs (bindNonRec fun rhs body_w_exports)

      [L loc (PatBind pat grhss)]
	-> putSrcSpanDs loc			$
	   dsGuarded grhss 			`thenDs` \ rhs ->
	   mk_error_app pat			`thenDs` \ error_expr ->
	   matchSimply rhs PatBindRhs pat body_w_exports error_expr

      other -> pprPanic "dsLet: unlifted" (ppr bind $$ ppr body)

-- Ordinary case for bindings
dsBindGroup body (HsBindGroup binds sigs is_rec)
  = dsHsBinds NoSccs binds []  `thenDs` \ prs ->
    returnDs (Let (Rec prs) body)
	-- Use a Rec regardless of is_rec. 
	-- Why? Because it allows the binds to be all
	-- mixed up, which is what happens in one rare case
	-- Namely, for an AbsBind with no tyvars and no dicts,
	-- 	   but which does have dictionary bindings.
	-- See notes with TcSimplify.inferLoop [NO TYVARS]
	-- It turned out that wrapping a Rec here was the easiest solution
	--
	-- NB The previous case dealt with unlifted bindings, so we
	--    only have to deal with lifted ones now; so Rec is ok
\end{code}	

%************************************************************************
%*									*
\subsection[DsExpr-vars-and-cons]{Variables, constructors, literals}
%*									*
%************************************************************************

\begin{code}
dsLExpr :: LHsExpr Id -> DsM CoreExpr
dsLExpr (L loc e) = putSrcSpanDs loc $ dsExpr e

dsExpr :: HsExpr Id -> DsM CoreExpr

dsExpr (HsPar e) 	      = dsLExpr e
dsExpr (ExprWithTySigOut e _) = dsLExpr e
dsExpr (HsVar var)  = returnDs (Var var)
dsExpr (HsIPVar ip) = returnDs (Var (ipNameName ip))
dsExpr (HsLit lit)  = dsLit lit
-- HsOverLit has been gotten rid of by the type checker

dsExpr expr@(HsLam a_Match)
  = matchWrapper LambdaExpr [a_Match]	`thenDs` \ (binders, matching_code) ->
    returnDs (mkLams binders matching_code)

dsExpr expr@(HsApp fun arg)      
  = dsLExpr fun		`thenDs` \ core_fun ->
    dsLExpr arg		`thenDs` \ core_arg ->
    returnDs (core_fun `App` core_arg)
\end{code}

Operator sections.  At first it looks as if we can convert
\begin{verbatim}
	(expr op)
\end{verbatim}
to
\begin{verbatim}
	\x -> op expr x
\end{verbatim}

But no!  expr might be a redex, and we can lose laziness badly this
way.  Consider
\begin{verbatim}
	map (expr op) xs
\end{verbatim}
for example.  So we convert instead to
\begin{verbatim}
	let y = expr in \x -> op y x
\end{verbatim}
If \tr{expr} is actually just a variable, say, then the simplifier
will sort it out.

\begin{code}
dsExpr (OpApp e1 op _ e2)
  = dsLExpr op						`thenDs` \ core_op ->
    -- for the type of y, we need the type of op's 2nd argument
    dsLExpr e1				`thenDs` \ x_core ->
    dsLExpr e2				`thenDs` \ y_core ->
    returnDs (mkApps core_op [x_core, y_core])
    
dsExpr (SectionL expr op)
  = dsLExpr op						`thenDs` \ core_op ->
    -- for the type of y, we need the type of op's 2nd argument
    let
	(x_ty:y_ty:_, _) = splitFunTys (exprType core_op)
	-- Must look through an implicit-parameter type; 
	-- newtype impossible; hence Type.splitFunTys
    in
    dsLExpr expr				`thenDs` \ x_core ->
    newSysLocalDs x_ty			`thenDs` \ x_id ->
    newSysLocalDs y_ty			`thenDs` \ y_id ->

    returnDs (bindNonRec x_id x_core $
	      Lam y_id (mkApps core_op [Var x_id, Var y_id]))

