1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
|
%
% (c) The GRASP/AQUA Project, Glasgow University, 1993-1998
%
\section[CoreToStg]{Converts Core to STG Syntax}
And, as we have the info in hand, we may convert some lets to
let-no-escapes.
\begin{code}
module CoreToStg ( coreToStg, coreExprToStg ) where
#include "HsVersions.h"
import CoreSyn
import CoreUtils
import StgSyn
import Type
import TyCon ( isAlgTyCon )
import Literal
import Id
import Var ( Var, globalIdDetails, varType )
#ifdef ILX
import MkId ( unsafeCoerceId )
#endif
import IdInfo
import DataCon
import CostCentre ( noCCS )
import VarSet
import VarEnv
import DataCon ( dataConWrapId )
import Maybes ( maybeToBool )
import Name ( getOccName, isExternallyVisibleName, isDllName )
import OccName ( occNameUserString )
import BasicTypes ( TopLevelFlag(..), isNotTopLevel, Arity )
import CmdLineOpts ( DynFlags, opt_RuntimeTypes )
import FastTypes hiding ( fastOr )
import Outputable
infixr 9 `thenLne`
\end{code}
%************************************************************************
%* *
\subsection[live-vs-free-doc]{Documentation}
%* *
%************************************************************************
(There is other relevant documentation in codeGen/CgLetNoEscape.)
The actual Stg datatype is decorated with {\em live variable}
information, as well as {\em free variable} information. The two are
{\em not} the same. Liveness is an operational property rather than a
semantic one. A variable is live at a particular execution point if
it can be referred to {\em directly} again. In particular, a dead
variable's stack slot (if it has one):
\begin{enumerate}
\item
should be stubbed to avoid space leaks, and
\item
may be reused for something else.
\end{enumerate}
There ought to be a better way to say this. Here are some examples:
\begin{verbatim}
let v = [q] \[x] -> e
in
...v... (but no q's)
\end{verbatim}
Just after the `in', v is live, but q is dead. If the whole of that
let expression was enclosed in a case expression, thus:
\begin{verbatim}
case (let v = [q] \[x] -> e in ...v...) of
alts[...q...]
\end{verbatim}
(ie @alts@ mention @q@), then @q@ is live even after the `in'; because
we'll return later to the @alts@ and need it.
Let-no-escapes make this a bit more interesting:
\begin{verbatim}
let-no-escape v = [q] \ [x] -> e
in
...v...
\end{verbatim}
Here, @q@ is still live at the `in', because @v@ is represented not by
a closure but by the current stack state. In other words, if @v@ is
live then so is @q@. Furthermore, if @e@ mentions an enclosing
let-no-escaped variable, then {\em its} free variables are also live
if @v@ is.
%************************************************************************
%* *
\subsection[caf-info]{Collecting live CAF info}
%* *
%************************************************************************
In this pass we also collect information on which CAFs are live for
constructing SRTs (see SRT.lhs).
A top-level Id has CafInfo, which is
- MayHaveCafRefs, if it may refer indirectly to
one or more CAFs, or
- NoCafRefs if it definitely doesn't
we collect the CafInfo first by analysing the original Core expression, and
also place this information in the environment.
During CoreToStg, we then pin onto each binding and case expression, a
list of Ids which represents the "live" CAFs at that point. The meaning
of "live" here is the same as for live variables, see above (which is
why it's convenient to collect CAF information here rather than elsewhere).
The later SRT pass takes these lists of Ids and uses them to construct
the actual nested SRTs, and replaces the lists of Ids with (offset,length)
pairs.
Interaction of let-no-escape with SRTs [Sept 01]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
let-no-escape x = ...caf1...caf2...
in
...x...x...x...
where caf1,caf2 are CAFs. Since x doesn't have a closure, we
build SRTs just as if x's defn was inlined at each call site, and
that means that x's CAF refs get duplicated in the overall SRT.
This is unlike ordinary lets, in which the CAF refs are not duplicated.
We could fix this loss of (static) sharing by making a sort of pseudo-closure
for x, solely to put in the SRTs lower down.
