1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
|
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE NoImplicitPrelude #-}
{-# OPTIONS_GHC -Wno-inline-rule-shadowing #-}
-- The RULES for the methods of class Arrow may never fire
-- e.g. compose/arr; see Trac #10528
-----------------------------------------------------------------------------
-- |
-- Module : Control.Arrow
-- Copyright : (c) Ross Paterson 2002
-- License : BSD-style (see the LICENSE file in the distribution)
--
-- Maintainer : libraries@haskell.org
-- Stability : provisional
-- Portability : portable
--
-- Basic arrow definitions, based on
--
-- * /Generalising Monads to Arrows/, by John Hughes,
-- /Science of Computer Programming/ 37, pp67-111, May 2000.
--
-- plus a couple of definitions ('returnA' and 'loop') from
--
-- * /A New Notation for Arrows/, by Ross Paterson, in /ICFP 2001/,
-- Firenze, Italy, pp229-240.
--
-- These papers and more information on arrows can be found at
-- <http://www.haskell.org/arrows/>.
module Control.Arrow (
-- * Arrows
Arrow(..), Kleisli(..),
-- ** Derived combinators
returnA,
(^>>), (>>^),
(>>>), (<<<), -- reexported
-- ** Right-to-left variants
(<<^), (^<<),
-- * Monoid operations
ArrowZero(..), ArrowPlus(..),
-- * Conditionals
ArrowChoice(..),
-- * Arrow application
ArrowApply(..), ArrowMonad(..), leftApp,
-- * Feedback
ArrowLoop(..)
) where
import Data.Tuple ( fst, snd, uncurry )
import Data.Either
import Control.Monad.Fix
import Control.Category
import GHC.Base hiding ( (.), id )
infixr 5 <+>
infixr 3 ***
infixr 3 &&&
infixr 2 +++
infixr 2 |||
infixr 1 ^>>, >>^
infixr 1 ^<<, <<^
-- | The basic arrow class.
--
-- Instances should satisfy the following laws:
--
-- * @'arr' id = 'id'@
--
-- * @'arr' (f >>> g) = 'arr' f >>> 'arr' g@
--
-- * @'first' ('arr' f) = 'arr' ('first' f)@
--
-- * @'first' (f >>> g) = 'first' f >>> 'first' g@
--
-- * @'first' f >>> 'arr' 'fst' = 'arr' 'fst' >>> f@
--
-- * @'first' f >>> 'arr' ('id' *** g) = 'arr' ('id' *** g) >>> 'first' f@
--
-- * @'first' ('first' f) >>> 'arr' 'assoc' = 'arr' 'assoc' >>> 'first' f@
--
-- where
--
-- > assoc ((a,b),c) = (a,(b,c))
--
-- The other combinators have sensible default definitions,
-- which may be overridden for efficiency.
class Category a => Arrow a where
{-# MINIMAL arr, (first | (***)) #-}
-- | Lift a function to an arrow.
arr :: (b -> c) -> a b c
-- | Send the first component of the input through the argument
-- arrow, and copy the rest unchanged to the output.
first :: a b c -> a (b,d) (c,d)
first = (*** id)
-- | A mirror image of 'first'.
--
-- The default definition may be overridden with a more efficient
-- version if desired.
second :: a b c -> a (d,b) (d,c)
second = (id ***)
-- | Split the input between the two argument arrows and combine
-- their output. Note that this is in general not a functor.
--
-- The default definition may be overridden with a more efficient
-- version if desired.
(***) :: a b c -> a b' c' -> a (b,b') (c,c')
f *** g = first f >>> arr swap >>> first g >>> arr swap
where swap ~(x,y) = (y,x)
-- | Fanout: send the input to both argument arrows and combine
-- their output.
--
-- The default definition may be overridden with a more efficient
-- version if desired.
(&&&) :: a b c -> a b c' -> a b (c,c')
f &&& g = arr (\b -> (b,b)) >>> f *** g
{-# RULES
"compose/arr" forall f g .
(arr f) . (arr g) = arr (f . g)
"first/arr" forall f .
first (arr f) = arr (first f)
"second/arr" forall f .
second (arr f) = arr (second f)
"product/arr" forall f g .
arr f *** arr g = arr (f *** g)
"fanout/arr" forall f g .
arr f &&& arr g = arr (f &&& g)
"compose/first" forall f g .
(first f) . (first g) = first (f . g)
"compose/second" forall f g .
(second f) . (second g) = second (f . g)
#-}
-- Ordinary functions are arrows.
instance Arrow (->) where
arr f = f
-- (f *** g) ~(x,y) = (f x, g y)
-- sorry, although the above defn is fully H'98, nhc98 can't parse it.
