summaryrefslogtreecommitdiff
path: root/ghc/compiler/deSugar/Match.lhs
blob: 295b780dd9a29b67bddc7f227e3d4f79c2f16dc1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
%
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
\section[Main_match]{The @match@ function}

\begin{code}
module Match ( match, matchExport, matchWrapper, matchSimply, matchSinglePat ) where

#include "HsVersions.h"

import {-# SOURCE #-} DsExpr( dsExpr )
import CmdLineOpts	( DynFlag(..), dopt )
import HsSyn		
import TcHsSyn		( hsPatType )
import Check            ( check, ExhaustivePat )
import CoreSyn
import CoreUtils	( bindNonRec )
import DsMonad
import DsGRHSs		( dsGRHSs )
import DsUtils
import Id		( idType, recordSelectorFieldLabel, Id )
import DataCon		( dataConFieldLabels, dataConInstOrigArgTys )
import MatchCon		( matchConFamily )
import MatchLit		( matchLiterals )
import PrelInfo		( pAT_ERROR_ID )
import TcType		( mkTyVarTys, Type, tcTyConAppArgs, tcEqType )
import TysWiredIn	( consDataCon, mkTupleTy, mkListTy,
			  tupleCon, parrFakeCon, mkPArrTy )
import BasicTypes	( Boxity(..) )
import UniqSet
import SrcLoc		( noSrcSpan, noLoc, unLoc, Located(..) )
import Util             ( lengthExceeds, isSingleton, notNull )
import Name		( Name )
import Outputable
\end{code}

This function is a wrapper of @match@, it must be called from all the parts where 
it was called match, but only substitutes the firs call, ....
if the associated flags are declared, warnings will be issued.
It can not be called matchWrapper because this name already exists :-(

JJCQ 30-Nov-1997

\begin{code}
matchExport :: [Id]	        -- Vars rep'ing the exprs we're matching with
            -> [EquationInfo]   -- Info about patterns, etc. (type synonym below)
            -> DsM MatchResult  -- Desugared result!


matchExport vars qs
   = getDOptsDs 				`thenDs` \ dflags ->
     matchExport_really dflags vars qs

matchExport_really dflags vars qs@((EqnInfo _ ctx _ (MatchResult _ _)) : _)
  | incomplete && shadow = 
      dsShadowWarn ctx eqns_shadow		`thenDs`   \ () ->
      dsIncompleteWarn ctx pats			`thenDs`   \ () ->
      match vars qs
  | incomplete            = 
      dsIncompleteWarn ctx pats			`thenDs`   \ () ->
      match vars qs
  | shadow                = 
      dsShadowWarn ctx eqns_shadow		`thenDs`   \ () ->
      match vars qs
  | otherwise             =
      match vars qs
  where (pats,indexs) = check qs
        incomplete    = dopt Opt_WarnIncompletePatterns dflags
			&& (notNull pats)
        shadow        = dopt Opt_WarnOverlappingPatterns dflags
			&& sizeUniqSet indexs < no_eqns
        no_eqns       = length qs
	unused_eqns   = uniqSetToList (mkUniqSet [1..no_eqns] `minusUniqSet` indexs)
	eqns_shadow   = map (\n -> qs!!(n - 1)) unused_eqns
\end{code}

This variable shows the maximum number of lines of output generated for warnings.
It will limit the number of patterns/equations displayed to@ maximum_output@.