-- dsLExpr (SectionR op expr)	-- \ x -> op x expr
dsExpr (SectionR op expr)
  = dsLExpr op			`thenDs` \ core_op ->
    -- for the type of x, we need the type of op's 2nd argument
    let
	(x_ty:y_ty:_, _) = splitFunTys (exprType core_op)
	-- See comment with SectionL
    in
    dsLExpr expr				`thenDs` \ y_core ->
    newSysLocalDs x_ty			`thenDs` \ x_id ->
    newSysLocalDs y_ty			`thenDs` \ y_id ->

    returnDs (bindNonRec y_id y_core $
	      Lam x_id (mkApps core_op [Var x_id, Var y_id]))

dsExpr (HsSCC cc expr)
  = dsLExpr expr			`thenDs` \ core_expr ->
    getModuleDs			`thenDs` \ mod_name ->
    returnDs (Note (SCC (mkUserCC cc mod_name)) core_expr)


-- hdaume: core annotation

dsExpr (HsCoreAnn fs expr)
  = dsLExpr expr        `thenDs` \ core_expr ->
    returnDs (Note (CoreNote $ unpackFS fs) core_expr)

-- special case to handle unboxed tuple patterns.

dsExpr (HsCase discrim matches)
 | all ubx_tuple_match matches
 =  dsLExpr discrim			`thenDs` \ core_discrim ->
    matchWrapper CaseAlt matches 	`thenDs` \ ([discrim_var], matching_code) ->
    case matching_code of
	Case (Var x) bndr alts | x == discrim_var -> 
		returnDs (Case core_discrim bndr alts)
	_ -> panic ("dsLExpr: tuple pattern:\n" ++ showSDoc (ppr matching_code))
  where
    ubx_tuple_match (L _ (Match [L _ (TuplePat _ Unboxed)] _ _)) = True
    ubx_tuple_match _ = False

dsExpr (HsCase discrim matches)
  = dsLExpr discrim			`thenDs` \ core_discrim ->
    matchWrapper CaseAlt matches	`thenDs` \ ([discrim_var], matching_code) ->
    returnDs (bindNonRec discrim_var core_discrim matching_code)

dsExpr (HsLet binds body)
  = dsLExpr body		`thenDs` \ body' ->
    dsLet binds body'

-- We need the `ListComp' form to use `deListComp' (rather than the "do" form)
-- because the interpretation of `stmts' depends on what sort of thing it is.
--
dsExpr (HsDo ListComp stmts _ result_ty)
  =	-- Special case for list comprehensions
    dsListComp stmts elt_ty
  where
    (_, [elt_ty]) = tcSplitTyConApp result_ty

dsExpr (HsDo do_or_lc stmts ids result_ty)
  | isDoExpr do_or_lc
  = dsDo do_or_lc stmts ids result_ty

dsExpr (HsDo PArrComp stmts _ result_ty)
  =	-- Special case for array comprehensions
    dsPArrComp (map unLoc stmts) elt_ty
  where
    (_, [elt_ty]) = tcSplitTyConApp result_ty

dsExpr (HsIf guard_expr then_expr else_expr)
  = dsLExpr guard_expr	`thenDs` \ core_guard ->
    dsLExpr then_expr	`thenDs` \ core_then ->
    dsLExpr else_expr	`thenDs` \ core_else ->
    returnDs (mkIfThenElse core_guard core_then core_else)
\end{code}


\noindent
\underline{\bf Type lambda and application}
%              ~~~~~~~~~~~~~~~~~~~~~~~~~~~
\begin{code}
dsExpr (TyLam tyvars expr)
  = dsLExpr expr `thenDs` \ core_expr ->
    returnDs (mkLams tyvars core_expr)

dsExpr (TyApp expr tys)
  = dsLExpr expr		`thenDs` \ core_expr ->
    returnDs (mkTyApps core_expr tys)
\end{code}


