summaryrefslogtreecommitdiff
path: root/ghc/compiler/prelude/PrimOp.lhs
blob: ab78b8d4020ec88c3efaa61c9c0f68c9caa34876 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
%
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
\section[PrimOp]{Primitive operations (machine-level)}

\begin{code}
module PrimOp (
	PrimOp(..), allThePrimOps,
	primOpType, primOpSig, primOpUsg,
	mkPrimOpIdName, primOpRdrName,

	commutableOp,

	primOpOutOfLine, primOpNeedsWrapper, primOpStrictness,
	primOpOkForSpeculation, primOpIsCheap, primOpIsDupable,
	primOpHasSideEffects,

	getPrimOpResultInfo,  PrimOpResultInfo(..),

	pprPrimOp
    ) where

#include "HsVersions.h"

import PrimRep		-- most of it
import TysPrim
import TysWiredIn

import Demand		( Demand, wwLazy, wwPrim, wwStrict )
import Var		( TyVar, Id )
import CallConv		( CallConv, pprCallConv )
import PprType		( pprParendType )
import Name		( Name, mkWiredInIdName )
import RdrName		( RdrName, mkRdrQual )
import OccName		( OccName, pprOccName, mkSrcVarOcc )
import TyCon		( TyCon, tyConArity )
import Type		( Type, mkForAllTys, mkForAllTy, mkFunTy, mkFunTys, mkTyVarTys,
			  mkTyConTy, mkTyConApp, typePrimRep,
			  splitFunTy_maybe, splitAlgTyConApp_maybe, splitTyConApp_maybe,
                          UsageAnn(..), mkUsgTy
			)
import Unique		( Unique, mkPrimOpIdUnique )
import PrelMods		( pREL_GHC, pREL_GHC_Name )
import Outputable
import Util		( assoc, zipWithEqual )
import GlaExts		( Int(..), Int#, (==#) )
\end{code}

%************************************************************************
%*									*
\subsection[PrimOp-datatype]{Datatype for @PrimOp@ (an enumeration)}
%*									*
%************************************************************************

These are in \tr{state-interface.verb} order.

\begin{code}
data PrimOp
    -- dig the FORTRAN/C influence on the names...

    -- comparisons:

    = CharGtOp   | CharGeOp   | CharEqOp   | CharNeOp   | CharLtOp   | CharLeOp
    | IntGtOp    | IntGeOp    | IntEqOp    | IntNeOp	| IntLtOp    | IntLeOp
    | WordGtOp   | WordGeOp   | WordEqOp   | WordNeOp	| WordLtOp   | WordLeOp
    | AddrGtOp   | AddrGeOp   | AddrEqOp   | AddrNeOp	| AddrLtOp   | AddrLeOp
    | FloatGtOp	 | FloatGeOp  | FloatEqOp  | FloatNeOp	| FloatLtOp  | FloatLeOp
    | DoubleGtOp | DoubleGeOp | DoubleEqOp | DoubleNeOp | DoubleLtOp | DoubleLeOp

    -- Char#-related ops:
    | OrdOp | ChrOp

    -- Int#-related ops:
   -- IntAbsOp unused?? ADR
    | IntAddOp | IntSubOp | IntMulOp | IntQuotOp
    | IntRemOp | IntNegOp | IntAbsOp
    | ISllOp | ISraOp | ISrlOp -- shift {left,right} {arithmetic,logical}
    | IntAddCOp
    | IntSubCOp
    | IntMulCOp

    -- Word#-related ops:
    | WordQuotOp | WordRemOp
    | AndOp  | OrOp   | NotOp | XorOp
    | SllOp  | SrlOp  -- shift {left,right} {logical}
    | Int2WordOp | Word2IntOp -- casts

    -- Addr#-related ops:
    | Int2AddrOp | Addr2IntOp -- casts

    -- Float#-related ops:
    | FloatAddOp | FloatSubOp | FloatMulOp | FloatDivOp | FloatNegOp
    | Float2IntOp | Int2FloatOp

    | FloatExpOp   | FloatLogOp	  | FloatSqrtOp
    | FloatSinOp   | FloatCosOp	  | FloatTanOp
    | FloatAsinOp  | FloatAcosOp  | FloatAtanOp
    | FloatSinhOp  | FloatCoshOp  | FloatTanhOp
    -- not all machines have these available conveniently:
    -- | FloatAsinhOp | FloatAcoshOp | FloatAtanhOp
    | FloatPowerOp -- ** op

    -- Double#-related ops:
    | DoubleAddOp | DoubleSubOp | DoubleMulOp | DoubleDivOp | DoubleNegOp
    | Double2IntOp | Int2DoubleOp
    | Double2FloatOp | Float2DoubleOp

    | DoubleExpOp   | DoubleLogOp   | DoubleSqrtOp
    | DoubleSinOp   | DoubleCosOp   | DoubleTanOp
    | DoubleAsinOp  | DoubleAcosOp  | DoubleAtanOp
    | DoubleSinhOp  | DoubleCoshOp  | DoubleTanhOp
    -- not all machines have these available conveniently:
    -- | DoubleAsinhOp | DoubleAcoshOp | DoubleAtanhOp
    | DoublePowerOp -- ** op

    -- Integer (and related...) ops:
    -- slightly weird -- to match GMP package.
    | IntegerAddOp | IntegerSubOp | IntegerMulOp | IntegerGcdOp
    | IntegerQuotRemOp | IntegerDivModOp | IntegerNegOp

    | IntegerCmpOp
    | IntegerCmpIntOp

    | Integer2IntOp  | Integer2WordOp  
    | Int2IntegerOp  | Word2IntegerOp
    | Addr2IntegerOp
     -- casting to/from Integer and 64-bit (un)signed quantities.
    | IntegerToInt64Op | Int64ToIntegerOp
    | IntegerToWord64Op | Word64ToIntegerOp
    -- ?? gcd, etc?

    | FloatDecodeOp
    | DoubleDecodeOp

    -- primitive ops for primitive arrays

    | NewArrayOp
    | NewByteArrayOp PrimRep

    | SameMutableArrayOp
    | SameMutableByteArrayOp

    | ReadArrayOp | WriteArrayOp | IndexArrayOp -- for arrays of Haskell ptrs

    | ReadByteArrayOp	PrimRep
    | WriteByteArrayOp	PrimRep
    | IndexByteArrayOp	PrimRep
    | IndexOffAddrOp	PrimRep
    | WriteOffAddrOp    PrimRep
	-- PrimRep can be one of {Char,Int,Addr,Float,Double}Kind.
	-- This is just a cheesy encoding of a bunch of ops.
	-- Note that ForeignObjRep is not included -- the only way of
	-- creating a ForeignObj is with a ccall or casm.
    | IndexOffForeignObjOp PrimRep

    | UnsafeFreezeArrayOp | UnsafeFreezeByteArrayOp
    | UnsafeThawArrayOp   | UnsafeThawByteArrayOp
    | SizeofByteArrayOp   | SizeofMutableByteArrayOp

    -- Mutable variables
    | NewMutVarOp
    | ReadMutVarOp
    | WriteMutVarOp
    | SameMutVarOp

    -- for MVars
    | NewMVarOp
    | TakeMVarOp 
    | PutMVarOp
    | SameMVarOp
    | IsEmptyMVarOp

    -- exceptions
    | CatchOp
    | RaiseOp

    -- foreign objects
    | MakeForeignObjOp
    | WriteForeignObjOp

    -- weak pointers
    | MkWeakOp
    | DeRefWeakOp
    | FinalizeWeakOp

    -- stable names
    | MakeStableNameOp
    | EqStableNameOp
    | StableNameToIntOp

    -- stable pointers
    | MakeStablePtrOp
    | DeRefStablePtrOp
    | EqStablePtrOp
\end{code}

A special ``trap-door'' to use in making calls direct to C functions:
\begin{code}
    | CCallOp	(Either 
		    FAST_STRING    -- Left fn => An "unboxed" ccall# to `fn'.
		    Unique)        -- Right u => first argument (an Addr#) is the function pointer
				   --   (unique is used to generate a 'typedef' to cast
				   --    the function pointer if compiling the ccall# down to
				   --    .hc code - can't do this inline for tedious reasons.)
				    
		Bool		    -- True <=> really a "casm"
		Bool		    -- True <=> might invoke Haskell GC
		CallConv	    -- calling convention to use.

    -- (... to be continued ... )
\end{code}

The ``type'' of @CCallOp foo [t1, ... tm] r@ is @t1 -> ... tm -> r@.
(See @primOpInfo@ for details.)

Note: that first arg and part of the result should be the system state
token (which we carry around to fool over-zealous optimisers) but
which isn't actually passed.

For example, we represent
\begin{pseudocode}
((ccall# foo [StablePtr# a, Int] Float) sp# i#) :: (Float, IoWorld)
\end{pseudocode}
by
\begin{pseudocode}
Case
  ( Prim
      (CCallOp "foo" [Universe#, StablePtr# a, Int#] FloatPrimAndUniverse False)
       -- :: Universe# -> StablePtr# a -> Int# -> FloatPrimAndUniverse
      []
      [w#, sp# i#]
  )
  (AlgAlts [ ( FloatPrimAndIoWorld,
		 [f#, w#],
		 Con (TupleCon 2) [Float, IoWorld] [F# f#, World w#]
	       ) ]
	     NoDefault
  )
\end{pseudocode}

Nota Bene: there are some people who find the empty list of types in
the @Prim@ somewhat puzzling and would represent the above by
\begin{pseudocode}
Case
  ( Prim
      (CCallOp "foo" [alpha1, alpha2, alpha3] alpha4 False)
       -- :: /\ alpha1, alpha2 alpha3, alpha4.
       --       alpha1 -> alpha2 -> alpha3 -> alpha4
      [Universe#, StablePtr# a, Int#, FloatPrimAndIoWorld]
      [w#, sp# i#]
  )
  (AlgAlts [ ( FloatPrimAndIoWorld,
		 [f#, w#],
		 Con (TupleCon 2) [Float, IoWorld] [F# f#, World w#]
	       ) ]
	     NoDefault
  )
\end{pseudocode}

But, this is a completely different way of using @CCallOp@.  The most
major changes required if we switch to this are in @primOpInfo@, and
the desugarer. The major difficulty is in moving the HeapRequirement
stuff somewhere appropriate.  (The advantage is that we could simplify
@CCallOp@ and record just the number of arguments with corresponding
simplifications in reading pragma unfoldings, the simplifier,
instantiation (etc) of core expressions, ... .  Maybe we should think
about using it this way?? ADR)

\begin{code}
    -- (... continued from above ... )

    -- Operation to test two closure addresses for equality (yes really!)
    -- BLAME ALASTAIR REID FOR THIS!  THE REST OF US ARE INNOCENT!
    | ReallyUnsafePtrEqualityOp

    -- parallel stuff
    | SeqOp
    | ParOp

    -- concurrency
    | ForkOp
    | KillThreadOp
    | YieldOp
    | MyThreadIdOp
    | DelayOp
    | WaitReadOp
    | WaitWriteOp

    -- more parallel stuff
    | ParGlobalOp	-- named global par
    | ParLocalOp	-- named local par
    | ParAtOp		-- specifies destination of local par
    | ParAtAbsOp	-- specifies destination of local par (abs processor)
    | ParAtRelOp	-- specifies destination of local par (rel processor)
    | ParAtForNowOp	-- specifies initial destination of global par
    | CopyableOp	-- marks copyable code
    | NoFollowOp	-- marks non-followup expression

