summaryrefslogtreecommitdiff
path: root/ghc/compiler/rename/RnExpr.lhs
blob: daa9767c33bfa6336dadad05182640601e72846d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
%
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
\section[RnExpr]{Renaming of expressions}

Basically dependency analysis.

Handles @Match@, @GRHSs@, @HsExpr@, and @Qualifier@ datatypes.  In
general, all of these functions return a renamed thing, and a set of
free variables.

\begin{code}
module RnExpr (
	rnMatch, rnGRHSs, rnExpr, rnExprs, rnStmts,
	checkPrecMatch
   ) where

#include "HsVersions.h"

import {-# SOURCE #-} RnSource  ( rnSrcDecls, rnBindsAndThen, rnBinds ) 

-- 	RnSource imports RnBinds.rnTopMonoBinds, RnExpr.rnExpr
--	RnBinds	 imports RnExpr.rnMatch, etc
--	RnExpr	 imports [boot] RnSource.rnSrcDecls, RnSource.rnBinds

import HsSyn
import RdrHsSyn
import RnHsSyn
import TcRnMonad
import RnEnv
import RnNames		( importsFromLocalDecls )
import RnTypes		( rnHsTypeFVs, rnPat, litFVs, rnOverLit, rnPatsAndThen,
			  dupFieldErr, precParseErr, sectionPrecErr, patSigErr, checkTupSize )
import CmdLineOpts	( DynFlag(..) )
import BasicTypes	( Fixity(..), FixityDirection(..), IPName(..),
			  defaultFixity, negateFixity, compareFixity )
import PrelNames	( hasKey, assertIdKey, 
			  foldrName, buildName, 
			  enumClassName, 
			  loopAName, choiceAName, appAName, arrAName, composeAName, firstAName,
			  splitName, fstName, sndName, ioDataConName, 
			  replicatePName, mapPName, filterPName,
			  crossPName, zipPName, toPName,
			  enumFromToPName, enumFromThenToPName, assertErrorName,
			  negateName, monadNames, mfixName )
import Name		( Name, nameOccName )
import NameSet
import UnicodeUtil	( stringToUtf8 )
import UniqFM		( isNullUFM )
import UniqSet		( emptyUniqSet )
import Util		( isSingleton, mapAndUnzip )
import List		( intersectBy, unzip4 )
import ListSetOps	( removeDups )
import Outputable
import SrcLoc		( noSrcLoc )
import FastString
\end{code}


************************************************************************
*									*
\subsection{Match}
*									*
************************************************************************

\begin{code}
rnMatch :: HsMatchContext Name -> RdrNameMatch -> RnM (RenamedMatch, FreeVars)

rnMatch ctxt match@(Match pats maybe_rhs_sig grhss)
  = addSrcLoc (getMatchLoc match)	$

	-- Deal with the rhs type signature
    bindPatSigTyVarsFV rhs_sig_tys	$ 
    doptM Opt_GlasgowExts		`thenM` \ opt_GlasgowExts ->
    (case maybe_rhs_sig of
	Nothing -> returnM (Nothing, emptyFVs)
	Just ty | opt_GlasgowExts -> rnHsTypeFVs doc_sig ty	`thenM` \ (ty', ty_fvs) ->
				     returnM (Just ty', ty_fvs)
		| otherwise	  -> addErr (patSigErr ty)	`thenM_`
				     returnM (Nothing, emptyFVs)
    )					`thenM` \ (maybe_rhs_sig', ty_fvs) ->

	-- Now the main event
    rnPatsAndThen ctxt True pats $ \ pats' ->
    rnGRHSs ctxt grhss		 `thenM` \ (grhss', grhss_fvs) ->

    returnM (Match pats' maybe_rhs_sig' grhss', grhss_fvs `plusFV` ty_fvs)
	-- The bindPatSigTyVarsFV and rnPatsAndThen will remove the bound FVs
  where
     rhs_sig_tys =  case maybe_rhs_sig of
			Nothing -> []
			Just ty -> [ty]
     doc_sig = text "In a result type-signature"
\end{code}


%************************************************************************
%*									*
\subsubsection{Guarded right-hand sides (GRHSs)}
%*									*
%************************************************************************

\begin{code}
rnGRHSs :: HsMatchContext Name -> RdrNameGRHSs -> RnM (RenamedGRHSs, FreeVars)

rnGRHSs ctxt (GRHSs grhss binds _)
  = rnBindsAndThen binds	$ \ binds' ->
    mapFvRn (rnGRHS ctxt) grhss	`thenM` \ (grhss', fvGRHSs) ->
    returnM (GRHSs grhss' binds' placeHolderType, fvGRHSs)

rnGRHS ctxt (GRHS guarded locn)
  = addSrcLoc locn $		    
    doptM Opt_GlasgowExts		`thenM` \ opt_GlasgowExts ->
    checkM (opt_GlasgowExts || is_standard_guard guarded)
	   (addWarn (nonStdGuardErr guarded))	`thenM_` 

    rnStmts (PatGuard ctxt) guarded	`thenM` \ (guarded', fvs) ->
    returnM (GRHS guarded' locn, fvs)
  where
	-- Standard Haskell 1.4 guards are just a single boolean
	-- expression, rather than a list of qualifiers as in the
	-- Glasgow extension
    is_standard_guard [ResultStmt _ _]                 = True
    is_standard_guard [ExprStmt _ _ _, ResultStmt _ _] = True
    is_standard_guard other	      		       = False
\end{code}

%************************************************************************
%*									*
\subsubsection{Expressions}
%*									*
%************************************************************************

\begin{code}
rnExprs :: [RdrNameHsExpr] -> RnM ([RenamedHsExpr], FreeVars)
rnExprs ls = rnExprs' ls emptyUniqSet
 where
  rnExprs' [] acc = returnM ([], acc)
  rnExprs' (expr:exprs) acc
   = rnExpr expr 	        `thenM` \ (expr', fvExpr) ->

	-- Now we do a "seq" on the free vars because typically it's small
	-- or empty, especially in very long lists of constants
    let
	acc' = acc `plusFV` fvExpr
    in
    (grubby_seqNameSet acc' rnExprs') exprs acc'	`thenM` \ (exprs', fvExprs) ->
    returnM (expr':exprs', fvExprs)

-- Grubby little function to do "seq" on namesets; replace by proper seq when GHC can do seq
grubby_seqNameSet ns result | isNullUFM ns = result
			    | otherwise    = result
\end{code}

