1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
|
%
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
\section[DsExpr]{Matching expressions (Exprs)}
\begin{code}
module DsExpr ( dsExpr, dsLet ) where
#include "HsVersions.h"
import HsSyn ( failureFreePat,
HsExpr(..), OutPat(..), HsLit(..), ArithSeqInfo(..),
Stmt(..), StmtCtxt(..), Match(..), HsBinds(..), MonoBinds(..),
mkSimpleMatch
)
import TcHsSyn ( TypecheckedHsExpr, TypecheckedHsBinds,
TypecheckedStmt
)
import CoreSyn
import PprCore ( {- instance Outputable Expr -} )
import CoreUtils ( exprType, mkIfThenElse, bindNonRec )
import DsMonad
import DsBinds ( dsMonoBinds, AutoScc(..) )
import DsGRHSs ( dsGuarded )
import DsCCall ( dsCCall, resultWrapper )
import DsListComp ( dsListComp )
import DsUtils ( mkErrorAppDs, mkDsLets, mkConsExpr, mkNilExpr )
import Match ( matchWrapper, matchSimply )
import CostCentre ( mkUserCC )
import FieldLabel ( FieldLabel )
import Id ( Id, idType, recordSelectorFieldLabel )
import DataCon ( DataCon, dataConWrapId, dataConTyCon, dataConArgTys, dataConFieldLabels )
import PrelInfo ( rEC_CON_ERROR_ID, rEC_UPD_ERROR_ID, iRREFUT_PAT_ERROR_ID, addr2IntegerId )
import TyCon ( isNewTyCon )
import DataCon ( isExistentialDataCon )
import Literal ( Literal(..), inIntRange )
import Type ( splitFunTys, mkTyConApp,
splitAlgTyConApp, splitAlgTyConApp_maybe, splitTyConApp_maybe,
isNotUsgTy, unUsgTy,
splitAppTy, isUnLiftedType, Type
)
import TysWiredIn ( tupleCon, unboxedTupleCon,
listTyCon, mkListTy,
charDataCon, charTy, stringTy,
smallIntegerDataCon, isIntegerTy
)
import BasicTypes ( RecFlag(..) )
import Maybes ( maybeToBool )
import Unique ( Uniquable(..), ratioTyConKey )
import Util ( zipEqual, zipWithEqual )
import Outputable
import Ratio ( numerator, denominator )
\end{code}
%************************************************************************
%* *
\subsection{dsLet}
%* *
%************************************************************************
@dsLet@ is a match-result transformer, taking the @MatchResult@ for the body
and transforming it into one for the let-bindings enclosing the body.
This may seem a bit odd, but (source) let bindings can contain unboxed
binds like
\begin{verbatim}
C x# = e
\end{verbatim}
This must be transformed to a case expression and, if the type has
more than one constructor, may fail.
\begin{code}
dsLet :: TypecheckedHsBinds -> CoreExpr -> DsM CoreExpr
dsLet EmptyBinds body
= returnDs body
dsLet (ThenBinds b1 b2) body
= dsLet b2 body `thenDs` \ body' ->
dsLet b1 body'
-- Special case for bindings which bind unlifted variables
-- Silently ignore INLINE pragmas...
dsLet (MonoBind (AbsBinds [] [] binder_triples inlines
(PatMonoBind pat grhss loc)) sigs is_rec) body
| or [isUnLiftedType (idType g) | (_, g, l) <- binder_triples]
= ASSERT (case is_rec of {NonRecursive -> True; other -> False})
putSrcLocDs loc $
dsGuarded grhss `thenDs` \ rhs ->
let
body' = foldr bind body binder_triples
bind (tyvars, g, l) body = ASSERT( null tyvars )
bindNonRec g (Var l) body
in
mkErrorAppDs iRREFUT_PAT_ERROR_ID result_ty (showSDoc (ppr pat))
`thenDs` \ error_expr ->
matchSimply rhs PatBindMatch pat body' error_expr
where
result_ty = exprType body
-- Ordinary case for bindings
dsLet (MonoBind binds sigs is_rec) body
= dsMonoBinds NoSccs binds [] `thenDs` \ prs ->
case is_rec of
Recursive -> returnDs (Let (Rec prs) body)
NonRecursive -> returnDs (mkDsLets [NonRec b r | (b,r) <- prs] body)
\end{code}
%************************************************************************
%* *
\subsection[DsExpr-vars-and-cons]{Variables and constructors}
%* *
%************************************************************************
\begin{code}
dsExpr :: TypecheckedHsExpr -> DsM CoreExpr
dsExpr e@(HsVar var) = returnDs (Var var)
dsExpr e@(HsIPVar var) = returnDs (Var var)
\end{code}
%************************************************************************
%* *
\subsection[DsExpr-literals]{Literals}
%* *
%************************************************************************
We give int/float literals type @Integer@ and @Rational@, respectively.