    -- tag-related
    | DataToTagOp
    | TagToEnumOp
\end{code}

Used for the Ord instance

\begin{code}
tagOf_PrimOp CharGtOp			      = (ILIT( 1) :: FAST_INT)
tagOf_PrimOp CharGeOp			      = ILIT(  2)
tagOf_PrimOp CharEqOp			      = ILIT(  3)
tagOf_PrimOp CharNeOp			      = ILIT(  4)
tagOf_PrimOp CharLtOp			      = ILIT(  5)
tagOf_PrimOp CharLeOp			      = ILIT(  6)
tagOf_PrimOp IntGtOp			      = ILIT(  7)
tagOf_PrimOp IntGeOp			      = ILIT(  8)
tagOf_PrimOp IntEqOp			      = ILIT(  9)
tagOf_PrimOp IntNeOp			      = ILIT( 10)
tagOf_PrimOp IntLtOp			      = ILIT( 11)
tagOf_PrimOp IntLeOp			      = ILIT( 12)
tagOf_PrimOp WordGtOp			      = ILIT( 13)
tagOf_PrimOp WordGeOp			      = ILIT( 14)
tagOf_PrimOp WordEqOp			      = ILIT( 15)
tagOf_PrimOp WordNeOp			      = ILIT( 16)
tagOf_PrimOp WordLtOp			      = ILIT( 17)
tagOf_PrimOp WordLeOp			      = ILIT( 18)
tagOf_PrimOp AddrGtOp			      = ILIT( 19)
tagOf_PrimOp AddrGeOp			      = ILIT( 20)
tagOf_PrimOp AddrEqOp			      = ILIT( 21)
tagOf_PrimOp AddrNeOp			      = ILIT( 22)
tagOf_PrimOp AddrLtOp			      = ILIT( 23)
tagOf_PrimOp AddrLeOp			      = ILIT( 24)
tagOf_PrimOp FloatGtOp			      = ILIT( 25)
tagOf_PrimOp FloatGeOp			      = ILIT( 26)
tagOf_PrimOp FloatEqOp			      = ILIT( 27)
tagOf_PrimOp FloatNeOp			      = ILIT( 28)
tagOf_PrimOp FloatLtOp			      = ILIT( 29)
tagOf_PrimOp FloatLeOp			      = ILIT( 30)
tagOf_PrimOp DoubleGtOp			      = ILIT( 31)
tagOf_PrimOp DoubleGeOp			      = ILIT( 32)
tagOf_PrimOp DoubleEqOp			      = ILIT( 33)
tagOf_PrimOp DoubleNeOp			      = ILIT( 34)
tagOf_PrimOp DoubleLtOp			      = ILIT( 35)
tagOf_PrimOp DoubleLeOp			      = ILIT( 36)
tagOf_PrimOp OrdOp			      = ILIT( 37)
tagOf_PrimOp ChrOp			      = ILIT( 38)
tagOf_PrimOp IntAddOp			      = ILIT( 39)
tagOf_PrimOp IntSubOp			      = ILIT( 40)
tagOf_PrimOp IntMulOp			      = ILIT( 41)
tagOf_PrimOp IntQuotOp			      = ILIT( 42)
tagOf_PrimOp IntRemOp			      = ILIT( 43)
tagOf_PrimOp IntNegOp			      = ILIT( 44)
tagOf_PrimOp IntAbsOp			      = ILIT( 45)
tagOf_PrimOp WordQuotOp			      = ILIT( 46)
tagOf_PrimOp WordRemOp			      = ILIT( 47)
tagOf_PrimOp AndOp			      = ILIT( 48)
tagOf_PrimOp OrOp			      = ILIT( 49)
tagOf_PrimOp NotOp			      = ILIT( 50)
tagOf_PrimOp XorOp			      = ILIT( 51)
tagOf_PrimOp SllOp			      = ILIT( 52)
tagOf_PrimOp SrlOp			      = ILIT( 53)
tagOf_PrimOp ISllOp			      = ILIT( 54)
tagOf_PrimOp ISraOp			      = ILIT( 55)
tagOf_PrimOp ISrlOp			      = ILIT( 56)
tagOf_PrimOp IntAddCOp			      = ILIT( 57)
tagOf_PrimOp IntSubCOp			      = ILIT( 58)
tagOf_PrimOp IntMulCOp			      = ILIT( 59)
tagOf_PrimOp Int2WordOp			      = ILIT( 60)
tagOf_PrimOp Word2IntOp			      = ILIT( 61)
tagOf_PrimOp Int2AddrOp			      = ILIT( 62)
tagOf_PrimOp Addr2IntOp			      = ILIT( 63)

tagOf_PrimOp FloatAddOp			      = ILIT( 64)
tagOf_PrimOp FloatSubOp			      = ILIT( 65)
tagOf_PrimOp FloatMulOp			      = ILIT( 66)
tagOf_PrimOp FloatDivOp			      = ILIT( 67)
tagOf_PrimOp FloatNegOp			      = ILIT( 68)
tagOf_PrimOp Float2IntOp		      = ILIT( 69)
tagOf_PrimOp Int2FloatOp		      = ILIT( 70)
tagOf_PrimOp FloatExpOp			      = ILIT( 71)
tagOf_PrimOp FloatLogOp			      = ILIT( 72)
tagOf_PrimOp FloatSqrtOp		      = ILIT( 73)
tagOf_PrimOp FloatSinOp			      = ILIT( 74)
tagOf_PrimOp FloatCosOp			      = ILIT( 75)
tagOf_PrimOp FloatTanOp			      = ILIT( 76)
tagOf_PrimOp FloatAsinOp		      = ILIT( 77)
tagOf_PrimOp FloatAcosOp		      = ILIT( 78)
tagOf_PrimOp FloatAtanOp		      = ILIT( 79)
tagOf_PrimOp FloatSinhOp		      = ILIT( 80)
tagOf_PrimOp FloatCoshOp		      = ILIT( 81)
tagOf_PrimOp FloatTanhOp		      = ILIT( 82)
tagOf_PrimOp FloatPowerOp		      = ILIT( 83)

tagOf_PrimOp DoubleAddOp		      = ILIT( 84)
tagOf_PrimOp DoubleSubOp		      = ILIT( 85)
tagOf_PrimOp DoubleMulOp		      = ILIT( 86)
tagOf_PrimOp DoubleDivOp		      = ILIT( 87)
tagOf_PrimOp DoubleNegOp		      = ILIT( 88)
tagOf_PrimOp Double2IntOp		      = ILIT( 89)
tagOf_PrimOp Int2DoubleOp		      = ILIT( 90)
tagOf_PrimOp Double2FloatOp		      = ILIT( 91)
tagOf_PrimOp Float2DoubleOp		      = ILIT( 92)
tagOf_PrimOp DoubleExpOp		      = ILIT( 93)
tagOf_PrimOp DoubleLogOp		      = ILIT( 94)
tagOf_PrimOp DoubleSqrtOp		      = ILIT( 95)
tagOf_PrimOp DoubleSinOp		      = ILIT( 96)
tagOf_PrimOp DoubleCosOp		      = ILIT( 97)
tagOf_PrimOp DoubleTanOp		      = ILIT( 98)
tagOf_PrimOp DoubleAsinOp		      = ILIT( 99)
tagOf_PrimOp DoubleAcosOp		      = ILIT(100)
tagOf_PrimOp DoubleAtanOp		      = ILIT(101)
tagOf_PrimOp DoubleSinhOp		      = ILIT(102)
tagOf_PrimOp DoubleCoshOp		      = ILIT(103)
tagOf_PrimOp DoubleTanhOp		      = ILIT(104)
tagOf_PrimOp DoublePowerOp		      = ILIT(105)

tagOf_PrimOp IntegerAddOp		      = ILIT(106)
tagOf_PrimOp IntegerSubOp		      = ILIT(107)
tagOf_PrimOp IntegerMulOp		      = ILIT(108)
tagOf_PrimOp IntegerGcdOp		      = ILIT(109)
tagOf_PrimOp IntegerQuotRemOp		      = ILIT(110)
tagOf_PrimOp IntegerDivModOp		      = ILIT(111)
tagOf_PrimOp IntegerNegOp		      = ILIT(112)
tagOf_PrimOp IntegerCmpOp		      = ILIT(113)
tagOf_PrimOp IntegerCmpIntOp		      = ILIT(114)
tagOf_PrimOp Integer2IntOp		      = ILIT(115)
tagOf_PrimOp Integer2WordOp		      = ILIT(116)
tagOf_PrimOp Int2IntegerOp		      = ILIT(117)
tagOf_PrimOp Word2IntegerOp		      = ILIT(118)
tagOf_PrimOp Addr2IntegerOp		      = ILIT(119)
tagOf_PrimOp IntegerToInt64Op		      = ILIT(120)
tagOf_PrimOp Int64ToIntegerOp		      = ILIT(121)
tagOf_PrimOp IntegerToWord64Op		      = ILIT(122)
tagOf_PrimOp Word64ToIntegerOp		      = ILIT(123)
tagOf_PrimOp FloatDecodeOp		      = ILIT(125)
tagOf_PrimOp DoubleDecodeOp		      = ILIT(127)

tagOf_PrimOp NewArrayOp			      = ILIT(128)
tagOf_PrimOp (NewByteArrayOp CharRep)	      = ILIT(129)
tagOf_PrimOp (NewByteArrayOp IntRep)	      = ILIT(130)
tagOf_PrimOp (NewByteArrayOp WordRep)	      = ILIT(131)
tagOf_PrimOp (NewByteArrayOp AddrRep)	      = ILIT(132)
tagOf_PrimOp (NewByteArrayOp FloatRep)	      = ILIT(133)
tagOf_PrimOp (NewByteArrayOp DoubleRep)       = ILIT(134)
tagOf_PrimOp (NewByteArrayOp StablePtrRep)    = ILIT(135)

tagOf_PrimOp SameMutableArrayOp		      = ILIT(136)
tagOf_PrimOp SameMutableByteArrayOp	      = ILIT(137)
tagOf_PrimOp ReadArrayOp		      = ILIT(138)
tagOf_PrimOp WriteArrayOp		      = ILIT(139)
tagOf_PrimOp IndexArrayOp		      = ILIT(140)

tagOf_PrimOp (ReadByteArrayOp CharRep)	      = ILIT(141)
tagOf_PrimOp (ReadByteArrayOp IntRep)	      = ILIT(142)
tagOf_PrimOp (ReadByteArrayOp WordRep)	      = ILIT(143)
tagOf_PrimOp (ReadByteArrayOp AddrRep)	      = ILIT(144)
tagOf_PrimOp (ReadByteArrayOp FloatRep)       = ILIT(145)
tagOf_PrimOp (ReadByteArrayOp DoubleRep)      = ILIT(146)
tagOf_PrimOp (ReadByteArrayOp StablePtrRep)   = ILIT(147)
tagOf_PrimOp (ReadByteArrayOp Int64Rep)	      = ILIT(148)
tagOf_PrimOp (ReadByteArrayOp Word64Rep)      = ILIT(149)

tagOf_PrimOp (WriteByteArrayOp CharRep)       = ILIT(150)
tagOf_PrimOp (WriteByteArrayOp IntRep)	      = ILIT(151)
tagOf_PrimOp (WriteByteArrayOp WordRep)	      = ILIT(152)
tagOf_PrimOp (WriteByteArrayOp AddrRep)       = ILIT(153)
tagOf_PrimOp (WriteByteArrayOp FloatRep)      = ILIT(154)
tagOf_PrimOp (WriteByteArrayOp DoubleRep)     = ILIT(155)
tagOf_PrimOp (WriteByteArrayOp StablePtrRep)  = ILIT(156)
tagOf_PrimOp (WriteByteArrayOp Int64Rep)      = ILIT(157)
tagOf_PrimOp (WriteByteArrayOp Word64Rep)     = ILIT(158)

tagOf_PrimOp (IndexByteArrayOp CharRep)       = ILIT(159)
tagOf_PrimOp (IndexByteArrayOp IntRep)	      = ILIT(160)
tagOf_PrimOp (IndexByteArrayOp WordRep)	      = ILIT(161)
tagOf_PrimOp (IndexByteArrayOp AddrRep)       = ILIT(162)
tagOf_PrimOp (IndexByteArrayOp FloatRep)      = ILIT(163)
tagOf_PrimOp (IndexByteArrayOp DoubleRep)     = ILIT(164)
tagOf_PrimOp (IndexByteArrayOp StablePtrRep)  = ILIT(165)
tagOf_PrimOp (IndexByteArrayOp Int64Rep)      = ILIT(166)
tagOf_PrimOp (IndexByteArrayOp Word64Rep)     = ILIT(167)

tagOf_PrimOp (IndexOffAddrOp CharRep)	      = ILIT(168)
tagOf_PrimOp (IndexOffAddrOp IntRep)	      = ILIT(169)
tagOf_PrimOp (IndexOffAddrOp WordRep)	      = ILIT(170)
tagOf_PrimOp (IndexOffAddrOp AddrRep)	      = ILIT(171)
tagOf_PrimOp (IndexOffAddrOp FloatRep)	      = ILIT(172)
tagOf_PrimOp (IndexOffAddrOp DoubleRep)       = ILIT(173)
tagOf_PrimOp (IndexOffAddrOp StablePtrRep)    = ILIT(174)
tagOf_PrimOp (IndexOffAddrOp Int64Rep)	      = ILIT(175)
tagOf_PrimOp (IndexOffAddrOp Word64Rep)	      = ILIT(176)

tagOf_PrimOp (IndexOffForeignObjOp CharRep)   = ILIT(177)
tagOf_PrimOp (IndexOffForeignObjOp IntRep)    = ILIT(178)
tagOf_PrimOp (IndexOffForeignObjOp WordRep)   = ILIT(179)
tagOf_PrimOp (IndexOffForeignObjOp AddrRep)   = ILIT(180)
tagOf_PrimOp (IndexOffForeignObjOp FloatRep)  = ILIT(181)
tagOf_PrimOp (IndexOffForeignObjOp DoubleRep) = ILIT(182)
tagOf_PrimOp (IndexOffForeignObjOp StablePtrRep) = ILIT(183)
tagOf_PrimOp (IndexOffForeignObjOp Int64Rep)  = ILIT(184)
tagOf_PrimOp (IndexOffForeignObjOp Word64Rep) = ILIT(185)

tagOf_PrimOp (WriteOffAddrOp CharRep)         = ILIT(186)
tagOf_PrimOp (WriteOffAddrOp IntRep)          = ILIT(187)
tagOf_PrimOp (WriteOffAddrOp WordRep)         = ILIT(188)
tagOf_PrimOp (WriteOffAddrOp AddrRep)         = ILIT(189)
tagOf_PrimOp (WriteOffAddrOp FloatRep)        = ILIT(190)
tagOf_PrimOp (WriteOffAddrOp DoubleRep)       = ILIT(191)
tagOf_PrimOp (WriteOffAddrOp StablePtrRep)    = ILIT(192)
tagOf_PrimOp (WriteOffAddrOp ForeignObjRep)   = ILIT(193)
tagOf_PrimOp (WriteOffAddrOp Int64Rep)        = ILIT(194)
tagOf_PrimOp (WriteOffAddrOp Word64Rep)       = ILIT(195)

