summaryrefslogtreecommitdiff
path: root/ghc/compiler/javaGen/JavaGen.lhs
blob: 716492991e527ed6a5fda913ad29d607b314ef25 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
%
% (c) The GRASP/AQUA Project, Glasgow University, 1993-2000
%
\section{Generate Java}

Name mangling for Java.
~~~~~~~~~~~~~~~~~~~~~~

Haskell has a number of namespaces. The Java translator uses
the standard Haskell mangles (see OccName.lhs), and some extra
mangles.

All names are hidden inside packages.

module name:
  - becomes a first level java package.
  - can not clash with java, because haskell modules are upper case,
     java default packages are lower case.

function names: 
  - these turn into classes
  - java keywords (eg. private) have the suffix "zdk" ($k) added.

data *types*
  - These have a base class, so need to appear in the 
    same name space as other object. for example data Foo = Foo
  - We add a postfix to types: "zdc" ($c)
  - Types are upper case, so never clash with keywords

data constructors
  - There are tWO classes for each Constructor
   (1) - Class with the payload extends the relevent datatype baseclass.
       - This class has the prefix zdw ($w)
   (2) - Constructor *wrapper* just use their own name.
    - Constructors are upper case, so never clash with keywords
    - So Foo would become 2 classes.
	* Foo		-- the constructor wrapper
	* zdwFoo	-- the worker, with the payload


$i  for instances.
$k  for keyword nameclash avoidance.

\begin{code}
module JavaGen( javaGen ) where

import Java

import Literal	( Literal(..) )
import Id	( Id, isDataConId_maybe, isId, idName, isDeadBinder, idPrimRep
		, isPrimOpId_maybe )
import Name	( NamedThing(..), getOccString, isGlobalName, isLocalName
		, nameModule )
import PrimRep  ( PrimRep(..) )
import DataCon	( DataCon, dataConRepArity, dataConRepArgTys, dataConId )
import qualified Type
import qualified CoreSyn
import CoreSyn	( CoreBind, CoreExpr, CoreAlt, CoreBndr,
		  Bind(..), AltCon(..), collectBinders, isValArg
		)
import TysWiredIn	( boolTy, trueDataCon, falseDataCon )
import qualified CoreUtils
import Module	( Module, moduleString )
import TyCon	( TyCon, isDataTyCon, tyConDataCons )
import Outputable

import Maybe
import PrimOp

#include "HsVersions.h"

\end{code}


\begin{code}
javaGen :: Module -> [Module] -> [TyCon] -> [CoreBind] -> CompilationUnit

javaGen mod import_mods tycons binds
  = liftCompilationUnit package
  where
    decls = [Import "haskell.runtime.*"] ++
	    [Import (moduleString mod) | mod <- import_mods] ++
	    concat (map javaTyCon (filter isDataTyCon tycons)) ++ 
	    concat (map javaTopBind binds)
    package = Package (moduleString mod) decls
\end{code}


%************************************************************************
%*									*
\subsection{Type declarations}
%*									*
%************************************************************************

\begin{code}
javaTyCon :: TyCon -> [Decl]
--  	public class List {}
--
--	public class $wCons extends List {
--		Object f1; Object f2
--	}
--	public class $wNil extends List {}

javaTyCon tycon 
  = tycon_jclass : concat (map constr_class constrs)
  where
    constrs = tyConDataCons tycon
    tycon_jclass_jname =  javaTyConTypeName tycon ++ "zdc"
    tycon_jclass = Class [Public] (shortName tycon_jclass_jname) [] [] []

    constr_class data_con
	= [ Class [Public] constr_jname [tycon_jclass_jname] []
				(field_decls ++ [cons_meth,debug_meth])
	  ]
	where
	  constr_jname = shortName (javaConstrWkrName data_con)

	  field_names  = constrToFields data_con
	  field_decls  = [ Field [Public] n Nothing 
			 | n <- field_names
			 ]

	  cons_meth    = mkCons constr_jname field_names

	  debug_meth   = Method [Public] (Name "toString" stringType)
					 []
					 []
		       (  [ Declaration (Field [] txt Nothing) ]
		       ++ [ ExprStatement
				(Assign (Var txt)
					    (mkStr
						("( " ++ 
						  getOccString data_con ++ 
						  " ")
				       	     )
				)
			  ]
		       ++ [ ExprStatement
				(Assign (Var txt)
				   (Op (Var txt)
				        "+" 
				       (Op (Var n) "+" litSp)
				   )
				)
			  | n <- field_names
			  ]
		       ++ [ Return (Op (Var txt)
				        "+" 
				      (mkStr ")")
				   )
			  ]
		       )

	  litSp    = mkStr " "
	  txt      = Name "__txt" stringType
	 

-- This checks to see the type is reasonable to call new with.