(***) f g ~(x,y) = (f x, g y)
-- | Kleisli arrows of a monad.
newtype Kleisli m a b = Kleisli { runKleisli :: a -> m b }
instance Monad m => Category (Kleisli m) where
id = Kleisli return
(Kleisli f) . (Kleisli g) = Kleisli (\b -> g b >>= f)
instance Monad m => Arrow (Kleisli m) where
arr f = Kleisli (return . f)
first (Kleisli f) = Kleisli (\ ~(b,d) -> f b >>= \c -> return (c,d))
second (Kleisli f) = Kleisli (\ ~(d,b) -> f b >>= \c -> return (d,c))
-- | The identity arrow, which plays the role of 'return' in arrow notation.
returnA :: Arrow a => a b b
returnA = arr id
-- | Precomposition with a pure function.
(^>>) :: Arrow a => (b -> c) -> a c d -> a b d
f ^>> a = arr f >>> a
-- | Postcomposition with a pure function.
(>>^) :: Arrow a => a b c -> (c -> d) -> a b d
a >>^ f = a >>> arr f
-- | Precomposition with a pure function (right-to-left variant).
(<<^) :: Arrow a => a c d -> (b -> c) -> a b d
a <<^ f = a <<< arr f
-- | Postcomposition with a pure function (right-to-left variant).
(^<<) :: Arrow a => (c -> d) -> a b c -> a b d
f ^<< a = arr f <<< a
class Arrow a => ArrowZero a where
zeroArrow :: a b c
instance MonadPlus m => ArrowZero (Kleisli m) where
zeroArrow = Kleisli (\_ -> mzero)
-- | A monoid on arrows.
class ArrowZero a => ArrowPlus a where
-- | An associative operation with identity 'zeroArrow'.
(<+>) :: a b c -> a b c -> a b c
instance MonadPlus m => ArrowPlus (Kleisli m) where
Kleisli f <+> Kleisli g = Kleisli (\x -> f x `mplus` g x)
-- | Choice, for arrows that support it. This class underlies the
-- @if@ and @case@ constructs in arrow notation.
--
-- Instances should satisfy the following laws:
--
-- * @'left' ('arr' f) = 'arr' ('left' f)@
--
-- * @'left' (f >>> g) = 'left' f >>> 'left' g@
--
-- * @f >>> 'arr' 'Left' = 'arr' 'Left' >>> 'left' f@
--
-- * @'left' f >>> 'arr' ('id' +++ g) = 'arr' ('id' +++ g) >>> 'left' f@
--
-- * @'left' ('left' f) >>> 'arr' 'assocsum' = 'arr' 'assocsum' >>> 'left' f@
--
-- where
--
-- > assocsum (Left (Left x)) = Left x
-- > assocsum (Left (Right y)) = Right (Left y)
-- > assocsum (Right z) = Right (Right z)
--
-- The other combinators have sensible default definitions, which may
-- be overridden for efficiency.
class Arrow a => ArrowChoice a where
{-# MINIMAL (left | (+++)) #-}
-- | Feed marked inputs through the argument arrow, passing the
-- rest through unchanged to the output.
left :: a b c -> a (Either b d) (Either c d)
left = (+++ id)
-- | A mirror image of 'left'.
--
-- The default definition may be overridden with a more efficient
-- version if desired.
right :: a b c -> a (Either d b) (Either d c)
right = (id +++)
-- | Split the input between the two argument arrows, retagging
-- and merging their outputs.
-- Note that this is in general not a functor.
--
-- The default definition may be overridden with a more efficient
-- version if desired.
(+++) :: a b c -> a b' c' -> a (Either b b') (Either c c')
f +++ g = left f >>> arr mirror >>> left g >>> arr mirror
where
mirror :: Either x y -> Either y x
mirror (Left x) = Right x
mirror (Right y) = Left y
-- | Fanin: Split the input between the two argument arrows and
-- merge their outputs.
--
-- The default definition may be overridden with a more efficient
-- version if desired.
(|||) :: a b d -> a c d -> a (Either b c) d
f ||| g = f +++ g >>> arr untag
where
untag (Left x) = x
untag (Right y) = y
{-# RULES
"left/arr" forall f .
left (arr f) = arr (left f)
"right/arr" forall f .
right (arr f) = arr (right f)
"sum/arr" forall f g .
arr f +++ arr g = arr (f +++ g)
"fanin/arr" forall f g .
arr f ||| arr g = arr (f ||| g)
"compose/left" forall f g .
left f . left g = left (f . g)
"compose/right" forall f g .
right f . right g = right (f . g)
#-}
instance ArrowChoice (->) where
left f = f +++ id
right f = id +++ f
f +++ g = (Left . f) ||| (Right . g)
(|||) = either
instance Monad m => ArrowChoice (Kleisli m) where
left f = f +++ arr id
right f = arr id +++ f
f +++ g = (f >>> arr Left) ||| (g >>> arr Right)
Kleisli f ||| Kleisli g = Kleisli (either f g)
-- | Some arrows allow application of arrow inputs to other inputs.