tagOf_PrimOp UnsafeFreezeArrayOp	      = ILIT(196)
tagOf_PrimOp UnsafeFreezeByteArrayOp	      = ILIT(197)
tagOf_PrimOp UnsafeThawArrayOp		      = ILIT(198)
tagOf_PrimOp UnsafeThawByteArrayOp	      = ILIT(199)
tagOf_PrimOp SizeofByteArrayOp		      = ILIT(200)
tagOf_PrimOp SizeofMutableByteArrayOp	      = ILIT(201)

tagOf_PrimOp NewMVarOp			      = ILIT(202)
tagOf_PrimOp TakeMVarOp		    	      = ILIT(203)
tagOf_PrimOp PutMVarOp		    	      = ILIT(204)
tagOf_PrimOp SameMVarOp		    	      = ILIT(205)
tagOf_PrimOp IsEmptyMVarOp	    	      = ILIT(206)
tagOf_PrimOp MakeForeignObjOp		      = ILIT(207)
tagOf_PrimOp WriteForeignObjOp		      = ILIT(208)
tagOf_PrimOp MkWeakOp			      = ILIT(209)
tagOf_PrimOp DeRefWeakOp		      = ILIT(210)
tagOf_PrimOp FinalizeWeakOp		      = ILIT(211)
tagOf_PrimOp MakeStableNameOp		      = ILIT(212)
tagOf_PrimOp EqStableNameOp		      = ILIT(213)
tagOf_PrimOp StableNameToIntOp		      = ILIT(214)
tagOf_PrimOp MakeStablePtrOp		      = ILIT(215)
tagOf_PrimOp DeRefStablePtrOp		      = ILIT(216)
tagOf_PrimOp EqStablePtrOp		      = ILIT(217)
tagOf_PrimOp (CCallOp _ _ _ _)		      = ILIT(218)
tagOf_PrimOp ReallyUnsafePtrEqualityOp	      = ILIT(219)
tagOf_PrimOp SeqOp			      = ILIT(220)
tagOf_PrimOp ParOp			      = ILIT(221)
tagOf_PrimOp ForkOp			      = ILIT(222)
tagOf_PrimOp KillThreadOp		      = ILIT(223)
tagOf_PrimOp YieldOp			      = ILIT(224)
tagOf_PrimOp MyThreadIdOp		      = ILIT(225)
tagOf_PrimOp DelayOp			      = ILIT(226)
tagOf_PrimOp WaitReadOp			      = ILIT(227)
tagOf_PrimOp WaitWriteOp		      = ILIT(228)
tagOf_PrimOp ParGlobalOp		      = ILIT(229)
tagOf_PrimOp ParLocalOp			      = ILIT(230)
tagOf_PrimOp ParAtOp			      = ILIT(231)
tagOf_PrimOp ParAtAbsOp			      = ILIT(232)
tagOf_PrimOp ParAtRelOp			      = ILIT(233)
tagOf_PrimOp ParAtForNowOp		      = ILIT(234)
tagOf_PrimOp CopyableOp			      = ILIT(235)
tagOf_PrimOp NoFollowOp			      = ILIT(236)
tagOf_PrimOp NewMutVarOp		      = ILIT(237)
tagOf_PrimOp ReadMutVarOp		      = ILIT(238)
tagOf_PrimOp WriteMutVarOp		      = ILIT(239)
tagOf_PrimOp SameMutVarOp		      = ILIT(240)
tagOf_PrimOp CatchOp			      = ILIT(241)
tagOf_PrimOp RaiseOp			      = ILIT(242)
tagOf_PrimOp DataToTagOp		      = ILIT(243)
tagOf_PrimOp TagToEnumOp		      = ILIT(244)

tagOf_PrimOp op = pprPanic# "tagOf_PrimOp: pattern-match" (ppr op)
--panic# "tagOf_PrimOp: pattern-match"

instance Eq PrimOp where
    op1 == op2 = tagOf_PrimOp op1 _EQ_ tagOf_PrimOp op2

instance Ord PrimOp where
    op1 <  op2 =  tagOf_PrimOp op1 _LT_ tagOf_PrimOp op2
    op1 <= op2 =  tagOf_PrimOp op1 _LE_ tagOf_PrimOp op2
    op1 >= op2 =  tagOf_PrimOp op1 _GE_ tagOf_PrimOp op2
    op1 >  op2 =  tagOf_PrimOp op1 _GT_ tagOf_PrimOp op2
    op1 `compare` op2 | op1 < op2  = LT
		      | op1 == op2 = EQ
		      | otherwise  = GT

instance Outputable PrimOp where
    ppr op = pprPrimOp op

instance Show PrimOp where
    showsPrec p op = showsPrecSDoc p (pprPrimOp op)
\end{code}

An @Enum@-derived list would be better; meanwhile... (ToDo)
\begin{code}
allThePrimOps
  = [	CharGtOp,
	CharGeOp,
	CharEqOp,
	CharNeOp,
	CharLtOp,
	CharLeOp,
	IntGtOp,
	IntGeOp,
	IntEqOp,
	IntNeOp,
	IntLtOp,
	IntLeOp,
	WordGtOp,
	WordGeOp,
	WordEqOp,
	WordNeOp,
	WordLtOp,
	WordLeOp,
	AddrGtOp,
	AddrGeOp,
	AddrEqOp,
	AddrNeOp,
	AddrLtOp,
	AddrLeOp,
	FloatGtOp,
	FloatGeOp,
	FloatEqOp,
	FloatNeOp,
	FloatLtOp,
	FloatLeOp,
	DoubleGtOp,
	DoubleGeOp,
	DoubleEqOp,
	DoubleNeOp,
	DoubleLtOp,
	DoubleLeOp,
	OrdOp,
	ChrOp,
	IntAddOp,
	IntSubOp,
	IntMulOp,
	IntQuotOp,
	IntRemOp,
	IntNegOp,
	WordQuotOp,
	WordRemOp,
	AndOp,
	OrOp,
	NotOp,
	XorOp,
    	SllOp,
    	SrlOp,
    	ISllOp,
    	ISraOp,
    	ISrlOp,
	IntAddCOp,
	IntSubCOp,
	IntMulCOp,
	Int2WordOp,
	Word2IntOp,
	Int2AddrOp,
	Addr2IntOp,

	FloatAddOp,
	FloatSubOp,
	FloatMulOp,
	FloatDivOp,
	FloatNegOp,
	Float2IntOp,
	Int2FloatOp,
	FloatExpOp,
	FloatLogOp,
	FloatSqrtOp,
	FloatSinOp,
	FloatCosOp,
	FloatTanOp,
	FloatAsinOp,
	FloatAcosOp,
	FloatAtanOp,
	FloatSinhOp,
	FloatCoshOp,
	FloatTanhOp,
	FloatPowerOp,
	DoubleAddOp,
	DoubleSubOp,
	DoubleMulOp,
	DoubleDivOp,
	DoubleNegOp,
	Double2IntOp,
	Int2DoubleOp,
	Double2FloatOp,
	Float2DoubleOp,
	DoubleExpOp,
	DoubleLogOp,
	DoubleSqrtOp,
	DoubleSinOp,
	DoubleCosOp,
	DoubleTanOp,
	DoubleAsinOp,
	DoubleAcosOp,
	DoubleAtanOp,
	DoubleSinhOp,
	DoubleCoshOp,
	DoubleTanhOp,
	DoublePowerOp,
	IntegerAddOp,
	IntegerSubOp,
	IntegerMulOp,
	IntegerGcdOp,
	IntegerQuotRemOp,
	IntegerDivModOp,
	IntegerNegOp,
	IntegerCmpOp,
	IntegerCmpIntOp,
	Integer2IntOp,
	Integer2WordOp,
	Int2IntegerOp,
	Word2IntegerOp,
	Addr2IntegerOp,
	IntegerToInt64Op,
	Int64ToIntegerOp,
	IntegerToWord64Op,
	Word64ToIntegerOp,
	FloatDecodeOp,
	DoubleDecodeOp,
	NewArrayOp,
	NewByteArrayOp CharRep,
	NewByteArrayOp IntRep,
	NewByteArrayOp WordRep,
	NewByteArrayOp AddrRep,
	NewByteArrayOp FloatRep,
	NewByteArrayOp DoubleRep,
	NewByteArrayOp StablePtrRep,
	SameMutableArrayOp,
	SameMutableByteArrayOp,
	ReadArrayOp,
	WriteArrayOp,
	IndexArrayOp,
	ReadByteArrayOp CharRep,
	ReadByteArrayOp IntRep,
	ReadByteArrayOp WordRep,
	ReadByteArrayOp AddrRep,
	ReadByteArrayOp FloatRep,
	ReadByteArrayOp DoubleRep,
	ReadByteArrayOp StablePtrRep,
	ReadByteArrayOp Int64Rep,
	ReadByteArrayOp Word64Rep,
	WriteByteArrayOp CharRep,
	WriteByteArrayOp IntRep,
	WriteByteArrayOp WordRep,
	WriteByteArrayOp AddrRep,
	WriteByteArrayOp FloatRep,
	WriteByteArrayOp DoubleRep,
	WriteByteArrayOp StablePtrRep,
	WriteByteArrayOp Int64Rep,
	WriteByteArrayOp Word64Rep,
	IndexByteArrayOp CharRep,
	IndexByteArrayOp IntRep,
	IndexByteArrayOp WordRep,
	IndexByteArrayOp AddrRep,
	IndexByteArrayOp FloatRep,
	IndexByteArrayOp DoubleRep,
	IndexByteArrayOp StablePtrRep,
	IndexByteArrayOp Int64Rep,
	IndexByteArrayOp Word64Rep,
	IndexOffForeignObjOp CharRep,
	IndexOffForeignObjOp AddrRep,
	IndexOffForeignObjOp IntRep,
	IndexOffForeignObjOp WordRep,
	IndexOffForeignObjOp FloatRep,
	IndexOffForeignObjOp DoubleRep,
	IndexOffForeignObjOp StablePtrRep,
	IndexOffForeignObjOp Int64Rep,
	IndexOffForeignObjOp Word64Rep,
	IndexOffAddrOp CharRep,
	IndexOffAddrOp IntRep,
	IndexOffAddrOp WordRep,
	IndexOffAddrOp AddrRep,
	IndexOffAddrOp FloatRep,
	IndexOffAddrOp DoubleRep,
	IndexOffAddrOp StablePtrRep,
	IndexOffAddrOp Int64Rep,
	IndexOffAddrOp Word64Rep,
	WriteOffAddrOp CharRep,
	WriteOffAddrOp IntRep,
	WriteOffAddrOp WordRep,
	WriteOffAddrOp AddrRep,
	WriteOffAddrOp FloatRep,
	WriteOffAddrOp DoubleRep,
	WriteOffAddrOp ForeignObjRep,
	WriteOffAddrOp StablePtrRep,
	WriteOffAddrOp Int64Rep,
	WriteOffAddrOp Word64Rep,
	UnsafeFreezeArrayOp,
	UnsafeFreezeByteArrayOp,
	UnsafeThawArrayOp,
	UnsafeThawByteArrayOp,
	SizeofByteArrayOp,
	SizeofMutableByteArrayOp,
	NewMutVarOp,
	ReadMutVarOp,
	WriteMutVarOp,
	SameMutVarOp,
        CatchOp,
        RaiseOp,
    	NewMVarOp,
	TakeMVarOp,
	PutMVarOp,
	SameMVarOp,
	IsEmptyMVarOp,
	MakeForeignObjOp,
	WriteForeignObjOp,
	MkWeakOp,
	DeRefWeakOp,
	FinalizeWeakOp,
	MakeStableNameOp,
	EqStableNameOp,
	StableNameToIntOp,
	MakeStablePtrOp,
	DeRefStablePtrOp,
	EqStablePtrOp,
	ReallyUnsafePtrEqualityOp,
	ParGlobalOp,
	ParLocalOp,
	ParAtOp,
	ParAtAbsOp,
	ParAtRelOp,
	ParAtForNowOp,
	CopyableOp,
	NoFollowOp,
	SeqOp,
    	ParOp,
    	ForkOp,
	KillThreadOp,
	YieldOp,
	MyThreadIdOp,
	DelayOp,
	WaitReadOp,
	WaitWriteOp,
	DataToTagOp,
	TagToEnumOp
    ]
\end{code}

%************************************************************************
%*									*
\subsection[PrimOp-info]{The essential info about each @PrimOp@}
%*									*
%************************************************************************

The @String@ in the @PrimOpInfos@ is the ``base name'' by which the user may
refer to the primitive operation.  The conventional \tr{#}-for-
unboxed ops is added on later.

The reason for the funny characters in the names is so we do not
interfere with the programmer's Haskell name spaces.