-- primitives might use a static method later.
mkNew :: Type -> [Expr] -> Expr
mkNew t@(PrimType primType) _  = error "new primitive -- fix it???"
mkNew t@(Type _)            es = New t es Nothing
mkNew _                     _  = error "new with strange arguments"

constrToFields :: DataCon -> [Name]
constrToFields cons = 
	[ fieldName i t 
	| (i,t) <- zip [1..] (map primRepToType
			          (map Type.typePrimRep
				       (dataConRepArgTys cons)
				  )
			     )
	]

mkCons :: TypeName -> [Name] -> Decl
mkCons name args = Constructor [Public] name
	[ Parameter [] n | n <- args ]
	[ ExprStatement (Assign 
			   (Access this n)
			   (Var n)
			 )
		    | n <- args ]

mkStr :: String -> Expr
mkStr str = Literal (StringLit str)
\end{code}

%************************************************************************
%*									*
\subsection{Bindings}
%*									*
%************************************************************************

\begin{code}
javaTopBind :: CoreBind -> [Decl]
javaTopBind (NonRec bndr rhs) = [java_top_bind bndr rhs]
javaTopBind (Rec prs) 	      = [java_top_bind bndr rhs | (bndr,rhs) <- prs]

java_top_bind :: Id -> CoreExpr -> Decl
-- 	public class f implements Code {
--	  public Object ENTER() { ...translation of rhs... }
--	}
java_top_bind bndr rhs
  = Class [Public] (shortName (javaIdTypeName bndr))
		[] [codeName] [enter_meth]
  where
    enter_meth = Method [Public]
			enterName
			[vmArg]
			[excName]
			(javaExpr vmRETURN rhs)
\end{code}

%************************************************************************
%*									*
\subsection{Expressions}
%*									*
%************************************************************************

\begin{code}
javaVar :: Id -> Expr
javaVar v | isGlobalName (idName v) = mkNew (javaIdType v) []
	  | otherwise	  	    =   Var (javaName v)

javaLit :: Literal.Literal -> Expr
javaLit (MachInt i)  = Literal (IntLit (fromInteger i))
javaLit (MachChar c) = Literal (CharLit c)
javaLit (MachStr fs) = Literal (StringLit str)
   where
	str = concatMap renderString (_UNPK_ fs) ++ "\\000"
	-- This should really handle all the chars 0..31.
	renderString '\NUL' = "\\000"
	renderString other  = [other]

javaLit other	     = pprPanic "javaLit" (ppr other)

-- Pass in the 'shape' of the result.
javaExpr :: (Expr -> Statement) -> CoreExpr -> [Statement]
-- Generate code to apply the value of 
-- the expression to the arguments aleady on the stack
javaExpr r (CoreSyn.Var v)   = [r (javaVar v)]
javaExpr r (CoreSyn.Lit l)   = [r (javaLit l)]
javaExpr r (CoreSyn.App f a) = javaApp r f [a]
javaExpr r e@(CoreSyn.Lam _ _) = javaLam r (collectBinders e)
javaExpr r (CoreSyn.Case e x alts) = javaCase r e x alts
javaExpr r (CoreSyn.Let bind body) = javaBind bind ++ javaExpr r body
javaExpr r (CoreSyn.Note _ e)	 = javaExpr r e

javaCase :: (Expr -> Statement) -> CoreExpr -> Id -> [CoreAlt] -> [Statement]
-- 	case e of x { Nil      -> r1
--		      Cons p q -> r2 }
-- ==>
--	final Object x = VM.WHNF(...code for e...)
--	else if x instance_of Nil {
--		...translation of r1...
--	} else if x instance_of Cons {
--		final Object p = ((Cons) x).f1
--		final Object q = ((Cons) x).f2
--		...translation of r2...
--	} else throw java.lang.Exception

-- This first special case happens a lot, typically
-- during dictionary deconstruction.
-- We need to access at least *one* field, to check to see
-- if we have correct constructor.
-- If we've got the wrong one, this is _|_, and the
-- casting will catch this with an exception.

javaCase r e x [(DataAlt d,bs,rhs)] | length bs > 0
  = java_expr PushExpr e ++
    [ var [Final] (javaName x)
	          (whnf primRep (vmPOP (primRepToType primRep))) ] ++
    bind_args d bs ++
    javaExpr r rhs
   where      
     primRep = idPrimRep x
     whnf PtrRep = vmWHNF	-- needs evaluation
     whnf _      = id		-- anything else does notg

     bind_args d bs = [var [Final] (javaName b) 
			   (Access (Cast (javaConstrWkrType d) (javaVar x)
				   ) f
			   )
		      | (b,f) <- filter isId bs `zip` (constrToFields d)
		      , not (isDeadBinder b)
		      ]
   
javaCase r e x alts
  | isIfThenElse && isPrimCmp = 
       javaIfThenElse r (fromJust maybePrim) tExpr fExpr
  | otherwise =
       java_expr PushExpr e ++
       [ var [Final] (javaName x)
		           (whnf primRep (vmPOP (primRepToType primRep)))
       , mkIfThenElse (map mk_alt alts) 
       ]
  where
     isIfThenElse = CoreUtils.exprType e == boolTy
		    -- also need to check that x is not free in
		    -- any of the branches.
