1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
|
%
% (c) The GRASP Project, Glasgow University, 1994-1998
%
\section[TysWiredIn]{Wired-in knowledge about {\em non-primitive} types}
This module is about types that can be defined in Haskell, but which
must be wired into the compiler nonetheless.
This module tracks the ``state interface'' document, ``GHC prelude:
types and operations.''
\begin{code}
module TysWiredIn (
wiredInTyCons, genericTyCons,
addrDataCon,
addrTy,
addrTyCon,
ptrDataCon,
ptrTy,
ptrTyCon,
funPtrDataCon,
funPtrTy,
funPtrTyCon,
boolTy,
boolTyCon,
charDataCon,
charTy,
charTyCon,
consDataCon,
doubleDataCon,
doubleTy,
doubleTyCon,
falseDataCon, falseDataConId,
floatDataCon,
floatTy,
floatTyCon,
intDataCon,
intTy,
intTyCon,
integerTy,
integerTyCon,
smallIntegerDataCon,
largeIntegerDataCon,
listTyCon,
mkListTy,
nilDataCon,
-- tuples
mkTupleTy,
tupleTyCon, tupleCon,
unitTyCon, unitDataCon, unitDataConId, pairTyCon,
unboxedSingletonTyCon, unboxedSingletonDataCon,
unboxedPairTyCon, unboxedPairDataCon,
-- Generics
genUnitTyCon, genUnitDataCon,
plusTyCon, inrDataCon, inlDataCon,
crossTyCon, crossDataCon,
stablePtrTyCon,
stringTy,
trueDataCon, trueDataConId,
unitTy,
voidTy,
wordDataCon,
wordTy,
wordTyCon,
-- parallel arrays
mkPArrTy,
parrTyCon, parrFakeCon, isPArrTyCon, isPArrFakeCon
) where
#include "HsVersions.h"
import {-# SOURCE #-} MkId( mkDataConWorkId )
import {-# SOURCE #-} Generics( mkTyConGenInfo )
-- friends:
import PrelNames
import TysPrim
-- others:
import Constants ( mAX_TUPLE_SIZE )
import Module ( mkBasePkgModule )
import Name ( Name, nameUnique, nameOccName,
nameModule, mkWiredInName )
import OccName ( mkOccFS, tcName, dataName, mkDataConWorkerOcc, mkGenOcc1, mkGenOcc2 )
import DataCon ( DataCon, mkDataCon, dataConWorkId, dataConSourceArity )
import Var ( TyVar, tyVarKind )
import TyCon ( TyCon, AlgTyConFlavour(..), DataConDetails(..), tyConDataCons,
mkTupleTyCon, mkAlgTyCon, tyConName
)
import BasicTypes ( Arity, RecFlag(..), Boxity(..), isBoxed, StrictnessMark(..) )
import Type ( Type, mkTyConTy, mkTyConApp, mkTyVarTy, mkTyVarTys,
mkArrowKinds, liftedTypeKind, unliftedTypeKind,
ThetaType )
import Unique ( incrUnique, mkTupleTyConUnique,
mkTupleDataConUnique, mkPArrDataConUnique )
import PrelNames
import Array
import FastString
alpha_tyvar = [alphaTyVar]
alpha_ty = [alphaTy]
alpha_beta_tyvars = [alphaTyVar, betaTyVar]
\end{code}
%************************************************************************
%* *
\subsection{Wired in type constructors}
%* *
%************************************************************************
If you change which things are wired in, make sure you change their
names in PrelNames, so they use wTcQual, wDataQual, etc
\begin{code}
wiredInTyCons :: [TyCon]
wiredInTyCons = data_tycons ++ tuple_tycons ++ unboxed_tuple_tycons
data_tycons = genericTyCons ++
[ addrTyCon
, ptrTyCon
, funPtrTyCon
, boolTyCon
, charTyCon
, doubleTyCon
, floatTyCon
, intTyCon
, integerTyCon
, listTyCon
, parrTyCon
, wordTyCon
]
genericTyCons :: [TyCon]
genericTyCons = [ plusTyCon, crossTyCon, genUnitTyCon ]
tuple_tycons = unitTyCon : [tupleTyCon Boxed i | i <- [2..mAX_TUPLE_SIZE] ]
unboxed_tuple_tycons = [tupleTyCon Unboxed i | i <- [1..mAX_TUPLE_SIZE] ]
\end{code}
%************************************************************************
%* *
\subsection{mkWiredInTyCon}
%* *
%************************************************************************
\begin{code}
pcNonRecDataTyCon = pcTyCon DataTyCon NonRecursive
pcRecDataTyCon = pcTyCon DataTyCon Recursive
pcTyCon new_or_data is_rec name tyvars argvrcs cons
= tycon
where
tycon = mkAlgTyCon name kind
tyvars
[] -- No context
argvrcs
(DataCons cons)
[] -- No record selectors
new_or_data
is_rec
gen_info
mod = nameModule name
kind = mkArrowKinds (map tyVarKind tyvars) liftedTypeKind
gen_info = mk_tc_gen_info mod (nameUnique name) name tycon
-- We generate names for the generic to/from Ids by incrementing
-- the TyCon unique. So each Prelude tycon needs 3 slots, one
-- for itself and two more for the generic Ids.