(ToDo: add command-line option?)

\begin{code}
maximum_output = 4
\end{code}

The next two functions create the warning message.

\begin{code}
dsShadowWarn :: DsMatchContext -> [EquationInfo] -> DsM ()
dsShadowWarn ctx@(DsMatchContext kind _ _) qs = dsWarn warn 
	where
	  warn | qs `lengthExceeds` maximum_output
               = pp_context ctx (ptext SLIT("are overlapped"))
		            (\ f -> vcat (map (ppr_eqn f kind) (take maximum_output qs)) $$
			    ptext SLIT("..."))
	       | otherwise
               = pp_context ctx (ptext SLIT("are overlapped"))
	                    (\ f -> vcat $ map (ppr_eqn f kind) qs)


dsIncompleteWarn :: DsMatchContext -> [ExhaustivePat] -> DsM ()
dsIncompleteWarn ctx@(DsMatchContext kind _ _) pats = dsWarn warn 
	where
	  warn = pp_context ctx (ptext SLIT("are non-exhaustive"))
                    	    (\f -> hang (ptext SLIT("Patterns not matched:"))
		                   4 ((vcat $ map (ppr_incomplete_pats kind)
						  (take maximum_output pats))
		                      $$ dots))

	  dots | pats `lengthExceeds` maximum_output = ptext SLIT("...")
	       | otherwise                           = empty

pp_context NoMatchContext msg rest_of_msg_fun
  = (noSrcSpan, ptext SLIT("Some match(es)") <+> hang msg 8 (rest_of_msg_fun id))

pp_context (DsMatchContext kind pats loc) msg rest_of_msg_fun
  = (loc, vcat [ptext SLIT("Pattern match(es)") <+> msg,
	        sep [ptext SLIT("In") <+> ppr_match <> char ':', nest 4 (rest_of_msg_fun pref)]])
  where
    (ppr_match, pref)
	= case kind of
	     FunRhs fun -> (pprMatchContext kind, \ pp -> ppr fun <+> pp)
	     other	-> (pprMatchContext kind, \ pp -> pp)

ppr_pats pats = sep (map ppr pats)

ppr_shadow_pats kind pats
  = sep [ppr_pats pats, matchSeparator kind, ptext SLIT("...")]
    
ppr_incomplete_pats kind (pats,[]) = ppr_pats pats
ppr_incomplete_pats kind (pats,constraints) = 
	                 sep [ppr_pats pats, ptext SLIT("with"), 
	                      sep (map ppr_constraint constraints)]
    

ppr_constraint (var,pats) = sep [ppr var, ptext SLIT("`notElem`"), ppr pats]

ppr_eqn prefixF kind (EqnInfo _ _ pats _) = prefixF (ppr_shadow_pats kind pats)
\end{code}


The function @match@ is basically the same as in the Wadler chapter,
except it is monadised, to carry around the name supply, info about
annotations, etc.

Notes on @match@'s arguments, assuming $m$ equations and $n$ patterns:
\begin{enumerate}
\item
A list of $n$ variable names, those variables presumably bound to the
$n$ expressions being matched against the $n$ patterns.  Using the
list of $n$ expressions as the first argument showed no benefit and
some inelegance.

\item
The second argument, a list giving the ``equation info'' for each of
the $m$ equations:
\begin{itemize}
\item
the $n$ patterns for that equation, and
\item
a list of Core bindings [@(Id, CoreExpr)@ pairs] to be ``stuck on
the front'' of the matching code, as in:
\begin{verbatim}
let <binds>
in  <matching-code>
\end{verbatim}
\item
and finally: (ToDo: fill in)

The right way to think about the ``after-match function'' is that it
is an embryonic @CoreExpr@ with a ``hole'' at the end for the
final ``else expression''.
\end{itemize}

There is a type synonym, @EquationInfo@, defined in module @DsUtils@.

An experiment with re-ordering this information about equations (in
particular, having the patterns available in column-major order)
showed no benefit.

\item
A default expression---what to evaluate if the overall pattern-match
fails.  This expression will (almost?) always be
a measly expression @Var@, unless we know it will only be used once
(as we do in @glue_success_exprs@).