\noindent
\underline{\bf Various data construction things}
%              ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
\begin{code}
dsExpr (ExplicitList ty xs)
  = go xs
  where
    go []     = returnDs (mkNilExpr ty)
    go (x:xs) = dsLExpr x				`thenDs` \ core_x ->
		go xs					`thenDs` \ core_xs ->
		returnDs (mkConsExpr ty core_x core_xs)

-- we create a list from the array elements and convert them into a list using
-- `PrelPArr.toP'
--
-- * the main disadvantage to this scheme is that `toP' traverses the list
--   twice: once to determine the length and a second time to put to elements
--   into the array; this inefficiency could be avoided by exposing some of
--   the innards of `PrelPArr' to the compiler (ie, have a `PrelPArrBase') so
--   that we can exploit the fact that we already know the length of the array
--   here at compile time
--
dsExpr (ExplicitPArr ty xs)
  = dsLookupGlobalId toPName				`thenDs` \toP      ->
    dsExpr (ExplicitList ty xs)				`thenDs` \coreList ->
    returnDs (mkApps (Var toP) [Type ty, coreList])

dsExpr (ExplicitTuple expr_list boxity)
  = mappM dsLExpr expr_list	  `thenDs` \ core_exprs  ->
    returnDs (mkConApp (tupleCon boxity (length expr_list))
	    	       (map (Type .  exprType) core_exprs ++ core_exprs))

dsExpr (ArithSeqOut expr (From from))
  = dsLExpr expr		  `thenDs` \ expr2 ->
    dsLExpr from		  `thenDs` \ from2 ->
    returnDs (App expr2 from2)

dsExpr (ArithSeqOut expr (FromTo from two))
  = dsLExpr expr		  `thenDs` \ expr2 ->
    dsLExpr from		  `thenDs` \ from2 ->
    dsLExpr two		  `thenDs` \ two2 ->
    returnDs (mkApps expr2 [from2, two2])

dsExpr (ArithSeqOut expr (FromThen from thn))
  = dsLExpr expr		  `thenDs` \ expr2 ->
    dsLExpr from		  `thenDs` \ from2 ->
    dsLExpr thn		  `thenDs` \ thn2 ->
    returnDs (mkApps expr2 [from2, thn2])

dsExpr (ArithSeqOut expr (FromThenTo from thn two))
  = dsLExpr expr		  `thenDs` \ expr2 ->
    dsLExpr from		  `thenDs` \ from2 ->
    dsLExpr thn		  `thenDs` \ thn2 ->
    dsLExpr two		  `thenDs` \ two2 ->
    returnDs (mkApps expr2 [from2, thn2, two2])

dsExpr (PArrSeqOut expr (FromTo from two))
  = dsLExpr expr		  `thenDs` \ expr2 ->
    dsLExpr from		  `thenDs` \ from2 ->
    dsLExpr two		  `thenDs` \ two2 ->
    returnDs (mkApps expr2 [from2, two2])

dsExpr (PArrSeqOut expr (FromThenTo from thn two))
  = dsLExpr expr		  `thenDs` \ expr2 ->
    dsLExpr from		  `thenDs` \ from2 ->
    dsLExpr thn		  `thenDs` \ thn2 ->
    dsLExpr two		  `thenDs` \ two2 ->
    returnDs (mkApps expr2 [from2, thn2, two2])

dsExpr (PArrSeqOut expr _)
  = panic "DsExpr.dsExpr: Infinite parallel array!"
    -- the parser shouldn't have generated it and the renamer and typechecker
    -- shouldn't have let it through
\end{code}

\noindent
\underline{\bf Record construction and update}
%              ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For record construction we do this (assuming T has three arguments)
\begin{verbatim}
	T { op2 = e }
==>
	let err = /\a -> recConErr a 
	T (recConErr t1 "M.lhs/230/op1") 
	  e 
	  (recConErr t1 "M.lhs/230/op3")
\end{verbatim}
@recConErr@ then converts its arugment string into a proper message
before printing it as
\begin{verbatim}
	M.lhs, line 230: missing field op1 was evaluated
\end{verbatim}