%************************************************************************
%* *
\subsection[binds-StgVarInfo]{Setting variable info: top-level, binds, RHSs}
%* *
%************************************************************************
\begin{code}
coreToStg :: DynFlags -> [CoreBind] -> IO [StgBinding]
coreToStg dflags pgm
= return pgm'
where (_, _, pgm') = coreTopBindsToStg emptyVarEnv pgm
coreExprToStg :: CoreExpr -> StgExpr
coreExprToStg expr
= new_expr where (new_expr,_,_) = initLne emptyVarEnv (coreToStgExpr expr)
coreTopBindsToStg
:: IdEnv HowBound -- environment for the bindings
-> [CoreBind]
-> (IdEnv HowBound, FreeVarsInfo, [StgBinding])
coreTopBindsToStg env [] = (env, emptyFVInfo, [])
coreTopBindsToStg env (b:bs)
= (env2, fvs2, b':bs')
where
-- env accumulates down the list of binds, fvs accumulates upwards
(env1, fvs2, b' ) = coreTopBindToStg env fvs1 b
(env2, fvs1, bs') = coreTopBindsToStg env1 bs
coreTopBindToStg
:: IdEnv HowBound
-> FreeVarsInfo -- Info about the body
-> CoreBind
-> (IdEnv HowBound, FreeVarsInfo, StgBinding)
coreTopBindToStg env body_fvs (NonRec id rhs)
= let
caf_info = hasCafRefs env rhs
env' = extendVarEnv env id how_bound
how_bound = LetBound (TopLet caf_info) (manifestArity rhs)
(stg_rhs, fvs', lv_info) =
initLne env (
coreToStgRhs body_fvs TopLevel (id,rhs) `thenLne` \ (stg_rhs, fvs', _) ->
freeVarsToLiveVars fvs' `thenLne` \ lv_info ->
returnLne (stg_rhs, fvs', lv_info)
)
bind = StgNonRec (mkSRT lv_info) id stg_rhs
in
ASSERT2(isLocalId id || idArity id == manifestArity rhs, ppr id)
ASSERT2(manifestArity rhs == stgRhsArity stg_rhs, ppr id)
ASSERT2(consistent caf_info bind, ppr id)
-- WARN(not (consistent caf_info bind), ppr id <+> ppr cafs <+> ppCafInfo caf_info)
(env', fvs' `unionFVInfo` body_fvs, bind)
coreTopBindToStg env body_fvs (Rec pairs)
= let
(binders, rhss) = unzip pairs
-- To calculate caf_info, we initially map
-- all the binders to NoCafRefs
env1 = extendVarEnvList env
[ (b, LetBound (TopLet NoCafRefs) (error "no arity"))
| b <- binders ]
caf_info = hasCafRefss env1{-NB: not env'-} rhss
env' = extendVarEnvList env
[ (b, LetBound (TopLet caf_info) (manifestArity rhs))
| (b,rhs) <- pairs ]
(stg_rhss, fvs', lv_info)
= initLne env' (
mapAndUnzip3Lne (coreToStgRhs body_fvs TopLevel) pairs
`thenLne` \ (stg_rhss, fvss', _) ->
let fvs' = unionFVInfos fvss' in
freeVarsToLiveVars fvs' `thenLne` \ lv_info ->
returnLne (stg_rhss, fvs', lv_info)
)
bind = StgRec (mkSRT lv_info) (zip binders stg_rhss)
in
ASSERT2(and [isLocalId bndr || manifestArity rhs == idArity bndr | (bndr,rhs) <- pairs], ppr binders)
ASSERT2(and [manifestArity rhs == stgRhsArity stg_rhs | (rhs,stg_rhs) <- rhss `zip` stg_rhss], ppr binders)
ASSERT2(consistent caf_info bind, ppr binders)
-- WARN(not (consistent caf_info bind), ppr binders <+> ppr cafs <+> ppCafInfo caf_info)
(env', fvs' `unionFVInfo` body_fvs, bind)
-- assertion helper
consistent caf_info bind = mayHaveCafRefs caf_info == stgBindHasCafRefs bind
\end{code}
\begin{code}
coreToStgRhs
:: FreeVarsInfo -- Free var info for the scope of the binding
-> TopLevelFlag
-> (Id,CoreExpr)
-> LneM (StgRhs, FreeVarsInfo, EscVarsSet)
coreToStgRhs scope_fv_info top (binder, rhs)
= coreToStgExpr rhs `thenLne` \ (new_rhs, rhs_fvs, rhs_escs) ->
returnLne (mkStgRhs top rhs_fvs binder_info new_rhs,
rhs_fvs, rhs_escs)
where
binder_info = lookupFVInfo scope_fv_info binder
mkStgRhs :: TopLevelFlag -> FreeVarsInfo -> StgBinderInfo
-> StgExpr -> StgRhs
mkStgRhs top rhs_fvs binder_info (StgLam _ bndrs body)
= StgRhsClosure noCCS binder_info
(getFVs rhs_fvs)
ReEntrant
bndrs body
mkStgRhs top rhs_fvs binder_info (StgConApp con args)
| isNotTopLevel top || not (isDllConApp con args)
= StgRhsCon noCCS con args
mkStgRhs top rhs_fvs binder_info rhs
= StgRhsClosure noCCS binder_info
(getFVs rhs_fvs)
(updatable [] rhs)
[] rhs
where
updatable args body | null args && isPAP body = ReEntrant
| otherwise = Updatable
{- ToDo:
upd = if isOnceDem dem
then (if isNotTop toplev
then SingleEntry -- HA! Paydirt for "dem"
else
#ifdef DEBUG
trace "WARNING: SE CAFs unsupported, forcing UPD instead" $
#endif
Updatable)
else Updatable
-- For now we forbid SingleEntry CAFs; they tickle the
-- ASSERT in rts/Storage.c line 215 at newCAF() re mut_link,
-- and I don't understand why. There's only one SE_CAF (well,
-- only one that tickled a great gaping bug in an earlier attempt
-- at ClosureInfo.getEntryConvention) in the whole of nofib,
-- specifically Main.lvl6 in spectral/cryptarithm2.
-- So no great loss. KSW 2000-07.
-}
\end{code}
Detect thunks which will reduce immediately to PAPs, and make them
non-updatable. This has several advantages:
- the non-updatable thunk behaves exactly like the PAP,
- the thunk is more efficient to enter, because it is
specialised to the task.
- we save one update frame, one stg_update_PAP, one update
and lots of PAP_enters.
- in the case where the thunk is top-level, we save building
a black hole and futhermore the thunk isn't considered to
be a CAF any more, so it doesn't appear in any SRTs.
We do it here, because the arity information is accurate, and we need
to do it before the SRT pass to save the SRT entries associated with
any top-level PAPs.
\begin{code}
isPAP (StgApp f args) = idArity f > length args
isPAP _ = False
\end{code}
-- ---------------------------------------------------------------------------
-- Expressions
-- ---------------------------------------------------------------------------
\begin{code}
coreToStgExpr
:: CoreExpr
-> LneM (StgExpr, -- Decorated STG expr
FreeVarsInfo, -- Its free vars (NB free, not live)
EscVarsSet) -- Its escapees, a subset of its free vars;
-- also a subset of the domain of the envt
-- because we are only interested in the escapees
-- for vars which might be turned into
-- let-no-escaped ones.