The typechecker will (presumably) have put \tr{from{Integer,Rational}s}
around them.
ToDo: put in range checks for when converting ``@i@''
(or should that be in the typechecker?)
For numeric literals, we try to detect there use at a standard type
(@Int@, @Float@, etc.) are directly put in the right constructor.
[NB: down with the @App@ conversion.]
See also below where we look for @DictApps@ for \tr{plusInt}, etc.
\begin{code}
dsExpr (HsLitOut (HsString s) _)
| _NULL_ s
= returnDs (mkNilExpr charTy)
| _LENGTH_ s == 1
= let
the_char = mkConApp charDataCon [mkLit (MachChar (_HEAD_ s))]
the_nil = mkNilExpr charTy
the_cons = mkConsExpr charTy the_char the_nil
in
returnDs the_cons
-- "_" => build (\ c n -> c 'c' n) -- LATER
dsExpr (HsLitOut (HsString str) _)
= returnDs (mkStringLitFS str)
dsExpr (HsLitOut (HsLitLit str) ty)
= ASSERT( maybeToBool maybe_ty )
returnDs (wrap_fn (mkLit (MachLitLit str rep_ty)))
where
(maybe_ty, wrap_fn) = resultWrapper ty
Just rep_ty = maybe_ty
dsExpr (HsLitOut (HsInt i) ty)
= returnDs (mkIntegerLit i)
dsExpr (HsLitOut (HsFrac r) ty)
= returnDs (mkConApp ratio_data_con [Type integer_ty,
mkIntegerLit (numerator r),
mkIntegerLit (denominator r)])
where
(ratio_data_con, integer_ty)
= case (splitAlgTyConApp_maybe ty) of
Just (tycon, [i_ty], [con])
-> ASSERT(isIntegerTy i_ty && getUnique tycon == ratioTyConKey)
(con, i_ty)
_ -> (panic "ratio_data_con", panic "integer_ty")
-- others where we know what to do:
dsExpr (HsLitOut (HsIntPrim i) _)
= returnDs (mkIntLit i)
dsExpr (HsLitOut (HsFloatPrim f) _)
= returnDs (mkLit (MachFloat f))
dsExpr (HsLitOut (HsDoublePrim d) _)
= returnDs (mkLit (MachDouble d))
-- ToDo: range checking needed!
dsExpr (HsLitOut (HsChar c) _)
= returnDs ( mkConApp charDataCon [mkLit (MachChar c)] )
dsExpr (HsLitOut (HsCharPrim c) _)
= returnDs (mkLit (MachChar c))
dsExpr (HsLitOut (HsStringPrim s) _)
= returnDs (mkLit (MachStr s))
-- end of literals magic. --
dsExpr expr@(HsLam a_Match)
= matchWrapper LambdaMatch [a_Match] "lambda" `thenDs` \ (binders, matching_code) ->
returnDs (mkLams binders matching_code)
dsExpr expr@(HsApp fun arg)
= dsExpr fun `thenDs` \ core_fun ->
dsExpr arg `thenDs` \ core_arg ->
returnDs (core_fun `App` core_arg)
\end{code}
Operator sections. At first it looks as if we can convert
\begin{verbatim}
(expr op)
\end{verbatim}
to
\begin{verbatim}
\x -> op expr x
\end{verbatim}
But no! expr might be a redex, and we can lose laziness badly this
way. Consider
\begin{verbatim}
map (expr op) xs
\end{verbatim}
for example. So we convert instead to
\begin{verbatim}
let y = expr in \x -> op y x
\end{verbatim}
If \tr{expr} is actually just a variable, say, then the simplifier
will sort it out.