Leaving out this third argument to @match@ (and slamming in lots of
@Var "fail"@s) is a positively {\em bad} idea, because it makes it
impossible to share the default expressions.  (Also, it stands no
chance of working in our post-upheaval world of @Locals@.)
\end{enumerate}
So, the full type signature:
\begin{code}
match :: [Id]		  -- Variables rep'ing the exprs we're matching with
      -> [EquationInfo]	  -- Info about patterns, etc. (type synonym below)
      -> DsM MatchResult  -- Desugared result!
\end{code}

Note: @match@ is often called via @matchWrapper@ (end of this module),
a function that does much of the house-keeping that goes with a call
to @match@.

It is also worth mentioning the {\em typical} way a block of equations
is desugared with @match@.  At each stage, it is the first column of
patterns that is examined.  The steps carried out are roughly:
\begin{enumerate}
\item
Tidy the patterns in column~1 with @tidyEqnInfo@ (this may add
bindings to the second component of the equation-info):
\begin{itemize}
\item
Remove the `as' patterns from column~1.
\item
Make all constructor patterns in column~1 into @ConPats@, notably
@ListPats@ and @TuplePats@.
\item
Handle any irrefutable (or ``twiddle'') @LazyPats@.
\end{itemize}
\item
Now {\em unmix} the equations into {\em blocks} [w/ local function
@unmix_eqns@], in which the equations in a block all have variable
patterns in column~1, or they all have constructor patterns in ...
(see ``the mixture rule'' in SLPJ).
\item
Call @matchEqnBlock@ on each block of equations; it will do the
appropriate thing for each kind of column-1 pattern, usually ending up
in a recursive call to @match@.
\end{enumerate}

%************************************************************************
%*									*
%*  match: empty rule							*
%*									*
%************************************************************************
\subsection[Match-empty-rule]{The ``empty rule''}

We are a little more paranoid about the ``empty rule'' (SLPJ, p.~87)
than the Wadler-chapter code for @match@ (p.~93, first @match@ clause).
And gluing the ``success expressions'' together isn't quite so pretty.

\begin{code}
match [] eqns_info
  = returnDs (foldr1 combineMatchResults match_results)
  where
    match_results = [ ASSERT( null pats) mr
		    | EqnInfo _ _ pats mr <- eqns_info ]
\end{code}


%************************************************************************
%*									*
%*  match: non-empty rule						*
%*									*
%************************************************************************
\subsection[Match-nonempty]{@match@ when non-empty: unmixing}

This (more interesting) clause of @match@ uses @tidy_and_unmix_eqns@
(a)~to get `as'- and `twiddle'-patterns out of the way (tidying), and
(b)~to do ``the mixture rule'' (SLPJ, p.~88) [which really {\em
un}mixes the equations], producing a list of equation-info
blocks, each block having as its first column of patterns either all
constructors, or all variables (or similar beasts), etc.

@match_unmixed_eqn_blks@ simply takes the place of the @foldr@ in the
Wadler-chapter @match@ (p.~93, last clause), and @match_unmixed_blk@
corresponds roughly to @matchVarCon@.

\begin{code}
match vars@(v:vs) eqns_info
  = mappM (tidyEqnInfo v) eqns_info	`thenDs` \ tidy_eqns_info ->
    let
	tidy_eqns_blks = unmix_eqns tidy_eqns_info
    in
    mappM (matchEqnBlock vars) tidy_eqns_blks	`thenDs` \ match_results ->
    returnDs (foldr1 combineMatchResults match_results)
  where
    unmix_eqns []    = []
    unmix_eqns [eqn] = [ [eqn] ]
    unmix_eqns (eq1@(EqnInfo _ _ (p1:p1s) _) : eq2@(EqnInfo _ _ (p2:p2s) _) : eqs)
      = if (  (isWildPat p1 && isWildPat p2)
	   || (isConPat  p1 && isConPat  p2)
	   || (isLitPat  p1 && isLitPat  p2) ) then
	    eq1 `tack_onto` unmixed_rest
	else
	    [ eq1 ] : unmixed_rest
      where
	unmixed_rest = unmix_eqns (eq2:eqs)

	x `tack_onto` xss   = ( x : head xss) : tail xss
\end{code}

Tidy up the leftmost pattern in an @EquationInfo@, given the variable @v@
which will be scrutinised.  This means:
\begin{itemize}
\item
Replace variable patterns @x@ (@x /= v@) with the pattern @_@,
together with the binding @x = v@.
\item
Replace the `as' pattern @x@@p@ with the pattern p and a binding @x = v@.
\item
Removing lazy (irrefutable) patterns (you don't want to know...).
\item
Converting explicit tuple-, list-, and parallel-array-pats into ordinary
@ConPats@. 
\item
Convert the literal pat "" to [].
\end{itemize}

