1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
|
{-# LANGUAGE Safe #-}
{-# LANGUAGE ScopedTypeVariables #-}
-----------------------------------------------------------------------------
-- |
-- Module : Data.Bifoldable
-- Copyright : (C) 2011-2016 Edward Kmett
-- License : BSD-style (see the file LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : provisional
-- Portability : portable
--
-- @since 4.10.0.0
----------------------------------------------------------------------------
module Data.Bifoldable
( Bifoldable(..)
, bifoldr'
, bifoldr1
, bifoldrM
, bifoldl'
, bifoldl1
, bifoldlM
, bitraverse_
, bifor_
, bimapM_
, biforM_
, bimsum
, bisequenceA_
, bisequence_
, biasum
, biList
, binull
, bilength
, bielem
, bimaximum
, biminimum
, bisum
, biproduct
, biconcat
, biconcatMap
, biand
, bior
, biany
, biall
, bimaximumBy
, biminimumBy
, binotElem
, bifind
) where
import Control.Applicative
import Data.Functor.Utils (Max(..), Min(..), (#.))
import Data.Maybe (fromMaybe)
import Data.Monoid
import GHC.Generics (K1(..))
-- $setup
-- >>> import Prelude
-- >>> import Data.Char
-- >>> import Data.Monoid (Product (..), Sum (..))
-- >>> data BiList a b = BiList [a] [b]
-- >>> instance Bifoldable BiList where bifoldr f g z (BiList as bs) = foldr f (foldr g z bs) as
-- | 'Bifoldable' identifies foldable structures with two different varieties
-- of elements (as opposed to 'Foldable', which has one variety of element).
-- Common examples are 'Either' and @(,)@:
--
-- > instance Bifoldable Either where
-- > bifoldMap f _ (Left a) = f a
-- > bifoldMap _ g (Right b) = g b
-- >
-- > instance Bifoldable (,) where
-- > bifoldr f g z (a, b) = f a (g b z)
--
-- Some examples below also use the following BiList to showcase empty
-- Bifoldable behaviors when relevant ('Either' and '(,)' containing always exactly
-- resp. 1 and 2 elements):
--
-- > data BiList a b = BiList [a] [b]
-- >
-- > instance Bifoldable BiList where
-- > bifoldr f g z (BiList as bs) = foldr f (foldr g z bs) as
--
-- A minimal 'Bifoldable' definition consists of either 'bifoldMap' or
-- 'bifoldr'. When defining more than this minimal set, one should ensure
-- that the following identities hold:
--
-- @
-- 'bifold' ≡ 'bifoldMap' 'id' 'id'
-- 'bifoldMap' f g ≡ 'bifoldr' ('mappend' . f) ('mappend' . g) 'mempty'
-- 'bifoldr' f g z t ≡ 'appEndo' ('bifoldMap' (Endo . f) (Endo . g) t) z
-- @
--
-- If the type is also a 'Data.Bifunctor.Bifunctor' instance, it should satisfy:
--
-- @
-- 'bifoldMap' f g ≡ 'bifold' . 'Data.Bifunctor.bimap' f g
-- @
--
-- which implies that
--
-- @
-- 'bifoldMap' f g . 'Data.Bifunctor.bimap' h i ≡ 'bifoldMap' (f . h) (g . i)
-- @
--
-- @since 4.10.0.0
class Bifoldable p where
{-# MINIMAL bifoldr | bifoldMap #-}
-- | Combines the elements of a structure using a monoid.
--
-- @'bifold' ≡ 'bifoldMap' 'id' 'id'@
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> bifold (Right [1, 2, 3])
-- [1,2,3]
--
-- >>> bifold (Left [5, 6])
-- [5,6]
--
-- >>> bifold ([1, 2, 3], [4, 5])
-- [1,2,3,4,5]
--
-- >>> bifold (Product 6, Product 7)
-- Product {getProduct = 42}
--
-- >>> bifold (Sum 6, Sum 7)
-- Sum {getSum = 13}
--
-- @since 4.10.0.0
bifold :: Monoid m => p m m -> m
bifold = bifoldMap id id
-- | Combines the elements of a structure, given ways of mapping them to a
-- common monoid.
--
-- @'bifoldMap' f g ≡ 'bifoldr' ('mappend' . f) ('mappend' . g) 'mempty'@
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> bifoldMap (take 3) (fmap digitToInt) ([1..], "89")
-- [1,2,3,8,9]
--
-- >>> bifoldMap (take 3) (fmap digitToInt) (Left [1..])
-- [1,2,3]
--
-- >>> bifoldMap (take 3) (fmap digitToInt) (Right "89")
-- [8,9]
--
-- @since 4.10.0.0
bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> p a b -> m
bifoldMap f g = bifoldr (mappend . f) (mappend . g) mempty
-- | Combines the elements of a structure in a right associative manner.