We also handle @C{}@ as valid construction syntax for an unlabelled
constructor @C@, setting all of @C@'s fields to bottom.

\begin{code}
dsExpr (RecordConOut data_con con_expr rbinds)
  = dsLExpr con_expr	`thenDs` \ con_expr' ->
    let
	(arg_tys, _) = tcSplitFunTys (exprType con_expr')
	-- A newtype in the corner should be opaque; 
	-- hence TcType.tcSplitFunTys

	mk_arg (arg_ty, lbl)
	  = case [rhs | (L _ sel_id, rhs) <- rbinds,
			lbl == recordSelectorFieldLabel sel_id] of
	      (rhs:rhss) -> ASSERT( null rhss )
		 	    dsLExpr rhs
	      []         -> mkErrorAppDs rEC_CON_ERROR_ID arg_ty (showSDoc (ppr lbl))
	unlabelled_bottom arg_ty = mkErrorAppDs rEC_CON_ERROR_ID arg_ty ""

	labels = dataConFieldLabels data_con
    in

    (if null labels
	then mappM unlabelled_bottom arg_tys
	else mappM mk_arg (zipEqual "dsExpr:RecordCon" arg_tys labels))
	`thenDs` \ con_args ->

    returnDs (mkApps con_expr' con_args)
\end{code}

Record update is a little harder. Suppose we have the decl:
\begin{verbatim}
	data T = T1 {op1, op2, op3 :: Int}
	       | T2 {op4, op2 :: Int}
	       | T3
\end{verbatim}
Then we translate as follows:
\begin{verbatim}
	r { op2 = e }
===>
	let op2 = e in
	case r of
	  T1 op1 _ op3 -> T1 op1 op2 op3
	  T2 op4 _     -> T2 op4 op2
	  other	       -> recUpdError "M.lhs/230"
\end{verbatim}
It's important that we use the constructor Ids for @T1@, @T2@ etc on the
RHSs, and do not generate a Core constructor application directly, because the constructor
might do some argument-evaluation first; and may have to throw away some
dictionaries.

\begin{code}
dsExpr (RecordUpdOut record_expr record_in_ty record_out_ty [])
  = dsLExpr record_expr

dsExpr expr@(RecordUpdOut record_expr record_in_ty record_out_ty rbinds)
  = dsLExpr record_expr	 	`thenDs` \ record_expr' ->

	-- Desugar the rbinds, and generate let-bindings if
	-- necessary so that we don't lose sharing

    let
	in_inst_tys  = tcTyConAppArgs record_in_ty	-- Newtype opaque
	out_inst_tys = tcTyConAppArgs record_out_ty	-- Newtype opaque

	mk_val_arg field old_arg_id 
	  = case [rhs | (L _ sel_id, rhs) <- rbinds, 
			field == recordSelectorFieldLabel sel_id] of
	      (rhs:rest) -> ASSERT(null rest) rhs
	      []	 -> nlHsVar old_arg_id

	mk_alt con
	  = newSysLocalsDs (dataConInstOrigArgTys con in_inst_tys) `thenDs` \ arg_ids ->
		-- This call to dataConArgTys won't work for existentials
	    let 
		val_args = zipWithEqual "dsExpr:RecordUpd" mk_val_arg
					(dataConFieldLabels con) arg_ids
		rhs = foldl (\a b -> nlHsApp a b)
			(noLoc $ TyApp (nlHsVar (dataConWrapId con)) 
				out_inst_tys)
			  val_args
	    in
	    returnDs (mkSimpleMatch [noLoc $ ConPatOut con (PrefixCon (map nlVarPat arg_ids)) record_in_ty [] []]
				    rhs
				    record_out_ty)
    in
	-- Record stuff doesn't work for existentials
	-- The type checker checks for this, but we need 
	-- worry only about the constructors that are to be updated
    ASSERT2( all (not . isExistentialDataCon) cons_to_upd, ppr expr )