mk_tc_gen_info mod tc_uniq tc_name tycon
= mkTyConGenInfo tycon [name1, name2]
where
tc_occ_name = nameOccName tc_name
occ_name1 = mkGenOcc1 tc_occ_name
occ_name2 = mkGenOcc2 tc_occ_name
fn1_key = incrUnique tc_uniq
fn2_key = incrUnique fn1_key
name1 = mkWiredInName mod occ_name1 fn1_key
name2 = mkWiredInName mod occ_name2 fn2_key
pcDataCon :: Name -> [TyVar] -> ThetaType -> [Type] -> TyCon -> DataCon
-- The Name should be in the DataName name space; it's the name
-- of the DataCon itself.
--
-- The unique is the first of two free uniques;
-- the first is used for the datacon itself,
-- the second is used for the "worker name"
pcDataCon dc_name tyvars context arg_tys tycon
= data_con
where
data_con = mkDataCon dc_name
[{- No strictness -}]
[{- No labelled fields -}]
tyvars context [] [] arg_tys tycon work_id
Nothing {- No wrapper for wired-in things
(they are too simple to need one) -}
mod = nameModule dc_name
wrk_occ = mkDataConWorkerOcc (nameOccName dc_name)
wrk_key = incrUnique (nameUnique dc_name)
wrk_name = mkWiredInName mod wrk_occ wrk_key
work_id = mkDataConWorkId wrk_name data_con
\end{code}
%************************************************************************
%* *
\subsection[TysWiredIn-tuples]{The tuple types}
%* *
%************************************************************************
\begin{code}
tupleTyCon :: Boxity -> Arity -> TyCon
tupleTyCon boxity i | i > mAX_TUPLE_SIZE = fst (mk_tuple boxity i) -- Build one specially
tupleTyCon Boxed i = fst (boxedTupleArr ! i)
tupleTyCon Unboxed i = fst (unboxedTupleArr ! i)
tupleCon :: Boxity -> Arity -> DataCon
tupleCon boxity i | i > mAX_TUPLE_SIZE = snd (mk_tuple boxity i) -- Build one specially
tupleCon Boxed i = snd (boxedTupleArr ! i)
tupleCon Unboxed i = snd (unboxedTupleArr ! i)
boxedTupleArr, unboxedTupleArr :: Array Int (TyCon,DataCon)
boxedTupleArr = array (0,mAX_TUPLE_SIZE) [(i,mk_tuple Boxed i) | i <- [0..mAX_TUPLE_SIZE]]
unboxedTupleArr = array (0,mAX_TUPLE_SIZE) [(i,mk_tuple Unboxed i) | i <- [0..mAX_TUPLE_SIZE]]
mk_tuple :: Boxity -> Int -> (TyCon,DataCon)
mk_tuple boxity arity = (tycon, tuple_con)
where
tycon = mkTupleTyCon tc_name tc_kind arity tyvars tuple_con boxity gen_info
tc_name = mkWiredInName mod (mkOccFS tcName name_str) tc_uniq
tc_kind = mkArrowKinds (map tyVarKind tyvars) res_kind
res_kind | isBoxed boxity = liftedTypeKind
| otherwise = unliftedTypeKind
tyvars | isBoxed boxity = take arity alphaTyVars
| otherwise = take arity openAlphaTyVars
tuple_con = pcDataCon name tyvars [] tyvar_tys tycon
tyvar_tys = mkTyVarTys tyvars
(mod_name, name_str) = mkTupNameStr boxity arity
name = mkWiredInName mod (mkOccFS dataName name_str) dc_uniq
tc_uniq = mkTupleTyConUnique boxity arity
dc_uniq = mkTupleDataConUnique boxity arity
mod = mkBasePkgModule mod_name
gen_info = mk_tc_gen_info mod tc_uniq tc_name tycon
unitTyCon = tupleTyCon Boxed 0
unitDataCon = head (tyConDataCons unitTyCon)
unitDataConId = dataConWorkId unitDataCon
pairTyCon = tupleTyCon Boxed 2
unboxedSingletonTyCon = tupleTyCon Unboxed 1
unboxedSingletonDataCon = tupleCon Unboxed 1
unboxedPairTyCon = tupleTyCon Unboxed 2
unboxedPairDataCon = tupleCon Unboxed 2
\end{code}
%************************************************************************
%* *
\subsection[TysWiredIn-boxed-prim]{The ``boxed primitive'' types (@Char@, @Int@, etc)}
%* *
%************************************************************************
\begin{code}
-- The Void type is represented as a data type with no constructors
-- It's a built in type (i.e. there's no way to define it in Haskell;
-- the nearest would be
--
-- data Void = -- No constructors!