The result of this tidying is that the column of patterns will include
{\em only}:
\begin{description}
\item[@WildPats@:]
The @VarPat@ information isn't needed any more after this.

\item[@ConPats@:]
@ListPats@, @TuplePats@, etc., are all converted into @ConPats@.

\item[@LitPats@ and @NPats@:]
@LitPats@/@NPats@ of ``known friendly types'' (Int, Char,
Float, 	Double, at least) are converted to unboxed form; e.g.,
\tr{(NPat (HsInt i) _ _)} is converted to:
\begin{verbatim}
(ConPat I# _ _ [LitPat (HsIntPrim i)])
\end{verbatim}
\end{description}

\begin{code}
tidyEqnInfo :: Id -> EquationInfo -> DsM EquationInfo
	-- DsM'd because of internal call to "match".
	-- "tidy1" does the interesting stuff, looking at
	-- one pattern and fiddling the list of bindings.
	--
	-- POST CONDITION: head pattern in the EqnInfo is
	--	WildPat
	--	ConPat
	--	NPat
	--	LitPat
	--	NPlusKPat
	--	SigPat
	-- but no other

tidyEqnInfo v (EqnInfo n ctx (pat : pats) match_result)
  = tidy1 v pat match_result	`thenDs` \ (pat', match_result') ->
    returnDs (EqnInfo n ctx (pat' : pats) match_result')


tidy1 :: Id 			-- The Id being scrutinised
      -> Pat Id 		-- The pattern against which it is to be matched
      -> MatchResult		-- Current thing do do after matching
      -> DsM (Pat Id, 		-- Equivalent pattern
	      MatchResult)	-- Augmented thing to do afterwards
				-- The augmentation usually takes the form
				-- of new bindings to be added to the front

-------------------------------------------------------
--	(pat', mr') = tidy1 v pat mr
-- tidies the *outer level only* of pat, giving pat'
-- It eliminates many pattern forms (as-patterns, variable patterns,
-- list patterns, etc) yielding one of:
--	WildPat
--	ConPat
--	LitPat
--	NPat
--	NPlusKPat
--

tidy1 v (ParPat pat) match_result 
  = tidy1 v (unLoc pat) match_result

	-- case v of { x -> mr[] }
	-- = case v of { _ -> let x=v in mr[] }
tidy1 v (VarPat var) match_result
  = returnDs (WildPat (idType var), match_result')
  where
    match_result' | v == var  = match_result
		  | otherwise = adjustMatchResult (bindNonRec var (Var v)) match_result

	-- case v of { x@p -> mr[] }
	-- = case v of { p -> let x=v in mr[] }
tidy1 v (AsPat (L _ var) pat) match_result
  = tidy1 v (unLoc pat) match_result'
  where
    match_result' | v == var  = match_result
		  | otherwise = adjustMatchResult (bindNonRec var (Var v)) match_result

tidy1 v (WildPat ty) match_result
  = returnDs (WildPat ty, match_result)

{- now, here we handle lazy patterns:
    tidy1 v ~p bs = (v, v1 = case v of p -> v1 :
			v2 = case v of p -> v2 : ... : bs )

    where the v_i's are the binders in the pattern.

    ToDo: in "v_i = ... -> v_i", are the v_i's really the same thing?

