1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
|
%
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
\section{SetLevels}
***************************
Overview
***************************
* We attach binding levels to Core bindings, in preparation for floating
outwards (@FloatOut@).
* We also let-ify many expressions (notably case scrutinees), so they
will have a fighting chance of being floated sensible.
* We clone the binders of any floatable let-binding, so that when it is
floated out it will be unique. (This used to be done by the simplifier
but the latter now only ensures that there's no shadowing.)
NOTE: Very tiresomely, we must apply this substitution to
the rules stored inside a variable too.
We do *not* clone top-level bindings, because some of them must not change,
but we *do* clone bindings that are heading for the top level
* In the expression
case x of wild { p -> ...wild... }
we substitute x for wild in the RHS of the case alternatives:
case x of wild { p -> ...x... }
This means that a sub-expression involving x is not "trapped" inside the RHS.
And it's not inconvenient because we already have a substitution.
\begin{code}
module SetLevels (
setLevels,
Level(..), tOP_LEVEL,
incMinorLvl, ltMajLvl, ltLvl, isTopLvl
) where
#include "HsVersions.h"
import CoreSyn
import CoreUtils ( exprType, exprIsTrivial, exprIsBottom )
import CoreFVs -- all of it
import Id ( Id, idType, idFreeTyVars, mkSysLocal, isOneShotLambda, modifyIdInfo,
idSpecialisation, idWorkerInfo, setIdInfo
)
import IdInfo ( workerExists, vanillaIdInfo )
import Var ( Var, TyVar, setVarUnique )
import VarEnv
import Subst
import VarSet
import Name ( getOccName )
import OccName ( occNameUserString )
import Type ( isUnLiftedType, mkPiType, Type )
import BasicTypes ( TopLevelFlag(..) )
import VarSet
import VarEnv
import UniqSupply
import Util ( sortLt, isSingleton, count )
import Outputable
\end{code}
%************************************************************************
%* *
\subsection{Level numbers}
%* *
%************************************************************************
\begin{code}
data Level = Level Int -- Level number of enclosing lambdas
Int -- Number of big-lambda and/or case expressions between
-- here and the nearest enclosing lambda
\end{code}
The {\em level number} on a (type-)lambda-bound variable is the
nesting depth of the (type-)lambda which binds it. The outermost lambda
has level 1, so (Level 0 0) means that the variable is bound outside any lambda.
On an expression, it's the maximum level number of its free
(type-)variables. On a let(rec)-bound variable, it's the level of its
RHS. On a case-bound variable, it's the number of enclosing lambdas.
Top-level variables: level~0. Those bound on the RHS of a top-level
definition but ``before'' a lambda; e.g., the \tr{x} in (levels shown
as ``subscripts'')...
\begin{verbatim}
a_0 = let b_? = ... in
x_1 = ... b ... in ...
\end{verbatim}
The main function @lvlExpr@ carries a ``context level'' (@ctxt_lvl@).
That's meant to be the level number of the enclosing binder in the
final (floated) program. If the level number of a sub-expression is
less than that of the context, then it might be worth let-binding the
sub-expression so that it will indeed float. This context level starts
at @Level 0 0@.