We use @PrimKinds@ for the ``type'' information, because they're
(slightly) more convenient to use than @TyCons@.
\begin{code}
data PrimOpInfo
  = Dyadic	OccName		-- string :: T -> T -> T
		Type
  | Monadic	OccName		-- string :: T -> T
		Type
  | Compare	OccName		-- string :: T -> T -> Bool
		Type

  | GenPrimOp   OccName  	-- string :: \/a1..an . T1 -> .. -> Tk -> T
		[TyVar] 
		[Type] 
		Type 

mkDyadic str  ty = Dyadic  (mkSrcVarOcc str) ty
mkMonadic str ty = Monadic (mkSrcVarOcc str) ty
mkCompare str ty = Compare (mkSrcVarOcc str) ty
mkGenPrimOp str tvs tys ty = GenPrimOp (mkSrcVarOcc str) tvs tys ty
\end{code}

Utility bits:
\begin{code}
one_Integer_ty = [intPrimTy, byteArrayPrimTy]
two_Integer_tys
  = [intPrimTy, byteArrayPrimTy, -- first Integer pieces
     intPrimTy, byteArrayPrimTy] -- second '' pieces
an_Integer_and_Int_tys
  = [intPrimTy, byteArrayPrimTy, -- Integer
     intPrimTy]

unboxedPair	 = mkUnboxedTupleTy 2
unboxedTriple    = mkUnboxedTupleTy 3
unboxedQuadruple = mkUnboxedTupleTy 4

integerMonadic name = mkGenPrimOp name [] one_Integer_ty 
			(unboxedPair one_Integer_ty)

integerDyadic name = mkGenPrimOp name [] two_Integer_tys 
			(unboxedPair one_Integer_ty)

integerDyadic2Results name = mkGenPrimOp name [] two_Integer_tys 
    (unboxedQuadruple two_Integer_tys)

integerCompare name = mkGenPrimOp name [] two_Integer_tys intPrimTy
\end{code}

%************************************************************************
%*									*
\subsubsection{Strictness}
%*									*
%************************************************************************

Not all primops are strict!

\begin{code}
primOpStrictness :: PrimOp -> ([Demand], Bool)
	-- See IdInfo.StrictnessInfo for discussion of what the results
	-- **NB** as a cheap hack, to avoid having to look up the PrimOp's arity,
	-- the list of demands may be infinite!
	-- Use only the ones you ned.

primOpStrictness SeqOp            = ([wwLazy], False)
primOpStrictness ParOp            = ([wwLazy], False)
primOpStrictness ForkOp		  = ([wwLazy, wwPrim], False)

primOpStrictness NewArrayOp       = ([wwPrim, wwLazy, wwPrim], False)
primOpStrictness WriteArrayOp     = ([wwPrim, wwPrim, wwLazy, wwPrim], False)

primOpStrictness NewMutVarOp	  = ([wwLazy, wwPrim], False)
primOpStrictness WriteMutVarOp	  = ([wwPrim, wwLazy, wwPrim], False)

primOpStrictness PutMVarOp	  = ([wwPrim, wwLazy, wwPrim], False)

primOpStrictness CatchOp	  = ([wwLazy, wwLazy], False)
primOpStrictness RaiseOp	  = ([wwLazy], True)	-- NB: True => result is bottom

primOpStrictness MkWeakOp	  = ([wwLazy, wwLazy, wwLazy, wwPrim], False)
primOpStrictness MakeStableNameOp = ([wwLazy, wwPrim], False)
primOpStrictness MakeStablePtrOp  = ([wwLazy, wwPrim], False)

primOpStrictness DataToTagOp      = ([wwLazy], False)

	-- The rest all have primitive-typed arguments
primOpStrictness other		  = (repeat wwPrim, False)
\end{code}

%************************************************************************
%*									*
\subsubsection[PrimOp-comparison]{PrimOpInfo basic comparison ops}
%*									*
%************************************************************************

@primOpInfo@ gives all essential information (from which everything
else, notably a type, can be constructed) for each @PrimOp@.

\begin{code}
primOpInfo :: PrimOp -> PrimOpInfo
\end{code}

There's plenty of this stuff!

\begin{code}
primOpInfo CharGtOp   = mkCompare SLIT("gtChar#")   charPrimTy
primOpInfo CharGeOp   = mkCompare SLIT("geChar#")   charPrimTy
primOpInfo CharEqOp   = mkCompare SLIT("eqChar#")   charPrimTy
primOpInfo CharNeOp   = mkCompare SLIT("neChar#")   charPrimTy
primOpInfo CharLtOp   = mkCompare SLIT("ltChar#")   charPrimTy
primOpInfo CharLeOp   = mkCompare SLIT("leChar#")   charPrimTy

primOpInfo IntGtOp    = mkCompare SLIT(">#")	   intPrimTy
primOpInfo IntGeOp    = mkCompare SLIT(">=#")	   intPrimTy
primOpInfo IntEqOp    = mkCompare SLIT("==#")	   intPrimTy
primOpInfo IntNeOp    = mkCompare SLIT("/=#")	   intPrimTy
primOpInfo IntLtOp    = mkCompare SLIT("<#")	   intPrimTy
primOpInfo IntLeOp    = mkCompare SLIT("<=#")	   intPrimTy

primOpInfo WordGtOp   = mkCompare SLIT("gtWord#")   wordPrimTy
primOpInfo WordGeOp   = mkCompare SLIT("geWord#")   wordPrimTy
primOpInfo WordEqOp   = mkCompare SLIT("eqWord#")   wordPrimTy
primOpInfo WordNeOp   = mkCompare SLIT("neWord#")   wordPrimTy
primOpInfo WordLtOp   = mkCompare SLIT("ltWord#")   wordPrimTy
primOpInfo WordLeOp   = mkCompare SLIT("leWord#")   wordPrimTy

primOpInfo AddrGtOp   = mkCompare SLIT("gtAddr#")   addrPrimTy
primOpInfo AddrGeOp   = mkCompare SLIT("geAddr#")   addrPrimTy
primOpInfo AddrEqOp   = mkCompare SLIT("eqAddr#")   addrPrimTy
primOpInfo AddrNeOp   = mkCompare SLIT("neAddr#")   addrPrimTy
primOpInfo AddrLtOp   = mkCompare SLIT("ltAddr#")   addrPrimTy
primOpInfo AddrLeOp   = mkCompare SLIT("leAddr#")   addrPrimTy

primOpInfo FloatGtOp  = mkCompare SLIT("gtFloat#")  floatPrimTy
primOpInfo FloatGeOp  = mkCompare SLIT("geFloat#")  floatPrimTy
primOpInfo FloatEqOp  = mkCompare SLIT("eqFloat#")  floatPrimTy
primOpInfo FloatNeOp  = mkCompare SLIT("neFloat#")  floatPrimTy
primOpInfo FloatLtOp  = mkCompare SLIT("ltFloat#")  floatPrimTy
primOpInfo FloatLeOp  = mkCompare SLIT("leFloat#")  floatPrimTy

primOpInfo DoubleGtOp = mkCompare SLIT(">##") doublePrimTy
primOpInfo DoubleGeOp = mkCompare SLIT(">=##") doublePrimTy
primOpInfo DoubleEqOp = mkCompare SLIT("==##") doublePrimTy
primOpInfo DoubleNeOp = mkCompare SLIT("/=##") doublePrimTy
primOpInfo DoubleLtOp = mkCompare SLIT("<##") doublePrimTy
primOpInfo DoubleLeOp = mkCompare SLIT("<=##") doublePrimTy

\end{code}

%************************************************************************
%*									*
\subsubsection[PrimOp-Char]{PrimOpInfo for @Char#@s}
%*									*
%************************************************************************

\begin{code}
primOpInfo OrdOp = mkGenPrimOp SLIT("ord#") [] [charPrimTy] intPrimTy
primOpInfo ChrOp = mkGenPrimOp SLIT("chr#") [] [intPrimTy]  charPrimTy
\end{code}

%************************************************************************
%*									*
\subsubsection[PrimOp-Int]{PrimOpInfo for @Int#@s}
%*									*
%************************************************************************

\begin{code}
primOpInfo IntAddOp  = mkDyadic SLIT("+#")	 intPrimTy
primOpInfo IntSubOp  = mkDyadic SLIT("-#") intPrimTy
primOpInfo IntMulOp  = mkDyadic SLIT("*#") intPrimTy
primOpInfo IntQuotOp = mkDyadic SLIT("quotInt#")	 intPrimTy
primOpInfo IntRemOp  = mkDyadic SLIT("remInt#")	 intPrimTy

primOpInfo IntNegOp  = mkMonadic SLIT("negateInt#") intPrimTy
primOpInfo IntAbsOp  = mkMonadic SLIT("absInt#") intPrimTy

primOpInfo IntAddCOp = 
	mkGenPrimOp SLIT("addIntC#")  [] [intPrimTy, intPrimTy] 
		(unboxedPair [intPrimTy, intPrimTy])

primOpInfo IntSubCOp = 
	mkGenPrimOp SLIT("subIntC#")  [] [intPrimTy, intPrimTy] 
		(unboxedPair [intPrimTy, intPrimTy])

primOpInfo IntMulCOp = 
	mkGenPrimOp SLIT("mulIntC#")  [] [intPrimTy, intPrimTy] 
		(unboxedPair [intPrimTy, intPrimTy])
\end{code}

%************************************************************************
%*									*
\subsubsection[PrimOp-Word]{PrimOpInfo for @Word#@s}
%*									*
%************************************************************************

A @Word#@ is an unsigned @Int#@.

\begin{code}
primOpInfo WordQuotOp = mkDyadic SLIT("quotWord#") wordPrimTy
primOpInfo WordRemOp  = mkDyadic SLIT("remWord#")	 wordPrimTy

primOpInfo AndOp    = mkDyadic  SLIT("and#")	wordPrimTy
primOpInfo OrOp	    = mkDyadic  SLIT("or#")	wordPrimTy
primOpInfo XorOp    = mkDyadic  SLIT("xor#")	wordPrimTy
primOpInfo NotOp    = mkMonadic SLIT("not#")	wordPrimTy

primOpInfo SllOp
  = mkGenPrimOp SLIT("shiftL#")  [] [wordPrimTy, intPrimTy] wordPrimTy
primOpInfo SrlOp
  = mkGenPrimOp SLIT("shiftRL#") [] [wordPrimTy, intPrimTy] wordPrimTy

primOpInfo ISllOp
  = mkGenPrimOp SLIT("iShiftL#")  [] [intPrimTy, intPrimTy] intPrimTy
primOpInfo ISraOp
  = mkGenPrimOp SLIT("iShiftRA#") [] [intPrimTy, intPrimTy] intPrimTy
primOpInfo ISrlOp
  = mkGenPrimOp SLIT("iShiftRL#") [] [intPrimTy, intPrimTy] intPrimTy

primOpInfo Int2WordOp = mkGenPrimOp SLIT("int2Word#") [] [intPrimTy] wordPrimTy
primOpInfo Word2IntOp = mkGenPrimOp SLIT("word2Int#") [] [wordPrimTy] intPrimTy
\end{code}

%************************************************************************
%*									*
\subsubsection[PrimOp-Addr]{PrimOpInfo for @Addr#@s}
%*									*
%************************************************************************

\begin{code}
primOpInfo Int2AddrOp = mkGenPrimOp SLIT("int2Addr#") [] [intPrimTy] addrPrimTy
primOpInfo Addr2IntOp = mkGenPrimOp SLIT("addr2Int#") [] [addrPrimTy] intPrimTy
\end{code}


%************************************************************************
%*									*
\subsubsection[PrimOp-Float]{PrimOpInfo for @Float#@s}
%*									*
%************************************************************************

@decodeFloat#@ is given w/ Integer-stuff (it's similar).

\begin{code}
primOpInfo FloatAddOp	= mkDyadic    SLIT("plusFloat#")	   floatPrimTy
primOpInfo FloatSubOp	= mkDyadic    SLIT("minusFloat#")   floatPrimTy
primOpInfo FloatMulOp	= mkDyadic    SLIT("timesFloat#")   floatPrimTy
primOpInfo FloatDivOp	= mkDyadic    SLIT("divideFloat#")  floatPrimTy
primOpInfo FloatNegOp	= mkMonadic   SLIT("negateFloat#")  floatPrimTy

primOpInfo Float2IntOp	= mkGenPrimOp SLIT("float2Int#") [] [floatPrimTy] intPrimTy
primOpInfo Int2FloatOp	= mkGenPrimOp SLIT("int2Float#") [] [intPrimTy] floatPrimTy

primOpInfo FloatExpOp	= mkMonadic   SLIT("expFloat#")	   floatPrimTy
primOpInfo FloatLogOp	= mkMonadic   SLIT("logFloat#")	   floatPrimTy
primOpInfo FloatSqrtOp	= mkMonadic   SLIT("sqrtFloat#")	   floatPrimTy
primOpInfo FloatSinOp	= mkMonadic   SLIT("sinFloat#")	   floatPrimTy
primOpInfo FloatCosOp	= mkMonadic   SLIT("cosFloat#")	   floatPrimTy
primOpInfo FloatTanOp	= mkMonadic   SLIT("tanFloat#")	   floatPrimTy
primOpInfo FloatAsinOp	= mkMonadic   SLIT("asinFloat#")	   floatPrimTy
primOpInfo FloatAcosOp	= mkMonadic   SLIT("acosFloat#")	   floatPrimTy
primOpInfo FloatAtanOp	= mkMonadic   SLIT("atanFloat#")	   floatPrimTy
primOpInfo FloatSinhOp	= mkMonadic   SLIT("sinhFloat#")	   floatPrimTy
primOpInfo FloatCoshOp	= mkMonadic   SLIT("coshFloat#")	   floatPrimTy
primOpInfo FloatTanhOp	= mkMonadic   SLIT("tanhFloat#")	   floatPrimTy
primOpInfo FloatPowerOp	= mkDyadic    SLIT("powerFloat#")   floatPrimTy
\end{code}

%************************************************************************
%*									*
\subsubsection[PrimOp-Double]{PrimOpInfo for @Double#@s}
%*									*
%************************************************************************

@decodeDouble#@ is given w/ Integer-stuff (it's similar).