\end{code}
The second and third components can be derived in a simple bottom up pass, not
dependent on any decisions about which variables will be let-no-escaped or
not. The first component, that is, the decorated expression, may then depend
on these components, but it in turn is not scrutinised as the basis for any
decisions. Hence no black holes.
\begin{code}
coreToStgExpr (Lit l) = returnLne (StgLit l, emptyFVInfo, emptyVarSet)
coreToStgExpr (Var v) = coreToStgApp Nothing v []
coreToStgExpr expr@(App _ _)
= coreToStgApp Nothing f args
where
(f, args) = myCollectArgs expr
coreToStgExpr expr@(Lam _ _)
= let
(args, body) = myCollectBinders expr
args' = filterStgBinders args
in
extendVarEnvLne [ (a, LambdaBound) | a <- args' ] $
coreToStgExpr body `thenLne` \ (body, body_fvs, body_escs) ->
let
fvs = args' `minusFVBinders` body_fvs
escs = body_escs `delVarSetList` args'
result_expr | null args' = body
| otherwise = StgLam (exprType expr) args' body
in
returnLne (result_expr, fvs, escs)
coreToStgExpr (Note (SCC cc) expr)
= coreToStgExpr expr `thenLne` ( \ (expr2, fvs, escs) ->
returnLne (StgSCC cc expr2, fvs, escs) )
#ifdef ILX
-- For ILX, convert (__coerce__ to_ty from_ty e)
-- into (coerce to_ty from_ty e)
-- where coerce is real function
coreToStgExpr (Note (Coerce to_ty from_ty) expr)
= coreToStgExpr (mkApps (Var unsafeCoerceId)
[Type from_ty, Type to_ty, expr])
#endif
coreToStgExpr (Note other_note expr)
= coreToStgExpr expr
-- Cases require a little more real work.
coreToStgExpr (Case scrut bndr alts)
= extendVarEnvLne [(bndr, LambdaBound)] (
mapAndUnzip3Lne vars_alt alts `thenLne` \ (alts2, fvs_s, escs_s) ->
returnLne ( mkStgAlts (idType bndr) alts2,
unionFVInfos fvs_s,
unionVarSets escs_s )
) `thenLne` \ (alts2, alts_fvs, alts_escs) ->
let
-- Determine whether the default binder is dead or not
-- This helps the code generator to avoid generating an assignment
-- for the case binder (is extremely rare cases) ToDo: remove.
bndr' | bndr `elementOfFVInfo` alts_fvs = bndr
| otherwise = bndr `setIdOccInfo` IAmDead
-- Don't consider the default binder as being 'live in alts',
-- since this is from the point of view of the case expr, where
-- the default binder is not free.
alts_fvs_wo_bndr = bndr `minusFVBinder` alts_fvs
alts_escs_wo_bndr = alts_escs `delVarSet` bndr
in
freeVarsToLiveVars alts_fvs_wo_bndr `thenLne` \ alts_lv_info ->
-- We tell the scrutinee that everything
-- live in the alts is live in it, too.
setVarsLiveInCont alts_lv_info (
coreToStgExpr scrut `thenLne` \ (scrut2, scrut_fvs, scrut_escs) ->
freeVarsToLiveVars scrut_fvs `thenLne` \ scrut_lv_info ->
returnLne (scrut2, scrut_fvs, scrut_escs, scrut_lv_info)
)
`thenLne` \ (scrut2, scrut_fvs, scrut_escs, scrut_lv_info) ->
returnLne (
StgCase scrut2 (getLiveVars scrut_lv_info)
(getLiveVars alts_lv_info)
bndr'
(mkSRT alts_lv_info)
alts2,
scrut_fvs `unionFVInfo` alts_fvs_wo_bndr,
alts_escs_wo_bndr `unionVarSet` getFVSet scrut_fvs
-- You might think we should have scrut_escs, not
-- (getFVSet scrut_fvs), but actually we can't call, and
-- then return from, a let-no-escape thing.
)
where
vars_alt (con, binders, rhs)
= let -- Remove type variables
binders' = filterStgBinders binders
in
extendVarEnvLne [(b, LambdaBound) | b <- binders'] $
coreToStgExpr rhs `thenLne` \ (rhs2, rhs_fvs, rhs_escs) ->
let
-- Records whether each param is used in the RHS
good_use_mask = [ b `elementOfFVInfo` rhs_fvs | b <- binders' ]
in
returnLne ( (con, binders', good_use_mask, rhs2),
binders' `minusFVBinders` rhs_fvs,
rhs_escs `delVarSetList` binders' )
-- ToDo: remove the delVarSet;
-- since escs won't include any of these binders
\end{code}
Lets not only take quite a bit of work, but this is where we convert
then to let-no-escapes, if we wish.
(Meanwhile, we don't expect to see let-no-escapes...)