\begin{code}
type LevelledExpr = TaggedExpr Level
type LevelledArg = TaggedArg Level
type LevelledBind = TaggedBind Level
tOP_LEVEL = Level 0 0
incMajorLvl :: Level -> Level
incMajorLvl (Level major minor) = Level (major+1) 0
incMinorLvl :: Level -> Level
incMinorLvl (Level major minor) = Level major (minor+1)
maxLvl :: Level -> Level -> Level
maxLvl l1@(Level maj1 min1) l2@(Level maj2 min2)
| (maj1 > maj2) || (maj1 == maj2 && min1 > min2) = l1
| otherwise = l2
ltLvl :: Level -> Level -> Bool
ltLvl (Level maj1 min1) (Level maj2 min2)
= (maj1 < maj2) || (maj1 == maj2 && min1 < min2)
ltMajLvl :: Level -> Level -> Bool
-- Tells if one level belongs to a difft *lambda* level to another
ltMajLvl (Level maj1 _) (Level maj2 _) = maj1 < maj2
isTopLvl :: Level -> Bool
isTopLvl (Level 0 0) = True
isTopLvl other = False
instance Outputable Level where
ppr (Level maj min) = hcat [ char '<', int maj, char ',', int min, char '>' ]
\end{code}
%************************************************************************
%* *
\subsection{Main level-setting code}
%* *
%************************************************************************
\begin{code}
setLevels :: Bool -- True <=> float lambdas to top level
-> [CoreBind]
-> UniqSupply
-> [LevelledBind]
setLevels float_lams binds us
= initLvl us (do_them binds)
where
-- "do_them"'s main business is to thread the monad along
-- It gives each top binding the same empty envt, because
-- things unbound in the envt have level number zero implicitly
do_them :: [CoreBind] -> LvlM [LevelledBind]
do_them [] = returnLvl []
do_them (b:bs)
= lvlTopBind init_env b `thenLvl` \ (lvld_bind, _) ->
do_them bs `thenLvl` \ lvld_binds ->
returnLvl (lvld_bind : lvld_binds)
init_env = initialEnv float_lams
lvlTopBind env (NonRec binder rhs)
= lvlBind TopLevel tOP_LEVEL env (AnnNonRec binder (freeVars rhs))
-- Rhs can have no free vars!
lvlTopBind env (Rec pairs)
= lvlBind TopLevel tOP_LEVEL env (AnnRec [(b,freeVars rhs) | (b,rhs) <- pairs])
\end{code}
%************************************************************************
%* *
\subsection{Setting expression levels}
%* *
%************************************************************************
\begin{code}
lvlExpr :: Level -- ctxt_lvl: Level of enclosing expression
-> LevelEnv -- Level of in-scope names/tyvars
-> CoreExprWithFVs -- input expression
-> LvlM LevelledExpr -- Result expression
\end{code}
The @ctxt_lvl@ is, roughly, the level of the innermost enclosing
binder. Here's an example
v = \x -> ...\y -> let r = case (..x..) of
..x..
in ..
When looking at the rhs of @r@, @ctxt_lvl@ will be 1 because that's
the level of @r@, even though it's inside a level-2 @\y@. It's
important that @ctxt_lvl@ is 1 and not 2 in @r@'s rhs, because we
don't want @lvlExpr@ to turn the scrutinee of the @case@ into an MFE
--- because it isn't a *maximal* free expression.
If there were another lambda in @r@'s rhs, it would get level-2 as well.
\begin{code}
lvlExpr _ _ (_, AnnType ty) = returnLvl (Type ty)
lvlExpr _ env (_, AnnVar v) = returnLvl (lookupVar env v)
lvlExpr _ env (_, AnnLit lit) = returnLvl (Lit lit)
lvlExpr ctxt_lvl env (_, AnnApp fun arg)
= lvlExpr ctxt_lvl env fun `thenLvl` \ fun' ->
lvlMFE False ctxt_lvl env arg `thenLvl` \ arg' ->
returnLvl (App fun' arg')
lvlExpr ctxt_lvl env (_, AnnNote InlineMe expr)
-- Don't float anything out of an InlineMe
= lvlExpr tOP_LEVEL env expr `thenLvl` \ expr' ->
returnLvl (Note InlineMe expr')
lvlExpr ctxt_lvl env (_, AnnNote note expr)
= lvlExpr ctxt_lvl env expr `thenLvl` \ expr' ->
returnLvl (Note note expr')
-- We don't split adjacent lambdas. That is, given
-- \x y -> (x+1,y)
-- we don't float to give
-- \x -> let v = x+y in \y -> (v,y)
-- Why not? Because partial applications are fairly rare, and splitting
-- lambdas makes them more expensive.