\begin{code}
primOpInfo DoubleAddOp	= mkDyadic    SLIT("+##")   doublePrimTy
primOpInfo DoubleSubOp	= mkDyadic    SLIT("-##")  doublePrimTy
primOpInfo DoubleMulOp	= mkDyadic    SLIT("*##")  doublePrimTy
primOpInfo DoubleDivOp	= mkDyadic    SLIT("/##") doublePrimTy
primOpInfo DoubleNegOp	= mkMonadic   SLIT("negateDouble#") doublePrimTy

primOpInfo Double2IntOp	    = mkGenPrimOp SLIT("double2Int#") [] [doublePrimTy] intPrimTy
primOpInfo Int2DoubleOp	    = mkGenPrimOp SLIT("int2Double#") [] [intPrimTy] doublePrimTy

primOpInfo Double2FloatOp   = mkGenPrimOp SLIT("double2Float#") [] [doublePrimTy] floatPrimTy
primOpInfo Float2DoubleOp   = mkGenPrimOp SLIT("float2Double#") [] [floatPrimTy] doublePrimTy

primOpInfo DoubleExpOp	= mkMonadic   SLIT("expDouble#")	   doublePrimTy
primOpInfo DoubleLogOp	= mkMonadic   SLIT("logDouble#")	   doublePrimTy
primOpInfo DoubleSqrtOp	= mkMonadic   SLIT("sqrtDouble#")   doublePrimTy
primOpInfo DoubleSinOp	= mkMonadic   SLIT("sinDouble#")	   doublePrimTy
primOpInfo DoubleCosOp	= mkMonadic   SLIT("cosDouble#")	   doublePrimTy
primOpInfo DoubleTanOp	= mkMonadic   SLIT("tanDouble#")	   doublePrimTy
primOpInfo DoubleAsinOp	= mkMonadic   SLIT("asinDouble#")   doublePrimTy
primOpInfo DoubleAcosOp	= mkMonadic   SLIT("acosDouble#")   doublePrimTy
primOpInfo DoubleAtanOp	= mkMonadic   SLIT("atanDouble#")   doublePrimTy
primOpInfo DoubleSinhOp	= mkMonadic   SLIT("sinhDouble#")   doublePrimTy
primOpInfo DoubleCoshOp	= mkMonadic   SLIT("coshDouble#")   doublePrimTy
primOpInfo DoubleTanhOp	= mkMonadic   SLIT("tanhDouble#")   doublePrimTy
primOpInfo DoublePowerOp= mkDyadic    SLIT("**##")  doublePrimTy
\end{code}

%************************************************************************
%*									*
\subsubsection[PrimOp-Integer]{PrimOpInfo for @Integer@ (and related!)}
%*									*
%************************************************************************

\begin{code}
primOpInfo IntegerNegOp	= integerMonadic SLIT("negateInteger#")

primOpInfo IntegerAddOp	= integerDyadic SLIT("plusInteger#")
primOpInfo IntegerSubOp	= integerDyadic SLIT("minusInteger#")
primOpInfo IntegerMulOp	= integerDyadic SLIT("timesInteger#")
primOpInfo IntegerGcdOp	= integerDyadic SLIT("gcdInteger#")

primOpInfo IntegerCmpOp	= integerCompare SLIT("cmpInteger#")
primOpInfo IntegerCmpIntOp 
  = mkGenPrimOp SLIT("cmpIntegerInt#") [] an_Integer_and_Int_tys intPrimTy

primOpInfo IntegerQuotRemOp = integerDyadic2Results SLIT("quotRemInteger#")
primOpInfo IntegerDivModOp  = integerDyadic2Results SLIT("divModInteger#")

primOpInfo Integer2IntOp
  = mkGenPrimOp SLIT("integer2Int#") [] one_Integer_ty intPrimTy

primOpInfo Integer2WordOp
  = mkGenPrimOp SLIT("integer2Word#") [] one_Integer_ty wordPrimTy

primOpInfo Int2IntegerOp
  = mkGenPrimOp SLIT("int2Integer#") [] [intPrimTy] 
	(unboxedPair one_Integer_ty)

primOpInfo Word2IntegerOp
  = mkGenPrimOp SLIT("word2Integer#") [] [wordPrimTy] 
	(unboxedPair one_Integer_ty)

primOpInfo Addr2IntegerOp
  = mkGenPrimOp SLIT("addr2Integer#") [] [addrPrimTy] 
	(unboxedPair one_Integer_ty)

primOpInfo IntegerToInt64Op
  = mkGenPrimOp SLIT("integerToInt64#") [] one_Integer_ty int64PrimTy

primOpInfo Int64ToIntegerOp
  = mkGenPrimOp SLIT("int64ToInteger#") [] [int64PrimTy]
	(unboxedPair one_Integer_ty)

primOpInfo Word64ToIntegerOp
  = mkGenPrimOp SLIT("word64ToInteger#") [] [word64PrimTy] 
	(unboxedPair one_Integer_ty)

primOpInfo IntegerToWord64Op
  = mkGenPrimOp SLIT("integerToWord64#") [] one_Integer_ty word64PrimTy
\end{code}

Decoding of floating-point numbers is sorta Integer-related.  Encoding
is done with plain ccalls now (see PrelNumExtra.lhs).

\begin{code}
primOpInfo FloatDecodeOp
  = mkGenPrimOp SLIT("decodeFloat#") [] [floatPrimTy] 
	(unboxedTriple [intPrimTy, intPrimTy, byteArrayPrimTy])
primOpInfo DoubleDecodeOp
  = mkGenPrimOp SLIT("decodeDouble#") [] [doublePrimTy] 
	(unboxedTriple [intPrimTy, intPrimTy, byteArrayPrimTy])
\end{code}

%************************************************************************
%*									*
\subsubsection[PrimOp-Arrays]{PrimOpInfo for primitive arrays}
%*									*
%************************************************************************

\begin{verbatim}
newArray#    :: Int# -> a -> State# s -> (# State# s, MutArr# s a #)
newFooArray# :: Int# -> State# s -> (# State# s, MutByteArr# s #)
\end{verbatim}

\begin{code}
primOpInfo NewArrayOp
  = let {
	elt = alphaTy; elt_tv = alphaTyVar; s = betaTy; s_tv = betaTyVar;
	state = mkStatePrimTy s
    } in
    mkGenPrimOp SLIT("newArray#") [s_tv, elt_tv] 
	[intPrimTy, elt, state]
	(unboxedPair [state, mkMutableArrayPrimTy s elt])

primOpInfo (NewByteArrayOp kind)
  = let
	s = alphaTy; s_tv = alphaTyVar

	op_str	       = _PK_ ("new" ++ primRepString kind ++ "Array#")
	state = mkStatePrimTy s
    in
    mkGenPrimOp op_str [s_tv]
	[intPrimTy, state]
	(unboxedPair [state, mkMutableByteArrayPrimTy s])

---------------------------------------------------------------------------

{-
sameMutableArray#     :: MutArr# s a -> MutArr# s a -> Bool
sameMutableByteArray# :: MutByteArr# s -> MutByteArr# s -> Bool
-}

primOpInfo SameMutableArrayOp
  = let {
	elt = alphaTy; elt_tv = alphaTyVar; s = betaTy; s_tv = betaTyVar;
	mut_arr_ty = mkMutableArrayPrimTy s elt
    } in
    mkGenPrimOp SLIT("sameMutableArray#") [s_tv, elt_tv] [mut_arr_ty, mut_arr_ty]
				   boolTy

primOpInfo SameMutableByteArrayOp
  = let {
	s = alphaTy; s_tv = alphaTyVar;
	mut_arr_ty = mkMutableByteArrayPrimTy s
    } in
    mkGenPrimOp SLIT("sameMutableByteArray#") [s_tv] [mut_arr_ty, mut_arr_ty]
				   boolTy

---------------------------------------------------------------------------
-- Primitive arrays of Haskell pointers:

{-
readArray#  :: MutArr# s a -> Int# -> State# s -> (# State# s, a #)
writeArray# :: MutArr# s a -> Int# -> a -> State# s -> State# s
indexArray# :: Array# a -> Int# -> (# a #)
-}

primOpInfo ReadArrayOp
  = let {
	elt = alphaTy; elt_tv = alphaTyVar; s = betaTy; s_tv = betaTyVar;
	state = mkStatePrimTy s
    } in
    mkGenPrimOp SLIT("readArray#") [s_tv, elt_tv]
	[mkMutableArrayPrimTy s elt, intPrimTy, state]
	(unboxedPair [state, elt])


primOpInfo WriteArrayOp
  = let {
	elt = alphaTy; elt_tv = alphaTyVar; s = betaTy; s_tv = betaTyVar
    } in
    mkGenPrimOp SLIT("writeArray#") [s_tv, elt_tv]
	[mkMutableArrayPrimTy s elt, intPrimTy, elt, mkStatePrimTy s]
	(mkStatePrimTy s)

primOpInfo IndexArrayOp
  = let { elt = alphaTy; elt_tv = alphaTyVar } in
    mkGenPrimOp SLIT("indexArray#") [elt_tv] [mkArrayPrimTy elt, intPrimTy]
	(mkUnboxedTupleTy 1 [elt])

---------------------------------------------------------------------------
-- Primitive arrays full of unboxed bytes:

primOpInfo (ReadByteArrayOp kind)
  = let
	s = alphaTy; s_tv = alphaTyVar

	op_str	       = _PK_ ("read" ++ primRepString kind ++ "Array#")
	(tvs, prim_ty) = mkPrimTyApp betaTyVars kind
	state          = mkStatePrimTy s
    in
    mkGenPrimOp op_str (s_tv:tvs)
	[mkMutableByteArrayPrimTy s, intPrimTy, state]
	(unboxedPair [state, prim_ty])

primOpInfo (WriteByteArrayOp kind)
  = let
	s = alphaTy; s_tv = alphaTyVar
	op_str = _PK_ ("write" ++ primRepString kind ++ "Array#")
	(tvs, prim_ty) = mkPrimTyApp betaTyVars kind
    in
    mkGenPrimOp op_str (s_tv:tvs)
	[mkMutableByteArrayPrimTy s, intPrimTy, prim_ty, mkStatePrimTy s]
	(mkStatePrimTy s)

primOpInfo (IndexByteArrayOp kind)
  = let
	op_str = _PK_ ("index" ++ primRepString kind ++ "Array#")
        (tvs, prim_ty) = mkPrimTyApp alphaTyVars kind
    in
    mkGenPrimOp op_str tvs [byteArrayPrimTy, intPrimTy] prim_ty

primOpInfo (IndexOffForeignObjOp kind)
  = let
	op_str = _PK_ ("index" ++ primRepString kind ++ "OffForeignObj#")
        (tvs, prim_ty) = mkPrimTyApp alphaTyVars kind
    in
    mkGenPrimOp op_str tvs [foreignObjPrimTy, intPrimTy] prim_ty

primOpInfo (IndexOffAddrOp kind)
  = let
	op_str = _PK_ ("index" ++ primRepString kind ++ "OffAddr#")
        (tvs, prim_ty) = mkPrimTyApp alphaTyVars kind
    in
    mkGenPrimOp op_str tvs [addrPrimTy, intPrimTy] prim_ty

primOpInfo (WriteOffAddrOp kind)
  = let
	s = alphaTy; s_tv = alphaTyVar
	op_str = _PK_ ("write" ++ primRepString kind ++ "OffAddr#")
        (tvs, prim_ty) = mkPrimTyApp betaTyVars kind
    in
    mkGenPrimOp op_str (s_tv:tvs)
	[addrPrimTy, intPrimTy, prim_ty, mkStatePrimTy s]
	(mkStatePrimTy s)

---------------------------------------------------------------------------
{-
unsafeFreezeArray#     :: MutArr# s a -> State# s -> (# State# s, Array# a #)
unsafeFreezeByteArray# :: MutByteArr# s -> State# s -> (# State# s, ByteArray# #)
unsafeThawArray#       :: Array# a -> State# s -> (# State# s, MutArr# s a #)
unsafeThawByteArray#   :: ByteArray# -> State# s -> (# State# s, MutByteArr# s #)
-}

primOpInfo UnsafeFreezeArrayOp
  = let {
	elt = alphaTy; elt_tv = alphaTyVar; s = betaTy; s_tv = betaTyVar;
	state = mkStatePrimTy s
    } in
    mkGenPrimOp SLIT("unsafeFreezeArray#") [s_tv, elt_tv]
	[mkMutableArrayPrimTy s elt, state]
	(unboxedPair [state, mkArrayPrimTy elt])

primOpInfo UnsafeFreezeByteArrayOp
  = let { 
	s = alphaTy; s_tv = alphaTyVar;
	state = mkStatePrimTy s
    } in
    mkGenPrimOp SLIT("unsafeFreezeByteArray#") [s_tv]
	[mkMutableByteArrayPrimTy s, state]
	(unboxedPair [state, byteArrayPrimTy])

primOpInfo UnsafeThawArrayOp
  = let {
	elt = alphaTy; elt_tv = alphaTyVar; s = betaTy; s_tv = betaTyVar;
	state = mkStatePrimTy s
    } in
    mkGenPrimOp SLIT("unsafeThawArray#") [s_tv, elt_tv]
	[mkArrayPrimTy elt, state]
	(unboxedPair [state, mkMutableArrayPrimTy s elt])

primOpInfo UnsafeThawByteArrayOp
  = let { 
	s = alphaTy; s_tv = alphaTyVar;
	state = mkStatePrimTy s
    } in
    mkGenPrimOp SLIT("unsafeThawByteArray#") [s_tv]
	[byteArrayPrimTy, state]
	(unboxedPair [state, mkMutableByteArrayPrimTy s])