\begin{code}
coreToStgExpr (Let bind body)
= fixLne (\ ~(_, _, _, no_binder_escapes) ->
coreToStgLet no_binder_escapes bind body
) `thenLne` \ (new_let, fvs, escs, _) ->
returnLne (new_let, fvs, escs)
\end{code}
\begin{code}
mkStgAlts scrut_ty orig_alts
| is_prim_case = StgPrimAlts (tyConAppTyCon scrut_ty) prim_alts deflt
| otherwise = StgAlgAlts maybe_tycon alg_alts deflt
where
is_prim_case = isUnLiftedType scrut_ty && not (isUnboxedTupleType scrut_ty)
prim_alts = [(lit, rhs) | (LitAlt lit, _, _, rhs) <- other_alts]
alg_alts = [(con, bndrs, use, rhs) | (DataAlt con, bndrs, use, rhs) <- other_alts]
(other_alts, deflt)
= case orig_alts of -- DEFAULT is always first if it's there at all
(DEFAULT, _, _, rhs) : other_alts -> (other_alts, StgBindDefault rhs)
other -> (orig_alts, StgNoDefault)
maybe_tycon = case alg_alts of
-- Get the tycon from the data con
(dc, _, _, _) : _rest -> Just (dataConTyCon dc)
-- Otherwise just do your best
[] -> case splitTyConApp_maybe (repType scrut_ty) of
Just (tc,_) | isAlgTyCon tc -> Just tc
_other -> Nothing
\end{code}
-- ---------------------------------------------------------------------------
-- Applications
-- ---------------------------------------------------------------------------
\begin{code}
coreToStgApp
:: Maybe UpdateFlag -- Just upd <=> this application is
-- the rhs of a thunk binding
-- x = [...] \upd [] -> the_app
-- with specified update flag
-> Id -- Function
-> [CoreArg] -- Arguments
-> LneM (StgExpr, FreeVarsInfo, EscVarsSet)
coreToStgApp maybe_thunk_body f args
= coreToStgArgs args `thenLne` \ (args', args_fvs) ->
lookupVarLne f `thenLne` \ how_bound ->
let
n_val_args = valArgCount args
not_letrec_bound = not (isLetBound how_bound)
fun_fvs
= let fvs = singletonFVInfo f how_bound fun_occ in
-- e.g. (f :: a -> int) (x :: a)
-- Here the free variables are "f", "x" AND the type variable "a"
-- coreToStgArgs will deal with the arguments recursively
if opt_RuntimeTypes then
fvs `unionFVInfo` tyvarFVInfo (tyVarsOfType (varType f))
else fvs
-- Mostly, the arity info of a function is in the fn's IdInfo
-- But new bindings introduced by CoreSat may not have no
-- arity info; it would do us no good anyway. For example:
-- let f = \ab -> e in f
-- No point in having correct arity info for f!
-- Hence the hasArity stuff below.
-- NB: f_arity is only consulted for LetBound things
f_arity = case how_bound of
LetBound _ arity -> arity
ImportBound -> idArity f
saturated = f_arity <= n_val_args
fun_occ
| not_letrec_bound = noBinderInfo -- Uninteresting variable
| f_arity > 0 && saturated = stgSatOcc -- Saturated or over-saturated function call
| otherwise = stgUnsatOcc -- Unsaturated function or thunk
fun_escs
| not_letrec_bound = emptyVarSet -- Only letrec-bound escapees are interesting
| f_arity == n_val_args = emptyVarSet -- A function *or thunk* with an exactly
-- saturated call doesn't escape
-- (let-no-escape applies to 'thunks' too)
| otherwise = unitVarSet f -- Inexact application; it does escape
-- At the moment of the call:
-- either the function is *not* let-no-escaped, in which case
-- nothing is live except live_in_cont
-- or the function *is* let-no-escaped in which case the
-- variables it uses are live, but still the function
-- itself is not. PS. In this case, the function's
-- live vars should already include those of the
-- continuation, but it does no harm to just union the
-- two regardless.
res_ty = exprType (mkApps (Var f) args)
app = case globalIdDetails f of
DataConId dc | saturated -> StgConApp dc args'
PrimOpId op -> ASSERT( saturated )
StgOpApp (StgPrimOp op) args' res_ty
FCallId call -> ASSERT( saturated )
StgOpApp (StgFCallOp call (idUnique f)) args' res_ty
_other -> StgApp f args'
in
returnLne (
app,
fun_fvs `unionFVInfo` args_fvs,
fun_escs `unionVarSet` (getFVSet args_fvs)
-- All the free vars of the args are disqualified
-- from being let-no-escaped.
)
-- ---------------------------------------------------------------------------
-- Argument lists
-- This is the guy that turns applications into A-normal form
-- ---------------------------------------------------------------------------
coreToStgArgs :: [CoreArg] -> LneM ([StgArg], FreeVarsInfo)
coreToStgArgs []
= returnLne ([], emptyFVInfo)
coreToStgArgs (Type ty : args) -- Type argument
= coreToStgArgs args `thenLne` \ (args', fvs) ->
if opt_RuntimeTypes then
returnLne (StgTypeArg ty : args', fvs `unionFVInfo` tyvarFVInfo (tyVarsOfType ty))
else
returnLne (args', fvs)
coreToStgArgs (arg : args) -- Non-type argument
= coreToStgArgs args `thenLne` \ (stg_args, args_fvs) ->
coreToStgExpr arg `thenLne` \ (arg', arg_fvs, escs) ->
let
fvs = args_fvs `unionFVInfo` arg_fvs
stg_arg = case arg' of
StgApp v [] -> StgVarArg v
StgConApp con [] -> StgVarArg (dataConWrapId con)
StgLit lit -> StgLitArg lit
_ -> pprPanic "coreToStgArgs" (ppr arg)
in
returnLne (stg_arg : stg_args, fvs)
-- ---------------------------------------------------------------------------
-- The magic for lets:
-- ---------------------------------------------------------------------------
coreToStgLet