-- Given a hypothetical function @toEitherList :: p a b -> [Either a b]@
-- yielding a list of all elements of a structure in order, the following
-- would hold:
--
-- @'bifoldr' f g z ≡ 'foldr' ('either' f g) z . toEitherList@
--
-- ==== __Examples__
--
-- Basic usage:
--
-- @
-- > bifoldr (+) (*) 3 (5, 7)
-- 26 -- 5 + (7 * 3)
--
-- > bifoldr (+) (*) 3 (7, 5)
-- 22 -- 7 + (5 * 3)
--
-- > bifoldr (+) (*) 3 (Right 5)
-- 15 -- 5 * 3
--
-- > bifoldr (+) (*) 3 (Left 5)
-- 8 -- 5 + 3
-- @
--
-- @since 4.10.0.0
bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> p a b -> c
bifoldr f g z t = appEndo (bifoldMap (Endo #. f) (Endo #. g) t) z
-- | Combines the elements of a structure in a left associative manner. Given
-- a hypothetical function @toEitherList :: p a b -> [Either a b]@ yielding a
-- list of all elements of a structure in order, the following would hold:
--
-- @'bifoldl' f g z
-- ≡ 'foldl' (\acc -> 'either' (f acc) (g acc)) z . toEitherList@
--
-- Note that if you want an efficient left-fold, you probably want to use
-- 'bifoldl'' instead of 'bifoldl'. The reason is that the latter does not
-- force the "inner" results, resulting in a thunk chain which then must be
-- evaluated from the outside-in.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- @
-- > bifoldl (+) (*) 3 (5, 7)
-- 56 -- (5 + 3) * 7
--
-- > bifoldl (+) (*) 3 (7, 5)
-- 50 -- (7 + 3) * 5
--
-- > bifoldl (+) (*) 3 (Right 5)
-- 15 -- 5 * 3
--
-- > bifoldl (+) (*) 3 (Left 5)
-- 8 -- 5 + 3
-- @
--
-- @since 4.10.0.0
bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> p a b -> c
bifoldl f g z t = appEndo (getDual (bifoldMap (Dual . Endo . flip f)
(Dual . Endo . flip g) t)) z
-- | @since 4.10.0.0
instance Bifoldable (,) where
bifoldMap f g ~(a, b) = f a `mappend` g b
-- | @since 4.10.0.0
instance Bifoldable Const where
bifoldMap f _ (Const a) = f a
-- | @since 4.10.0.0
instance Bifoldable (K1 i) where
bifoldMap f _ (K1 c) = f c
-- | @since 4.10.0.0
instance Bifoldable ((,,) x) where
bifoldMap f g ~(_,a,b) = f a `mappend` g b
-- | @since 4.10.0.0
instance Bifoldable ((,,,) x y) where
bifoldMap f g ~(_,_,a,b) = f a `mappend` g b
-- | @since 4.10.0.0
instance Bifoldable ((,,,,) x y z) where
bifoldMap f g ~(_,_,_,a,b) = f a `mappend` g b
-- | @since 4.10.0.0
instance Bifoldable ((,,,,,) x y z w) where
bifoldMap f g ~(_,_,_,_,a,b) = f a `mappend` g b
-- | @since 4.10.0.0
instance Bifoldable ((,,,,,,) x y z w v) where
bifoldMap f g ~(_,_,_,_,_,a,b) = f a `mappend` g b
-- | @since 4.10.0.0
instance Bifoldable Either where
bifoldMap f _ (Left a) = f a
bifoldMap _ g (Right b) = g b
-- | As 'bifoldr', but strict in the result of the reduction functions at each
-- step.
--
-- @since 4.10.0.0
bifoldr' :: Bifoldable t => (a -> c -> c) -> (b -> c -> c) -> c -> t a b -> c
bifoldr' f g z0 xs = bifoldl f' g' id xs z0 where
f' k x z = k $! f x z
g' k x z = k $! g x z
-- | A variant of 'bifoldr' that has no base case,
-- and thus may only be applied to non-empty structures.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> bifoldr1 (+) (5, 7)
-- 12
--
-- >>> bifoldr1 (+) (Right 7)
-- 7
--
-- >>> bifoldr1 (+) (Left 5)
-- 5
--
-- @
-- > bifoldr1 (+) (BiList [1, 2] [3, 4])
-- 10 -- 1 + (2 + (3 + 4))
-- @
--
-- >>> bifoldr1 (+) (BiList [1, 2] [])
-- 3
--
-- On empty structures, this function throws an exception:
--
-- >>> bifoldr1 (+) (BiList [] [])
-- *** Exception: bifoldr1: empty structure
-- ...