---------------------------------------------------------------------------
primOpInfo SizeofByteArrayOp
  = mkGenPrimOp
        SLIT("sizeofByteArray#") []
	[byteArrayPrimTy]
        intPrimTy

primOpInfo SizeofMutableByteArrayOp
  = let { s = alphaTy; s_tv = alphaTyVar } in
    mkGenPrimOp
        SLIT("sizeofMutableByteArray#") [s_tv]
	[mkMutableByteArrayPrimTy s]
        intPrimTy
\end{code}


%************************************************************************
%*									*
\subsubsection[PrimOp-MutVars]{PrimOpInfo for mutable variable ops}
%*									*
%************************************************************************

\begin{code}
primOpInfo NewMutVarOp
  = let {
	elt = alphaTy; elt_tv = alphaTyVar; s = betaTy; s_tv = betaTyVar;
	state = mkStatePrimTy s
    } in
    mkGenPrimOp SLIT("newMutVar#") [s_tv, elt_tv] 
	[elt, state]
	(unboxedPair [state, mkMutVarPrimTy s elt])

primOpInfo ReadMutVarOp
  = let {
	elt = alphaTy; elt_tv = alphaTyVar; s = betaTy; s_tv = betaTyVar;
	state = mkStatePrimTy s
    } in
    mkGenPrimOp SLIT("readMutVar#") [s_tv, elt_tv]
	[mkMutVarPrimTy s elt, state]
	(unboxedPair [state, elt])


primOpInfo WriteMutVarOp
  = let {
	elt = alphaTy; elt_tv = alphaTyVar; s = betaTy; s_tv = betaTyVar
    } in
    mkGenPrimOp SLIT("writeMutVar#") [s_tv, elt_tv]
	[mkMutVarPrimTy s elt, elt, mkStatePrimTy s]
	(mkStatePrimTy s)

primOpInfo SameMutVarOp
  = let {
	elt = alphaTy; elt_tv = alphaTyVar; s = betaTy; s_tv = betaTyVar;
	mut_var_ty = mkMutVarPrimTy s elt
    } in
    mkGenPrimOp SLIT("sameMutVar#") [s_tv, elt_tv] [mut_var_ty, mut_var_ty]
				   boolTy
\end{code}

%************************************************************************
%*									*
\subsubsection[PrimOp-Exceptions]{PrimOpInfo for exceptions}
%*									*
%************************************************************************

catch  :: IO a -> (IOError -> IO a) -> IO a
catch# :: a  -> (b -> a) -> a

\begin{code}
primOpInfo CatchOp   
  = let
	a = alphaTy; a_tv = alphaTyVar
	b = betaTy;  b_tv = betaTyVar;
    in
    mkGenPrimOp SLIT("catch#") [a_tv, b_tv] [a, mkFunTy b a] a

primOpInfo RaiseOp
  = let
	a = alphaTy; a_tv = alphaTyVar
	b = betaTy;  b_tv = betaTyVar;
    in
    mkGenPrimOp SLIT("raise#") [a_tv, b_tv] [a] b
\end{code}

%************************************************************************
%*									*
\subsubsection[PrimOp-MVars]{PrimOpInfo for synchronizing Variables}
%*									*
%************************************************************************

\begin{code}
primOpInfo NewMVarOp
  = let
	elt = alphaTy; elt_tv = alphaTyVar; s = betaTy; s_tv = betaTyVar
	state = mkStatePrimTy s
    in
    mkGenPrimOp SLIT("newMVar#") [s_tv, elt_tv] [state]
	(unboxedPair [state, mkMVarPrimTy s elt])

primOpInfo TakeMVarOp
  = let
	elt = alphaTy; elt_tv = alphaTyVar; s = betaTy; s_tv = betaTyVar
	state = mkStatePrimTy s
    in
    mkGenPrimOp SLIT("takeMVar#") [s_tv, elt_tv]
	[mkMVarPrimTy s elt, state]
	(unboxedPair [state, elt])

primOpInfo PutMVarOp
  = let
	elt = alphaTy; elt_tv = alphaTyVar; s = betaTy; s_tv = betaTyVar
    in
    mkGenPrimOp SLIT("putMVar#") [s_tv, elt_tv]
	[mkMVarPrimTy s elt, elt, mkStatePrimTy s]
	(mkStatePrimTy s)

primOpInfo SameMVarOp
  = let
	elt = alphaTy; elt_tv = alphaTyVar; s = betaTy; s_tv = betaTyVar
	mvar_ty = mkMVarPrimTy s elt
    in
    mkGenPrimOp SLIT("sameMVar#") [s_tv, elt_tv] [mvar_ty, mvar_ty] boolTy

primOpInfo IsEmptyMVarOp
  = let
	elt = alphaTy; elt_tv = alphaTyVar; s = betaTy; s_tv = betaTyVar
	state = mkStatePrimTy s
    in
    mkGenPrimOp SLIT("isEmptyMVar#") [s_tv, elt_tv]
	[mkMVarPrimTy s elt, mkStatePrimTy s]
	(unboxedPair [state, intPrimTy])

\end{code}

%************************************************************************
%*									*
\subsubsection[PrimOp-Wait]{PrimOpInfo for delay/wait operations}
%*									*
%************************************************************************

\begin{code}

primOpInfo DelayOp
  = let {
	s = alphaTy; s_tv = alphaTyVar
    } in
    mkGenPrimOp SLIT("delay#") [s_tv]
	[intPrimTy, mkStatePrimTy s] (mkStatePrimTy s)

primOpInfo WaitReadOp
  = let {
	s = alphaTy; s_tv = alphaTyVar
    } in
    mkGenPrimOp SLIT("waitRead#") [s_tv]
	[intPrimTy, mkStatePrimTy s] (mkStatePrimTy s)

primOpInfo WaitWriteOp
  = let {
	s = alphaTy; s_tv = alphaTyVar
    } in
    mkGenPrimOp SLIT("waitWrite#") [s_tv]
	[intPrimTy, mkStatePrimTy s] (mkStatePrimTy s)
\end{code}

%************************************************************************
%*									*
\subsubsection[PrimOp-Concurrency]{Concurrency Primitives}
%*									*
%************************************************************************

\begin{code}
-- fork# :: a -> State# RealWorld -> (# State# RealWorld, ThreadId# #)
primOpInfo ForkOp	
  = mkGenPrimOp SLIT("fork#") [alphaTyVar] 
	[alphaTy, realWorldStatePrimTy]
	(unboxedPair [realWorldStatePrimTy, threadIdPrimTy])

-- killThread# :: ThreadId# -> exception -> State# RealWorld -> State# RealWorld
primOpInfo KillThreadOp
  = mkGenPrimOp SLIT("killThread#") [alphaTyVar] 
	[threadIdPrimTy, alphaTy, realWorldStatePrimTy]
	realWorldStatePrimTy

-- yield# :: State# RealWorld -> State# RealWorld
primOpInfo YieldOp
  = mkGenPrimOp SLIT("yield#") [] 
	[realWorldStatePrimTy]
	realWorldStatePrimTy

-- myThreadId# :: State# RealWorld -> (# State# RealWorld, ThreadId# #)
primOpInfo MyThreadIdOp
  = mkGenPrimOp SLIT("myThreadId#") [] 
	[realWorldStatePrimTy]
	(unboxedPair [realWorldStatePrimTy, threadIdPrimTy])
\end{code}

************************************************************************
%*									*
\subsubsection[PrimOps-Foreign]{PrimOpInfo for Foreign Objects}
%*									*
%************************************************************************

\begin{code}
primOpInfo MakeForeignObjOp
  = mkGenPrimOp SLIT("makeForeignObj#") [] 
	[addrPrimTy, realWorldStatePrimTy] 
	(unboxedPair [realWorldStatePrimTy, foreignObjPrimTy])

primOpInfo WriteForeignObjOp
 = let {
	s = alphaTy; s_tv = alphaTyVar
    } in
   mkGenPrimOp SLIT("writeForeignObj#") [s_tv]
	[foreignObjPrimTy, addrPrimTy, mkStatePrimTy s] (mkStatePrimTy s)
\end{code}

************************************************************************
%*									*
\subsubsection[PrimOps-Weak]{PrimOpInfo for Weak Pointers}
%*									*
%************************************************************************

A @Weak@ Pointer is created by the @mkWeak#@ primitive:

	mkWeak# :: k -> v -> f -> State# RealWorld 
			-> (# State# RealWorld, Weak# v #)

In practice, you'll use the higher-level

	data Weak v = Weak# v
	mkWeak :: k -> v -> IO () -> IO (Weak v)

\begin{code}
primOpInfo MkWeakOp
  = mkGenPrimOp SLIT("mkWeak#") [alphaTyVar, betaTyVar, gammaTyVar] 
	[alphaTy, betaTy, gammaTy, realWorldStatePrimTy]
	(unboxedPair [realWorldStatePrimTy, mkWeakPrimTy betaTy])
\end{code}

The following operation dereferences a weak pointer.  The weak pointer
may have been finalized, so the operation returns a result code which
must be inspected before looking at the dereferenced value.

	deRefWeak# :: Weak# v -> State# RealWorld ->
			(# State# RealWorld, v, Int# #)

Only look at v if the Int# returned is /= 0 !!

The higher-level op is

	deRefWeak :: Weak v -> IO (Maybe v)

\begin{code}
primOpInfo DeRefWeakOp
 = mkGenPrimOp SLIT("deRefWeak#") [alphaTyVar]
	[mkWeakPrimTy alphaTy, realWorldStatePrimTy]
	(unboxedTriple [realWorldStatePrimTy, intPrimTy, alphaTy])
\end{code}

Weak pointers can be finalized early by using the finalize# operation:
	
	finalizeWeak# :: Weak# v -> State# RealWorld -> 
	   		   (# State# RealWorld, Int#, IO () #)

The Int# returned is either

	0 if the weak pointer has already been finalized, or it has no
	  finalizer (the third component is then invalid).

	1 if the weak pointer is still alive, with the finalizer returned
	  as the third component.

\begin{code}
primOpInfo FinalizeWeakOp
 = mkGenPrimOp SLIT("finalizeWeak#") [alphaTyVar]
	[mkWeakPrimTy alphaTy, realWorldStatePrimTy]
	(unboxedTriple [realWorldStatePrimTy, intPrimTy,
		        mkFunTy realWorldStatePrimTy 
			  (unboxedPair [realWorldStatePrimTy,unitTy])])
\end{code}

%************************************************************************
%*									*
\subsubsection[PrimOp-stable-pointers]{PrimOpInfo for stable pointers and stable names}
%*									*
%************************************************************************

A {\em stable name/pointer} is an index into a table of stable name
entries.  Since the garbage collector is told about stable pointers,
it is safe to pass a stable pointer to external systems such as C
routines.

\begin{verbatim}
makeStablePtr#  :: a -> State# RealWorld -> (# State# RealWorld, StablePtr# a #)
freeStablePtr   :: StablePtr# a -> State# RealWorld -> State# RealWorld
deRefStablePtr# :: StablePtr# a -> State# RealWorld -> (# State# RealWorld, a #)
eqStablePtr#    :: StablePtr# a -> StablePtr# a -> Int#
\end{verbatim}

It may seem a bit surprising that @makeStablePtr#@ is a @IO@
operation since it doesn't (directly) involve IO operations.  The
reason is that if some optimisation pass decided to duplicate calls to
@makeStablePtr#@ and we only pass one of the stable pointers over, a
massive space leak can result.  Putting it into the IO monad
prevents this.  (Another reason for putting them in a monad is to
ensure correct sequencing wrt the side-effecting @freeStablePtr@
operation.)

An important property of stable pointers is that if you call
makeStablePtr# twice on the same object you get the same stable
pointer back.

Note that we can implement @freeStablePtr#@ using @_ccall_@ (and,
besides, it's not likely to be used from Haskell) so it's not a
primop.