lvlExpr ctxt_lvl env expr@(_, AnnLam bndr rhs)
= lvlMFE True new_lvl new_env body `thenLvl` \ new_body ->
returnLvl (glue_binders new_bndrs expr new_body)
where
(bndrs, body) = collect_binders expr
(new_lvl, new_bndrs) = lvlLamBndrs ctxt_lvl bndrs
new_env = extendLvlEnv env new_bndrs
lvlExpr ctxt_lvl env (_, AnnLet bind body)
= lvlBind NotTopLevel ctxt_lvl env bind `thenLvl` \ (bind', new_env) ->
lvlExpr ctxt_lvl new_env body `thenLvl` \ body' ->
returnLvl (Let bind' body')
lvlExpr ctxt_lvl env (_, AnnCase expr case_bndr alts)
= lvlMFE True ctxt_lvl env expr `thenLvl` \ expr' ->
let
alts_env = extendCaseBndrLvlEnv env expr' case_bndr incd_lvl
in
mapLvl (lvl_alt alts_env) alts `thenLvl` \ alts' ->
returnLvl (Case expr' (case_bndr, incd_lvl) alts')
where
expr_type = exprType (deAnnotate expr)
incd_lvl = incMinorLvl ctxt_lvl
lvl_alt alts_env (con, bs, rhs)
= lvlMFE True incd_lvl new_env rhs `thenLvl` \ rhs' ->
returnLvl (con, bs', rhs')
where
bs' = [ (b, incd_lvl) | b <- bs ]
new_env = extendLvlEnv alts_env bs'
collect_binders lam
= go [] lam
where
go rev_bndrs (_, AnnLam b e) = go (b:rev_bndrs) e
go rev_bndrs (_, AnnNote n e) = go rev_bndrs e
go rev_bndrs rhs = (reverse rev_bndrs, rhs)
-- Ignore notes, because we don't want to split
-- a lambda like this (\x -> coerce t (\s -> ...))
-- This happens quite a bit in state-transformer programs
-- glue_binders puts the lambda back together
glue_binders (b:bs) (_, AnnLam _ e) body = Lam b (glue_binders bs e body)
glue_binders bs (_, AnnNote n e) body = Note n (glue_binders bs e body)
glue_binders [] e body = body
\end{code}
@lvlMFE@ is just like @lvlExpr@, except that it might let-bind
the expression, so that it can itself be floated.
\begin{code}
lvlMFE :: Bool -- True <=> strict context [body of case or let]
-> Level -- Level of innermost enclosing lambda/tylam
-> LevelEnv -- Level of in-scope names/tyvars
-> CoreExprWithFVs -- input expression
-> LvlM LevelledExpr -- Result expression
lvlMFE strict_ctxt ctxt_lvl env (_, AnnType ty)
= returnLvl (Type ty)
lvlMFE strict_ctxt ctxt_lvl env ann_expr@(fvs, _)
| isUnLiftedType ty -- Can't let-bind it
|| not (dest_lvl `ltMajLvl` ctxt_lvl) -- Does not escape a value lambda
-- A decision to float entails let-binding this thing, and we only do
-- that if we'll escape a value lambda. I considered doing it if it
-- would make the thing go to top level, but I found things like
-- concat = /\ a -> foldr ..a.. (++) []
-- was getting turned into
-- concat = /\ a -> lvl a
-- lvl = /\ a -> foldr ..a.. (++) []
-- which is pretty stupid. So for now at least, I don't let-bind things
-- simply because they could go to top level.
|| exprIsTrivial expr -- Is trivial
|| (strict_ctxt && exprIsBottom expr) -- Strict context and is bottom
= -- Don't float it out
lvlExpr ctxt_lvl env ann_expr
| otherwise -- Float it out!