:: Bool -- True <=> yes, we are let-no-escaping this let
-> CoreBind -- bindings
-> CoreExpr -- body
-> LneM (StgExpr, -- new let
FreeVarsInfo, -- variables free in the whole let
EscVarsSet, -- variables that escape from the whole let
Bool) -- True <=> none of the binders in the bindings
-- is among the escaping vars
coreToStgLet let_no_escape bind body
= fixLne (\ ~(_, _, _, _, _, rec_body_fvs, _, _) ->
-- Do the bindings, setting live_in_cont to empty if
-- we ain't in a let-no-escape world
getVarsLiveInCont `thenLne` \ live_in_cont ->
setVarsLiveInCont (if let_no_escape
then live_in_cont
else emptyLiveInfo)
(vars_bind rec_body_fvs bind)
`thenLne` \ ( bind2, bind_fvs, bind_escs, bind_lv_info, env_ext) ->
-- Do the body
extendVarEnvLne env_ext (
coreToStgExpr body `thenLne` \(body2, body_fvs, body_escs) ->
freeVarsToLiveVars body_fvs `thenLne` \ body_lv_info ->
returnLne (bind2, bind_fvs, bind_escs, getLiveVars bind_lv_info,
body2, body_fvs, body_escs, getLiveVars body_lv_info)
)
) `thenLne` (\ (bind2, bind_fvs, bind_escs, bind_lvs,
body2, body_fvs, body_escs, body_lvs) ->
-- Compute the new let-expression
let
new_let | let_no_escape = StgLetNoEscape live_in_whole_let bind_lvs bind2 body2
| otherwise = StgLet bind2 body2
free_in_whole_let
= binders `minusFVBinders` (bind_fvs `unionFVInfo` body_fvs)
live_in_whole_let
= bind_lvs `unionVarSet` (body_lvs `delVarSetList` binders)
real_bind_escs = if let_no_escape then
bind_escs
else
getFVSet bind_fvs
-- Everything escapes which is free in the bindings
let_escs = (real_bind_escs `unionVarSet` body_escs) `delVarSetList` binders
all_escs = bind_escs `unionVarSet` body_escs -- Still includes binders of
-- this let(rec)
no_binder_escapes = isEmptyVarSet (set_of_binders `intersectVarSet` all_escs)
#ifdef DEBUG
-- Debugging code as requested by Andrew Kennedy
checked_no_binder_escapes
| not no_binder_escapes && any is_join_var binders
= pprTrace "Interesting! A join var that isn't let-no-escaped" (ppr binders)
False
| otherwise = no_binder_escapes
#else
checked_no_binder_escapes = no_binder_escapes
#endif
-- Mustn't depend on the passed-in let_no_escape flag, since
-- no_binder_escapes is used by the caller to derive the flag!
in
returnLne (
new_let,
free_in_whole_let,
let_escs,
checked_no_binder_escapes
))
where
set_of_binders = mkVarSet binders
binders = bindersOf bind
mk_binding bind_lv_info binder rhs
= (binder, LetBound (NestedLet live_vars) (manifestArity rhs))
where
live_vars | let_no_escape = addLiveVar bind_lv_info binder
| otherwise = unitLiveVar binder
-- c.f. the invariant on NestedLet
vars_bind :: FreeVarsInfo -- Free var info for body of binding
-> CoreBind
-> LneM (StgBinding,
FreeVarsInfo,
EscVarsSet, -- free vars; escapee vars
LiveInfo, -- Vars and CAFs live in binding
[(Id, HowBound)]) -- extension to environment
vars_bind body_fvs (NonRec binder rhs)
= coreToStgRhs body_fvs NotTopLevel (binder,rhs)
`thenLne` \ (rhs2, bind_fvs, escs) ->
freeVarsToLiveVars bind_fvs `thenLne` \ bind_lv_info ->
let
env_ext_item = mk_binding bind_lv_info binder rhs
in
returnLne (StgNonRec (mkSRT bind_lv_info) binder rhs2,
bind_fvs, escs, bind_lv_info, [env_ext_item])
vars_bind body_fvs (Rec pairs)
= fixLne (\ ~(_, rec_rhs_fvs, _, bind_lv_info, _) ->
let
rec_scope_fvs = unionFVInfo body_fvs rec_rhs_fvs
binders = map fst pairs
env_ext = [ mk_binding bind_lv_info b rhs
| (b,rhs) <- pairs ]
in
extendVarEnvLne env_ext (
mapAndUnzip3Lne (coreToStgRhs rec_scope_fvs NotTopLevel) pairs
`thenLne` \ (rhss2, fvss, escss) ->
let
bind_fvs = unionFVInfos fvss
escs = unionVarSets escss
in
freeVarsToLiveVars (binders `minusFVBinders` bind_fvs)
`thenLne` \ bind_lv_info ->
returnLne (StgRec (mkSRT bind_lv_info) (binders `zip` rhss2),
bind_fvs, escs, bind_lv_info, env_ext)
)
)
is_join_var :: Id -> Bool
-- A hack (used only for compiler debuggging) to tell if
-- a variable started life as a join point ($j)
is_join_var j = occNameUserString (getOccName j) == "$j"
\end{code}
%************************************************************************
%* *
\subsection[LNE-monad]{A little monad for this let-no-escaping pass}
%* *
%************************************************************************
There's a lot of stuff to pass around, so we use this @LneM@ monad to
help. All the stuff here is only passed *down*.
\begin{code}
type LneM a = IdEnv HowBound
-> LiveInfo -- Vars and CAFs live in continuation
-> a
type LiveInfo = (StgLiveVars, -- Dynamic live variables;
-- i.e. ones with a nested (non-top-level) binding
CafSet) -- Static live variables;
-- i.e. top-level variables that are CAFs or refer to them
type EscVarsSet = IdSet
type CafSet = IdSet
data HowBound
= ImportBound -- Used only as a response to lookupBinding; never
-- exists in the range of the (IdEnv HowBound)
| LetBound -- A let(rec) in this module
LetInfo -- Whether top level or nested
Arity -- Its arity (local Ids don't have arity info at this point)
| LambdaBound -- Used for both lambda and case
data LetInfo = NestedLet LiveInfo -- For nested things, what is live if this thing is live?