Question: Why @RealWorld@ - won't any instance of @_ST@ do the job? [ADR]

Stable Names
~~~~~~~~~~~~

A stable name is like a stable pointer, but with three important differences:

	(a) You can't deRef one to get back to the original object.
	(b) You can convert one to an Int.
	(c) You don't need to 'freeStableName'

The existence of a stable name doesn't guarantee to keep the object it
points to alive (unlike a stable pointer), hence (a).

Invariants:
	
	(a) makeStableName always returns the same value for a given
	    object (same as stable pointers).

	(b) if two stable names are equal, it implies that the objects
	    from which they were created were the same.

	(c) stableNameToInt always returns the same Int for a given
	    stable name.

\begin{code}
primOpInfo MakeStablePtrOp
  = mkGenPrimOp SLIT("makeStablePtr#") [alphaTyVar]
	[alphaTy, realWorldStatePrimTy]
	(unboxedPair [realWorldStatePrimTy, 
			mkTyConApp stablePtrPrimTyCon [alphaTy]])

primOpInfo DeRefStablePtrOp
  = mkGenPrimOp SLIT("deRefStablePtr#") [alphaTyVar]
	[mkStablePtrPrimTy alphaTy, realWorldStatePrimTy]
	(unboxedPair [realWorldStatePrimTy, alphaTy])

primOpInfo EqStablePtrOp
  = mkGenPrimOp SLIT("eqStablePtr#") [alphaTyVar, betaTyVar]
	[mkStablePtrPrimTy alphaTy, mkStablePtrPrimTy betaTy]
	intPrimTy

primOpInfo MakeStableNameOp
  = mkGenPrimOp SLIT("makeStableName#") [alphaTyVar]
	[alphaTy, realWorldStatePrimTy]
	(unboxedPair [realWorldStatePrimTy, 
			mkTyConApp stableNamePrimTyCon [alphaTy]])

primOpInfo EqStableNameOp
  = mkGenPrimOp SLIT("eqStableName#") [alphaTyVar, betaTyVar]
	[mkStableNamePrimTy alphaTy, mkStableNamePrimTy betaTy]
	intPrimTy

primOpInfo StableNameToIntOp
  = mkGenPrimOp SLIT("stableNameToInt#") [alphaTyVar]
	[mkStableNamePrimTy alphaTy]
	intPrimTy
\end{code}

%************************************************************************
%*									*
\subsubsection[PrimOp-unsafePointerEquality]{PrimOpInfo for Pointer Equality}
%*									*
%************************************************************************

[Alastair Reid is to blame for this!]

These days, (Glasgow) Haskell seems to have a bit of everything from
other languages: strict operations, mutable variables, sequencing,
pointers, etc.  About the only thing left is LISP's ability to test
for pointer equality.  So, let's add it in!

\begin{verbatim}
reallyUnsafePtrEquality :: a -> a -> Int#
\end{verbatim}

which tests any two closures (of the same type) to see if they're the
same.  (Returns $0$ for @False@, $\neq 0$ for @True@ - to avoid
difficulties of trying to box up the result.)

NB This is {\em really unsafe\/} because even something as trivial as
a garbage collection might change the answer by removing indirections.
Still, no-one's forcing you to use it.  If you're worried about little
things like loss of referential transparency, you might like to wrap
it all up in a monad-like thing as John O'Donnell and John Hughes did
for non-determinism (1989 (Fraserburgh) Glasgow FP Workshop
Proceedings?)

I'm thinking of using it to speed up a critical equality test in some
graphics stuff in a context where the possibility of saying that
denotationally equal things aren't isn't a problem (as long as it
doesn't happen too often.)  ADR

To Will: Jim said this was already in, but I can't see it so I'm
adding it.  Up to you whether you add it.  (Note that this could have
been readily implemented using a @veryDangerousCCall@ before they were
removed...)

\begin{code}
primOpInfo ReallyUnsafePtrEqualityOp
  = mkGenPrimOp SLIT("reallyUnsafePtrEquality#") [alphaTyVar]
	[alphaTy, alphaTy] intPrimTy
\end{code}

%************************************************************************
%*									*
\subsubsection[PrimOp-parallel]{PrimOpInfo for parallelism op(s)}
%*									*
%************************************************************************

\begin{code}
primOpInfo SeqOp	-- seq# :: a -> Int#
  = mkGenPrimOp SLIT("seq#")	[alphaTyVar] [alphaTy] intPrimTy

primOpInfo ParOp	-- par# :: a -> Int#
  = mkGenPrimOp SLIT("par#")	[alphaTyVar] [alphaTy] intPrimTy
\end{code}

\begin{code}
-- HWL: The first 4 Int# in all par... annotations denote:
--   name, granularity info, size of result, degree of parallelism
--      Same  structure as _seq_ i.e. returns Int#
-- KSW: v, the second arg in parAt# and parAtForNow#, is used only to determine
--   `the processor containing the expression v'; it is not evaluated

primOpInfo ParGlobalOp	-- parGlobal# :: a -> Int# -> Int# -> Int# -> Int# -> b -> Int#
  = mkGenPrimOp SLIT("parGlobal#")	[alphaTyVar,betaTyVar] [alphaTy,intPrimTy,intPrimTy,intPrimTy,intPrimTy,betaTy] intPrimTy

primOpInfo ParLocalOp	-- parLocal# :: a -> Int# -> Int# -> Int# -> Int# -> b -> Int#
  = mkGenPrimOp SLIT("parLocal#")	[alphaTyVar,betaTyVar] [alphaTy,intPrimTy,intPrimTy,intPrimTy,intPrimTy,betaTy] intPrimTy

primOpInfo ParAtOp	-- parAt# :: a -> v -> Int# -> Int# -> Int# -> Int# -> b -> Int#
  = mkGenPrimOp SLIT("parAt#")	[alphaTyVar,betaTyVar,gammaTyVar] [betaTy,alphaTy,intPrimTy,intPrimTy,intPrimTy,intPrimTy,gammaTy] intPrimTy

primOpInfo ParAtAbsOp	-- parAtAbs# :: a -> Int# -> Int# -> Int# -> Int# -> Int# -> b -> Int#
  = mkGenPrimOp SLIT("parAtAbs#")	[alphaTyVar,betaTyVar] [alphaTy,intPrimTy,intPrimTy,intPrimTy,intPrimTy,intPrimTy,betaTy] intPrimTy

primOpInfo ParAtRelOp	-- parAtRel# :: a -> Int# -> Int# -> Int# -> Int# -> Int# -> b -> Int#
  = mkGenPrimOp SLIT("parAtRel#")	[alphaTyVar,betaTyVar] [alphaTy,intPrimTy,intPrimTy,intPrimTy,intPrimTy,intPrimTy,betaTy] intPrimTy

primOpInfo ParAtForNowOp -- parAtForNow# :: a -> v -> Int# -> Int# -> Int# -> Int# -> b -> Int#
  = mkGenPrimOp SLIT("parAtForNow#")	[alphaTyVar,betaTyVar,gammaTyVar] [betaTy,alphaTy,intPrimTy,intPrimTy,intPrimTy,intPrimTy,gammaTy] intPrimTy

primOpInfo CopyableOp	-- copyable# :: a -> Int#
  = mkGenPrimOp SLIT("copyable#")	[alphaTyVar] [alphaTy] intPrimTy

primOpInfo NoFollowOp	-- noFollow# :: a -> Int#
  = mkGenPrimOp SLIT("noFollow#")	[alphaTyVar] [alphaTy] intPrimTy
\end{code}

%************************************************************************
%*									*
\subsubsection[PrimOp-IO-etc]{PrimOpInfo for C calls, and I/O-ish things}
%*									*
%************************************************************************

\begin{code}
primOpInfo (CCallOp _ _ _ _)
     = mkGenPrimOp SLIT("ccall#") [alphaTyVar] [] alphaTy

{-
primOpInfo (CCallOp _ _ _ _ arg_tys result_ty)
  = mkGenPrimOp SLIT("ccall#") [] arg_tys result_tycon tys_applied
  where
    (result_tycon, tys_applied, _) = splitAlgTyConApp result_ty
-}
\end{code}

%************************************************************************
%*									*
\subsubsection[PrimOp-tag]{PrimOpInfo for @dataToTag#@ and @tagToEnum#@}
%*									*
%************************************************************************

These primops are pretty wierd.

	dataToTag# :: a -> Int    (arg must be an evaluated data type)
	tagToEnum# :: Int -> a    (result type must be an enumerated type)

The constraints aren't currently checked by the front end, but the
code generator will fall over if they aren't satisfied.

\begin{code}
primOpInfo DataToTagOp
  = mkGenPrimOp SLIT("dataToTag#") [alphaTyVar] [alphaTy] intPrimTy

primOpInfo TagToEnumOp
  = mkGenPrimOp SLIT("tagToEnum#") [alphaTyVar] [intPrimTy] alphaTy

#ifdef DEBUG
primOpInfo op = panic ("primOpInfo:"++ show (I# (tagOf_PrimOp op)))
#endif
\end{code}

%************************************************************************
%*									*
\subsubsection[PrimOp-ool]{Which PrimOps are out-of-line}
%*									*
%************************************************************************

Some PrimOps need to be called out-of-line because they either need to
perform a heap check or they block.

\begin{code}
primOpOutOfLine op
  = case op of
    	TakeMVarOp    		-> True
	PutMVarOp     		-> True
	DelayOp       		-> True
	WaitReadOp    		-> True
	WaitWriteOp   		-> True
	CatchOp	      		-> True
	RaiseOp	      		-> True
	NewArrayOp    		-> True
	NewByteArrayOp _ 	-> True
	IntegerAddOp    	-> True
	IntegerSubOp    	-> True
	IntegerMulOp    	-> True
	IntegerGcdOp    	-> True
	IntegerQuotRemOp    	-> True
	IntegerDivModOp    	-> True
	Int2IntegerOp		-> True
	Word2IntegerOp  	-> True
	Addr2IntegerOp		-> True
	Word64ToIntegerOp       -> True
	Int64ToIntegerOp        -> True
	FloatDecodeOp		-> True
	DoubleDecodeOp		-> True
	MkWeakOp		-> True
	FinalizeWeakOp		-> True
	MakeStableNameOp	-> True
	MakeForeignObjOp	-> True
	NewMutVarOp		-> True
	NewMVarOp		-> True
	ForkOp			-> True
	KillThreadOp		-> True
	YieldOp			-> True
	CCallOp _ _ may_gc@True _ -> True	-- _ccall_GC_
	  -- the next one doesn't perform any heap checks,
	  -- but it is of such an esoteric nature that
	  -- it is done out-of-line rather than require
	  -- the NCG to implement it.
	UnsafeThawArrayOp       -> True
	_           		-> False
\end{code}

Sometimes we may choose to execute a PrimOp even though it isn't
certain that its result will be required; ie execute them
``speculatively''.  The same thing as ``cheap eagerness.'' Usually
this is OK, because PrimOps are usually cheap, but it isn't OK for
(a)~expensive PrimOps and (b)~PrimOps which can fail.

See also @primOpIsCheap@ (below).

PrimOps that have side effects also should not be executed speculatively
or by data dependencies.

\begin{code}
primOpOkForSpeculation :: PrimOp -> Bool
primOpOkForSpeculation op 
  = not (primOpCanFail op || primOpHasSideEffects op || primOpOutOfLine op)
\end{code}

@primOpIsCheap@, as used in \tr{SimplUtils.lhs}.  For now (HACK
WARNING), we just borrow some other predicates for a
what-should-be-good-enough test.  "Cheap" means willing to call it more
than once.  Evaluation order is unaffected.

\begin{code}
primOpIsCheap op = not (primOpHasSideEffects op || primOpOutOfLine op)
\end{code}

primOpIsDupable means that the use of the primop is small enough to
duplicate into different case branches.  See CoreUtils.exprIsDupable.

\begin{code}
primOpIsDupable (CCallOp _ _ _ _) = False
primOpIsDupable op		  = not (primOpOutOfLine op)
\end{code}


\begin{code}
primOpCanFail :: PrimOp -> Bool
-- Int.
primOpCanFail IntQuotOp	= True		-- Divide by zero
primOpCanFail IntRemOp		= True		-- Divide by zero

-- Integer
primOpCanFail IntegerQuotRemOp = True		-- Divide by zero
primOpCanFail IntegerDivModOp	= True		-- Divide by zero

-- Float.  ToDo: tan? tanh?
primOpCanFail FloatDivOp	= True		-- Divide by zero
primOpCanFail FloatLogOp	= True		-- Log of zero
primOpCanFail FloatAsinOp	= True		-- Arg out of domain
primOpCanFail FloatAcosOp	= True		-- Arg out of domain

-- Double.  ToDo: tan? tanh?
primOpCanFail DoubleDivOp	= True		-- Divide by zero
primOpCanFail DoubleLogOp	= True		-- Log of zero
primOpCanFail DoubleAsinOp	= True		-- Arg out of domain
primOpCanFail DoubleAcosOp	= True		-- Arg out of domain

primOpCanFail other_op		= False
\end{code}

And some primops have side-effects and so, for example, must not be
duplicated.

\begin{code}
primOpHasSideEffects :: PrimOp -> Bool

primOpHasSideEffects TakeMVarOp        = True
primOpHasSideEffects DelayOp           = True
primOpHasSideEffects WaitReadOp        = True
primOpHasSideEffects WaitWriteOp       = True

primOpHasSideEffects ParOp	       = True
primOpHasSideEffects ForkOp	       = True
primOpHasSideEffects KillThreadOp      = True
primOpHasSideEffects YieldOp	       = True
primOpHasSideEffects SeqOp	       = True

primOpHasSideEffects MakeForeignObjOp  = True
primOpHasSideEffects WriteForeignObjOp = True
primOpHasSideEffects MkWeakOp  	       = True
primOpHasSideEffects DeRefWeakOp       = True
primOpHasSideEffects FinalizeWeakOp    = True
primOpHasSideEffects MakeStablePtrOp   = True
primOpHasSideEffects MakeStableNameOp  = True
primOpHasSideEffects EqStablePtrOp     = True  -- SOF
primOpHasSideEffects DeRefStablePtrOp  = True  -- ??? JSM & ADR