\begin{code}
dsExpr (OpApp e1 op _ e2)
= dsExpr op `thenDs` \ core_op ->
-- for the type of y, we need the type of op's 2nd argument
dsExpr e1 `thenDs` \ x_core ->
dsExpr e2 `thenDs` \ y_core ->
returnDs (mkApps core_op [x_core, y_core])
dsExpr (SectionL expr op)
= dsExpr op `thenDs` \ core_op ->
-- for the type of y, we need the type of op's 2nd argument
let
(x_ty:y_ty:_, _) = splitFunTys (exprType core_op)
in
dsExpr expr `thenDs` \ x_core ->
newSysLocalDs x_ty `thenDs` \ x_id ->
newSysLocalDs y_ty `thenDs` \ y_id ->
returnDs (bindNonRec x_id x_core $
Lam y_id (mkApps core_op [Var x_id, Var y_id]))
-- dsExpr (SectionR op expr) -- \ x -> op x expr
dsExpr (SectionR op expr)
= dsExpr op `thenDs` \ core_op ->
-- for the type of x, we need the type of op's 2nd argument
let
(x_ty:y_ty:_, _) = splitFunTys (exprType core_op)
in
dsExpr expr `thenDs` \ y_core ->
newSysLocalDs x_ty `thenDs` \ x_id ->
newSysLocalDs y_ty `thenDs` \ y_id ->
returnDs (bindNonRec y_id y_core $
Lam x_id (mkApps core_op [Var x_id, Var y_id]))
dsExpr (HsCCall lbl args may_gc is_asm result_ty)
= mapDs dsExpr args `thenDs` \ core_args ->
dsCCall lbl core_args may_gc is_asm result_ty
-- dsCCall does all the unboxification, etc.
dsExpr (HsSCC cc expr)
= dsExpr expr `thenDs` \ core_expr ->
getModuleDs `thenDs` \ mod_name ->
returnDs (Note (SCC (mkUserCC cc mod_name)) core_expr)
-- special case to handle unboxed tuple patterns.
dsExpr (HsCase discrim matches src_loc)
| all ubx_tuple_match matches
= putSrcLocDs src_loc $
dsExpr discrim `thenDs` \ core_discrim ->
matchWrapper CaseMatch matches "case" `thenDs` \ ([discrim_var], matching_code) ->
case matching_code of
Case (Var x) bndr alts | x == discrim_var ->
returnDs (Case core_discrim bndr alts)
_ -> panic ("dsExpr: tuple pattern:\n" ++ showSDoc (ppr matching_code))
where
ubx_tuple_match (Match _ [TuplePat ps False{-unboxed-}] _ _) = True
ubx_tuple_match _ = False
dsExpr (HsCase discrim matches src_loc)
= putSrcLocDs src_loc $
dsExpr discrim `thenDs` \ core_discrim ->
matchWrapper CaseMatch matches "case" `thenDs` \ ([discrim_var], matching_code) ->
returnDs (bindNonRec discrim_var core_discrim matching_code)
dsExpr (HsLet binds body)
= dsExpr body `thenDs` \ body' ->
dsLet binds body'
dsExpr (HsWith expr binds)
= dsExpr expr `thenDs` \ expr' ->
foldlDs dsIPBind expr' binds
where
dsIPBind body (n, e)
= dsExpr e `thenDs` \ e' ->
returnDs (Let (NonRec n e') body)
dsExpr (HsDoOut do_or_lc stmts return_id then_id fail_id result_ty src_loc)
| maybeToBool maybe_list_comp
= -- Special case for list comprehensions
putSrcLocDs src_loc $
dsListComp stmts elt_ty
| otherwise
= putSrcLocDs src_loc $
dsDo do_or_lc stmts return_id then_id fail_id result_ty
where
maybe_list_comp
= case (do_or_lc, splitTyConApp_maybe result_ty) of
(ListComp, Just (tycon, [elt_ty]))
| tycon == listTyCon