-- Invariant: the binder itself is always a member of
-- the dynamic set of its own LiveInfo
| TopLet CafInfo -- For top level things, is it a CAF, or can it refer to one?
isLetBound (LetBound _ _) = True
isLetBound other = False
topLevelBound ImportBound = True
topLevelBound (LetBound (TopLet _) _) = True
topLevelBound other = False
\end{code}
For a let(rec)-bound variable, x, we record LiveInfo, the set of
variables that are live if x is live. This LiveInfo comprises
(a) dynamic live variables (ones with a non-top-level binding)
(b) static live variabes (CAFs or things that refer to CAFs)
For "normal" variables (a) is just x alone. If x is a let-no-escaped
variable then x is represented by a code pointer and a stack pointer
(well, one for each stack). So all of the variables needed in the
execution of x are live if x is, and are therefore recorded in the
LetBound constructor; x itself *is* included.
The set of dynamic live variables is guaranteed ot have no further let-no-escaped
variables in it.
\begin{code}
emptyLiveInfo :: LiveInfo
emptyLiveInfo = (emptyVarSet,emptyVarSet)
unitLiveVar :: Id -> LiveInfo
unitLiveVar lv = (unitVarSet lv, emptyVarSet)
unitLiveCaf :: Id -> LiveInfo
unitLiveCaf caf = (emptyVarSet, unitVarSet caf)
addLiveVar :: LiveInfo -> Id -> LiveInfo
addLiveVar (lvs, cafs) id = (lvs `extendVarSet` id, cafs)
unionLiveInfo :: LiveInfo -> LiveInfo -> LiveInfo
unionLiveInfo (lv1,caf1) (lv2,caf2) = (lv1 `unionVarSet` lv2, caf1 `unionVarSet` caf2)
mkSRT :: LiveInfo -> SRT
mkSRT (_, cafs) = SRTEntries cafs
getLiveVars :: LiveInfo -> StgLiveVars
getLiveVars (lvs, _) = lvs
\end{code}
The std monad functions:
\begin{code}
initLne :: IdEnv HowBound -> LneM a -> a
initLne env m = m env emptyLiveInfo
{-# INLINE thenLne #-}
{-# INLINE returnLne #-}
returnLne :: a -> LneM a
returnLne e env lvs_cont = e
thenLne :: LneM a -> (a -> LneM b) -> LneM b
thenLne m k env lvs_cont
= k (m env lvs_cont) env lvs_cont
mapLne :: (a -> LneM b) -> [a] -> LneM [b]
mapLne f [] = returnLne []
mapLne f (x:xs)
= f x `thenLne` \ r ->
mapLne f xs `thenLne` \ rs ->
returnLne (r:rs)
mapAndUnzipLne :: (a -> LneM (b,c)) -> [a] -> LneM ([b],[c])
mapAndUnzipLne f [] = returnLne ([],[])
mapAndUnzipLne f (x:xs)
= f x `thenLne` \ (r1, r2) ->
mapAndUnzipLne f xs `thenLne` \ (rs1, rs2) ->
returnLne (r1:rs1, r2:rs2)
mapAndUnzip3Lne :: (a -> LneM (b,c,d)) -> [a] -> LneM ([b],[c],[d])
mapAndUnzip3Lne f [] = returnLne ([],[],[])
mapAndUnzip3Lne f (x:xs)
= f x `thenLne` \ (r1, r2, r3) ->
mapAndUnzip3Lne f xs `thenLne` \ (rs1, rs2, rs3) ->
returnLne (r1:rs1, r2:rs2, r3:rs3)
fixLne :: (a -> LneM a) -> LneM a
fixLne expr env lvs_cont
= result
where
result = expr result env lvs_cont
\end{code}
Functions specific to this monad:
\begin{code}
getVarsLiveInCont :: LneM LiveInfo
getVarsLiveInCont env lvs_cont = lvs_cont
setVarsLiveInCont :: LiveInfo -> LneM a -> LneM a
setVarsLiveInCont new_lvs_cont expr env lvs_cont
= expr env new_lvs_cont
extendVarEnvLne :: [(Id, HowBound)] -> LneM a -> LneM a
extendVarEnvLne ids_w_howbound expr env lvs_cont
= expr (extendVarEnvList env ids_w_howbound) lvs_cont
lookupVarLne :: Id -> LneM HowBound
lookupVarLne v env lvs_cont = returnLne (lookupBinding env v) env lvs_cont
lookupBinding :: IdEnv HowBound -> Id -> HowBound
lookupBinding env v = case lookupVarEnv env v of
Just xx -> xx
Nothing -> ASSERT2( isGlobalId v, ppr v ) ImportBound
-- The result of lookupLiveVarsForSet, a set of live variables, is
-- only ever tacked onto a decorated expression. It is never used as
-- the basis of a control decision, which might give a black hole.
freeVarsToLiveVars :: FreeVarsInfo -> LneM LiveInfo
freeVarsToLiveVars fvs env live_in_cont
= returnLne live_info env live_in_cont
where
live_info = foldr unionLiveInfo live_in_cont lvs_from_fvs
lvs_from_fvs = map do_one (allFreeIds fvs)
do_one (v, how_bound)
= case how_bound of
ImportBound -> unitLiveCaf v -- Only CAF imports are
-- recorded in fvs
LetBound (TopLet caf_info) _
| mayHaveCafRefs caf_info -> unitLiveCaf v
| otherwise -> emptyLiveInfo
LetBound (NestedLet lvs) _ -> lvs -- lvs already contains v
-- (see the invariant on NestedLet)
_lambda_or_case_binding -> unitLiveVar v -- Bound by lambda or case
\end{code}
%************************************************************************
%* *
\subsection[Free-var info]{Free variable information}
%* *
%************************************************************************
\begin{code}
type FreeVarsInfo = VarEnv (Var, HowBound, StgBinderInfo)
-- The Var is so we can gather up the free variables
-- as a set.
--
-- The HowBound info just saves repeated lookups;
-- we look up just once when we encounter the occurrence.