= lvlFloatRhs abs_vars dest_lvl env ann_expr `thenLvl` \ expr' ->
newLvlVar "lvl" abs_vars ty `thenLvl` \ var ->
returnLvl (Let (NonRec (var,dest_lvl) expr')
(mkVarApps (Var var) abs_vars))
where
expr = deAnnotate ann_expr
ty = exprType expr
dest_lvl = destLevel env fvs (isFunction ann_expr)
abs_vars = abstractVars dest_lvl env fvs
\end{code}
%************************************************************************
%* *
\subsection{Bindings}
%* *
%************************************************************************
The binding stuff works for top level too.
\begin{code}
lvlBind :: TopLevelFlag -- Used solely to decide whether to clone
-> Level -- Context level; might be Top even for bindings nested in the RHS
-- of a top level binding
-> LevelEnv
-> CoreBindWithFVs
-> LvlM (LevelledBind, LevelEnv)
lvlBind top_lvl ctxt_lvl env (AnnNonRec bndr rhs@(rhs_fvs,_))
| null abs_vars
= -- No type abstraction; clone existing binder
lvlExpr ctxt_lvl env rhs `thenLvl` \ rhs' ->
cloneVar top_lvl env bndr dest_lvl `thenLvl` \ (env', bndr') ->
returnLvl (NonRec (bndr', dest_lvl) rhs', env')
| otherwise
= -- Yes, type abstraction; create a new binder, extend substitution, etc
lvlFloatRhs abs_vars dest_lvl env rhs `thenLvl` \ rhs' ->
newPolyBndrs dest_lvl env abs_vars [bndr] `thenLvl` \ (env', [bndr']) ->
returnLvl (NonRec (bndr', dest_lvl) rhs', env')
where
bind_fvs = rhs_fvs `unionVarSet` idFreeVars bndr
abs_vars = abstractVars dest_lvl env bind_fvs
dest_lvl | isUnLiftedType (idType bndr) = destLevel env bind_fvs False `maxLvl` Level 1 0
| otherwise = destLevel env bind_fvs (isFunction rhs)
-- Hack alert! We do have some unlifted bindings, for cheap primops, and
-- it is ok to float them out; but not to the top level. If they would otherwise
-- go to the top level, we pin them inside the topmost lambda
\end{code}
\begin{code}
lvlBind top_lvl ctxt_lvl env (AnnRec pairs)
| null abs_vars
= cloneVars top_lvl env bndrs dest_lvl `thenLvl` \ (new_env, new_bndrs) ->
mapLvl (lvlExpr ctxt_lvl new_env) rhss `thenLvl` \ new_rhss ->
returnLvl (Rec ((new_bndrs `zip` repeat dest_lvl) `zip` new_rhss), new_env)
| isSingleton pairs && count isId abs_vars > 1
= -- Special case for self recursion where there are
-- several variables carried around: build a local loop:
-- poly_f = \abs_vars. \lam_vars . letrec f = \lam_vars. rhs in f lam_vars
-- This just makes the closures a bit smaller. If we don't do
-- this, allocation rises significantly on some programs
--
-- We could elaborate it for the case where there are several
-- mutually functions, but it's quite a bit more complicated
--
-- This all seems a bit ad hoc -- sigh
let
(bndr,rhs) = head pairs
(rhs_lvl, abs_vars_w_lvls) = lvlLamBndrs dest_lvl abs_vars
rhs_env = extendLvlEnv env abs_vars_w_lvls
in
cloneVar NotTopLevel rhs_env bndr rhs_lvl `thenLvl` \ (rhs_env', new_bndr) ->
let
(lam_bndrs, rhs_body) = collect_binders rhs
(body_lvl, new_lam_bndrs) = lvlLamBndrs rhs_lvl lam_bndrs
body_env = extendLvlEnv rhs_env' new_lam_bndrs
in
lvlExpr body_lvl body_env rhs_body `thenLvl` \ new_rhs_body ->
newPolyBndrs dest_lvl env abs_vars [bndr] `thenLvl` \ (poly_env, [poly_bndr]) ->
returnLvl (Rec [((poly_bndr,dest_lvl), mkLams abs_vars_w_lvls $
glue_binders new_lam_bndrs rhs $
Let (Rec [((new_bndr,rhs_lvl), mkLams new_lam_bndrs new_rhs_body)])
(mkVarApps (Var new_bndr) lam_bndrs))],
poly_env)
| otherwise