    The case expr for v_i is just: match [v] [(p, [], \ x -> Var v_i)] any_expr
-}

tidy1 v (LazyPat pat) match_result
  = mkSelectorBinds pat (Var v)		`thenDs` \ sel_binds ->
    returnDs (WildPat (idType v),
	      mkCoLetsMatchResult [NonRec b rhs | (b,rhs) <- sel_binds] match_result)

-- re-express <con-something> as (ConPat ...) [directly]

tidy1 v (ConPatOut con ps pat_ty ex_tvs dicts) match_result
  = returnDs (ConPatOut con tidy_ps pat_ty ex_tvs dicts, match_result)
  where
    tidy_ps = PrefixCon (tidy_con con pat_ty ex_tvs ps)

tidy1 v (ListPat pats ty) match_result
  = returnDs (unLoc list_ConPat, match_result)
  where
    list_ty     = mkListTy ty
    list_ConPat = foldr (\ x y -> mkPrefixConPat consDataCon [x, y] list_ty)
	      	  	(mkNilPat list_ty)
	      	  	pats

-- introduce fake parallel array constructors to be able to handle parallel
-- arrays with the existing machinery for constructor pattern
--
tidy1 v (PArrPat pats ty) match_result
  = returnDs (unLoc parrConPat, match_result)
  where
    arity      = length pats
    parrConPat = mkPrefixConPat (parrFakeCon arity) pats (mkPArrTy ty)

tidy1 v (TuplePat pats boxity) match_result
  = returnDs (unLoc tuple_ConPat, match_result)
  where
    arity = length pats
    tuple_ConPat = mkPrefixConPat (tupleCon boxity arity) pats
				  (mkTupleTy boxity arity (map hsPatType pats))

tidy1 v (DictPat dicts methods) match_result
  = case num_of_d_and_ms of
	0 -> tidy1 v (TuplePat [] Boxed) match_result
	1 -> tidy1 v (unLoc (head dict_and_method_pats)) match_result
	_ -> tidy1 v (TuplePat dict_and_method_pats Boxed) match_result
  where
    num_of_d_and_ms	 = length dicts + length methods
    dict_and_method_pats = map nlVarPat (dicts ++ methods)

-- LitPats: we *might* be able to replace these w/ a simpler form
tidy1 v pat@(LitPat lit) match_result
  = returnDs (unLoc (tidyLitPat lit (noLoc pat)), match_result)

-- NPats: we *might* be able to replace these w/ a simpler form
tidy1 v pat@(NPatOut lit lit_ty _) match_result
  = returnDs (unLoc (tidyNPat lit lit_ty (noLoc pat)), match_result)

-- and everything else goes through unchanged...

tidy1 v non_interesting_pat match_result
  = returnDs (non_interesting_pat, match_result)


tidy_con data_con pat_ty ex_tvs (PrefixCon ps)   = ps
tidy_con data_con pat_ty ex_tvs (InfixCon p1 p2) = [p1,p2]
tidy_con data_con pat_ty ex_tvs (RecCon rpats)
  | null rpats
  =	-- Special case for C {}, which can be used for 
	-- a constructor that isn't declared to have
	-- fields at all
    map (noLoc.WildPat) con_arg_tys'

  | otherwise
  = map mk_pat tagged_arg_tys
  where
	-- Boring stuff to find the arg-tys of the constructor
    inst_tys         = tcTyConAppArgs pat_ty	-- Newtypes must be opaque
    con_arg_tys'     = dataConInstOrigArgTys data_con (inst_tys ++ mkTyVarTys ex_tvs)
    tagged_arg_tys   = con_arg_tys' `zip` (dataConFieldLabels data_con)

	-- mk_pat picks a WildPat of the appropriate type for absent fields,
	-- and the specified pattern for present fields
    mk_pat (arg_ty, lbl) = 
	case [ pat | (sel_id,pat) <- rpats,
		     recordSelectorFieldLabel (unLoc sel_id) == lbl
	     ] of
	  (pat:pats) -> ASSERT( null pats )
	  		pat
	  []	     -> noLoc (WildPat arg_ty)
\end{code}