-- INVARIANT: Any ImportBound Ids are HaveCafRef Ids
-- Imported Ids without CAF refs are simply
-- not put in the FreeVarsInfo for an expression.
-- See singletonFVInfo and freeVarsToLiveVars
--
-- StgBinderInfo records how it occurs; notably, we
-- are interested in whether it only occurs in saturated
-- applications, because then we don't need to build a
-- curried version.
-- If f is mapped to noBinderInfo, that means
-- that f *is* mentioned (else it wouldn't be in the
-- IdEnv at all), but perhaps in an unsaturated applications.
--
-- All case/lambda-bound things are also mapped to
-- noBinderInfo, since we aren't interested in their
-- occurence info.
--
-- For ILX we track free var info for type variables too;
-- hence VarEnv not IdEnv
\end{code}
\begin{code}
emptyFVInfo :: FreeVarsInfo
emptyFVInfo = emptyVarEnv
singletonFVInfo :: Id -> HowBound -> StgBinderInfo -> FreeVarsInfo
-- Don't record non-CAF imports at all, to keep free-var sets small
singletonFVInfo id ImportBound info
| mayHaveCafRefs (idCafInfo id) = unitVarEnv id (id, ImportBound, info)
| otherwise = emptyVarEnv
singletonFVInfo id how_bound info = unitVarEnv id (id, how_bound, info)
tyvarFVInfo :: TyVarSet -> FreeVarsInfo
tyvarFVInfo tvs = foldVarSet add emptyFVInfo tvs
where
add tv fvs = extendVarEnv fvs tv (tv, LambdaBound, noBinderInfo)
-- Type variables must be lambda-bound
unionFVInfo :: FreeVarsInfo -> FreeVarsInfo -> FreeVarsInfo
unionFVInfo fv1 fv2 = plusVarEnv_C plusFVInfo fv1 fv2
unionFVInfos :: [FreeVarsInfo] -> FreeVarsInfo
unionFVInfos fvs = foldr unionFVInfo emptyFVInfo fvs
minusFVBinders :: [Id] -> FreeVarsInfo -> FreeVarsInfo
minusFVBinders vs fv = foldr minusFVBinder fv vs
minusFVBinder :: Id -> FreeVarsInfo -> FreeVarsInfo
minusFVBinder v fv | isId v && opt_RuntimeTypes
= (fv `delVarEnv` v) `unionFVInfo`
tyvarFVInfo (tyVarsOfType (idType v))
| otherwise = fv `delVarEnv` v
-- When removing a binder, remember to add its type variables
-- c.f. CoreFVs.delBinderFV
elementOfFVInfo :: Id -> FreeVarsInfo -> Bool
elementOfFVInfo id fvs = maybeToBool (lookupVarEnv fvs id)
lookupFVInfo :: FreeVarsInfo -> Id -> StgBinderInfo
-- Find how the given Id is used.
-- Externally visible things may be used any old how
lookupFVInfo fvs id
| isExternallyVisibleName (idName id) = noBinderInfo
| otherwise = case lookupVarEnv fvs id of
Nothing -> noBinderInfo
Just (_,_,info) -> info
allFreeIds :: FreeVarsInfo -> [(Id,HowBound)] -- Both top level and non-top-level Ids
allFreeIds fvs = [(id,how_bound) | (id,how_bound,_) <- rngVarEnv fvs, isId id]
-- Non-top-level things only, both type variables and ids
-- (type variables only if opt_RuntimeTypes)
getFVs :: FreeVarsInfo -> [Var]
getFVs fvs = [id | (id, how_bound, _) <- rngVarEnv fvs,
not (topLevelBound how_bound) ]
getFVSet :: FreeVarsInfo -> VarSet
getFVSet fvs = mkVarSet (getFVs fvs)
plusFVInfo (id1,hb1,info1) (id2,hb2,info2)
= ASSERT (id1 == id2 && hb1 `check_eq_how_bound` hb2)
(id1, hb1, combineStgBinderInfo info1 info2)
#ifdef DEBUG
-- The HowBound info for a variable in the FVInfo should be consistent
check_eq_how_bound ImportBound ImportBound = True
check_eq_how_bound LambdaBound LambdaBound = True
check_eq_how_bound (LetBound li1 ar1) (LetBound li2 ar2) = ar1 == ar2 && check_eq_li li1 li2
check_eq_how_bound hb1 hb2 = False
check_eq_li (NestedLet _) (NestedLet _) = True
check_eq_li (TopLet _) (TopLet _) = True
check_eq_li li1 li2 = False
#endif
\end{code}
Misc.
\begin{code}
filterStgBinders :: [Var] -> [Var]
filterStgBinders bndrs
| opt_RuntimeTypes = bndrs
| otherwise = filter isId bndrs
\end{code}
\begin{code}
-- Ignore all notes except SCC
myCollectBinders expr
= go [] expr
where
go bs (Lam b e) = go (b:bs) e
go bs e@(Note (SCC _) _) = (reverse bs, e)
go bs (Note _ e) = go bs e
go bs e = (reverse bs, e)
myCollectArgs :: CoreExpr -> (Id, [CoreArg])
-- We assume that we only have variables
-- in the function position by now
myCollectArgs expr
= go expr []
where
go (Var v) as = (v, as)
go (App f a) as = go f (a:as)
go (Note (SCC _) e) as = pprPanic "CoreToStg.myCollectArgs" (ppr expr)
go (Note n e) as = go e as
go _ as = pprPanic "CoreToStg.myCollectArgs" (ppr expr)
\end{code}
%************************************************************************
%* *
\subsection{Figuring out CafInfo for an expression}
%* *
%************************************************************************
hasCafRefs decides whether a top-level closure can point into the dynamic heap.
We mark such things as `MayHaveCafRefs' because this information is
used to decide whether a particular closure needs to be referenced
in an SRT or not.