primOpHasSideEffects ParGlobalOp	= True
primOpHasSideEffects ParLocalOp		= True
primOpHasSideEffects ParAtOp		= True
primOpHasSideEffects ParAtAbsOp		= True
primOpHasSideEffects ParAtRelOp		= True
primOpHasSideEffects ParAtForNowOp	= True
primOpHasSideEffects CopyableOp		= True  -- Possibly not.  ASP 
primOpHasSideEffects NoFollowOp		= True  -- Possibly not.  ASP

-- CCall
primOpHasSideEffects (CCallOp	_ _ _ _) = True

primOpHasSideEffects other = False
\end{code}

Inline primitive operations that perform calls need wrappers to save
any live variables that are stored in caller-saves registers.

\begin{code}
primOpNeedsWrapper :: PrimOp -> Bool

primOpNeedsWrapper (CCallOp _ _ _ _)    = True

primOpNeedsWrapper Integer2IntOp    	= True
primOpNeedsWrapper Integer2WordOp    	= True
primOpNeedsWrapper IntegerCmpOp	    	= True
primOpNeedsWrapper IntegerCmpIntOp    	= True

primOpNeedsWrapper FloatExpOp	    	= True
primOpNeedsWrapper FloatLogOp	    	= True
primOpNeedsWrapper FloatSqrtOp	    	= True
primOpNeedsWrapper FloatSinOp	    	= True
primOpNeedsWrapper FloatCosOp	    	= True
primOpNeedsWrapper FloatTanOp	    	= True
primOpNeedsWrapper FloatAsinOp	    	= True
primOpNeedsWrapper FloatAcosOp	    	= True
primOpNeedsWrapper FloatAtanOp	    	= True
primOpNeedsWrapper FloatSinhOp	    	= True
primOpNeedsWrapper FloatCoshOp	    	= True
primOpNeedsWrapper FloatTanhOp	    	= True
primOpNeedsWrapper FloatPowerOp	    	= True

primOpNeedsWrapper DoubleExpOp	    	= True
primOpNeedsWrapper DoubleLogOp	    	= True
primOpNeedsWrapper DoubleSqrtOp	    	= True
primOpNeedsWrapper DoubleSinOp	    	= True
primOpNeedsWrapper DoubleCosOp	    	= True
primOpNeedsWrapper DoubleTanOp	    	= True
primOpNeedsWrapper DoubleAsinOp	    	= True
primOpNeedsWrapper DoubleAcosOp	    	= True
primOpNeedsWrapper DoubleAtanOp	    	= True
primOpNeedsWrapper DoubleSinhOp	    	= True
primOpNeedsWrapper DoubleCoshOp	    	= True
primOpNeedsWrapper DoubleTanhOp	    	= True
primOpNeedsWrapper DoublePowerOp    	= True

primOpNeedsWrapper MakeStableNameOp	= True
primOpNeedsWrapper DeRefStablePtrOp	= True

primOpNeedsWrapper DelayOp	    	= True
primOpNeedsWrapper WaitReadOp		= True
primOpNeedsWrapper WaitWriteOp		= True

primOpNeedsWrapper other_op 	    	= False
\end{code}

\begin{code}
primOpType :: PrimOp -> Type  -- you may want to use primOpSig instead
primOpType op
  = case (primOpInfo op) of
      Dyadic occ ty ->	    dyadic_fun_ty ty
      Monadic occ ty ->	    monadic_fun_ty ty
      Compare occ ty ->	    compare_fun_ty ty

      GenPrimOp occ tyvars arg_tys res_ty -> 
	mkForAllTys tyvars (mkFunTys arg_tys res_ty)

mkPrimOpIdName :: PrimOp -> Id -> Name
	-- Make the name for the PrimOp's Id
	-- We have to pass in the Id itself because it's a WiredInId
	-- and hence recursive
mkPrimOpIdName op id
  = mkWiredInIdName key pREL_GHC occ_name id
  where
    occ_name = primOpOcc op
    key	     = mkPrimOpIdUnique (IBOX(tagOf_PrimOp op))


primOpRdrName :: PrimOp -> RdrName 
primOpRdrName op = mkRdrQual pREL_GHC_Name (primOpOcc op)

primOpOcc :: PrimOp -> OccName
primOpOcc op = case (primOpInfo op) of
			      Dyadic    occ _	  -> occ
			      Monadic   occ _	  -> occ
			      Compare   occ _	  -> occ
			      GenPrimOp occ _ _ _ -> occ

-- primOpSig is like primOpType but gives the result split apart:
-- (type variables, argument types, result type)

primOpSig :: PrimOp -> ([TyVar],[Type],Type)
primOpSig op
  = case (primOpInfo op) of
      Monadic   occ ty -> ([],     [ty],    ty    )
      Dyadic    occ ty -> ([],     [ty,ty], ty    )
      Compare   occ ty -> ([],     [ty,ty], boolTy)
      GenPrimOp occ tyvars arg_tys res_ty
                       -> (tyvars, arg_tys, res_ty)

-- primOpUsg is like primOpSig but the types it yields are the
-- appropriate sigma (i.e., usage-annotated) types,
-- as required by the UsageSP inference.

primOpUsg :: PrimOp -> ([TyVar],[Type],Type)
primOpUsg op
  = case op of

      -- Refer to comment by `otherwise' clause; we need consider here
      -- *only* primops that have arguments or results containing Haskell
      -- pointers (things that are pointed).  Unpointed values are
      -- irrelevant to the usage analysis.  The issue is whether pointed
      -- values may be entered or duplicated by the primop.

      -- Remember that primops are *never* partially applied.

      NewArrayOp           -> mangle [mkP, mkM, mkP     ] mkM
      SameMutableArrayOp   -> mangle [mkP, mkP          ] mkM
      ReadArrayOp          -> mangle [mkM, mkP, mkP     ] mkM
      WriteArrayOp         -> mangle [mkM, mkP, mkM, mkP] mkR
      IndexArrayOp         -> mangle [mkM, mkP          ] mkM
      UnsafeFreezeArrayOp  -> mangle [mkM, mkP          ] mkM
      UnsafeThawArrayOp    -> mangle [mkM, mkP          ] mkM

      NewMutVarOp          -> mangle [mkM, mkP          ] mkM
      ReadMutVarOp         -> mangle [mkM, mkP          ] mkM
      WriteMutVarOp        -> mangle [mkM, mkM, mkP     ] mkR
      SameMutVarOp         -> mangle [mkP, mkP          ] mkM

      CatchOp              -> --     [mkO, mkO . (inFun mkM mkO)] mkO
                              mangle [mkM, mkM . (inFun mkM mkM)] mkM
                              -- might use caught action multiply
      RaiseOp              -> mangle [mkM               ] mkM

      NewMVarOp            -> mangle [mkP               ] mkR
      TakeMVarOp           -> mangle [mkM, mkP          ] mkM
      PutMVarOp            -> mangle [mkM, mkM, mkP     ] mkR
      SameMVarOp           -> mangle [mkP, mkP          ] mkM
      IsEmptyMVarOp        -> mangle [mkP, mkP          ] mkM

      ForkOp               -> mangle [mkO, mkP          ] mkR
      KillThreadOp         -> mangle [mkP, mkM, mkP     ] mkR

      MkWeakOp             -> mangle [mkZ, mkM, mkM, mkP] mkM
      DeRefWeakOp          -> mangle [mkM, mkP          ] mkM
      FinalizeWeakOp       -> mangle [mkM, mkP          ] (mkR . (inUB [id,id,inFun mkR mkM]))

      MakeStablePtrOp      -> mangle [mkM, mkP          ] mkM
      DeRefStablePtrOp     -> mangle [mkM, mkP          ] mkM
      EqStablePtrOp        -> mangle [mkP, mkP          ] mkR
      MakeStableNameOp     -> mangle [mkZ, mkP          ] mkR
      EqStableNameOp       -> mangle [mkP, mkP          ] mkR
      StableNameToIntOp    -> mangle [mkP               ] mkR

      ReallyUnsafePtrEqualityOp -> mangle [mkZ, mkZ     ] mkR

      SeqOp                -> mangle [mkO               ] mkR
      ParOp                -> mangle [mkO               ] mkR
      ParGlobalOp          -> mangle [mkO, mkP, mkP, mkP, mkP, mkM] mkM
      ParLocalOp           -> mangle [mkO, mkP, mkP, mkP, mkP, mkM] mkM
      ParAtOp              -> mangle [mkO, mkZ, mkP, mkP, mkP, mkP, mkM] mkM
      ParAtAbsOp           -> mangle [mkO, mkP, mkP, mkP, mkP, mkM] mkM
      ParAtRelOp           -> mangle [mkO, mkP, mkP, mkP, mkP, mkM] mkM
      ParAtForNowOp        -> mangle [mkO, mkZ, mkP, mkP, mkP, mkP, mkM] mkM
      CopyableOp           -> mangle [mkZ               ] mkR
      NoFollowOp           -> mangle [mkZ               ] mkR

      CCallOp _ _ _ _      -> mangle [                  ] mkM

      -- Things with no Haskell pointers inside: in actuality, usages are
      -- irrelevant here (hence it doesn't matter that some of these
      -- apparently permit duplication; since such arguments are never 
      -- ENTERed anyway, the usage annotation they get is entirely irrelevant
      -- except insofar as it propagates to infect other values that *are*
      -- pointed.

      otherwise            -> nomangle
                                    
  where mkZ          = mkUsgTy UsOnce  -- pointed argument used zero
        mkO          = mkUsgTy UsOnce  -- pointed argument used once
        mkM          = mkUsgTy UsMany  -- pointed argument used multiply
        mkP          = mkUsgTy UsOnce  -- unpointed argument
        mkR          = mkUsgTy UsMany  -- unpointed result
  
        (tyvars, arg_tys, res_ty)
                     = primOpSig op

        nomangle     = (tyvars, map mkP arg_tys, mkR res_ty)

        mangle fs g  = (tyvars, zipWithEqual "primOpUsg" ($) fs arg_tys, g res_ty)

        inFun f g ty = case splitFunTy_maybe ty of
                         Just (a,b) -> mkFunTy (f a) (g b)
                         Nothing    -> pprPanic "primOpUsg:inFun" (ppr op <+> ppr ty)

        inUB fs ty  = case splitTyConApp_maybe ty of
                        Just (tc,tys) -> ASSERT( tc == unboxedTupleTyCon (length fs) )
                                         mkUnboxedTupleTy (length fs) (zipWithEqual "primOpUsg"
                                                                         ($) fs tys)
                        Nothing       -> pprPanic "primOpUsg:inUB" (ppr op <+> ppr ty)
\end{code}

\begin{code}
data PrimOpResultInfo
  = ReturnsPrim	    PrimRep
  | ReturnsAlg	    TyCon

-- Some PrimOps need not return a manifest primitive or algebraic value
-- (i.e. they might return a polymorphic value).  These PrimOps *must*
-- be out of line, or the code generator won't work.

getPrimOpResultInfo :: PrimOp -> PrimOpResultInfo
getPrimOpResultInfo op
  = case (primOpInfo op) of
      Dyadic  _ ty		 -> ReturnsPrim (typePrimRep ty)
      Monadic _ ty		 -> ReturnsPrim (typePrimRep ty)
      Compare _ ty		 -> ReturnsAlg boolTyCon
      GenPrimOp _ _ _ ty	 -> 
	let rep = typePrimRep ty in
	case rep of
	   PtrRep -> case splitAlgTyConApp_maybe ty of
			Nothing -> panic "getPrimOpResultInfo"
			Just (tc,_,_) -> ReturnsAlg tc
	   other -> ReturnsPrim other

isCompareOp :: PrimOp -> Bool
isCompareOp op
  = case primOpInfo op of
      Compare _ _ -> True
      _	    	  -> False
\end{code}

The commutable ops are those for which we will try to move constants
to the right hand side for strength reduction.

\begin{code}
commutableOp :: PrimOp -> Bool

commutableOp CharEqOp	  = True
commutableOp CharNeOp 	  = True
commutableOp IntAddOp 	  = True
commutableOp IntMulOp 	  = True
commutableOp AndOp	  = True
commutableOp OrOp	  = True
commutableOp XorOp	  = True
commutableOp IntEqOp	  = True
commutableOp IntNeOp	  = True
commutableOp IntegerAddOp = True
commutableOp IntegerMulOp = True
commutableOp IntegerGcdOp = True
commutableOp FloatAddOp	  = True
commutableOp FloatMulOp	  = True
commutableOp FloatEqOp	  = True
commutableOp FloatNeOp	  = True
commutableOp DoubleAddOp  = True
commutableOp DoubleMulOp  = True
commutableOp DoubleEqOp	  = True
commutableOp DoubleNeOp	  = True
commutableOp _		  = False
\end{code}

Utils:
\begin{code}
mkPrimTyApp :: [TyVar] -> PrimRep -> ([TyVar], Type)
	-- CharRep       -->  ([],  Char#)
	-- StablePtrRep  -->  ([a], StablePtr# a)
mkPrimTyApp tvs kind
  = (forall_tvs, mkTyConApp tycon (mkTyVarTys forall_tvs))
  where
    tycon      = primRepTyCon kind
    forall_tvs = take (tyConArity tycon) tvs

dyadic_fun_ty  ty = mkFunTys [ty, ty] ty
monadic_fun_ty ty = mkFunTy  ty ty
compare_fun_ty ty = mkFunTys [ty, ty] boolTy
\end{code}

Output stuff:
\begin{code}
pprPrimOp  :: PrimOp -> SDoc

pprPrimOp (CCallOp fun is_casm may_gc cconv)
  = let
        callconv = text "{-" <> pprCallConv cconv <> text "-}"

	before
	  | is_casm && may_gc = "casm_GC ``"
	  | is_casm	      = "casm ``"
	  | may_gc	      = "ccall_GC "
	  | otherwise	      = "ccall "

	after
	  | is_casm   = text "''"
	  | otherwise = empty
	  
	ppr_dyn =
	  case fun of
	    Right _ -> text "dyn_"
	    _	    -> empty

	ppr_fun =
	 case fun of
	   Right _ -> text "\"\""
	   Left fn -> ptext fn
	 
    in
    hcat [ ifPprDebug callconv
	 , text "__", ppr_dyn
         , text before , ppr_fun , after]

pprPrimOp other_op
  = getPprStyle $ \ sty ->
   if ifaceStyle sty then	-- For interfaces Print it qualified with PrelGHC.
	ptext SLIT("PrelGHC.") <> pprOccName occ
   else
	pprOccName occ
  where
    occ = primOpOcc other_op
\end{code}