     maybePrim    = findCmpPrim e []
     isPrimCmp    = isJust maybePrim
     tExpr        = matches trueDataCon alts
     fExpr        = matches falseDataCon alts

     matches con [] = error "no match for true or false branch of if/then/else"
     matches con ((DataAlt d,[],rhs):rest) | con == d = rhs
     matches con ((DEFAULT,[],rhs):_)                 = rhs
     matches con (other:rest)                         = matches con rest

     primRep = idPrimRep x
     whnf PtrRep = vmWHNF	-- needs evaluation
     whnf _      = id

     mk_alt (DEFAULT, [], rhs)   = (true, 	    Block (javaExpr r rhs))
     mk_alt (DataAlt d, bs, rhs) = (instanceOf x d, Block (bind_args d bs ++ javaExpr r rhs))
     mk_alt alt@(LitAlt lit, [], rhs) 
				 = (eqLit lit     , Block (javaExpr r rhs))
     mk_alt alt@(LitAlt _, _, _) = pprPanic "mk_alt" (ppr alt)


     eqLit (MachInt n) = Op (Literal (IntLit n))

			    "=="
			    (Var (javaName x))
     eqLit (MachChar n) = Op (Literal (CharLit n))
			    "=="
			    (Var (javaName x))
     eqLit other       = pprPanic "eqLit" (ppr other)

     bind_args d bs = [var [Final] (javaName b) 
			   (Access (Cast (javaConstrWkrType d) (javaVar x)
				   ) f
			   )
		      | (b,f) <- filter isId bs `zip` (constrToFields d)
		      , not (isDeadBinder b)
		      ]


mkIfThenElse [(Var (Name "true" _),code)] = code
mkIfThenElse other = IfThenElse other 
		(Just (ExprStatement 
			(Raise excName [Literal (StringLit "case failure")])
		       )
                )

javaIfThenElse r cmp tExpr fExpr 
{-
 - Now what we need to do is generate code for the if/then/else.
 - [all arguments are already check for simpleness (Var or Lit).]
 - 
 - if (<prim> arg1 arg2 arg3 ...) {
 -	trueCode
 -  } else {
 -	falseCode
 - }
 -}
 = [IfThenElse [(cmp,j_tExpr)] (Just j_fExpr)]
 where
   j_tExpr, j_fExpr :: Statement
   j_tExpr = Block (javaExpr r tExpr)
   j_fExpr = Block (javaExpr r fExpr)

javaBind (NonRec x rhs)
{-
	x = ...rhs_x...
  ==>
	final Object x = new Thunk( new Code() { ...code for rhs_x... } )
-}

  = java_expr (SetVar name) rhs
  where
    name = case coreTypeToType rhs of
	    ty@(PrimType _) -> javaName x `withType` ty
	    _               -> javaName x `withType` codeType

javaBind (Rec prs)
{- 	rec { x = ...rhs_x...; y = ...rhs_y... }
  ==>
	class x implements Code {
	  Code x, y;
	  public Object ENTER() { ...code for rhs_x...}
	}
	...ditto for y...

	final x x_inst = new x();
	...ditto for y...

	final Thunk x = new Thunk( x_inst );
	...ditto for y...

	x_inst.x = x;
	x_inst.y = y;
	...ditto for y...
-}
  = (map mk_class prs) ++ (map mk_inst prs) ++ 
    (map mk_thunk prs) ++ concat (map mk_knot prs)
  where
    mk_class (b,r) = Declaration (Class [] class_name [] [codeName] stmts)
		   where
		     class_name = javaIdTypeName b
		     stmts = [Field [] (javaName b `withType` codeType) Nothing | (b,_) <- prs] ++
			     [Method [Public] enterName [vmArg] [excName] (javaExpr vmRETURN r)]	

    mk_inst (b,r) = var [Final] name (mkNew ty [])
	where
	   name@(Name _ ty)  = javaInstName b

    mk_thunk (b,r) = var [Final] (javaName b `withType` codeType)
			 (mkNew thunkType [Var (javaInstName b)])

    mk_knot (b,_) = [ ExprStatement (Assign lhs rhs) 
		    | (b',_) <- prs,
		      let lhs = Access (Var (javaInstName b)) (javaName b'),
		      let rhs = Var (javaName b')
		    ]

javaLam :: (Expr -> Statement) -> ([CoreBndr], CoreExpr) -> [Statement]
javaLam r (bndrs, body)
  | null val_bndrs = javaExpr r body
  | otherwise
  =  vmCOLLECT (length val_bndrs) this
  ++ [var [Final] n (vmPOP t) | n@(Name _ t) <- val_bndrs]
  ++ javaExpr r body
  where
    val_bndrs = map javaName (filter isId bndrs)

javaApp :: (Expr -> Statement) -> CoreExpr -> [CoreExpr] -> [Statement]
javaApp r (CoreSyn.App f a) as 
	| isValArg a = javaApp r f (a:as)
	| otherwise  = javaApp r f as
javaApp r (CoreSyn.Var f) as 
  = case isDataConId_maybe f of {
	Just dc | length as == dataConRepArity dc
	 -- NOTE: Saturated constructors never returning a primitive at this point
	 --
	 -- We push the arguments backwards, because we are using
	 -- the (ugly) semantics of the order of evaluation of arguments,
	 -- to avoid making up local names. Oh to have a namesupply...