= newPolyBndrs dest_lvl env abs_vars bndrs `thenLvl` \ (new_env, new_bndrs) ->
mapLvl (lvlFloatRhs abs_vars dest_lvl new_env) rhss `thenLvl` \ new_rhss ->
returnLvl (Rec ((new_bndrs `zip` repeat dest_lvl) `zip` new_rhss), new_env)
where
(bndrs,rhss) = unzip pairs
-- Finding the free vars of the binding group is annoying
bind_fvs = (unionVarSets [ idFreeVars bndr `unionVarSet` rhs_fvs
| (bndr, (rhs_fvs,_)) <- pairs])
`minusVarSet`
mkVarSet bndrs
dest_lvl = destLevel env bind_fvs (all isFunction rhss)
abs_vars = abstractVars dest_lvl env bind_fvs
----------------------------------------------------
-- Three help functons for the type-abstraction case
lvlFloatRhs abs_vars dest_lvl env rhs
= lvlExpr rhs_lvl rhs_env rhs `thenLvl` \ rhs' ->
returnLvl (mkLams abs_vars_w_lvls rhs')
where
(rhs_lvl, abs_vars_w_lvls) = lvlLamBndrs dest_lvl abs_vars
rhs_env = extendLvlEnv env abs_vars_w_lvls
\end{code}
%************************************************************************
%* *
\subsection{Deciding floatability}
%* *
%************************************************************************
\begin{code}
lvlLamBndrs :: Level -> [CoreBndr] -> (Level, [(CoreBndr, Level)])
-- Compute the levels for the binders of a lambda group
lvlLamBndrs lvl []
= (lvl, [])
lvlLamBndrs lvl bndrs
= go (incMinorLvl lvl)
False -- Havn't bumped major level in this group
[] bndrs
where
go old_lvl bumped_major rev_lvld_bndrs (bndr:bndrs)
| isId bndr && -- Go to the next major level if this is a value binder,
not bumped_major && -- and we havn't already gone to the next level (one jump per group)
not (isOneShotLambda bndr) -- and it isn't a one-shot lambda
= go new_lvl True ((bndr,new_lvl) : rev_lvld_bndrs) bndrs
| otherwise
= go old_lvl bumped_major ((bndr,old_lvl) : rev_lvld_bndrs) bndrs
where
new_lvl = incMajorLvl old_lvl
go old_lvl _ rev_lvld_bndrs []
= (old_lvl, reverse rev_lvld_bndrs)
-- a lambda like this (\x -> coerce t (\s -> ...))
-- This happens quite a bit in state-transformer programs
\end{code}
\begin{code}
abstractVars :: Level -> LevelEnv -> VarSet -> [Var]
-- Find the variables in fvs, free vars of the target expresion,
-- whose level is less than than the supplied level
-- These are the ones we are going to abstract out
abstractVars dest_lvl env fvs
= uniq (sortLt lt [var | fv <- varSetElems fvs, var <- absVarsOf dest_lvl env fv])
where
-- Sort the variables so we don't get
-- mixed-up tyvars and Ids; it's just messy
v1 `lt` v2 = case (isId v1, isId v2) of
(True, False) -> False
(False, True) -> True
other -> v1 < v2 -- Same family
uniq :: [Var] -> [Var]
-- Remove adjacent duplicates; the sort will have brought them together
uniq (v1:v2:vs) | v1 == v2 = uniq (v2:vs)
| otherwise = v1 : uniq (v2:vs)
uniq vs = vs
-- Destintion level is the max Id level of the expression
-- (We'll abstract the type variables, if any.)
destLevel :: LevelEnv -> VarSet -> Bool -> Level
destLevel env fvs is_function
| floatLams env
&& is_function = tOP_LEVEL -- Send functions to top level; see
-- the comments with isFunction
| otherwise = maxIdLevel env fvs
isFunction :: CoreExprWithFVs -> Bool
-- The idea here is that we want to float *functions* to
-- the top level. This saves no work, but
-- (a) it can make the host function body a lot smaller,
-- and hence inlinable.
-- (b) it can also save allocation when the function is recursive:
-- h = \x -> letrec f = \y -> ...f...y...x...
-- in f x
-- becomes
-- f = \x y -> ...(f x)...y...x...