There are two reasons for setting MayHaveCafRefs:
a) The RHS is a CAF: a top-level updatable thunk.
b) The RHS refers to something that MayHaveCafRefs
Possible improvement: In an effort to keep the number of CAFs (and
hence the size of the SRTs) down, we could also look at the expression and
decide whether it requires a small bounded amount of heap, so we can ignore
it as a CAF. In these cases however, we would need to use an additional
CAF list to keep track of non-collectable CAFs.
\begin{code}
hasCafRefs :: IdEnv HowBound -> CoreExpr -> CafInfo
-- Only called for the RHS of top-level lets
hasCafRefss :: IdEnv HowBound -> [CoreExpr] -> CafInfo
-- predicate returns True for a given Id if we look at this Id when
-- calculating the result. Used to *avoid* looking at the CafInfo
-- field for an Id that is part of the current recursive group.
hasCafRefs p expr
| isCAF expr || isFastTrue (cafRefs p expr) = MayHaveCafRefs
| otherwise = NoCafRefs
-- used for recursive groups. The whole group is set to
-- "MayHaveCafRefs" if at least one of the group is a CAF or
-- refers to any CAFs.
hasCafRefss p exprs
| any isCAF exprs || isFastTrue (cafRefss p exprs) = MayHaveCafRefs
| otherwise = NoCafRefs
-- The environment that cafRefs uses has top-level bindings *only*.
-- We don't bother to add local bindings as cafRefs traverses the expression
-- because they will all be for LocalIds (all nested things are LocalIds)
-- However, we must look in the env first, because some top level things
-- might be local Ids
cafRefs p (Var id)
= case lookupVarEnv p id of
Just (LetBound (TopLet caf_info) _) -> fastBool (mayHaveCafRefs caf_info)
Nothing | isGlobalId id -> fastBool (mayHaveCafRefs (idCafInfo id)) -- Imported
| otherwise -> fastBool False -- Nested binder
_other -> error ("cafRefs " ++ showSDoc (ppr id)) -- No nested things in env
cafRefs p (Lit l) = fastBool False
cafRefs p (App f a) = fastOr (cafRefs p f) (cafRefs p) a
cafRefs p (Lam x e) = cafRefs p e
cafRefs p (Let b e) = fastOr (cafRefss p (rhssOfBind b)) (cafRefs p) e
cafRefs p (Case e bndr alts) = fastOr (cafRefs p e) (cafRefss p) (rhssOfAlts alts)
cafRefs p (Note n e) = cafRefs p e
cafRefs p (Type t) = fastBool False
cafRefss p [] = fastBool False
cafRefss p (e:es) = fastOr (cafRefs p e) (cafRefss p) es
-- hack for lazy-or over FastBool.
fastOr a f x = fastBool (isFastTrue a || isFastTrue (f x))
isCAF :: CoreExpr -> Bool
-- Only called for the RHS of top-level lets
isCAF e = not (rhsIsNonUpd e)
{- ToDo: check type for onceness, i.e. non-updatable thunks? -}
rhsIsNonUpd :: CoreExpr -> Bool
-- True => Value-lambda, constructor, PAP
-- This is a bit like CoreUtils.exprIsValue, with the following differences:
-- a) scc "foo" (\x -> ...) is updatable (so we catch the right SCC)
--
-- b) (C x xs), where C is a contructors is updatable if the application is
-- dynamic: see isDynConApp
--
-- c) don't look through unfolding of f in (f x). I'm suspicious of this one
-- This function has to line up with what the update flag
-- for the StgRhs gets set to in mkStgRhs (above)
--
-- When opt_RuntimeTypes is on, we keep type lambdas and treat
-- them as making the RHS re-entrant (non-updatable).
rhsIsNonUpd (Lam b e) = isRuntimeVar b || rhsIsNonUpd e
rhsIsNonUpd (Note (SCC _) e) = False
rhsIsNonUpd (Note _ e) = rhsIsNonUpd e
rhsIsNonUpd other_expr
= go other_expr 0 []
where
go (Var f) n_args args = idAppIsNonUpd f n_args args
go (App f a) n_args args
| isTypeArg a = go f n_args args
| otherwise = go f (n_args + 1) (a:args)
go (Note (SCC _) f) n_args args = False
go (Note _ f) n_args args = go f n_args args
go other n_args args = False
idAppIsNonUpd :: Id -> Int -> [CoreExpr] -> Bool
idAppIsNonUpd id n_val_args args
| Just con <- isDataConId_maybe id = not (isCrossDllConApp con args)
| otherwise = n_val_args < idArity id
isCrossDllConApp :: DataCon -> [CoreExpr] -> Bool
isCrossDllConApp con args = isDllName (dataConName con) || any isCrossDllArg args
-- Top-level constructor applications can usually be allocated
-- statically, but they can't if
-- a) the constructor, or any of the arguments, come from another DLL
-- b) any of the arguments are LitLits
-- (because we can't refer to static labels in other DLLs).
-- If this happens we simply make the RHS into an updatable thunk,
-- and 'exectute' it rather than allocating it statically.
-- All this should match the decision in (see CoreToStg.coreToStgRhs)
isCrossDllArg :: CoreExpr -> Bool
-- True if somewhere in the expression there's a cross-DLL reference
isCrossDllArg (Type _) = False
isCrossDllArg (Var v) = isDllName (idName v)
isCrossDllArg (Note _ e) = isCrossDllArg e
isCrossDllArg (Lit lit) = isLitLitLit lit
isCrossDllArg (App e1 e2) = isCrossDllArg e1 || isCrossDllArg e2 -- must be a type app
isCrossDllArg (Lam v e) = isCrossDllArg e -- must be a type lam
\end{code}
|