-> Just elt_ty
other -> Nothing
-- We need the ListComp form to use deListComp (rather than the "do" form)
-- because the "return" in a do block is a call to "PrelBase.return", and
-- not a ReturnStmt. Only the ListComp form has ReturnStmts
Just elt_ty = maybe_list_comp
dsExpr (HsIf guard_expr then_expr else_expr src_loc)
= putSrcLocDs src_loc $
dsExpr guard_expr `thenDs` \ core_guard ->
dsExpr then_expr `thenDs` \ core_then ->
dsExpr else_expr `thenDs` \ core_else ->
returnDs (mkIfThenElse core_guard core_then core_else)
\end{code}
\noindent
\underline{\bf Type lambda and application}
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~
\begin{code}
dsExpr (TyLam tyvars expr)
= dsExpr expr `thenDs` \ core_expr ->
returnDs (mkLams tyvars core_expr)
dsExpr (TyApp expr tys)
= dsExpr expr `thenDs` \ core_expr ->
returnDs (mkTyApps core_expr tys)
\end{code}
\noindent
\underline{\bf Various data construction things}
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
\begin{code}
dsExpr (ExplicitListOut ty xs)
= go xs
where
go [] = returnDs (mkNilExpr ty)
go (x:xs) = dsExpr x `thenDs` \ core_x ->
go xs `thenDs` \ core_xs ->
ASSERT( isNotUsgTy ty )
returnDs (mkConsExpr ty core_x core_xs)
dsExpr (ExplicitTuple expr_list boxed)
= mapDs dsExpr expr_list `thenDs` \ core_exprs ->
returnDs (mkConApp ((if boxed
then tupleCon
else unboxedTupleCon) (length expr_list))
(map (Type . unUsgTy . exprType) core_exprs ++ core_exprs))
-- the above unUsgTy is *required* -- KSW 1999-04-07
dsExpr (ArithSeqOut expr (From from))
= dsExpr expr `thenDs` \ expr2 ->
dsExpr from `thenDs` \ from2 ->
returnDs (App expr2 from2)
dsExpr (ArithSeqOut expr (FromTo from two))
= dsExpr expr `thenDs` \ expr2 ->
dsExpr from `thenDs` \ from2 ->
dsExpr two `thenDs` \ two2 ->
returnDs (mkApps expr2 [from2, two2])
dsExpr (ArithSeqOut expr (FromThen from thn))
= dsExpr expr `thenDs` \ expr2 ->
dsExpr from `thenDs` \ from2 ->
dsExpr thn `thenDs` \ thn2 ->
returnDs (mkApps expr2 [from2, thn2])
dsExpr (ArithSeqOut expr (FromThenTo from thn two))
= dsExpr expr `thenDs` \ expr2 ->
dsExpr from `thenDs` \ from2 ->
dsExpr thn `thenDs` \ thn2 ->
dsExpr two `thenDs` \ two2 ->
returnDs (mkApps expr2 [from2, thn2, two2])
\end{code}
\noindent
\underline{\bf Record construction and update}
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For record construction we do this (assuming T has three arguments)
\begin{verbatim}
T { op2 = e }
==>
let err = /\a -> recConErr a
T (recConErr t1 "M.lhs/230/op1")
e
(recConErr t1 "M.lhs/230/op3")
\end{verbatim}
@recConErr@ then converts its arugment string into a proper message
before printing it as
\begin{verbatim}
M.lhs, line 230: missing field op1 was evaluated
\end{verbatim}
We also handle @C{}@ as valid construction syntax for an unlabelled
constructor @C@, setting all of @C@'s fields to bottom.