-- h = \x -> f x x
-- No allocation for f now.
-- We may only want to do this if there are sufficiently few free
-- variables. We certainly only want to do it for values, and not for
-- constructors. So the simple thing is just to look for lambdas
isFunction (_, AnnLam b e) | isId b = True
| otherwise = isFunction e
isFunction (_, AnnNote n e) = isFunction e
isFunction other = False
\end{code}
%************************************************************************
%* *
\subsection{Free-To-Level Monad}
%* *
%************************************************************************
\begin{code}
type LevelEnv = (Bool, -- True <=> Float lambdas too
VarEnv Level, -- Domain is *post-cloned* TyVars and Ids
SubstEnv, -- Domain is pre-cloned Ids
IdEnv ([Var], LevelledExpr)) -- Domain is pre-cloned Ids
-- We clone let-bound variables so that they are still
-- distinct when floated out; hence the SubstEnv/IdEnv.
-- We also use these envs when making a variable polymorphic
-- because we want to float it out past a big lambda.
--
-- The two Envs always implement the same mapping, but the
-- SubstEnv maps to CoreExpr and the IdEnv to LevelledExpr
-- Since the range is always a variable or type application,
-- there is never any difference between the two, but sadly
-- the types differ. The SubstEnv is used when substituting in
-- a variable's IdInfo; the IdEnv when we find a Var.
--
-- In addition the IdEnv records a list of tyvars free in the
-- type application, just so we don't have to call freeVars on
-- the type application repeatedly.
--
-- The domain of the both envs is *pre-cloned* Ids, though
--
-- The domain of the VarEnv Level is the *post-cloned* Ids
initialEnv :: Bool -> LevelEnv
initialEnv float_lams = (float_lams, emptyVarEnv, emptySubstEnv, emptyVarEnv)
floatLams :: LevelEnv -> Bool
floatLams (float_lams, _, _, _) = float_lams
extendLvlEnv :: LevelEnv -> [(Var,Level)] -> LevelEnv
-- Used when *not* cloning
extendLvlEnv (float_lams, lvl_env, subst_env, id_env) prs
= (float_lams, foldl add lvl_env prs, subst_env, id_env)
where
add env (v,l) = extendVarEnv env v l
-- extendCaseBndrLvlEnv adds the mapping case-bndr->scrut-var if it can
extendCaseBndrLvlEnv env scrut case_bndr lvl
= case scrut of
Var v -> extendCloneLvlEnv lvl env [(case_bndr, v)]
other -> extendLvlEnv env [(case_bndr,lvl)]
extendPolyLvlEnv dest_lvl (float_lams, lvl_env, subst_env, id_env) abs_vars bndr_pairs
= (float_lams,
foldl add_lvl lvl_env bndr_pairs,
foldl add_subst subst_env bndr_pairs,
foldl add_id id_env bndr_pairs)
where
add_lvl env (v,v') = extendVarEnv env v' dest_lvl
add_subst env (v,v') = extendSubstEnv env v (DoneEx (mkVarApps (Var v') abs_vars))
add_id env (v,v') = extendVarEnv env v ((v':abs_vars), mkVarApps (Var v') abs_vars)
extendCloneLvlEnv lvl (float_lams, lvl_env, subst_env, id_env) bndr_pairs
= (float_lams,
foldl add_lvl lvl_env bndr_pairs,
foldl add_subst subst_env bndr_pairs,
foldl add_id id_env bndr_pairs)
where
add_lvl env (v,v') = extendVarEnv env v' lvl
add_subst env (v,v') = extendSubstEnv env v (DoneEx (Var v'))
add_id env (v,v') = extendVarEnv env v ([v'], Var v')
maxIdLevel :: LevelEnv -> VarSet -> Level
maxIdLevel (_, lvl_env,_,id_env) var_set
