1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
|
/* -----------------------------------------------------------------------------
* $Id: Signals.c,v 1.8 1999/09/22 11:53:33 sof Exp $
*
* (c) The GHC Team, 1998-1999
*
* Signal processing / handling.
*
* ---------------------------------------------------------------------------*/
#include "Rts.h"
#include "SchedAPI.h"
#include "Schedule.h"
#include "Signals.h"
#include "RtsUtils.h"
#include "RtsFlags.h"
#include "StablePriv.h"
#ifndef mingw32_TARGET_OS
#ifndef PAR
static StgInt *handlers = NULL; /* Dynamically grown array of signal handlers */
static StgInt nHandlers = 0; /* Size of handlers array */
#define N_PENDING_HANDLERS 16
StgPtr pending_handler_buf[N_PENDING_HANDLERS];
StgPtr *next_pending_handler = pending_handler_buf;
StgInt nocldstop = 0;
/* -----------------------------------------------------------------------------
Allocate/resize the table of signal handlers.
-------------------------------------------------------------------------- */
static void
more_handlers(I_ sig)
{
I_ i;
if (sig < nHandlers)
return;
if (handlers == NULL)
handlers = (I_ *) malloc((sig + 1) * sizeof(I_));
else
handlers = (I_ *) realloc(handlers, (sig + 1) * sizeof(I_));
if (handlers == NULL) {
/* don't fflush(stdout); WORKAROUND bug in Linux glibc */
fprintf(stderr, "VM exhausted (in more_handlers)\n");
exit(EXIT_FAILURE);
}
for(i = nHandlers; i <= sig; i++)
/* Fill in the new slots with default actions */
handlers[i] = STG_SIG_DFL;
nHandlers = sig + 1;
}
/* -----------------------------------------------------------------------------
Low-level signal handler
Places the requested handler on a stack of pending handlers to be
started up at the next context switch.
-------------------------------------------------------------------------- */
static void
generic_handler(int sig)
{
sigset_t signals;
/* Can't call allocate from here. Probably can't call malloc
either. However, we have to schedule a new thread somehow.
It's probably ok to request a context switch and allow the
scheduler to start the handler thread, but how do we
communicate this to the scheduler?
We need some kind of locking, but with low overhead (i.e. no
blocking signals every time around the scheduler).
Signal Handlers are atomic (i.e. they can't be interrupted), and
we can make use of this. We just need to make sure the
critical section of the scheduler can't be interrupted - the
only way to do this is to block signals. However, we can lower
the overhead by only blocking signals when there are any
handlers to run, i.e. the set of pending handlers is
non-empty.
*/
/* We use a stack to store the pending signals. We can't
dynamically grow this since we can't allocate any memory from
within a signal handler.
Hence unfortunately we have to bomb out if the buffer
overflows. It might be acceptable to carry on in certain
circumstances, depending on the signal.
*/
*next_pending_handler++ = deRefStablePtr(handlers[sig]);
/* stack full? */
if (next_pending_handler == &pending_handler_buf[N_PENDING_HANDLERS]) {
barf("too many pending signals");
}
/* re-establish the signal handler, and carry on */
sigemptyset(&signals);
sigaddset(&signals, sig);
sigprocmask(SIG_UNBLOCK, &signals, NULL);
context_switch = 1;
}
/* -----------------------------------------------------------------------------
Blocking/Unblocking of the user signals
-------------------------------------------------------------------------- */
static sigset_t userSignals;
static sigset_t savedSignals;
void
initUserSignals(void)
{
sigemptyset(&userSignals);
}
void
blockUserSignals(void)
{
sigprocmask(SIG_SETMASK, &userSignals, &savedSignals);
}
void
unblockUserSignals(void)
{
sigprocmask(SIG_SETMASK, &savedSignals, NULL);
}
/* -----------------------------------------------------------------------------
Install a Haskell signal handler.
-------------------------------------------------------------------------- */
StgInt
sig_install(StgInt sig, StgInt spi, StgStablePtr handler, sigset_t *mask)
{
sigset_t signals;
struct sigaction action;
StgInt previous_spi;
/* Block the signal until we figure out what to do */
/* Count on this to fail if the signal number is invalid */
if(sig < 0 || sigemptyset(&signals) || sigaddset(&signals, sig) ||
sigprocmask(SIG_BLOCK, &signals, NULL))
return STG_SIG_ERR;
more_handlers(sig);
previous_spi = handlers[sig];
switch(spi) {
case STG_SIG_IGN:
handlers[sig] = STG_SIG_IGN;
sigdelset(&userSignals, sig);
action.sa_handler = SIG_IGN;
break;
case STG_SIG_DFL:
handlers[sig] = STG_SIG_DFL;
sigdelset(&userSignals, sig);
action.sa_handler = SIG_DFL;
break;
case STG_SIG_HAN:
handlers[sig] = (I_)handler;
sigaddset(&userSignals, sig);
action.sa_handler = generic_handler;
break;
default:
barf("sig_install: bad spi");
}
if (mask != 0)
action.sa_mask = *mask;
else
sigemptyset(&action.sa_mask);
action.sa_flags = sig == SIGCHLD && nocldstop ? SA_NOCLDSTOP : 0;
if (sigaction(sig, &action, NULL) ||
sigprocmask(SIG_UNBLOCK, &signals, NULL))
{
/* need to return an error code, so avoid a stable pointer leak
* by freeing the previous handler if there was one.
*/
if (previous_spi >= 0) {
freeStablePtr(handlers[sig]);
}
return STG_SIG_ERR;
}
return previous_spi;
}
/* -----------------------------------------------------------------------------
Creating new threads for the pending signal handlers.
-------------------------------------------------------------------------- */
void
start_signal_handlers(void)
{
blockUserSignals();
while (next_pending_handler != pending_handler_buf) {
next_pending_handler--;
/* create*Thread puts the thread on the head of the runnable
* queue, hence it will be run next. Poor man's priority
* scheduling.
*/
createIOThread(RtsFlags.GcFlags.initialStkSize,
(StgClosure *) *next_pending_handler);
}
unblockUserSignals();
}
#else /* PAR */
StgInt
sig_install(StgInt sig, StgInt spi, StgStablePtr handler, sigset_t *mask)
{
/* don't fflush(stdout); WORKAROUND bug in Linux glibc */
fprintf(stderr,
"No signal handling support in a parallel implementation.\n");
exit(EXIT_FAILURE);
}
void
start_signal_handlers(void)
{
}
#endif
static void
shutdown_handler(int sig)
{
shutdownHaskellAndExit(EXIT_FAILURE);
}
/*
* The RTS installs a default signal handler for catching
* SIGINT, so that we can perform an orderly shutdown (finalising
* objects and flushing buffers etc.)
*
* Haskell code may install their own SIGINT handler, which is
* fine, provided they're so kind as to put back the old one
* when they de-install.
*/
void
init_shutdown_handler()
{
struct sigaction action,oact;
action.sa_handler = shutdown_handler;
sigemptyset(&action.sa_mask);
action.sa_flags = 0;
if (sigaction(SIGINT, &action, &oact) != 0) {
/* Oh well, at least we tried. */
#ifdef DEBUG
fprintf(stderr, "init_shutdown_handler: failed to reg SIGINT handler");
#endif
}
}
#endif /*! mingw32_TARGET_OS */
|