\begin{code}
dsExpr (RecordConOut data_con con_expr rbinds)
= dsExpr con_expr `thenDs` \ con_expr' ->
let
(arg_tys, _) = splitFunTys (exprType con_expr')
mk_arg (arg_ty, lbl)
= case [rhs | (sel_id,rhs,_) <- rbinds,
lbl == recordSelectorFieldLabel sel_id] of
(rhs:rhss) -> ASSERT( null rhss )
dsExpr rhs
[] -> mkErrorAppDs rEC_CON_ERROR_ID arg_ty (showSDoc (ppr lbl))
unlabelled_bottom arg_ty = mkErrorAppDs rEC_CON_ERROR_ID arg_ty ""
labels = dataConFieldLabels data_con
in
(if null labels
then mapDs unlabelled_bottom arg_tys
else mapDs mk_arg (zipEqual "dsExpr:RecordCon" arg_tys labels))
`thenDs` \ con_args ->
returnDs (mkApps con_expr' con_args)
\end{code}
Record update is a little harder. Suppose we have the decl:
\begin{verbatim}
data T = T1 {op1, op2, op3 :: Int}
| T2 {op4, op2 :: Int}
| T3
\end{verbatim}
Then we translate as follows:
\begin{verbatim}
r { op2 = e }
===>
let op2 = e in
case r of
T1 op1 _ op3 -> T1 op1 op2 op3
T2 op4 _ -> T2 op4 op2
other -> recUpdError "M.lhs/230"
\end{verbatim}
It's important that we use the constructor Ids for @T1@, @T2@ etc on the
RHSs, and do not generate a Core constructor application directly, because the constructor
might do some argument-evaluation first; and may have to throw away some
dictionaries.
\begin{code}
dsExpr (RecordUpdOut record_expr record_out_ty dicts rbinds)
= getSrcLocDs `thenDs` \ src_loc ->
dsExpr record_expr `thenDs` \ record_expr' ->
-- Desugar the rbinds, and generate let-bindings if
-- necessary so that we don't lose sharing
let
record_in_ty = exprType record_expr'
(_, in_inst_tys, cons) = splitAlgTyConApp record_in_ty
(_, out_inst_tys, _) = splitAlgTyConApp record_out_ty
cons_to_upd = filter has_all_fields cons
mk_val_arg field old_arg_id
= case [rhs | (sel_id, rhs, _) <- rbinds,
field == recordSelectorFieldLabel sel_id] of
(rhs:rest) -> ASSERT(null rest) rhs
[] -> HsVar old_arg_id
mk_alt con
= newSysLocalsDs (dataConArgTys con in_inst_tys) `thenDs` \ arg_ids ->
-- This call to dataConArgTys won't work for existentials
let
val_args = zipWithEqual "dsExpr:RecordUpd" mk_val_arg
(dataConFieldLabels con) arg_ids
rhs = foldl HsApp (DictApp (TyApp (HsVar (dataConWrapId con))
out_inst_tys)
dicts)
val_args
in
returnDs (mkSimpleMatch [ConPat con record_in_ty [] [] (map VarPat arg_ids)]
rhs
(Just record_out_ty)
src_loc)
in
-- Record stuff doesn't work for existentials
ASSERT( all (not . isExistentialDataCon) cons )
-- It's important to generate the match with matchWrapper,
-- and the right hand sides with applications of the wrapper Id
-- so that everything works when we are doing fancy unboxing on the
-- constructor aguments.
mapDs mk_alt cons_to_upd `thenDs` \ alts ->
matchWrapper RecUpdMatch alts "record update" `thenDs` \ ([discrim_var], matching_code) ->
returnDs (bindNonRec discrim_var record_expr' matching_code)
where
has_all_fields :: DataCon -> Bool
has_all_fields con_id
= all ok rbinds
where
con_fields = dataConFieldLabels con_id
ok (sel_id, _, _) = recordSelectorFieldLabel sel_id `elem` con_fields
\end{code}
\noindent
\underline{\bf Dictionary lambda and application}
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@DictLam@ and @DictApp@ turn into the regular old things.