Variables. We look up the variable and return the resulting name. 

\begin{code}
rnExpr :: RdrNameHsExpr -> RnM (RenamedHsExpr, FreeVars)

rnExpr (HsVar v)
  = lookupOccRn v	`thenM` \ name ->
    doptM Opt_IgnoreAsserts `thenM` \ ignore_asserts ->
    if name `hasKey` assertIdKey && not ignore_asserts then
	-- We expand it to (GHC.Err.assertError location_string)
        mkAssertErrorExpr	`thenM` \ (e, fvs) ->
	returnM (e, fvs `addOneFV` name)
		-- Keep 'assert' as a free var, to ensure it's not reported as unused!
    else
        -- The normal case.  Even if the Id was 'assert', if we are 
	-- ignoring assertions we leave it as GHC.Base.assert; 
	-- this function just ignores its first arg.
       returnM (HsVar name, unitFV name)

rnExpr (HsIPVar v)
  = newIPName v			`thenM` \ name ->
    let 
	fvs = case name of
		Linear _  -> mkFVs [splitName, fstName, sndName]
		Dupable _ -> emptyFVs 
    in   
    returnM (HsIPVar name, fvs)

rnExpr (HsLit lit) 
  = litFVs lit		`thenM` \ fvs -> 
    returnM (HsLit lit, fvs)

rnExpr (HsOverLit lit) 
  = rnOverLit lit		`thenM` \ (lit', fvs) ->
    returnM (HsOverLit lit', fvs)

rnExpr (HsLam match)
  = rnMatch LambdaExpr match	`thenM` \ (match', fvMatch) ->
    returnM (HsLam match', fvMatch)

rnExpr (HsApp fun arg)
  = rnExpr fun		`thenM` \ (fun',fvFun) ->
    rnExpr arg		`thenM` \ (arg',fvArg) ->
    returnM (HsApp fun' arg', fvFun `plusFV` fvArg)

rnExpr (OpApp e1 op _ e2) 
  = rnExpr e1				`thenM` \ (e1', fv_e1) ->
    rnExpr e2				`thenM` \ (e2', fv_e2) ->
    rnExpr op				`thenM` \ (op'@(HsVar op_name), fv_op) ->

	-- Deal with fixity
	-- When renaming code synthesised from "deriving" declarations
	-- we're in Interface mode, and we should ignore fixity; assume
	-- that the deriving code generator got the association correct
	-- Don't even look up the fixity when in interface mode
    getModeRn				`thenM` \ mode -> 
    (if isInterfaceMode mode
	then returnM (OpApp e1' op' defaultFixity e2')
	else lookupFixityRn op_name		`thenM` \ fixity ->
	     mkOpAppRn e1' op' fixity e2'
    )					`thenM` \ final_e -> 

    returnM (final_e,
	      fv_e1 `plusFV` fv_op `plusFV` fv_e2)

rnExpr (NegApp e _)
  = rnExpr e			`thenM` \ (e', fv_e) ->
    lookupSyntaxName negateName	`thenM` \ (neg_name, fv_neg) ->
    mkNegAppRn e' neg_name	`thenM` \ final_e ->
    returnM (final_e, fv_e `plusFV` fv_neg)

rnExpr (HsPar e)
  = rnExpr e 		`thenM` \ (e', fvs_e) ->
    returnM (HsPar e', fvs_e)

-- Template Haskell extensions
-- Don't ifdef-GHCI them because we want to fail gracefully
-- (not with an rnExpr crash) in a stage-1 compiler.
rnExpr e@(HsBracket br_body loc)
  = addSrcLoc loc		$
    checkTH e "bracket"		`thenM_`
    rnBracket br_body		`thenM` \ (body', fvs_e) ->
    returnM (HsBracket body' loc, fvs_e `plusFV` thProxyName)

rnExpr e@(HsSplice n splice loc)
  = addSrcLoc loc		$
    checkTH e "splice"		`thenM_`
    newLocalsRn [(n,loc)]	`thenM` \ [n'] ->
    rnExpr splice 		`thenM` \ (splice', fvs_e) ->
    returnM (HsSplice n' splice' loc, fvs_e `plusFV` thProxyName)

rnExpr e@(HsReify (Reify flavour name))
  = checkTH e "reify"		`thenM_`
    lookupGlobalOccRn name	`thenM` \ name' ->
	-- For now, we can only reify top-level things
    returnM (HsReify (Reify flavour name'), unitFV name' `plusFV` thProxyName)

rnExpr section@(SectionL expr op)
  = rnExpr expr	 				`thenM` \ (expr', fvs_expr) ->
    rnExpr op	 				`thenM` \ (op', fvs_op) ->
    checkSectionPrec InfixL section op' expr' `thenM_`
    returnM (SectionL expr' op', fvs_op `plusFV` fvs_expr)

rnExpr section@(SectionR op expr)
  = rnExpr op	 				`thenM` \ (op',   fvs_op) ->
    rnExpr expr	 				`thenM` \ (expr', fvs_expr) ->
    checkSectionPrec InfixR section op' expr'	`thenM_`
    returnM (SectionR op' expr', fvs_op `plusFV` fvs_expr)

rnExpr (HsCoreAnn ann expr)
  = rnExpr expr `thenM` \ (expr', fvs_expr) ->
    returnM (HsCoreAnn ann expr', fvs_expr)

rnExpr (HsSCC lbl expr)
  = rnExpr expr	 	`thenM` \ (expr', fvs_expr) ->
    returnM (HsSCC lbl expr', fvs_expr)

rnExpr (HsCase expr ms src_loc)
  = addSrcLoc src_loc $
    rnExpr expr		 		`thenM` \ (new_expr, e_fvs) ->
    mapFvRn (rnMatch CaseAlt) ms	`thenM` \ (new_ms, ms_fvs) ->
    returnM (HsCase new_expr new_ms src_loc, e_fvs `plusFV` ms_fvs)

rnExpr (HsLet binds expr)
  = rnBindsAndThen binds	$ \ binds' ->
    rnExpr expr			 `thenM` \ (expr',fvExpr) ->
    returnM (HsLet binds' expr', fvExpr)

rnExpr e@(HsDo do_or_lc stmts _ _ src_loc)
  = addSrcLoc src_loc $
    rnStmts do_or_lc stmts		`thenM` \ (stmts', fvs) ->