--
-- @since 4.10.0.0
bifoldr1 :: Bifoldable t => (a -> a -> a) -> t a a -> a
bifoldr1 f xs = fromMaybe (error "bifoldr1: empty structure")
(bifoldr mbf mbf Nothing xs)
where
mbf x m = Just (case m of
Nothing -> x
Just y -> f x y)
-- | Right associative monadic bifold over a structure.
--
-- @since 4.10.0.0
bifoldrM :: (Bifoldable t, Monad m)
=> (a -> c -> m c) -> (b -> c -> m c) -> c -> t a b -> m c
bifoldrM f g z0 xs = bifoldl f' g' return xs z0 where
f' k x z = f x z >>= k
g' k x z = g x z >>= k
-- | As 'bifoldl', but strict in the result of the reduction functions at each
-- step.
--
-- This ensures that each step of the bifold is forced to weak head normal form
-- before being applied, avoiding the collection of thunks that would otherwise
-- occur. This is often what you want to strictly reduce a finite structure to
-- a single, monolithic result (e.g., 'bilength').
--
-- @since 4.10.0.0
bifoldl':: Bifoldable t => (a -> b -> a) -> (a -> c -> a) -> a -> t b c -> a
bifoldl' f g z0 xs = bifoldr f' g' id xs z0 where
f' x k z = k $! f z x
g' x k z = k $! g z x
-- | A variant of 'bifoldl' that has no base case,
-- and thus may only be applied to non-empty structures.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> bifoldl1 (+) (5, 7)
-- 12
--
-- >>> bifoldl1 (+) (Right 7)
-- 7
--
-- >>> bifoldl1 (+) (Left 5)
-- 5
--
-- @
-- > bifoldl1 (+) (BiList [1, 2] [3, 4])
-- 10 -- ((1 + 2) + 3) + 4
-- @
--
-- >>> bifoldl1 (+) (BiList [1, 2] [])
-- 3
--
-- On empty structures, this function throws an exception:
--
-- >>> bifoldl1 (+) (BiList [] [])
-- *** Exception: bifoldl1: empty structure
-- ...
--
-- @since 4.10.0.0
bifoldl1 :: Bifoldable t => (a -> a -> a) -> t a a -> a
bifoldl1 f xs = fromMaybe (error "bifoldl1: empty structure")
(bifoldl mbf mbf Nothing xs)
where
mbf m y = Just (case m of
Nothing -> y
Just x -> f x y)
-- | Left associative monadic bifold over a structure.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> bifoldlM (\a b -> print b >> pure a) (\a c -> print (show c) >> pure a) 42 ("Hello", True)
-- "Hello"
-- "True"
-- 42
--
-- >>> bifoldlM (\a b -> print b >> pure a) (\a c -> print (show c) >> pure a) 42 (Right True)
-- "True"
-- 42
--
-- >>> bifoldlM (\a b -> print b >> pure a) (\a c -> print (show c) >> pure a) 42 (Left "Hello")
-- "Hello"
-- 42
--
-- @since 4.10.0.0
bifoldlM :: (Bifoldable t, Monad m)
=> (a -> b -> m a) -> (a -> c -> m a) -> a -> t b c -> m a
bifoldlM f g z0 xs = bifoldr f' g' return xs z0 where
f' x k z = f z x >>= k
g' x k z = g z x >>= k
-- | Map each element of a structure using one of two actions, evaluate these
-- actions from left to right, and ignore the results. For a version that
-- doesn't ignore the results, see 'Data.Bitraversable.bitraverse'.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> bitraverse_ print (print . show) ("Hello", True)
-- "Hello"
-- "True"
--
-- >>> bitraverse_ print (print . show) (Right True)
-- "True"
--
-- >>> bitraverse_ print (print . show) (Left "Hello")
-- "Hello"
--
-- @since 4.10.0.0
bitraverse_ :: (Bifoldable t, Applicative f)
=> (a -> f c) -> (b -> f d) -> t a b -> f ()
bitraverse_ f g = bifoldr ((*>) . f) ((*>) . g) (pure ())
-- | As 'bitraverse_', but with the structure as the primary argument. For a
-- version that doesn't ignore the results, see 'Data.Bitraversable.bifor'.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> bifor_ ("Hello", True) print (print . show)
-- "Hello"
-- "True"
--
-- >>> bifor_ (Right True) print (print . show)
-- "True"
--
-- >>> bifor_ (Left "Hello") print (print . show)
-- "Hello"
--
-- @since 4.10.0.0
bifor_ :: (Bifoldable t, Applicative f)
=> t a b -> (a -> f c) -> (b -> f d) -> f ()
bifor_ t f g = bitraverse_ f g t
-- | Alias for 'bitraverse_'.
--
-- @since 4.10.0.0
bimapM_ :: (Bifoldable t, Applicative f)
=> (a -> f c) -> (b -> f d) -> t a b -> f ()
bimapM_ = bitraverse_
-- | Alias for 'bifor_'.