	 --
		-> javaArgs (reverse as) ++
		   [r (New (javaIdType f)
			   (javaPops as)
			   Nothing
		       )
		   ]
	        | otherwise ->
		   --  build a local 
		   let stmts = 
			  vmCOLLECT (dataConRepArity dc) this ++
			[ vmRETURN
			   (New (javaIdType f)
				[ vmPOP ty | (Name _ ty) <- constrToFields dc ]
				Nothing
			    )
			]
		   in javaArgs (reverse as) ++ [r (newCode stmts)]
    ; other -> java_apply r (CoreSyn.Var f) as
    }
	
javaApp r f as = java_apply r f as

-- This means, given a expression an a list of arguments,
-- generate code for "pushing the arguments on the stack,
--  and the executing the expression."

java_apply :: (Expr -> Statement) -> CoreExpr -> [CoreExpr] -> [Statement]
java_apply r f as = javaArgs as ++ javaExpr r f

-- This generates statements that have the net effect
-- of pushing values (perhaps thunks) onto the stack.

javaArgs :: [CoreExpr] -> [Statement]
javaArgs args = concat [ java_expr PushExpr a | a <- args, isValArg a]

javaPops :: [CoreExpr] -> [Expr]
javaPops args = [ vmPOP (primRepToType (Type.typePrimRep (CoreUtils.exprType a)))
		| a <- args 
		, isValArg a
		]


-- The result is a list of statments that have the effect of
-- pushing onto the stack (via one of the VM.PUSH* commands)
-- the argument, (or returning, or setting a variable)
-- perhaps thunked.

{- This is mixing two things.
 (1) Optimizations for things like primitives, whnf calls, etc.
 (2) If something needs a thunk constructor round it.
 - Seperate them at some point!
 -}
data ExprRetStyle = SetVar Name | PushExpr | ReturnExpr

java_expr :: ExprRetStyle -> CoreExpr -> [Statement]
java_expr _ (CoreSyn.Type t) = pprPanic "java_expr" (ppr t)
java_expr ret e
   | isPrimCall = [push (fromJust maybePrim)]
	-- This is a shortcut, 
	-- basic names and literals do not need a code block
	-- to compute the value.
   | isPrim primty && CoreUtils.exprIsTrivial e = javaExpr push e
   | isPrim primty =
 	  let expr  = javaExpr vmRETURN e
	      code  = access (vmWHNF (newCode expr)) (primRepToType primty)
	  in [push code]
   | otherwise =
 	  let expr  = javaExpr vmRETURN e
	      code  = newCode expr
	      code' = if CoreUtils.exprIsValue e 
		      || CoreUtils.exprIsTrivial e 
		      || isPrim primty
		      then code
		      else newThunk code
	  in [push code']
   where
	maybePrim  = findFnPrim e []
	isPrimCall = isJust maybePrim

	push e = case ret of
		  SetVar name -> var [Final] name e
		  PushExpr -> vmPUSH e
		  ReturnExpr -> vmRETURN e
	corety = CoreUtils.exprType e
	primty = Type.typePrimRep corety
	isPrim PtrRep  = False	-- only this needs updated
	isPrim _       = True

coreTypeToType = primRepToType . Type.typePrimRep . CoreUtils.exprType

renameForKeywords :: (NamedThing name) => name -> String
renameForKeywords name 
  | str `elem` keywords = "zdk" ++ str
  | otherwise            = str
  where
	str = getOccString name

keywords :: [String]
keywords =
	[ "return"
	, "if"
	, "then"
	, "else"
	, "class"
	, "instance"
	, "import"
	, "throw"
	, "try"
	]

\end{code}

%************************************************************************
%*									*
\subsection{Helper functions}
%*									*
%************************************************************************

\begin{code}
true, this,javaNull :: Expr
this = Var thisName 
true = Var (Name "true" (PrimType PrimBoolean))
javaNull = Var (Name "null" objectType)

vmCOLLECT :: Int -> Expr -> [Statement]
vmCOLLECT 0 e = []
vmCOLLECT n e = [ExprStatement 
		    (Call varVM collectName
			[ Literal (IntLit (toInteger n))
			, e
			]
		    )
		]

vmPOP :: Type -> Expr 
vmPOP ty = Call varVM (Name ("POP" ++ suffix ty) ty) []

vmPUSH :: Expr -> Statement
vmPUSH e = ExprStatement 
	     (Call varVM (Name ("PUSH" ++ suffix (exprType e)) void) [e])

vmRETURN :: Expr -> Statement
vmRETURN e = Return (
     case ty of
	PrimType _ -> Call varVM (Name ("RETURN" ++ suffix ty)
				       valueType
				 ) [e]
	_ -> e)
  where
	ty = exprType e

var :: [Modifier] -> Name -> Expr -> Statement
var ms field_name@(Name _ ty) value 
   | exprType value == ty = Declaration (Field ms field_name (Just value))
   | otherwise            = var ms field_name (Cast ty value)

vmWHNF :: Expr -> Expr
vmWHNF e = Call varVM whnfName [e]

suffix :: Type -> String
suffix (PrimType t) = primName t
suffix _            = ""

primName :: PrimType -> String
primName PrimInt       = "int"
primName PrimChar      = "char"
primName PrimByte      = "byte"
primName PrimBoolean   = "boolean"
primName _             = error "unsupported primitive"

varVM :: Expr
varVM = Var vmName 

instanceOf :: Id -> DataCon -> Expr
instanceOf x data_con
  = InstanceOf (Var (javaName x)) (javaConstrWkrType data_con)

newCode :: [Statement] -> Expr
newCode [Return e] = e
newCode stmts	   = New codeType [] (Just [Method [Public] enterName [vmArg] [excName] stmts])

newThunk :: Expr -> Expr
newThunk e = New thunkType [e] Nothing

vmArg :: Parameter
vmArg = Parameter [Final] vmName

-- This is called with boolean compares, checking 
-- to see if we can do an obvious shortcut.