	-- Check the statement list ends in an expression
    case last stmts' of {
	ResultStmt _ _ -> returnM () ;
	_              -> addErr (doStmtListErr do_or_lc e)
    }					`thenM_`

	-- Generate the rebindable syntax for the monad
    lookupSyntaxNames syntax_names	`thenM` \ (syntax_names', monad_fvs) ->

    returnM (HsDo do_or_lc stmts' syntax_names' placeHolderType src_loc, 
	     fvs `plusFV` implicit_fvs do_or_lc `plusFV` monad_fvs)
  where
    implicit_fvs PArrComp = mkFVs [replicatePName, mapPName, filterPName, crossPName, zipPName]
    implicit_fvs ListComp = mkFVs [foldrName, buildName]
    implicit_fvs DoExpr   = emptyFVs
    implicit_fvs MDoExpr  = emptyFVs

    syntax_names = case do_or_lc of
			DoExpr  -> monadNames
			MDoExpr -> monadNames ++ [mfixName]
			other   -> []

rnExpr (ExplicitList _ exps)
  = rnExprs exps		 	`thenM` \ (exps', fvs) ->
    returnM  (ExplicitList placeHolderType exps', fvs `addOneFV` listTyCon_name)

rnExpr (ExplicitPArr _ exps)
  = rnExprs exps		 	`thenM` \ (exps', fvs) ->
    returnM  (ExplicitPArr placeHolderType exps', 
	       fvs `addOneFV` toPName `addOneFV` parrTyCon_name)

rnExpr e@(ExplicitTuple exps boxity)
  = checkTupSize tup_size			`thenM_`
    rnExprs exps	 			`thenM` \ (exps', fvs) ->
    returnM (ExplicitTuple exps' boxity, fvs `addOneFV` tycon_name)
  where
    tup_size   = length exps
    tycon_name = tupleTyCon_name boxity tup_size

rnExpr (RecordCon con_id rbinds)
  = lookupOccRn con_id 			`thenM` \ conname ->
    rnRbinds "construction" rbinds	`thenM` \ (rbinds', fvRbinds) ->
    returnM (RecordCon conname rbinds', fvRbinds `addOneFV` conname)

rnExpr (RecordUpd expr rbinds)
  = rnExpr expr			`thenM` \ (expr', fvExpr) ->
    rnRbinds "update" rbinds	`thenM` \ (rbinds', fvRbinds) ->
    returnM (RecordUpd expr' rbinds', fvExpr `plusFV` fvRbinds)

rnExpr (ExprWithTySig expr pty)
  = rnExpr expr			`thenM` \ (expr', fvExpr) ->
    rnHsTypeFVs doc pty		`thenM` \ (pty', fvTy) ->
    returnM (ExprWithTySig expr' pty', fvExpr `plusFV` fvTy)
  where 
    doc = text "In an expression type signature"

rnExpr (HsIf p b1 b2 src_loc)
  = addSrcLoc src_loc $
    rnExpr p		`thenM` \ (p', fvP) ->
    rnExpr b1		`thenM` \ (b1', fvB1) ->
    rnExpr b2		`thenM` \ (b2', fvB2) ->
    returnM (HsIf p' b1' b2' src_loc, plusFVs [fvP, fvB1, fvB2])

rnExpr (HsType a)
  = rnHsTypeFVs doc a	`thenM` \ (t, fvT) -> 
    returnM (HsType t, fvT)
  where 
    doc = text "In a type argument"

rnExpr (ArithSeqIn seq)
  = rnArithSeq seq	 `thenM` \ (new_seq, fvs) ->
    returnM (ArithSeqIn new_seq, fvs `addOneFV` enumClassName)

rnExpr (PArrSeqIn seq)
  = rnArithSeq seq	 `thenM` \ (new_seq, fvs) ->
    returnM (PArrSeqIn new_seq, 
	     fvs `plusFV` mkFVs [enumFromToPName, enumFromThenToPName])
\end{code}

These three are pattern syntax appearing in expressions.
Since all the symbols are reservedops we can simply reject them.
We return a (bogus) EWildPat in each case.

\begin{code}
rnExpr e@EWildPat = addErr (patSynErr e)	`thenM_`
		    returnM (EWildPat, emptyFVs)

rnExpr e@(EAsPat _ _) = addErr (patSynErr e)	`thenM_`
		        returnM (EWildPat, emptyFVs)

rnExpr e@(ELazyPat _) = addErr (patSynErr e)	`thenM_`
		        returnM (EWildPat, emptyFVs)
\end{code}

%************************************************************************
%*									*
	Arrow notation
%*									*
%************************************************************************

\begin{code}
rnExpr (HsProc pat body src_loc)
  = addSrcLoc src_loc $
    rnPatsAndThen ProcExpr True [pat] $ \ [pat'] ->
    rnCmdTop body	              `thenM` \ (body',fvBody) ->
    returnM (HsProc pat' body' src_loc, fvBody)

rnExpr (HsArrApp arrow arg _ ho rtl srcloc)
  = rnExpr arrow	`thenM` \ (arrow',fvArrow) ->
    rnExpr arg		`thenM` \ (arg',fvArg) ->
    returnM (HsArrApp arrow' arg' placeHolderType ho rtl srcloc,
	     fvArrow `plusFV` fvArg)

-- infix form
rnExpr (HsArrForm op (Just _) [arg1, arg2] srcloc)
  = rnExpr op		`thenM` \ (op'@(HsVar op_name),fv_op) ->
    rnCmdTop arg1	`thenM` \ (arg1',fv_arg1) ->
    rnCmdTop arg2	`thenM` \ (arg2',fv_arg2) ->

	-- Deal with fixity

    lookupFixityRn op_name		`thenM` \ fixity ->
    mkOpFormRn arg1' op' fixity arg2'	`thenM` \ final_e -> 

    returnM (final_e,
	      fv_arg1 `plusFV` fv_op `plusFV` fv_arg2)

rnExpr (HsArrForm op fixity cmds srcloc)
  = rnExpr op		`thenM` \ (op',fvOp) ->
    rnCmdArgs cmds	`thenM` \ (cmds',fvCmds) ->
    returnM (HsArrForm op' fixity cmds' srcloc,
	     fvOp `plusFV` fvCmds)

---------------------------
-- Deal with fixity (cf mkOpAppRn for the method)

mkOpFormRn :: RenamedHsCmdTop		-- Left operand; already rearranged
	  -> RenamedHsExpr -> Fixity 	-- Operator and fixity
	  -> RenamedHsCmdTop		-- Right operand (not an infix)
	  -> RnM RenamedHsCmd