= foldVarSet max_in tOP_LEVEL var_set
where
max_in in_var lvl = foldr max_out lvl (case lookupVarEnv id_env in_var of
Just (abs_vars, _) -> abs_vars
Nothing -> [in_var])
max_out out_var lvl
| isId out_var = case lookupVarEnv lvl_env out_var of
Just lvl' -> maxLvl lvl' lvl
Nothing -> lvl
| otherwise = lvl -- Ignore tyvars in *maxIdLevel*
lookupVar :: LevelEnv -> Id -> LevelledExpr
lookupVar (_, _, _, id_env) v = case lookupVarEnv id_env v of
Just (_, expr) -> expr
other -> Var v
absVarsOf :: Level -> LevelEnv -> Var -> [Var]
-- If f is free in the exression, and f maps to poly_f a b c in the
-- current substitution, then we must report a b c as candidate type
-- variables
absVarsOf dest_lvl (_, lvl_env, _, id_env) v
| isId v
= [final_av | av <- lookup_avs v, abstract_me av, final_av <- add_tyvars av]
| otherwise
= if abstract_me v then [v] else []
where
abstract_me v = case lookupVarEnv lvl_env v of
Just lvl -> dest_lvl `ltLvl` lvl
Nothing -> False
lookup_avs v = case lookupVarEnv id_env v of
Just (abs_vars, _) -> abs_vars
Nothing -> [v]
-- We are going to lambda-abstract, so nuke any IdInfo,
-- and add the tyvars of the Id
add_tyvars v | isId v = zap v : varSetElems (idFreeTyVars v)
| otherwise = [v]
zap v = WARN( workerExists (idWorkerInfo v)
|| not (isEmptyCoreRules (idSpecialisation v)),
text "absVarsOf: discarding info on" <+> ppr v )
setIdInfo v vanillaIdInfo
\end{code}
\begin{code}
type LvlM result = UniqSM result
initLvl = initUs_
thenLvl = thenUs
returnLvl = returnUs
mapLvl = mapUs
\end{code}
\begin{code}
newPolyBndrs dest_lvl env abs_vars bndrs
= getUniquesUs (length bndrs) `thenLvl` \ uniqs ->
let
new_bndrs = zipWith mk_poly_bndr bndrs uniqs
in
returnLvl (extendPolyLvlEnv dest_lvl env abs_vars (bndrs `zip` new_bndrs), new_bndrs)
where
mk_poly_bndr bndr uniq = mkSysLocal (_PK_ str) uniq poly_ty
where
str = "poly_" ++ occNameUserString (getOccName bndr)
poly_ty = foldr mkPiType (idType bndr) abs_vars
newLvlVar :: String
-> [CoreBndr] -> Type -- Abstract wrt these bndrs
-> LvlM Id
newLvlVar str vars body_ty
= getUniqueUs `thenLvl` \ uniq ->
returnUs (mkSysLocal (_PK_ str) uniq (foldr mkPiType body_ty vars))
-- The deeply tiresome thing is that we have to apply the substitution
-- to the rules inside each Id. Grr. But it matters.
cloneVar :: TopLevelFlag -> LevelEnv -> Id -> Level -> LvlM (LevelEnv, Id)
cloneVar TopLevel env v lvl
= returnUs (env, v) -- Don't clone top level things
cloneVar NotTopLevel env v lvl
= getUniqueUs `thenLvl` \ uniq ->
let
v' = setVarUnique v uniq
v'' = subst_id_info env v'
env' = extendCloneLvlEnv lvl env [(v,v'')]
in
returnUs (env', v'')
cloneVars :: TopLevelFlag -> LevelEnv -> [Id] -> Level -> LvlM (LevelEnv, [Id])
cloneVars TopLevel env vs lvl
= returnUs (env, vs) -- Don't clone top level things
cloneVars NotTopLevel env vs lvl
= getUniquesUs (length vs) `thenLvl` \ uniqs ->
let
vs' = zipWith setVarUnique vs uniqs
vs'' = map (subst_id_info env') vs'
env' = extendCloneLvlEnv lvl env (vs `zip` vs'')
in
returnUs (env', vs'')
subst_id_info (_, _, subst_env, _) v
= modifyIdInfo (\info -> substIdInfo subst info info) v
where
subst = mkSubst emptyVarSet subst_env
\end{code}
|