-- If there is, we return a (GOO) expression for doing this,

-- So if, we have case (#< x y) of { True -> e1; False -> e2 },
-- we will call findCmpFn with (#< x y), this return Just (Op x "<" y)

findCmpPrim :: CoreExpr -> [Expr] -> Maybe Expr
findCmpPrim (CoreSyn.App f a) as =
     case a of
	CoreSyn.Var v -> findCmpPrim f (javaVar v:as)
	CoreSyn.Lit l -> findCmpPrim f (javaLit l:as)
	_ -> Nothing
findCmpPrim (CoreSyn.Var p)   as = 
	case isPrimOpId_maybe p of
	  Just prim -> find_cmp_prim prim as
	  Nothing   -> Nothing
findCmpPrim _                 as = Nothing

find_cmp_prim cmpPrim args@[a,b] = 
   case cmpPrim of
     IntGtOp -> fn ">"
     IntGeOp -> fn ">="
     IntEqOp -> fn "=="
     IntNeOp -> fn "/="
     IntLtOp -> fn "<"
     IntLeOp -> fn "<="
     _ -> Nothing
  where
	fn op = Just (Op a op b)
find_cmp_prim _ _ = Nothing

findFnPrim :: CoreExpr -> [Expr] -> Maybe Expr
findFnPrim (CoreSyn.App f a) as =
     case a of
	CoreSyn.Var v -> findFnPrim f (javaVar v:as)
	CoreSyn.Lit l -> findFnPrim f (javaLit l:as)
	_ -> Nothing
findFnPrim (CoreSyn.Var p)   as = 
	case isPrimOpId_maybe p of
	  Just prim -> find_fn_prim prim as
	  Nothing   -> Nothing
findFnPrim _                 as = Nothing

find_fn_prim cmpPrim args@[a,b] = 
   case cmpPrim of
     IntAddOp -> fn "+"
     IntSubOp -> fn "-"
     IntMulOp -> fn "*"
     _ -> Nothing
  where
	fn op = Just (Op a op b)
find_fn_prim _ _ = Nothing
\end{code}

%************************************************************************
%*									*
\subsection{Haskell to Java Types}
%*									*
%************************************************************************

\begin{code}
exprType (Var (Name _ t)) = t
exprType (Literal lit)    = litType lit
exprType (Cast t _)       = t
exprType (New t _ _)      = t
exprType (Call _ (Name _ t) _) = t
exprType (Access _ (Name _ t)) = t
exprType (Raise t _)           = error "do not know the type of raise!"
exprType (Op _ op _) | op `elem` ["==","/=","<","<=","=>",">"]
		     = PrimType PrimBoolean
exprType (Op x op _) | op `elem` ["+","-","*"]
		     = exprType x
exprType expr = error ("can't figure out an expression type: " ++ show expr)

litType (IntLit i)    = PrimType PrimInt
litType (CharLit i)   = PrimType PrimChar
litType (StringLit i) = stringType	-- later, might use char array?
\end{code}

%************************************************************************
%*									*
\subsection{Name mangling}
%*									*
%************************************************************************

\begin{code}
codeName, excName, thunkName :: TypeName
codeName  = "haskell.runtime.Code"
thunkName = "haskell.runtime.Thunk"
excName   = "java.lang.Exception"

enterName, vmName,thisName,collectName, whnfName :: Name
enterName   = Name "ENTER"   objectType
vmName      = Name "VM"      vmType
thisName    = Name "this"    (Type "<this>")
collectName = Name "COLLECT" void
whnfName    = Name "WHNF"    objectType

fieldName :: Int -> Type -> Name	-- Names for fields of a constructor
fieldName n ty = Name ("f" ++ show n) ty

withType :: Name -> Type -> Name
withType (Name n _) t = Name n t

-- This maps (local only) names Ids to Names, 
-- using the same string as the Id.
javaName :: Id -> Name
javaName n 
  | isGlobalName (idName n) = error "useing javaName on global"
  | otherwise = Name (getOccString n)
		     (primRepToType (idPrimRep n))

-- TypeName's are almost always global. This would typically return something
-- like Test.foo or Test.Foozdc or PrelBase.foldr.