---------------------------
-- (e11 `op1` e12) `op2` e2
mkOpFormRn a1@(HsCmdTop (HsArrForm op1 (Just fix1) [a11,a12] loc1) _ _ _) op2 fix2 a2
  | nofix_error
  = addErr (precParseErr (ppr_op op1,fix1) (ppr_op op2,fix2))	`thenM_`
    returnM (HsArrForm op2 (Just fix2) [a1, a2] loc1)

  | associate_right
  = mkOpFormRn a12 op2 fix2 a2		`thenM` \ new_c ->
    returnM (HsArrForm op1 (Just fix1)
	[a11, HsCmdTop new_c [] placeHolderType []] loc1)
  where
    (nofix_error, associate_right) = compareFixity fix1 fix2

---------------------------
--	Default case
mkOpFormRn arg1 op fix arg2 			-- Default case, no rearrangment
  = returnM (HsArrForm op (Just fix) [arg1, arg2] noSrcLoc)

\end{code}


%************************************************************************
%*									*
	Arrow commands
%*									*
%************************************************************************

\begin{code}
rnCmdArgs [] = returnM ([], emptyFVs)
rnCmdArgs (arg:args)
  = rnCmdTop arg	`thenM` \ (arg',fvArg) ->
    rnCmdArgs args	`thenM` \ (args',fvArgs) ->
    returnM (arg':args', fvArg `plusFV` fvArgs)

rnCmdTop (HsCmdTop cmd _ _ _) 
  = rnExpr (convertOpFormsCmd cmd)	`thenM` \ (cmd', fvCmd) ->
    let 
	cmd_names = [arrAName, composeAName, firstAName] ++
		    nameSetToList (methodNamesCmd cmd')
    in
	-- Generate the rebindable syntax for the monad
    lookupSyntaxNames cmd_names		`thenM` \ (cmd_names', cmd_fvs) ->

    returnM (HsCmdTop cmd' [] placeHolderType cmd_names', 
	     fvCmd `plusFV` cmd_fvs)

---------------------------------------------------
-- convert OpApp's in a command context to HsArrForm's

convertOpFormsCmd :: HsCmd id -> HsCmd id

convertOpFormsCmd (HsApp c e) = HsApp (convertOpFormsCmd c) e

convertOpFormsCmd (HsLam match) = HsLam (convertOpFormsMatch match)

convertOpFormsCmd (OpApp c1 op fixity c2)
  = let
	arg1 = HsCmdTop (convertOpFormsCmd c1) [] placeHolderType []
	arg2 = HsCmdTop (convertOpFormsCmd c2) [] placeHolderType []
    in
    HsArrForm op (Just fixity) [arg1, arg2] noSrcLoc

convertOpFormsCmd (HsPar c) = HsPar (convertOpFormsCmd c)

convertOpFormsCmd (HsCase exp matches locn)
  = HsCase exp (map convertOpFormsMatch matches) locn

convertOpFormsCmd (HsIf exp c1 c2 locn)
  = HsIf exp (convertOpFormsCmd c1) (convertOpFormsCmd c2) locn

convertOpFormsCmd (HsLet binds cmd)
  = HsLet binds (convertOpFormsCmd cmd)

convertOpFormsCmd (HsDo ctxt stmts ids ty locn)
  = HsDo ctxt (map convertOpFormsStmt stmts) ids ty locn

-- Anything else is unchanged.  This includes HsArrForm (already done),
-- things with no sub-commands, and illegal commands (which will be
-- caught by the type checker)
convertOpFormsCmd c = c

convertOpFormsStmt (BindStmt pat cmd locn)
  = BindStmt pat (convertOpFormsCmd cmd) locn
convertOpFormsStmt (ResultStmt cmd locn)
  = ResultStmt (convertOpFormsCmd cmd) locn
convertOpFormsStmt (ExprStmt cmd ty locn)
  = ExprStmt (convertOpFormsCmd cmd) ty locn
convertOpFormsStmt (RecStmt stmts lvs rvs es)
  = RecStmt (map convertOpFormsStmt stmts) lvs rvs es
convertOpFormsStmt stmt = stmt

convertOpFormsMatch (Match pat mty grhss)
  = Match pat mty (convertOpFormsGRHSs grhss)

convertOpFormsGRHSs (GRHSs grhss binds ty)
  = GRHSs (map convertOpFormsGRHS grhss) binds ty

convertOpFormsGRHS (GRHS stmts locn)
  = let
	(ResultStmt cmd locn') = last stmts
    in
    GRHS (init stmts ++ [ResultStmt (convertOpFormsCmd cmd) locn']) locn

---------------------------------------------------
type CmdNeeds = FreeVars	-- Only inhabitants are 
				-- 	appAName, choiceAName, loopAName

-- find what methods the Cmd needs (loop, choice, apply)
methodNamesCmd :: HsCmd Name -> CmdNeeds

methodNamesCmd cmd@(HsArrApp _arrow _arg _ HsFirstOrderApp _rtl _srcloc)
  = emptyFVs
methodNamesCmd cmd@(HsArrApp _arrow _arg _ HsHigherOrderApp _rtl _srcloc)
  = unitFV appAName
methodNamesCmd cmd@(HsArrForm {}) = emptyFVs

methodNamesCmd (HsPar c) = methodNamesCmd c

methodNamesCmd (HsIf p c1 c2 loc)
  = methodNamesCmd c1 `plusFV` methodNamesCmd c2 `addOneFV` choiceAName

methodNamesCmd (HsLet b c) = methodNamesCmd c

methodNamesCmd (HsDo sc stmts rbs ty loc) = methodNamesStmts stmts

methodNamesCmd (HsApp c e) = methodNamesCmd c

methodNamesCmd (HsLam match) = methodNamesMatch match

methodNamesCmd (HsCase scrut matches loc)
  = plusFVs (map methodNamesMatch matches) `addOneFV` choiceAName

methodNamesCmd other = emptyFVs
   -- Other forms can't occur in commands, but it's not convenient 
   -- to error here so we just do what's convenient.
   -- The type checker will complain later

---------------------------------------------------
methodNamesMatch (Match pats sig_ty grhss) = methodNamesGRHSs grhss

-------------------------------------------------
methodNamesGRHSs (GRHSs grhss binds ty) = plusFVs (map methodNamesGRHS grhss)