\noindent
{\bf Previous @matchTwiddled@ stuff:}

Now we get to the only interesting part; note: there are choices for
translation [from Simon's notes]; translation~1:
\begin{verbatim}
deTwiddle [s,t] e
\end{verbatim}
returns
\begin{verbatim}
[ w = e,
  s = case w of [s,t] -> s
  t = case w of [s,t] -> t
]
\end{verbatim}

Here \tr{w} is a fresh variable, and the \tr{w}-binding prevents multiple
evaluation of \tr{e}.  An alternative translation (No.~2):
\begin{verbatim}
[ w = case e of [s,t] -> (s,t)
  s = case w of (s,t) -> s
  t = case w of (s,t) -> t
]
\end{verbatim}

%************************************************************************
%*									*
\subsubsection[improved-unmixing]{UNIMPLEMENTED idea for improved unmixing}
%*									*
%************************************************************************

We might be able to optimise unmixing when confronted by
only-one-constructor-possible, of which tuples are the most notable
examples.  Consider:
\begin{verbatim}
f (a,b,c) ... = ...
f d ... (e:f) = ...
f (g,h,i) ... = ...
f j ...       = ...
\end{verbatim}
This definition would normally be unmixed into four equation blocks,
one per equation.  But it could be unmixed into just one equation
block, because if the one equation matches (on the first column),
the others certainly will.

You have to be careful, though; the example
\begin{verbatim}
f j ...       = ...
-------------------
f (a,b,c) ... = ...
f d ... (e:f) = ...
f (g,h,i) ... = ...
\end{verbatim}
{\em must} be broken into two blocks at the line shown; otherwise, you
are forcing unnecessary evaluation.  In any case, the top-left pattern
always gives the cue.  You could then unmix blocks into groups of...
\begin{description}
\item[all variables:]
As it is now.
\item[constructors or variables (mixed):]
Need to make sure the right names get bound for the variable patterns.
\item[literals or variables (mixed):]
Presumably just a variant on the constructor case (as it is now).
\end{description}

%************************************************************************
%*									*
%* match on an unmixed block: the real business				*
%*									*
%************************************************************************
\subsection[matchEqnBlock]{@matchEqnBlock@: getting down to business}

The function @matchEqnBlock@ is where the matching stuff sets to
work a block of equations, to which the mixture rule has been applied.
Its arguments and results are the same as for the ``top-level'' @match@.

\begin{code}
matchEqnBlock :: [Id]
	      -> [EquationInfo]
	      -> DsM MatchResult

matchEqnBlock [] _ = panic "matchEqnBlock: no names"

matchEqnBlock all_vars@(var:vars) eqns_info 
  | isWildPat first_pat
  = ASSERT( all isWildPat column_1_pats )	-- Sanity check
  	-- Real true variables, just like in matchVar, SLPJ p 94
	-- No binding to do: they'll all be wildcards by now (done in tidy)
    match vars remaining_eqns_info

  | isConPat first_pat
  = ASSERT( patsAreAllCons column_1_pats )
    matchConFamily all_vars eqns_info 

  | isLitPat first_pat
  = ASSERT( patsAreAllLits column_1_pats )
  	-- see notes in MatchLiteral
	-- not worried about the same literal more than once in a column
	-- (ToDo: sort this out later)
    matchLiterals all_vars eqns_info

  | isSigPat first_pat
  = ASSERT( isSingleton eqns_info )
    matchSigPat all_vars (head eqns_info)
  where
    first_pat		= head column_1_pats
    column_1_pats 	= [pat		                   | EqnInfo _ _   (pat:_)  _            <- eqns_info]
    remaining_eqns_info = [EqnInfo n ctx pats match_result | EqnInfo n ctx (_:pats) match_result <- eqns_info]
\end{code}