-- Local might use locally bound types, (which do not have '.' in them).

javaIdTypeName :: Id -> TypeName
javaIdTypeName n
    | isLocalName n' = renameForKeywords n'
    | otherwise      = moduleString (nameModule n') ++ "." ++ renameForKeywords n'
  where
	     n' = getName n

-- There is no such thing as a local type constructor.

javaTyConTypeName :: TyCon -> TypeName
javaTyConTypeName n = (moduleString (nameModule n') ++ "." ++ renameForKeywords n')
  where
	     n' = getName n

-- this is used for getting the name of a class when defining it.
shortName :: TypeName -> TypeName
shortName = reverse . takeWhile (/= '.') . reverse

-- The function that makes the constructor name
-- The constructor "Foo ..." in module Test,
-- would return the name "Test.Foo".

javaConstrWkrName :: DataCon -> TypeName
javaConstrWkrName = javaIdTypeName . dataConId

-- Makes x_inst for Rec decls
-- They are *never* is primitive
-- and always have local (type) names.
javaInstName :: Id -> Name
javaInstName n = Name (renameForKeywords n ++ "zdi_inst")
		      (Type (renameForKeywords n))
\end{code}

%************************************************************************
%*									*
\subsection{Types and type mangling}
%*									*
%************************************************************************

\begin{code}
-- Haskell RTS types
codeType, thunkType, valueType :: Type
codeType   = Type codeName
thunkType  = Type thunkName
valueType  = Type "haskell.runtime.Value"
vmType     = Type "haskell.runtime.VMEngine"

-- Basic Java types
objectType, stringType :: Type
objectType = Type "java.lang.Object"
stringType = Type "java.lang.String"

void :: Type
void = PrimType PrimVoid

inttype :: Type
inttype = PrimType PrimInt

chartype :: Type
chartype = PrimType PrimChar

bytetype :: Type
bytetype = PrimType PrimByte

-- This lets you get inside a possible "Value" type,
-- to access the internal unboxed object.
access :: Expr -> Type -> Expr
access expr (PrimType prim) = accessPrim (Cast valueType expr) prim
access expr other           = expr

accessPrim expr PrimInt  = Call expr (Name "intValue" inttype) []
accessPrim expr PrimChar = Call expr (Name "charValue" chartype) []
accessPrim expr PrimByte = Call expr (Name "byteValue" bytetype) []
accessPrim expr other    = pprPanic "accessPrim" (text (show other))

-- This is where we map from typename to types,
-- allowing to match possible primitive types.
mkType :: TypeName -> Type
mkType "PrelGHC.Intzh"  = inttype
mkType "PrelGHC.Charzh" = chartype
mkType other            = Type other

-- Turns a (global) Id into a Type (fully qualified name).
javaIdType :: Id -> Type
javaIdType = mkType . javaIdTypeName

javaLocalIdType :: Id -> Type
javaLocalIdType = primRepToType . idPrimRep

primRepToType ::PrimRep -> Type
primRepToType PtrRep  = objectType
primRepToType IntRep  = inttype
primRepToType CharRep = chartype
primRepToType Int8Rep = bytetype
primRepToType AddrRep = objectType
primRepToType other   = pprPanic "primRepToType" (ppr other)

-- The function that makes the constructor name
javaConstrWkrType :: DataCon -> Type
javaConstrWkrType con = Type (javaConstrWkrName con)
\end{code}

%************************************************************************
%*									*
\subsection{Class Lifting}
%*									*
%************************************************************************

This is a very simple class lifter. It works by carrying inwards a
list of bound variables (things that might need to be passed to a
lifted inner class). 
 * Any variable references is check with this list, and if it is
   bound, then it is not top level, external reference. 
 * This means that for the purposes of lifting, it might be free
   inside a lifted inner class.
 * We remember these "free inside the inner class" values, and 
   use this list (which is passed, via the monad, outwards)
   when lifting.

\begin{code}
type Bound = [Name]
type Frees = [Name]

combine :: [Name] -> [Name] -> [Name]
combine []           names          = names
combine names        []             = names
combine (name:names) (name':names') 
	| name < name' = name  : combine names (name':names')
	| name > name' = name' : combine (name:names) names'
	| name == name = name  : combine names names'
	| otherwise    = error "names are not a total order"

both :: [Name] -> [Name] -> [Name]
both []           names          = []
both names        []             = []
both (name:names) (name':names') 
	| name < name' = both names (name':names')
	| name > name' = both (name:names) names'
	| name == name = name  : both names names'
	| otherwise    = error "names are not a total order"

combineEnv :: Env -> [Name] -> Env
combineEnv (Env bound env) new = Env (bound `combine` new) env

addTypeMapping :: TypeName -> TypeName -> [Name] -> Env -> Env
addTypeMapping origName newName frees (Env bound env)
	= Env bound ((origName,(newName,frees)) : env)

-- This a list of bound vars (with types)
-- and a mapping from old class name 
--     to inner class name (with a list of frees that need passed
--	                    to the inner class.)