-- Instances should satisfy the following laws:
--
-- * @'first' ('arr' (\\x -> 'arr' (\\y -> (x,y)))) >>> 'app' = 'id'@
--
-- * @'first' ('arr' (g >>>)) >>> 'app' = 'second' g >>> 'app'@
--
-- * @'first' ('arr' (>>> h)) >>> 'app' = 'app' >>> h@
--
-- Such arrows are equivalent to monads (see 'ArrowMonad').
class Arrow a => ArrowApply a where
app :: a (a b c, b) c
instance ArrowApply (->) where
app (f,x) = f x
instance Monad m => ArrowApply (Kleisli m) where
app = Kleisli (\(Kleisli f, x) -> f x)
-- | The 'ArrowApply' class is equivalent to 'Monad': any monad gives rise
-- to a 'Kleisli' arrow, and any instance of 'ArrowApply' defines a monad.
newtype ArrowMonad a b = ArrowMonad (a () b)
instance Arrow a => Functor (ArrowMonad a) where
fmap f (ArrowMonad m) = ArrowMonad $ m >>> arr f
instance Arrow a => Applicative (ArrowMonad a) where
pure x = ArrowMonad (arr (const x))
ArrowMonad f <*> ArrowMonad x = ArrowMonad (f &&& x >>> arr (uncurry id))
instance ArrowApply a => Monad (ArrowMonad a) where
ArrowMonad m >>= f = ArrowMonad $
m >>> arr (\x -> let ArrowMonad h = f x in (h, ())) >>> app
instance ArrowPlus a => Alternative (ArrowMonad a) where
empty = ArrowMonad zeroArrow
ArrowMonad x <|> ArrowMonad y = ArrowMonad (x <+> y)
instance (ArrowApply a, ArrowPlus a) => MonadPlus (ArrowMonad a) where
mzero = ArrowMonad zeroArrow
ArrowMonad x `mplus` ArrowMonad y = ArrowMonad (x <+> y)
-- | Any instance of 'ArrowApply' can be made into an instance of
-- 'ArrowChoice' by defining 'left' = 'leftApp'.
leftApp :: ArrowApply a => a b c -> a (Either b d) (Either c d)
leftApp f = arr ((\b -> (arr (\() -> b) >>> f >>> arr Left, ())) |||
(\d -> (arr (\() -> d) >>> arr Right, ()))) >>> app
-- | The 'loop' operator expresses computations in which an output value
-- is fed back as input, although the computation occurs only once.
-- It underlies the @rec@ value recursion construct in arrow notation.
-- 'loop' should satisfy the following laws:
--
-- [/extension/]
-- @'loop' ('arr' f) = 'arr' (\\ b -> 'fst' ('fix' (\\ (c,d) -> f (b,d))))@
--
-- [/left tightening/]
-- @'loop' ('first' h >>> f) = h >>> 'loop' f@
--
-- [/right tightening/]
-- @'loop' (f >>> 'first' h) = 'loop' f >>> h@
--
-- [/sliding/]
-- @'loop' (f >>> 'arr' ('id' *** k)) = 'loop' ('arr' ('id' *** k) >>> f)@
--
-- [/vanishing/]
-- @'loop' ('loop' f) = 'loop' ('arr' unassoc >>> f >>> 'arr' assoc)@
--
-- [/superposing/]
-- @'second' ('loop' f) = 'loop' ('arr' assoc >>> 'second' f >>> 'arr' unassoc)@
--
-- where
--
-- > assoc ((a,b),c) = (a,(b,c))
-- > unassoc (a,(b,c)) = ((a,b),c)
--
class Arrow a => ArrowLoop a where
loop :: a (b,d) (c,d) -> a b c
instance ArrowLoop (->) where
loop f b = let (c,d) = f (b,d) in c
-- | Beware that for many monads (those for which the '>>=' operation
-- is strict) this instance will /not/ satisfy the right-tightening law
-- required by the 'ArrowLoop' class.
instance MonadFix m => ArrowLoop (Kleisli m) where
loop (Kleisli f) = Kleisli (liftM fst . mfix . f')
where f' x y = f (x, snd y)
|