A SigPat is a type coercion and must be handled one at at time.  We can't
combine them unless the type of the pattern inside is identical, and we don't
bother to check for that.  For example:

	data T = T1 Int | T2 Bool
	f :: (forall a. a -> a) -> T -> t
	f (g::Int->Int)   (T1 i) = T1 (g i)
	f (g::Bool->Bool) (T2 b) = T2 (g b)

We desugar this as follows:

	f = \ g::(forall a. a->a) t::T ->
	    let gi = g Int
	    in case t of { T1 i -> T1 (gi i)
			   other ->
	    let	gb = g Bool
	    in case t of { T2 b -> T2 (gb b)
			   other -> fail }}

Note that we do not treat the first column of patterns as a
column of variables, because the coerced variables (gi, gb)
would be of different types.  So we get rather grotty code.
But I don't think this is a common case, and if it was we could
doubtless improve it.

Meanwhile, the strategy is:
	* treat each SigPat coercion (always non-identity coercions)
		as a separate block
	* deal with the stuff inside, and then wrap a binding round
		the result to bind the new variable (gi, gb, etc)

\begin{code}
matchSigPat :: [Id] -> EquationInfo -> DsM MatchResult
matchSigPat (var:vars) (EqnInfo n ctx (SigPatOut pat ty co_fn : pats) result)
  = selectMatchVarL pat						`thenDs` \ new_var ->
    dsExpr (HsApp (noLoc co_fn) (nlHsVar var))		`thenDs` \ rhs ->
    match (new_var:vars) [EqnInfo n ctx (unLoc pat:pats) result] `thenDs` \ result' ->
    returnDs (adjustMatchResult (bindNonRec new_var rhs) result')
\end{code}	

%************************************************************************
%*									*
%*  matchWrapper: a convenient way to call @match@			*
%*									*
%************************************************************************
\subsection[matchWrapper]{@matchWrapper@: a convenient interface to @match@}

Calls to @match@ often involve similar (non-trivial) work; that work
is collected here, in @matchWrapper@.  This function takes as
arguments:
\begin{itemize}
\item
Typchecked @Matches@ (of a function definition, or a case or lambda
expression)---the main input;
\item
An error message to be inserted into any (runtime) pattern-matching
failure messages.
\end{itemize}

As results, @matchWrapper@ produces:
\begin{itemize}
\item
A list of variables (@Locals@) that the caller must ``promise'' to
bind to appropriate values; and
\item
a @CoreExpr@, the desugared output (main result).
\end{itemize}

The main actions of @matchWrapper@ include:
\begin{enumerate}
\item
Flatten the @[TypecheckedMatch]@ into a suitable list of
@EquationInfo@s.
\item
Create as many new variables as there are patterns in a pattern-list
(in any one of the @EquationInfo@s).
\item
Create a suitable ``if it fails'' expression---a call to @error@ using
the error-string input; the {\em type} of this fail value can be found
by examining one of the RHS expressions in one of the @EquationInfo@s.
\item
Call @match@ with all of this information!
\end{enumerate}

\begin{code}
matchWrapper :: HsMatchContext Name	-- For shadowing warning messages
	     -> [LMatch Id]		-- Matches being desugared
	     -> DsM ([Id], CoreExpr) 	-- Results
\end{code}

 There is one small problem with the Lambda Patterns, when somebody
 writes something similar to:
\begin{verbatim}
    (\ (x:xs) -> ...)
\end{verbatim}
 he/she don't want a warning about incomplete patterns, that is done with 
 the flag @opt_WarnSimplePatterns@.
 This problem also appears in the:
\begin{itemize}
\item @do@ patterns, but if the @do@ can fail
      it creates another equation if the match can fail
      (see @DsExpr.doDo@ function)
\item @let@ patterns, are treated by @matchSimply@
   List Comprension Patterns, are treated by @matchSimply@ also
\end{itemize}

We can't call @matchSimply@ with Lambda patterns,
due to the fact that lambda patterns can have more than
one pattern, and match simply only accepts one pattern.