-------------------------------------------------
methodNamesGRHS (GRHS stmts loc) = methodNamesStmt (last stmts)

---------------------------------------------------
methodNamesStmts stmts = plusFVs (map methodNamesStmt stmts)

---------------------------------------------------
methodNamesStmt (ResultStmt cmd loc) = methodNamesCmd cmd
methodNamesStmt (ExprStmt cmd ty loc) = methodNamesCmd cmd
methodNamesStmt (BindStmt pat cmd loc) = methodNamesCmd cmd
methodNamesStmt (RecStmt stmts lvs rvs es)
  = methodNamesStmts stmts `addOneFV` loopAName
methodNamesStmt (LetStmt b)  = emptyFVs
methodNamesStmt (ParStmt ss) = emptyFVs
   -- ParStmt can't occur in commands, but it's not convenient to error 
   -- here so we just do what's convenient
\end{code}


%************************************************************************
%*									*
	Arithmetic sequences
%*									*
%************************************************************************

\begin{code}
rnArithSeq (From expr)
 = rnExpr expr 	`thenM` \ (expr', fvExpr) ->
   returnM (From expr', fvExpr)

rnArithSeq (FromThen expr1 expr2)
 = rnExpr expr1 	`thenM` \ (expr1', fvExpr1) ->
   rnExpr expr2	`thenM` \ (expr2', fvExpr2) ->
   returnM (FromThen expr1' expr2', fvExpr1 `plusFV` fvExpr2)

rnArithSeq (FromTo expr1 expr2)
 = rnExpr expr1	`thenM` \ (expr1', fvExpr1) ->
   rnExpr expr2	`thenM` \ (expr2', fvExpr2) ->
   returnM (FromTo expr1' expr2', fvExpr1 `plusFV` fvExpr2)

rnArithSeq (FromThenTo expr1 expr2 expr3)
 = rnExpr expr1	`thenM` \ (expr1', fvExpr1) ->
   rnExpr expr2	`thenM` \ (expr2', fvExpr2) ->
   rnExpr expr3	`thenM` \ (expr3', fvExpr3) ->
   returnM (FromThenTo expr1' expr2' expr3',
	    plusFVs [fvExpr1, fvExpr2, fvExpr3])
\end{code}


%************************************************************************
%*									*
\subsubsection{@Rbinds@s and @Rpats@s: in record expressions}
%*									*
%************************************************************************

\begin{code}
rnRbinds str rbinds 
  = mappM_ field_dup_err dup_fields	`thenM_`
    mapFvRn rn_rbind rbinds		`thenM` \ (rbinds', fvRbind) ->
    returnM (rbinds', fvRbind)
  where
    (_, dup_fields) = removeDups compare [ f | (f,_) <- rbinds ]

    field_dup_err dups = addErr (dupFieldErr str dups)

    rn_rbind (field, expr)
      = lookupGlobalOccRn field	`thenM` \ fieldname ->
	rnExpr expr		`thenM` \ (expr', fvExpr) ->
	returnM ((fieldname, expr'), fvExpr `addOneFV` fieldname)
\end{code}

%************************************************************************
%*									*
	Template Haskell brackets
%*									*
%************************************************************************

\begin{code}
rnBracket (ExpBr e) = rnExpr e		`thenM` \ (e', fvs) ->
		      returnM (ExpBr e', fvs)
rnBracket (PatBr p) = rnPat p		`thenM` \ (p', fvs) ->
		      returnM (PatBr p', fvs)
rnBracket (TypBr t) = rnHsTypeFVs doc t	`thenM` \ (t', fvs) ->
		      returnM (TypBr t', fvs)
		    where
		      doc = ptext SLIT("In a Template-Haskell quoted type")
rnBracket (DecBr group) 
  = importsFromLocalDecls group `thenM` \ (rdr_env, avails) ->
	-- Discard avails (not useful here)

    updGblEnv (\gbl -> gbl { tcg_rdr_env = rdr_env `plusGlobalRdrEnv` tcg_rdr_env gbl }) $

    rnSrcDecls group	`thenM` \ (tcg_env, group', dus) ->
	-- Discard the tcg_env; it contains only extra info about fixity

    returnM (DecBr group', duUses dus `minusNameSet` duDefs dus)
\end{code}

%************************************************************************
%*									*
\subsubsection{@Stmt@s: in @do@ expressions}
%*									*
%************************************************************************

\begin{code}
rnStmts :: HsStmtContext Name -> [RdrNameStmt] -> RnM ([RenamedStmt], FreeVars)

rnStmts MDoExpr stmts = rnMDoStmts         stmts
rnStmts ctxt   stmts  = rnNormalStmts ctxt stmts

rnNormalStmts :: HsStmtContext Name -> [RdrNameStmt] -> RnM ([RenamedStmt], FreeVars)	
-- Used for cases *other* than recursive mdo
-- Implements nested scopes

rnNormalStmts ctxt [] = returnM ([], emptyFVs)
	-- Happens at the end of the sub-lists of a ParStmts

rnNormalStmts ctxt (ExprStmt expr _ src_loc : stmts)
  = addSrcLoc src_loc 	        $
    rnExpr expr		        `thenM` \ (expr', fv_expr) ->
    rnNormalStmts ctxt stmts	`thenM` \ (stmts', fvs) ->
    returnM (ExprStmt expr' placeHolderType src_loc : stmts',
	     fv_expr `plusFV` fvs)

rnNormalStmts ctxt [ResultStmt expr src_loc]
  = addSrcLoc src_loc 	$
    rnExpr expr		`thenM` \ (expr', fv_expr) ->
    returnM ([ResultStmt expr' src_loc], fv_expr)

rnNormalStmts ctxt (BindStmt pat expr src_loc : stmts) 
  = addSrcLoc src_loc 			$
    rnExpr expr				`thenM` \ (expr', fv_expr) ->
	-- The binders do not scope over the expression

    let
     reportUnused = 
       case ctxt of
         ParStmtCtxt{} -> False
	 _ -> True
    in
    rnPatsAndThen (StmtCtxt ctxt) reportUnused [pat] $ \ [pat'] ->
    rnNormalStmts ctxt stmts		             `thenM` \ (stmts', fvs) ->
    returnM (BindStmt pat' expr' src_loc : stmts',
	     fv_expr `plusFV` fvs)	-- fv_expr shouldn't really be filtered by
					-- the rnPatsAndThen, but it does not matter