data Env = Env Bound [(TypeName,(TypeName,[Name]))]

newtype LifterM a = 
  	LifterM { unLifterM ::
		     TypeName ->		-- this class name
		     Int -> 			-- uniq supply
			  ( a			-- *
			    , Frees		-- frees
			    , [Decl]		-- lifted classes
			    , Int		-- The uniqs
			    )
		}

instance Monad LifterM where
	return a = LifterM (\ n s -> (a,[],[],s))
	(LifterM m) >>= fn = LifterM (\ n s ->
	  case m n s of
	    (a,frees,lifted,s) 
	         -> case unLifterM (fn a) n s of
	 	     (a,frees2,lifted2,s) -> ( a
					     , combine frees frees2
					     , lifted ++ lifted2
					     , s)
	  )

liftAccess :: Env -> Name -> LifterM ()
liftAccess env@(Env bound _) name 
	| name `elem` bound = LifterM (\ n s -> ((),[name],[],s))
	| otherwise         = return ()

scopedName :: TypeName -> LifterM a -> LifterM a
scopedName name (LifterM m) =
   LifterM (\ _ s -> 
      case m name 1 of
	(a,frees,lifted,_) -> (a,frees,lifted,s)
      )

genAnonInnerClassName :: LifterM TypeName
genAnonInnerClassName = LifterM (\ n s ->
	( n ++ "$" ++ show s
	, []
	, []
	, s + 1
	)
    )

genInnerClassName :: TypeName -> LifterM TypeName
genInnerClassName name = LifterM (\ n s ->
	( n ++ "$" ++ name 
	, []
	, []
	, s
	)
    )

getFrees  :: LifterM a -> LifterM (a,Frees)
getFrees (LifterM m) = LifterM (\ n s ->
	case m n s of
	  (a,frees,lifted,n) -> ((a,frees),frees,lifted,n)
    )

rememberClass :: Decl -> LifterM ()
rememberClass decl = LifterM (\ n s -> ((),[],[decl],s))


liftCompilationUnit :: CompilationUnit -> CompilationUnit
liftCompilationUnit (Package name ds) = 
    Package name (concatMap liftCompilationUnit' ds)

liftCompilationUnit' :: Decl -> [Decl]
liftCompilationUnit' decl = 
    case unLifterM (liftDecls True (Env [] []) [decl]) [] 1 of
      (ds,_,ds',_) -> ds ++ ds'


-- The bound vars for the current class have
-- already be captured before calling liftDecl,
-- because they are in scope everywhere inside the class.

liftDecl :: Bool -> Env -> Decl -> LifterM Decl
liftDecl = \ top env decl ->
  case decl of
    { Import n -> return (Import n)
    ; Field mfs n e -> 
      do { e <- liftMaybeExpr env e
	 ; return (Field mfs (liftName env n) e)
	 }
    ; Constructor mfs n as ss -> 
      do { let newBound = getBoundAtParameters as
	 ; (ss,_) <- liftStatements (combineEnv env newBound) ss
	 ; return (Constructor mfs n (liftParameters env as) ss)
	 }
    ; Method mfs n as ts ss -> 
      do { let newBound = getBoundAtParameters as
	 ; (ss,_) <- liftStatements (combineEnv env newBound) ss
	 ; return (Method mfs (liftName env n) (liftParameters env as) ts ss)
	 }
    ; Comment s -> return (Comment s)
    ; Interface mfs n is ms -> error "interfaces not supported"
    ; Class mfs n x is ms -> 
      do { let newBound = getBoundAtDecls ms
	 ; ms <- scopedName n
		    (liftDecls False (combineEnv env newBound) ms)
	 ; return (Class mfs n x is ms)
	 }
    }

liftDecls :: Bool -> Env -> [Decl] -> LifterM [Decl]
liftDecls top env = mapM (liftDecl top env)

getBoundAtDecls :: [Decl] -> Bound
getBoundAtDecls = foldr combine [] . map getBoundAtDecl

getBoundAtDecl :: Decl -> Bound
getBoundAtDecl (Field _ n _) = [n]
getBoundAtDecl _             = []

getBoundAtParameters :: [Parameter] -> Bound
getBoundAtParameters = foldr combine [] . map getBoundAtParameter

-- TODO
getBoundAtParameter :: Parameter -> Bound
getBoundAtParameter (Parameter _ n) = [n]


liftStatement :: Env -> Statement -> LifterM (Statement,Env)
liftStatement = \ env stmt ->
  case stmt of 
    { Skip -> return (stmt,env)
    ; Return e -> do { e <- liftExpr env e
		     ; return (Return e,env)
		     } 
    ; Block ss -> do { (ss,env) <- liftStatements env ss
		     ; return (Block ss,env)
		     }
    ; ExprStatement e -> do { e <- liftExpr env e
			    ; return (ExprStatement e,env)
			    }
    ; Declaration decl@(Field mfs n e) ->
      do { e <- liftMaybeExpr env e
	 ; return ( Declaration (Field mfs (liftName env n) e)
		  , env `combineEnv` getBoundAtDecl decl
		  )
	 }
    ; Declaration decl@(Class mfs n x is ms) ->
      do { innerName <- genInnerClassName n
	 ; frees <- liftClass env innerName ms x is
	 ; return ( Declaration (Comment ["lifted " ++  n])