	-- It's important to generate the match with matchWrapper,
	-- and the right hand sides with applications of the wrapper Id
	-- so that everything works when we are doing fancy unboxing on the
	-- constructor aguments.
    mappM mk_alt cons_to_upd		`thenDs` \ alts ->
    matchWrapper RecUpd alts		`thenDs` \ ([discrim_var], matching_code) ->

    returnDs (bindNonRec discrim_var record_expr' matching_code)

  where
    updated_fields :: [FieldLabel]
    updated_fields = [ recordSelectorFieldLabel sel_id 
		     | (L _ sel_id,_) <- rbinds]

	-- Get the type constructor from the first field label, 
	-- so that we are sure it'll have all its DataCons
	-- (In GHCI, it's possible that some TyCons may not have all
	--  their constructors, in a module-loop situation.)
    tycon       = fieldLabelTyCon (head updated_fields)
    data_cons   = tyConDataCons tycon
    cons_to_upd = filter has_all_fields data_cons

    has_all_fields :: DataCon -> Bool
    has_all_fields con_id 
      = all (`elem` con_fields) updated_fields
      where
	con_fields = dataConFieldLabels con_id
\end{code}


\noindent
\underline{\bf Dictionary lambda and application}
%              ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@DictLam@ and @DictApp@ turn into the regular old things.
(OLD:) @DictFunApp@ also becomes a curried application, albeit slightly more
complicated; reminiscent of fully-applied constructors.
\begin{code}
dsExpr (DictLam dictvars expr)
  = dsLExpr expr `thenDs` \ core_expr ->
    returnDs (mkLams dictvars core_expr)

------------------

dsExpr (DictApp expr dicts)	-- becomes a curried application
  = dsLExpr expr			`thenDs` \ core_expr ->
    returnDs (foldl (\f d -> f `App` (Var d)) core_expr dicts)
\end{code}

Here is where we desugar the Template Haskell brackets and escapes

\begin{code}
-- Template Haskell stuff

#ifdef GHCI	/* Only if bootstrapping */
dsExpr (HsBracketOut x ps) = dsBracket x ps
dsExpr (HsSpliceE s)       = pprPanic "dsExpr:splice" (ppr s)
#endif

-- Arrow notation extension
dsExpr (HsProc pat cmd) = dsProcExpr pat cmd
\end{code}


\begin{code}

#ifdef DEBUG
-- HsSyn constructs that just shouldn't be here:
dsExpr (ExprWithTySig _ _)  = panic "dsExpr:ExprWithTySig"
dsExpr (ArithSeqIn _)	    = panic "dsExpr:ArithSeqIn"
dsExpr (PArrSeqIn _)	    = panic "dsExpr:PArrSeqIn"
#endif

\end{code}

%--------------------------------------------------------------------

Desugar 'do' and 'mdo' expressions (NOT list comprehensions, they're
handled in DsListComp).  Basically does the translation given in the
Haskell 98 report:

\begin{code}
dsDo	:: HsStmtContext Name
	-> [LStmt Id]
	-> ReboundNames Id	-- id for: [return,fail,>>=,>>] and possibly mfixName
	-> Type			-- Element type; the whole expression has type (m t)
	-> DsM CoreExpr

dsDo do_or_lc stmts ids result_ty
  = dsReboundNames ids		`thenDs` \ (meth_binds, ds_meths) ->
    let
	fail_id   = lookupReboundName ds_meths failMName
	bind_id   = lookupReboundName ds_meths bindMName
	then_id   = lookupReboundName ds_meths thenMName

	(m_ty, b_ty) = tcSplitAppTy result_ty	-- result_ty must be of the form (m b)
	