rnNormalStmts ctxt (LetStmt binds : stmts)
  = checkErr (ok ctxt binds) (badIpBinds binds)	`thenM_`
    rnBindsAndThen binds			( \ binds' ->
    rnNormalStmts ctxt stmts			`thenM` \ (stmts', fvs) ->
    returnM (LetStmt binds' : stmts', fvs))
  where
	-- We do not allow implicit-parameter bindings in a parallel
	-- list comprehension.  I'm not sure what it might mean.
    ok (ParStmtCtxt _) (IPBinds _) = False	
    ok _	       _	   = True

rnNormalStmts ctxt (ParStmt stmtss : stmts)
  = doptM Opt_GlasgowExts		`thenM` \ opt_GlasgowExts ->
    checkM opt_GlasgowExts parStmtErr 	`thenM_`
    mapFvRn rn_branch stmtss 		`thenM` \ (stmtss', fv_stmtss) ->
    let
	bndrss :: [[Name]]	-- NB: Name, not RdrName
	bndrss        = map collectStmtsBinders stmtss'
	(bndrs, dups) = removeDups cmpByOcc (concat bndrss)
    in
    mappM dupErr dups			`thenM` \ _ ->
    bindLocalNamesFV bndrs		$
	-- Note: binders are returned in scope order, so one may
	--       shadow the next; e.g. x <- xs; x <- ys
    rnNormalStmts ctxt stmts			`thenM` \ (stmts', fvs) ->

	-- Cut down the exported binders to just the ones needed in the body
    let
	used_bndrs_s = map (filter (`elemNameSet` fvs)) bndrss
	unused_bndrs = filter (not . (`elemNameSet` fvs)) bndrs
    in
     -- With processing of the branches and the tail of comprehension done,
     -- we can finally compute&report any unused ParStmt binders.
    warnUnusedMatches unused_bndrs  `thenM_`
    returnM (ParStmt (stmtss' `zip` used_bndrs_s) : stmts', 
	     fv_stmtss `plusFV` fvs)
  where
    rn_branch (stmts, _) = rnNormalStmts (ParStmtCtxt ctxt) stmts

    cmpByOcc n1 n2 = nameOccName n1 `compare` nameOccName n2
    dupErr (v:_) = addErr (ptext SLIT("Duplicate binding in parallel list comprehension for:")
			    <+> quotes (ppr v))

rnNormalStmts ctxt (RecStmt rec_stmts _ _ _ : stmts)
  = bindLocalsRn doc (collectStmtsBinders rec_stmts)	$ \ _ ->
    rn_rec_stmts rec_stmts				`thenM` \ segs ->
    rnNormalStmts ctxt stmts				`thenM` \ (stmts', fvs) ->
    let
	segs_w_fwd_refs     	 = addFwdRefs segs
	(ds, us, fs, rec_stmts') = unzip4 segs_w_fwd_refs
	later_vars = nameSetToList (plusFVs ds `intersectNameSet` fvs)
	fwd_vars   = nameSetToList (plusFVs fs)
	uses	   = plusFVs us
    in	
    returnM (RecStmt rec_stmts' later_vars fwd_vars [] : stmts', uses `plusFV` fvs)
  where
    doc = text "In a recursive do statement"
\end{code}


%************************************************************************
%*									*
\subsubsection{mdo expressions}
%*									*
%************************************************************************

\begin{code}
type FwdRefs = NameSet
type Segment stmts = (Defs,
		      Uses, 	-- May include defs
		      FwdRefs,	-- A subset of uses that are 
				--   (a) used before they are bound in this segment, or 
				--   (b) used here, and bound in subsequent segments
		      stmts)	-- Either Stmt or [Stmt]


----------------------------------------------------
rnMDoStmts :: [RdrNameStmt] -> RnM ([RenamedStmt], FreeVars)
rnMDoStmts stmts
  = 	-- Step1: bring all the binders of the mdo into scope
	-- Remember that this also removes the binders from the
	-- finally-returned free-vars
    bindLocalsRn doc (collectStmtsBinders stmts)	$ \ _ ->
	
	-- Step 2: Rename each individual stmt, making a
	--	   singleton segment.  At this stage the FwdRefs field
	--	   isn't finished: it's empty for all except a BindStmt
	--	   for which it's the fwd refs within the bind itself
	-- 	   (This set may not be empty, because we're in a recursive 
	--	    context.)
    rn_rec_stmts stmts					`thenM` \ segs ->
    let
	-- Step 3: Fill in the fwd refs.
	-- 	   The segments are all singletons, but their fwd-ref
	--	   field mentions all the things used by the segment
	--	   that are bound after their use
	segs_w_fwd_refs = addFwdRefs segs

	-- Step 4: Group together the segments to make bigger segments
	--	   Invariant: in the result, no segment uses a variable
	--	   	      bound in a later segment
	grouped_segs = glomSegments segs_w_fwd_refs

	-- Step 5: Turn the segments into Stmts
	--	   Use RecStmt when and only when there are fwd refs
	--	   Also gather up the uses from the end towards the
	--	   start, so we can tell the RecStmt which things are
	--	   used 'after' the RecStmt
	stmts_w_fvs = segsToStmts grouped_segs
    in
    returnM stmts_w_fvs
  where
    doc = text "In a mdo-expression"


----------------------------------------------------
rn_rec_stmt :: RdrNameStmt -> RnM [Segment RenamedStmt]
	-- Rename a Stmt that is inside a RecStmt (or mdo)
	-- Assumes all binders are already in scope
	-- Turns each stmt into a singleton Stmt

rn_rec_stmt (ExprStmt expr _ src_loc)
  = addSrcLoc src_loc (rnExpr expr)	`thenM` \ (expr', fvs) ->
    returnM [(emptyNameSet, fvs, emptyNameSet,
	      ExprStmt expr' placeHolderType src_loc)]

rn_rec_stmt (ResultStmt expr src_loc)
  = addSrcLoc src_loc (rnExpr expr)	`thenM` \ (expr', fvs) ->
    returnM [(emptyNameSet, fvs, emptyNameSet,
	      ResultStmt expr' src_loc)]

rn_rec_stmt (BindStmt pat expr src_loc)
  = addSrcLoc src_loc 	$
    rnExpr expr		`thenM` \ (expr', fv_expr) ->
    rnPat pat		`thenM` \ (pat', fv_pat) ->
    let
	bndrs = mkNameSet (collectPatBinders pat')
	fvs   = fv_expr `plusFV` fv_pat
    in
    returnM [(bndrs, fvs, bndrs `intersectNameSet` fvs,
	      BindStmt pat' expr' src_loc)]

rn_rec_stmt (LetStmt binds)
  = rnBinds binds		`thenM` \ (binds', du_binds) ->
    returnM [(duDefs du_binds, duUses du_binds, 
	      emptyNameSet, LetStmt binds')]

rn_rec_stmt (RecStmt stmts _ _ _)	-- Flatten Rec inside Rec
  = rn_rec_stmts stmts

rn_rec_stmt stmt@(ParStmt _)	-- Syntactically illegal in mdo
  = pprPanic "rn_rec_stmt" (ppr stmt)