		  , addTypeMapping n innerName frees env
		  )
	 }
    ; Declaration d -> error "general Decl not supported"
    ; IfThenElse ecs s -> ifthenelse env ecs s
    ; Switch e as d -> error "switch not supported"
    } 

ifthenelse :: Env 
	   -> [(Expr,Statement)] 
	   -> (Maybe Statement) 
	   -> LifterM (Statement,Env)
ifthenelse env pairs may_stmt =
  do { let (exprs,stmts) = unzip pairs
     ; exprs <- liftExprs env exprs
     ; (stmts,_) <- liftStatements env stmts
     ; may_stmt <- case may_stmt of
		      Just stmt -> do { (stmt,_) <- liftStatement env stmt
				      ; return (Just stmt)
				      }
		      Nothing -> return Nothing
     ; return (IfThenElse (zip exprs stmts) may_stmt,env)
     }

liftStatements :: Env -> [Statement] -> LifterM ([Statement],Env)
liftStatements env []     = return ([],env)
liftStatements env (s:ss) = 
	do { (s,env) <- liftStatement env s
	   ; (ss,env) <- liftStatements env ss
	   ; return (s:ss,env) 
	   }

liftExpr :: Env -> Expr -> LifterM Expr
liftExpr = \ env expr ->
 case expr of
   { Var n -> do { liftAccess env n 
		 ; return (Var (liftName env n))
	         }
   ; Literal l -> return expr
   ; Cast t e -> do { e <- liftExpr env e
	            ; return (Cast (liftType env t) e) 
	            }
   ; Access e n -> do { e <- liftExpr env e 
			-- do not consider n as an access, because
			-- this is a indirection via a reference
		      ; return (Access e n) 
		      }
   ; Assign l r -> do { l <- liftExpr env l
		      ; r <- liftExpr env r
		      ; return (Assign l r)
		      } 
   ; InstanceOf e t -> do { e <- liftExpr env e
			  ; return (InstanceOf e (liftType env t))
			  }	    
   ; Raise n es -> do { es <- liftExprs env es
		      ; return (Raise n es)
		      }
   ; Call e n es -> do { e <- liftExpr env e
		       ; es <- mapM (liftExpr env) es
		       ; return (Call e n es) 
		       }
   ; Op e1 o e2 -> do { e1 <- liftExpr env e1
		      ;	e2 <- liftExpr env e2
		      ; return (Op e1 o e2)
		      }
   ; New n es ds -> new env n es ds
   }

liftParameter env (Parameter ms n) = Parameter ms (liftName env n)
liftParameters env = map (liftParameter env)

liftName env (Name n t) = Name n (liftType env t)

liftExprs :: Env -> [Expr] -> LifterM [Expr]
liftExprs = mapM . liftExpr


liftMaybeExpr :: Env -> (Maybe Expr) -> LifterM (Maybe Expr)
liftMaybeExpr env Nothing     = return Nothing
liftMaybeExpr env (Just stmt) = do { stmt <- liftExpr env stmt
				     ; return (Just stmt)
				     }



new :: Env -> Type -> [Expr] -> Maybe [Decl] -> LifterM Expr
new env@(Env _ pairs) typ args Nothing =
  do { args <- liftExprs env args
     ; return (liftNew env typ args)
     }
new env typ [] (Just inner) =
  -- anon. inner class
  do { innerName <- genAnonInnerClassName 
     ; frees <- liftClass env innerName inner [] [unType typ]
     ; return (New (Type (innerName)) 
	           (map Var frees) 
	            Nothing)
     }
  where unType (Type name) = name
	unType _             = error "incorrect type style"
new env typ _ (Just inner) = error "cant handle inner class with args"


liftClass :: Env -> TypeName -> [Decl] -> [TypeName] -> [TypeName] -> LifterM [ Name ]
liftClass env@(Env bound _) innerName inner xs is =
  do { let newBound = getBoundAtDecls inner
     ; (inner,frees) <- 
	   getFrees (liftDecls False (env `combineEnv` newBound) inner)
     ; let trueFrees = filter (\ (Name xs _) -> xs /= "VM") (both frees bound)
     ; let freeDefs = [ Field [Final] n Nothing | n <- trueFrees ]
     ; let cons = mkCons innerName trueFrees
     ; let innerClass = Class [] innerName xs is (freeDefs ++ [cons] ++ inner)
     ; rememberClass innerClass
     ; return trueFrees
     }

liftType :: Env -> Type -> Type
liftType (Env _ env) typ@(Type name) 
   = case lookup name env of
	Nothing     -> typ
	Just (nm,_) -> Type nm
liftType _           typ = typ

liftNew :: Env -> Type -> [Expr] -> Expr
liftNew (Env _ env) typ@(Type name) exprs
   = case lookup name env of
	Nothing                     -> New typ exprs Nothing
	Just (nm,args) | null exprs 
		-> New (Type nm) (map Var args) Nothing
	_ -> error "pre-lifted constructor with arguments"
\end{code}