--
-- ) It's lifted; there is only one value of this
-- type, namely "void", whose semantics is just bottom.
--
-- Haskell 98 drops the definition of a Void type, so we just 'simulate'
-- voidTy using ().
voidTy = unitTy
\end{code}
\begin{code}
charTy = mkTyConTy charTyCon
charTyCon = pcNonRecDataTyCon charTyConName [] [] [charDataCon]
charDataCon = pcDataCon charDataConName [] [] [charPrimTy] charTyCon
stringTy = mkListTy charTy -- convenience only
\end{code}
\begin{code}
intTy = mkTyConTy intTyCon
intTyCon = pcNonRecDataTyCon intTyConName [] [] [intDataCon]
intDataCon = pcDataCon intDataConName [] [] [intPrimTy] intTyCon
\end{code}
\begin{code}
wordTy = mkTyConTy wordTyCon
wordTyCon = pcNonRecDataTyCon wordTyConName [] [] [wordDataCon]
wordDataCon = pcDataCon wordDataConName [] [] [wordPrimTy] wordTyCon
\end{code}
\begin{code}
addrTy = mkTyConTy addrTyCon
addrTyCon = pcNonRecDataTyCon addrTyConName [] [] [addrDataCon]
addrDataCon = pcDataCon addrDataConName [] [] [addrPrimTy] addrTyCon
\end{code}
\begin{code}
ptrTy = mkTyConTy ptrTyCon
ptrTyCon = pcNonRecDataTyCon ptrTyConName alpha_tyvar [(True,False)] [ptrDataCon]
ptrDataCon = pcDataCon ptrDataConName alpha_tyvar [] [addrPrimTy] ptrTyCon
\end{code}
\begin{code}
funPtrTy = mkTyConTy funPtrTyCon
funPtrTyCon = pcNonRecDataTyCon funPtrTyConName alpha_tyvar [(True,False)] [funPtrDataCon]
funPtrDataCon = pcDataCon funPtrDataConName alpha_tyvar [] [addrPrimTy] funPtrTyCon
\end{code}
\begin{code}
floatTy = mkTyConTy floatTyCon
floatTyCon = pcNonRecDataTyCon floatTyConName [] [] [floatDataCon]
floatDataCon = pcDataCon floatDataConName [] [] [floatPrimTy] floatTyCon
\end{code}
\begin{code}
doubleTy = mkTyConTy doubleTyCon
doubleTyCon = pcNonRecDataTyCon doubleTyConName [] [] [doubleDataCon]
doubleDataCon = pcDataCon doubleDataConName [] [] [doublePrimTy] doubleTyCon
\end{code}
\begin{code}
stablePtrTyCon
= pcNonRecDataTyCon stablePtrTyConName
alpha_tyvar [(True,False)] [stablePtrDataCon]
where
stablePtrDataCon
= pcDataCon stablePtrDataConName
alpha_tyvar [] [mkStablePtrPrimTy alphaTy] stablePtrTyCon
\end{code}
%************************************************************************
%* *
\subsection[TysWiredIn-Integer]{@Integer@ and its related ``pairing'' types}
%* *
%************************************************************************
@Integer@ and its pals are not really primitive. @Integer@ itself, first:
\begin{code}
integerTy :: Type
integerTy = mkTyConTy integerTyCon
integerTyCon = pcNonRecDataTyCon integerTyConName
[] [] [smallIntegerDataCon, largeIntegerDataCon]
smallIntegerDataCon = pcDataCon smallIntegerDataConName
[] [] [intPrimTy] integerTyCon
largeIntegerDataCon = pcDataCon largeIntegerDataConName
[] [] [intPrimTy, byteArrayPrimTy] integerTyCon
\end{code}
%************************************************************************
%* *
\subsection[TysWiredIn-Bool]{The @Bool@ type}
%* *
%************************************************************************
An ordinary enumeration type, but deeply wired in. There are no
magical operations on @Bool@ (just the regular Prelude code).