(OLD:) @DictFunApp@ also becomes a curried application, albeit slightly more
complicated; reminiscent of fully-applied constructors.
\begin{code}
dsExpr (DictLam dictvars expr)
= dsExpr expr `thenDs` \ core_expr ->
returnDs (mkLams dictvars core_expr)
------------------
dsExpr (DictApp expr dicts) -- becomes a curried application
= dsExpr expr `thenDs` \ core_expr ->
returnDs (foldl (\f d -> f `App` (Var d)) core_expr dicts)
\end{code}
\begin{code}
#ifdef DEBUG
-- HsSyn constructs that just shouldn't be here:
dsExpr (HsDo _ _ _) = panic "dsExpr:HsDo"
dsExpr (ExplicitList _) = panic "dsExpr:ExplicitList"
dsExpr (ExprWithTySig _ _) = panic "dsExpr:ExprWithTySig"
dsExpr (ArithSeqIn _) = panic "dsExpr:ArithSeqIn"
#endif
\end{code}
%--------------------------------------------------------------------
Basically does the translation given in the Haskell~1.3 report:
\begin{code}
dsDo :: StmtCtxt
-> [TypecheckedStmt]
-> Id -- id for: return m
-> Id -- id for: (>>=) m
-> Id -- id for: fail m
-> Type -- Element type; the whole expression has type (m t)
-> DsM CoreExpr
dsDo do_or_lc stmts return_id then_id fail_id result_ty
= let
(_, b_ty) = splitAppTy result_ty -- result_ty must be of the form (m b)
go [ReturnStmt expr]
= dsExpr expr `thenDs` \ expr2 ->
returnDs (mkApps (Var return_id) [Type b_ty, expr2])
go (GuardStmt expr locn : stmts)
= do_expr expr locn `thenDs` \ expr2 ->
go stmts `thenDs` \ rest ->
let msg = ASSERT( isNotUsgTy b_ty )
"Pattern match failure in do expression, " ++ showSDoc (ppr locn) in
returnDs (mkIfThenElse expr2
rest
(App (App (Var fail_id)
(Type b_ty))
(mkStringLit msg)))
go (ExprStmt expr locn : stmts)
= do_expr expr locn `thenDs` \ expr2 ->
let
(_, a_ty) = splitAppTy (exprType expr2) -- Must be of form (m a)
in
if null stmts then
returnDs expr2
else
go stmts `thenDs` \ rest ->
newSysLocalDs a_ty `thenDs` \ ignored_result_id ->
returnDs (mkApps (Var then_id) [Type a_ty, Type b_ty, expr2,
Lam ignored_result_id rest])
go (LetStmt binds : stmts )
= go stmts `thenDs` \ rest ->
dsLet binds rest
go (BindStmt pat expr locn : stmts)
= putSrcLocDs locn $
dsExpr expr `thenDs` \ expr2 ->
let
(_, a_ty) = splitAppTy (exprType expr2) -- Must be of form (m a)
fail_expr = HsApp (TyApp (HsVar fail_id) [b_ty])
(HsLitOut (HsString (_PK_ msg)) stringTy)
msg = ASSERT2( isNotUsgTy a_ty, ppr a_ty )
ASSERT2( isNotUsgTy b_ty, ppr b_ty )
"Pattern match failure in do expression, " ++ showSDoc (ppr locn)
main_match = mkSimpleMatch [pat]
(HsDoOut do_or_lc stmts return_id then_id
fail_id result_ty locn)
(Just result_ty) locn
the_matches
| failureFreePat pat = [main_match]
| otherwise =
[ main_match
, mkSimpleMatch [WildPat a_ty] fail_expr (Just result_ty) locn
]
in
matchWrapper DoBindMatch the_matches match_msg
`thenDs` \ (binders, matching_code) ->
returnDs (mkApps (Var then_id) [Type a_ty, Type b_ty, expr2,
mkLams binders matching_code])
in
go stmts
where
do_expr expr locn = putSrcLocDs locn (dsExpr expr)
match_msg = case do_or_lc of
DoStmt -> "`do' statement"
ListComp -> "comprehension"
\end{code}
\begin{code}
var_pat (WildPat _) = True
var_pat (VarPat _) = True
var_pat _ = False
\end{code}
\begin{code}
mkIntegerLit :: Integer -> CoreExpr
mkIntegerLit i
| inIntRange i -- Small enough, so start from an Int
= mkConApp smallIntegerDataCon [mkIntLit i]
| otherwise -- Big, so start from a string
= App (Var addr2IntegerId) (Lit (MachStr (_PK_ (show i))))
\end{code}
|