JJQC 30-Nov-1997

\begin{code}
matchWrapper ctxt matches
  = getDOptsDs					`thenDs` \ dflags ->
    flattenMatches ctxt matches			`thenDs` \ (result_ty, eqns_info) ->
    let
	EqnInfo _ _ arg_pats _ : _ = eqns_info
	error_string = matchContextErrString ctxt
    in
    mappM selectMatchVar arg_pats		`thenDs` \ new_vars ->
    match_fun dflags new_vars eqns_info 	`thenDs` \ match_result ->

    mkErrorAppDs pAT_ERROR_ID result_ty error_string	`thenDs` \ fail_expr ->
    extractMatchResult match_result fail_expr		`thenDs` \ result_expr ->
    returnDs (new_vars, result_expr)
  where match_fun dflags
           = case ctxt of 
                LambdaExpr | dopt Opt_WarnSimplePatterns dflags -> matchExport 
                           | otherwise                          -> match
                _                                               -> matchExport
\end{code}

%************************************************************************
%*									*
\subsection[matchSimply]{@matchSimply@: match a single expression against a single pattern}
%*									*
%************************************************************************

@mkSimpleMatch@ is a wrapper for @match@ which deals with the
situation where we want to match a single expression against a single
pattern. It returns an expression.

\begin{code}
matchSimply :: CoreExpr			-- Scrutinee
	    -> HsMatchContext Name	-- Match kind
	    -> LPat Id			-- Pattern it should match
	    -> CoreExpr			-- Return this if it matches
	    -> CoreExpr			-- Return this if it doesn't
	    -> DsM CoreExpr

matchSimply scrut kind pat result_expr fail_expr
  = getSrcSpanDs			        `thenDs` \ locn ->
    let
      ctx 	   = DsMatchContext kind [unLoc pat] locn
      match_result = cantFailMatchResult result_expr
    in 
    matchSinglePat scrut ctx pat match_result	`thenDs` \ match_result' ->
    extractMatchResult match_result' fail_expr


matchSinglePat :: CoreExpr -> DsMatchContext -> LPat Id
	       -> MatchResult -> DsM MatchResult

matchSinglePat (Var var) ctx pat match_result
  = getDOptsDs					`thenDs` \ dflags ->
    match_fn dflags [var] [EqnInfo 1 ctx [unLoc pat] match_result]
  where
    match_fn dflags
       | dopt Opt_WarnSimplePatterns dflags = matchExport
       | otherwise	                    = match

matchSinglePat scrut ctx pat match_result
  = selectMatchVarL pat		 	 		`thenDs` \ var ->
    matchSinglePat (Var var) ctx pat match_result	`thenDs` \ match_result' ->
    returnDs (adjustMatchResult (bindNonRec var scrut) match_result')
\end{code}

%************************************************************************
%*									*
%*  flattenMatches : create a list of EquationInfo			*
%*									*
%************************************************************************

\subsection[flattenMatches]{@flattenMatches@: create @[EquationInfo]@}

This is actually local to @matchWrapper@.

\begin{code}
flattenMatches :: HsMatchContext Name
	       -> [LMatch Id]
	       -> DsM (Type, [EquationInfo])

flattenMatches kind matches
  = mapAndUnzipDs flatten_match (matches `zip` [1..])	`thenDs` \ (result_tys, eqn_infos) ->
    let
	result_ty = head result_tys
    in
    ASSERT( all (tcEqType result_ty) result_tys )
    returnDs (result_ty, eqn_infos)
  where
    flatten_match (L _ (Match pats _ grhss), n)
      = dsGRHSs kind upats grhss	`thenDs` \ (ty, match_result) ->
        getSrcSpanDs				`thenDs` \ locn ->
	returnDs (ty, EqnInfo n (DsMatchContext kind upats locn) upats match_result)
	where upats = map unLoc pats
\end{code}