{\em BEGIN IDLE SPECULATION BY SIMON}
This is not the only way to encode @Bool@. A more obvious coding makes
@Bool@ just a boxed up version of @Bool#@, like this:
\begin{verbatim}
type Bool# = Int#
data Bool = MkBool Bool#
\end{verbatim}
Unfortunately, this doesn't correspond to what the Report says @Bool@
looks like! Furthermore, we get slightly less efficient code (I
think) with this coding. @gtInt@ would look like this:
\begin{verbatim}
gtInt :: Int -> Int -> Bool
gtInt x y = case x of I# x# ->
case y of I# y# ->
case (gtIntPrim x# y#) of
b# -> MkBool b#
\end{verbatim}
Notice that the result of the @gtIntPrim@ comparison has to be turned
into an integer (here called @b#@), and returned in a @MkBool@ box.
The @if@ expression would compile to this:
\begin{verbatim}
case (gtInt x y) of
MkBool b# -> case b# of { 1# -> e1; 0# -> e2 }
\end{verbatim}
I think this code is a little less efficient than the previous code,
but I'm not certain. At all events, corresponding with the Report is
important. The interesting thing is that the language is expressive
enough to describe more than one alternative; and that a type doesn't
necessarily need to be a straightforwardly boxed version of its
primitive counterpart.
{\em END IDLE SPECULATION BY SIMON}
\begin{code}
boolTy = mkTyConTy boolTyCon
boolTyCon = pcTyCon EnumTyCon NonRecursive boolTyConName
[] [] [falseDataCon, trueDataCon]
falseDataCon = pcDataCon falseDataConName [] [] [] boolTyCon
trueDataCon = pcDataCon trueDataConName [] [] [] boolTyCon
falseDataConId = dataConWorkId falseDataCon
trueDataConId = dataConWorkId trueDataCon
\end{code}
%************************************************************************
%* *
\subsection[TysWiredIn-List]{The @List@ type (incl ``build'' magic)}
%* *
%************************************************************************
Special syntax, deeply wired in, but otherwise an ordinary algebraic
data types:
\begin{verbatim}
data [] a = [] | a : (List a)
data () = ()
data (,) a b = (,,) a b
...
\end{verbatim}
\begin{code}
mkListTy :: Type -> Type
mkListTy ty = mkTyConApp listTyCon [ty]
listTyCon = pcRecDataTyCon listTyConName
alpha_tyvar [(True,False)] [nilDataCon, consDataCon]
nilDataCon = pcDataCon nilDataConName alpha_tyvar [] [] listTyCon
consDataCon = pcDataCon consDataConName
alpha_tyvar [] [alphaTy, mkTyConApp listTyCon alpha_ty] listTyCon
-- Interesting: polymorphic recursion would help here.
-- We can't use (mkListTy alphaTy) in the defn of consDataCon, else mkListTy
-- gets the over-specific type (Type -> Type)
\end{code}
%************************************************************************
%* *
\subsection[TysWiredIn-Tuples]{The @Tuple@ types}
%* *
%************************************************************************
The tuple types are definitely magic, because they form an infinite
family.
\begin{itemize}
\item
They have a special family of type constructors, of type @TyCon@
These contain the tycon arity, but don't require a Unique.
\item
They have a special family of constructors, of type
@Id@. Again these contain their arity but don't need a Unique.
\item
There should be a magic way of generating the info tables and
entry code for all tuples.
But at the moment we just compile a Haskell source
file\srcloc{lib/prelude/...} containing declarations like:
\begin{verbatim}
data Tuple0 = Tup0
data Tuple2 a b = Tup2 a b
data Tuple3 a b c = Tup3 a b c
data Tuple4 a b c d = Tup4 a b c d
...
\end{verbatim}
The print-names associated with the magic @Id@s for tuple constructors
``just happen'' to be the same as those generated by these
declarations.
\item
The instance environment should have a magic way to know
that each tuple type is an instances of classes @Eq@, @Ix@, @Ord@ and
so on. \ToDo{Not implemented yet.}
\item
There should also be a way to generate the appropriate code for each
of these instances, but (like the info tables and entry code) it is
done by enumeration\srcloc{lib/prelude/InTup?.hs}.