---------------------------------------------
rn_rec_stmts :: [RdrNameStmt] -> RnM [Segment RenamedStmt]
rn_rec_stmts stmts = mappM rn_rec_stmt stmts	`thenM` \ segs_s ->
		     returnM (concat segs_s)


---------------------------------------------
addFwdRefs :: [Segment a] -> [Segment a]
-- So far the segments only have forward refs *within* the Stmt
-- 	(which happens for bind:  x <- ...x...)
-- This function adds the cross-seg fwd ref info

addFwdRefs pairs 
  = fst (foldr mk_seg ([], emptyNameSet) pairs)
  where
    mk_seg (defs, uses, fwds, stmts) (segs, later_defs)
	= (new_seg : segs, all_defs)
	where
	  new_seg = (defs, uses, new_fwds, stmts)
	  all_defs = later_defs `unionNameSets` defs
	  new_fwds = fwds `unionNameSets` (uses `intersectNameSet` later_defs)
		-- Add the downstream fwd refs here

----------------------------------------------------
-- 	Glomming the singleton segments of an mdo into 
--	minimal recursive groups.
--
-- At first I thought this was just strongly connected components, but
-- there's an important constraint: the order of the stmts must not change.
--
-- Consider
--	mdo { x <- ...y...
--	      p <- z
--	      y <- ...x...
--	      q <- x
--	      z <- y
--	      r <- x }
--
-- Here, the first stmt mention 'y', which is bound in the third.  
-- But that means that the innocent second stmt (p <- z) gets caught
-- up in the recursion.  And that in turn means that the binding for
-- 'z' has to be included... and so on.
--
-- Start at the tail { r <- x }
-- Now add the next one { z <- y ; r <- x }
-- Now add one more     { q <- x ; z <- y ; r <- x }
-- Now one more... but this time we have to group a bunch into rec
--	{ rec { y <- ...x... ; q <- x ; z <- y } ; r <- x }
-- Now one more, which we can add on without a rec
--	{ p <- z ; 
--	  rec { y <- ...x... ; q <- x ; z <- y } ; 
-- 	  r <- x }
-- Finally we add the last one; since it mentions y we have to
-- glom it togeher with the first two groups
--	{ rec { x <- ...y...; p <- z ; y <- ...x... ; 
--		q <- x ; z <- y } ; 
-- 	  r <- x }

glomSegments :: [Segment RenamedStmt] -> [Segment [RenamedStmt]]

glomSegments [] = []
glomSegments ((defs,uses,fwds,stmt) : segs)
	-- Actually stmts will always be a singleton
  = (seg_defs, seg_uses, seg_fwds, seg_stmts)  : others
  where
    segs'	     = glomSegments segs
    (extras, others) = grab uses segs'
    (ds, us, fs, ss) = unzip4 extras
    
    seg_defs  = plusFVs ds `plusFV` defs
    seg_uses  = plusFVs us `plusFV` uses
    seg_fwds  = plusFVs fs `plusFV` fwds
    seg_stmts = stmt : concat ss

    grab :: NameSet	 	-- The client
	 -> [Segment a]
	 -> ([Segment a],	-- Needed by the 'client'
	     [Segment a])	-- Not needed by the client
	-- The result is simply a split of the input
    grab uses dus 
	= (reverse yeses, reverse noes)
	where
	  (noes, yeses) 	  = span not_needed (reverse dus)
	  not_needed (defs,_,_,_) = not (intersectsNameSet defs uses)


----------------------------------------------------
segsToStmts :: [Segment [RenamedStmt]] -> ([RenamedStmt], FreeVars)

segsToStmts [] = ([], emptyFVs)
segsToStmts ((defs, uses, fwds, ss) : segs)
  = (new_stmt : later_stmts, later_uses `plusFV` uses)
  where
    (later_stmts, later_uses) = segsToStmts segs
    new_stmt | non_rec	 = head ss
	     | otherwise = RecStmt ss (nameSetToList used_later) (nameSetToList fwds) []
	     where
	       non_rec    = isSingleton ss && isEmptyNameSet fwds
	       used_later = defs `intersectNameSet` later_uses
				-- The ones needed after the RecStmt
\end{code}

%************************************************************************
%*									*
\subsubsection{Precedence Parsing}
%*									*
%************************************************************************

@mkOpAppRn@ deals with operator fixities.  The argument expressions
are assumed to be already correctly arranged.  It needs the fixities
recorded in the OpApp nodes, because fixity info applies to the things
the programmer actually wrote, so you can't find it out from the Name.

Furthermore, the second argument is guaranteed not to be another
operator application.  Why? Because the parser parses all
operator appications left-associatively, EXCEPT negation, which
we need to handle specially.

\begin{code}
mkOpAppRn :: RenamedHsExpr			-- Left operand; already rearranged
	  -> RenamedHsExpr -> Fixity 		-- Operator and fixity
	  -> RenamedHsExpr			-- Right operand (not an OpApp, but might
						-- be a NegApp)
	  -> RnM RenamedHsExpr

---------------------------
-- (e11 `op1` e12) `op2` e2
mkOpAppRn e1@(OpApp e11 op1 fix1 e12) op2 fix2 e2
  | nofix_error
  = addErr (precParseErr (ppr_op op1,fix1) (ppr_op op2,fix2))	`thenM_`
    returnM (OpApp e1 op2 fix2 e2)

  | associate_right
  = mkOpAppRn e12 op2 fix2 e2		`thenM` \ new_e ->
    returnM (OpApp e11 op1 fix1 new_e)
  where
    (nofix_error, associate_right) = compareFixity fix1 fix2