	-- For ExprStmt, see the comments near HsExpr.Stmt about 
	-- exactly what ExprStmts mean!
	--
	-- In dsDo we can only see DoStmt and ListComp (no guards)

	go [ResultStmt expr]     = dsLExpr expr


	go (ExprStmt expr a_ty : stmts)
	  = dsLExpr expr		`thenDs` \ expr2 ->
	    go stmts     		`thenDs` \ rest  ->
	    returnDs (mkApps then_id [Type a_ty, Type b_ty, expr2, rest])
    
	go (LetStmt binds : stmts)
	  = go stmts 		`thenDs` \ rest   ->
	    dsLet binds	rest
	    
	go (BindStmt pat expr : stmts)
	  = go stmts			`thenDs` \ body -> 
	    dsLExpr expr 	 	`thenDs` \ rhs ->
	    mkStringLit (mk_msg (getLoc pat))	`thenDs` \ core_msg ->
	    let
		-- In a do expression, pattern-match failure just calls
		-- the monadic 'fail' rather than throwing an exception
		fail_expr  = mkApps fail_id [Type b_ty, core_msg]
		a_ty       = hsPatType pat
	    in
	    selectMatchVarL pat		 	 		`thenDs` \ var ->
    	    matchSimply (Var var) (StmtCtxt do_or_lc) pat
			body fail_expr				`thenDs` \ match_code ->
	    returnDs (mkApps bind_id [Type a_ty, Type b_ty, rhs, Lam var match_code])

	go (RecStmt rec_stmts later_vars rec_vars rec_rets : stmts)
	  = go (bind_stmt : stmts)
	  where
	    bind_stmt = dsRecStmt m_ty ds_meths rec_stmts later_vars rec_vars rec_rets
	    
    in
    go (map unLoc stmts)			`thenDs` \ stmts_code ->
    returnDs (foldr Let stmts_code meth_binds)

  where
    mk_msg locn = "Pattern match failure in do expression at " ++ showSDoc (ppr locn)
\end{code}

Translation for RecStmt's: 
-----------------------------
We turn (RecStmt [v1,..vn] stmts) into:
  
  (v1,..,vn) <- mfix (\~(v1,..vn). do stmts
				      return (v1,..vn))

\begin{code}
dsRecStmt :: Type		-- Monad type constructor :: * -> *
	  -> [(Name,Id)]	-- Rebound Ids
	  -> [LStmt Id]
  	  -> [Id] -> [Id] -> [LHsExpr Id]
	  -> Stmt Id
dsRecStmt m_ty ds_meths stmts later_vars rec_vars rec_rets
  = ASSERT( length vars == length rets )
    BindStmt tup_pat mfix_app
  where 
	vars@(var1:rest) = later_vars           ++ rec_vars		-- Always at least one
	rets@(ret1:_)    = map nlHsVar later_vars ++ rec_rets
	one_var          = null rest

	mfix_app = nlHsApp (noLoc $ TyApp (nlHsVar mfix_id) [tup_ty]) mfix_arg
	mfix_arg = noLoc $ HsLam (mkSimpleMatch [tup_pat] body tup_ty)

	tup_expr | one_var   = ret1
		 | otherwise = noLoc $ ExplicitTuple rets Boxed
	tup_ty   	     = mkCoreTupTy (map idType vars)
					-- Deals with singleton case
	tup_pat  | one_var   = nlVarPat var1
		 | otherwise = noLoc $ LazyPat (noLoc $ TuplePat (map nlVarPat vars) Boxed)

	body = noLoc $ HsDo DoExpr (stmts ++ [return_stmt]) 
			   [(n, HsVar id) | (n,id) <- ds_meths]	-- A bit of a hack
			   (mkAppTy m_ty tup_ty)

  	Var return_id = lookupReboundName ds_meths returnMName
	Var mfix_id   = lookupReboundName ds_meths mfixName

	return_stmt = noLoc $ ResultStmt return_app
	return_app  = nlHsApp (noLoc $ TyApp (nlHsVar return_id) [tup_ty]) tup_expr
\end{code}