\end{itemize}
\begin{code}
mkTupleTy :: Boxity -> Int -> [Type] -> Type
mkTupleTy boxity arity tys = mkTyConApp (tupleTyCon boxity arity) tys
unitTy = mkTupleTy Boxed 0 []
\end{code}
%************************************************************************
%* *
\subsection[TysWiredIn-PArr]{The @[::]@ type}
%* *
%************************************************************************
Special syntax for parallel arrays needs some wired in definitions.
\begin{code}
-- construct a type representing the application of the parallel array
-- constructor
--
mkPArrTy :: Type -> Type
mkPArrTy ty = mkTyConApp parrTyCon [ty]
-- represents the type constructor of parallel arrays
--
-- * this must match the definition in `PrelPArr'
--
-- NB: Although the constructor is given here, it will not be accessible in
-- user code as it is not in the environment of any compiled module except
-- `PrelPArr'.
--
parrTyCon :: TyCon
parrTyCon = tycon
where
tycon = mkAlgTyCon
parrTyConName
kind
tyvars
[] -- No context
[(True, False)]
(DataCons [parrDataCon]) -- The constructor defined in `PrelPArr'
[] -- No record selectors
DataTyCon
NonRecursive
genInfo
tyvars = alpha_tyvar
mod = nameModule parrTyConName
kind = mkArrowKinds (map tyVarKind tyvars) liftedTypeKind
genInfo = mk_tc_gen_info mod (nameUnique parrTyConName) parrTyConName tycon
parrDataCon :: DataCon
parrDataCon = pcDataCon
parrDataConName
alpha_tyvar -- forall'ed type variables
[] -- context
[intPrimTy, -- 1st argument: Int#
mkTyConApp -- 2nd argument: Array# a
arrayPrimTyCon
alpha_ty]
parrTyCon
-- check whether a type constructor is the constructor for parallel arrays
--
isPArrTyCon :: TyCon -> Bool
isPArrTyCon tc = tyConName tc == parrTyConName
-- fake array constructors
--
-- * these constructors are never really used to represent array values;
-- however, they are very convenient during desugaring (and, in particular,
-- in the pattern matching compiler) to treat array pattern just like
-- yet another constructor pattern
--
parrFakeCon :: Arity -> DataCon
parrFakeCon i | i > mAX_TUPLE_SIZE = mkPArrFakeCon i -- build one specially
parrFakeCon i = parrFakeConArr!i
-- pre-defined set of constructors
--
parrFakeConArr :: Array Int DataCon
parrFakeConArr = array (0, mAX_TUPLE_SIZE) [(i, mkPArrFakeCon i)
| i <- [0..mAX_TUPLE_SIZE]]
-- build a fake parallel array constructor for the given arity
--
mkPArrFakeCon :: Int -> DataCon
mkPArrFakeCon arity = pcDataCon name [tyvar] [] tyvarTys parrTyCon
where
tyvar = head alphaTyVars
tyvarTys = replicate arity $ mkTyVarTy tyvar
nameStr = mkFastString ("MkPArr" ++ show arity)
name = mkWiredInName mod (mkOccFS dataName nameStr) uniq
uniq = mkPArrDataConUnique arity
mod = mkBasePkgModule pREL_PARR_Name
-- checks whether a data constructor is a fake constructor for parallel arrays
--
isPArrFakeCon :: DataCon -> Bool
isPArrFakeCon dcon = dcon == parrFakeCon (dataConSourceArity dcon)
\end{code}
%************************************************************************
%* *
\subsection{Wired In Type Constructors for Representation Types}
%* *
%************************************************************************
The following code defines the wired in datatypes cross, plus, unit
and c_of needed for the generic methods.
Ok, so the basic story is that for each type constructor I need to
create 2 things - a TyCon and a DataCon and then we are basically
ok. There are going to be no arguments passed to these functions
because -well- there is nothing to pass to these functions.
\begin{code}
crossTyCon :: TyCon
crossTyCon = pcNonRecDataTyCon crossTyConName alpha_beta_tyvars [] [crossDataCon]
crossDataCon :: DataCon
crossDataCon = pcDataCon crossDataConName alpha_beta_tyvars [] [alphaTy, betaTy] crossTyCon
plusTyCon :: TyCon
plusTyCon = pcNonRecDataTyCon plusTyConName alpha_beta_tyvars [] [inlDataCon, inrDataCon]
inlDataCon, inrDataCon :: DataCon
inlDataCon = pcDataCon inlDataConName alpha_beta_tyvars [] [alphaTy] plusTyCon
inrDataCon = pcDataCon inrDataConName alpha_beta_tyvars [] [betaTy] plusTyCon
genUnitTyCon :: TyCon -- The "1" type constructor for generics
genUnitTyCon = pcNonRecDataTyCon genUnitTyConName [] [] [genUnitDataCon]
genUnitDataCon :: DataCon
genUnitDataCon = pcDataCon genUnitDataConName [] [] [] genUnitTyCon
\end{code}
|