---------------------------
--	(- neg_arg) `op` e2
mkOpAppRn e1@(NegApp neg_arg neg_name) op2 fix2 e2
  | nofix_error
  = addErr (precParseErr (pp_prefix_minus,negateFixity) (ppr_op op2,fix2))	`thenM_`
    returnM (OpApp e1 op2 fix2 e2)

  | associate_right
  = mkOpAppRn neg_arg op2 fix2 e2	`thenM` \ new_e ->
    returnM (NegApp new_e neg_name)
  where
    (nofix_error, associate_right) = compareFixity negateFixity fix2

---------------------------
--	e1 `op` - neg_arg
mkOpAppRn e1 op1 fix1 e2@(NegApp neg_arg _)	-- NegApp can occur on the right
  | not associate_right				-- We *want* right association
  = addErr (precParseErr (ppr_op op1, fix1) (pp_prefix_minus, negateFixity))	`thenM_`
    returnM (OpApp e1 op1 fix1 e2)
  where
    (_, associate_right) = compareFixity fix1 negateFixity

---------------------------
--	Default case
mkOpAppRn e1 op fix e2 			-- Default case, no rearrangment
  = ASSERT2( right_op_ok fix e2,
	     ppr e1 $$ text "---" $$ ppr op $$ text "---" $$ ppr fix $$ text "---" $$ ppr e2
    )
    returnM (OpApp e1 op fix e2)

-- Parser left-associates everything, but 
-- derived instances may have correctly-associated things to
-- in the right operarand.  So we just check that the right operand is OK
right_op_ok fix1 (OpApp _ _ fix2 _)
  = not error_please && associate_right
  where
    (error_please, associate_right) = compareFixity fix1 fix2
right_op_ok fix1 other
  = True

-- Parser initially makes negation bind more tightly than any other operator
mkNegAppRn neg_arg neg_name
  = 
#ifdef DEBUG
    getModeRn			`thenM` \ mode ->
    ASSERT( not_op_app mode neg_arg )
#endif
    returnM (NegApp neg_arg neg_name)

not_op_app SourceMode (OpApp _ _ _ _) = False
not_op_app mode other	 	      = True
\end{code}

\begin{code}
checkPrecMatch :: Bool -> Name -> RenamedMatch -> RnM ()

checkPrecMatch False fn match
  = returnM ()

checkPrecMatch True op (Match (p1:p2:_) _ _)
	-- True indicates an infix lhs
  = getModeRn 		`thenM` \ mode ->
	-- See comments with rnExpr (OpApp ...)
    if isInterfaceMode mode
	then returnM ()
	else checkPrec op p1 False	`thenM_`
	     checkPrec op p2 True

checkPrecMatch True op _ = panic "checkPrecMatch"

checkPrec op (ConPatIn op1 (InfixCon _ _)) right
  = lookupFixityRn op	`thenM` \  op_fix@(Fixity op_prec  op_dir) ->
    lookupFixityRn op1	`thenM` \ op1_fix@(Fixity op1_prec op1_dir) ->
    let
	inf_ok = op1_prec > op_prec || 
	         (op1_prec == op_prec &&
		  (op1_dir == InfixR && op_dir == InfixR && right ||
		   op1_dir == InfixL && op_dir == InfixL && not right))

	info  = (ppr_op op,  op_fix)
	info1 = (ppr_op op1, op1_fix)
	(infol, infor) = if right then (info, info1) else (info1, info)
    in
    checkErr inf_ok (precParseErr infol infor)

checkPrec op pat right
  = returnM ()

-- Check precedence of (arg op) or (op arg) respectively
-- If arg is itself an operator application, then either
--   (a) its precedence must be higher than that of op
--   (b) its precedency & associativity must be the same as that of op
checkSectionPrec direction section op arg
  = case arg of
	OpApp _ op fix _ -> go_for_it (ppr_op op)     fix
	NegApp _ _	 -> go_for_it pp_prefix_minus negateFixity
	other		 -> returnM ()
  where
    HsVar op_name = op
    go_for_it pp_arg_op arg_fix@(Fixity arg_prec assoc)
	= lookupFixityRn op_name	`thenM` \ op_fix@(Fixity op_prec _) ->
	  checkErr (op_prec < arg_prec
		     || op_prec == arg_prec && direction == assoc)
		  (sectionPrecErr (ppr_op op_name, op_fix) 	
		  (pp_arg_op, arg_fix) section)
\end{code}


%************************************************************************
%*									*
\subsubsection{Assertion utils}
%*									*
%************************************************************************

\begin{code}
mkAssertErrorExpr :: RnM (RenamedHsExpr, FreeVars)
-- Return an expression for (assertError "Foo.hs:27")
mkAssertErrorExpr
  = getSrcLocM    			`thenM` \ sloc ->
    let
	expr = HsApp (HsVar assertErrorName) (HsLit msg)
	msg  = HsStringPrim (mkFastString (stringToUtf8 (showSDoc (ppr sloc))))
    in
    returnM (expr, unitFV assertErrorName)
\end{code}

%************************************************************************
%*									*
\subsubsection{Errors}
%*									*
%************************************************************************

\begin{code}
ppr_op op = quotes (ppr op)	-- Here, op can be a Name or a (Var n), where n is a Name
pp_prefix_minus = ptext SLIT("prefix `-'")

nonStdGuardErr guard
  = hang (ptext
    SLIT("accepting non-standard pattern guards (-fglasgow-exts to suppress this message)")
    ) 4 (ppr guard)

patSynErr e 
  = sep [ptext SLIT("Pattern syntax in expression context:"),
	 nest 4 (ppr e)]

doStmtListErr do_or_lc e
  = sep [quotes (text binder_name) <+> ptext SLIT("statements must end in expression:"),
	 nest 4 (ppr e)]
  where
    binder_name = case do_or_lc of
			MDoExpr -> "mdo"
			other   -> "do"

#ifdef GHCI 
checkTH e what = returnM ()	-- OK
#else
checkTH e what 	-- Raise an error in a stage-1 compiler
  = addErr (vcat [ptext SLIT("Template Haskell") <+> text what <+>  
	          ptext SLIT("illegal in a stage-1 compiler"),
	          nest 2 (ppr e)])
#endif   

parStmtErr = addErr (ptext SLIT("Illegal parallel list comprehension: use -fglasgow-exts"))

badIpBinds binds
  = hang (ptext SLIT("Implicit-parameter bindings illegal in a parallel list comprehension:")) 4
	 (ppr binds)
\end{code}