--
-- @since 4.10.0.0
biforM_ :: (Bifoldable t, Applicative f)
=> t a b -> (a -> f c) -> (b -> f d) -> f ()
biforM_ = bifor_
-- | Alias for 'bisequence_'.
--
-- @since 4.10.0.0
bisequenceA_ :: (Bifoldable t, Applicative f) => t (f a) (f b) -> f ()
bisequenceA_ = bisequence_
-- | Evaluate each action in the structure from left to right, and ignore the
-- results. For a version that doesn't ignore the results, see
-- 'Data.Bitraversable.bisequence'.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> bisequence_ (print "Hello", print "World")
-- "Hello"
-- "World"
--
-- >>> bisequence_ (Left (print "Hello"))
-- "Hello"
--
-- >>> bisequence_ (Right (print "World"))
-- "World"
--
-- @since 4.10.0.0
bisequence_ :: (Bifoldable t, Applicative f) => t (f a) (f b) -> f ()
bisequence_ = bifoldr (*>) (*>) (pure ())
-- | The sum of a collection of actions, generalizing 'biconcat'.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> biasum (Nothing, Nothing)
-- Nothing
--
-- >>> biasum (Nothing, Just 42)
-- Just 42
--
-- >>> biasum (Just 18, Nothing)
-- Just 18
--
-- >>> biasum (Just 18, Just 42)
-- Just 18
--
-- @since 4.10.0.0
biasum :: (Bifoldable t, Alternative f) => t (f a) (f a) -> f a
biasum = bifoldr (<|>) (<|>) empty
-- | Alias for 'biasum'.
--
-- @since 4.10.0.0
bimsum :: (Bifoldable t, Alternative f) => t (f a) (f a) -> f a
bimsum = biasum
-- | Collects the list of elements of a structure, from left to right.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> biList (18, 42)
-- [18,42]
--
-- >>> biList (Left 18)
-- [18]
--
-- @since 4.10.0.0
biList :: Bifoldable t => t a a -> [a]
biList = bifoldr (:) (:) []
-- | Test whether the structure is empty.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> binull (18, 42)
-- False
--
-- >>> binull (Right 42)
-- False
--
-- >>> binull (BiList [] [])
-- True
--
-- @since 4.10.0.0
binull :: Bifoldable t => t a b -> Bool
binull = bifoldr (\_ _ -> False) (\_ _ -> False) True
-- | Returns the size/length of a finite structure as an 'Int'.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> bilength (True, 42)
-- 2
--
-- >>> bilength (Right 42)
-- 1
--
-- >>> bilength (BiList [1,2,3] [4,5])
-- 5
--
-- >>> bilength (BiList [] [])
-- 0
--
-- On infinite structures, this function hangs:
--
-- @
-- > bilength (BiList [1..] [])
-- * Hangs forever *
-- @
--
-- @since 4.10.0.0
bilength :: Bifoldable t => t a b -> Int
bilength = bifoldl' (\c _ -> c+1) (\c _ -> c+1) 0
-- | Does the element occur in the structure?
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> bielem 42 (17, 42)
-- True
--
-- >>> bielem 42 (17, 43)
-- False
--
-- >>> bielem 42 (Left 42)
-- True
--
-- >>> bielem 42 (Right 13)
-- False
--
-- >>> bielem 42 (BiList [1..5] [1..100])
-- True
--
-- >>> bielem 42 (BiList [1..5] [1..41])
-- False
--
-- @since 4.10.0.0
bielem :: (Bifoldable t, Eq a) => a -> t a a -> Bool
bielem x = biany (== x) (== x)
-- | Reduces a structure of lists to the concatenation of those lists.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> biconcat ([1, 2, 3], [4, 5])
-- [1,2,3,4,5]
--
-- >>> biconcat (Left [1, 2, 3])
-- [1,2,3]
--
-- >>> biconcat (BiList [[1, 2, 3, 4, 5], [6, 7, 8]] [[9]])
-- [1,2,3,4,5,6,7,8,9]
--
-- @since 4.10.0.0
biconcat :: Bifoldable t => t [a] [a] -> [a]
biconcat = bifold
-- | The largest element of a non-empty structure.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> bimaximum (42, 17)
-- 42
--
-- >>> bimaximum (Right 42)
-- 42
--
-- >>> bimaximum (BiList [13, 29, 4] [18, 1, 7])
-- 29
--
-- >>> bimaximum (BiList [13, 29, 4] [])
-- 29
--
-- On empty structures, this function throws an exception:
--
-- >>> bimaximum (BiList [] [])
-- *** Exception: bimaximum: empty structure
-- ...
--
-- @since 4.10.0.0
bimaximum :: forall t a. (Bifoldable t, Ord a) => t a a -> a
bimaximum = fromMaybe (error "bimaximum: empty structure") .
getMax . bifoldMap mj mj
where mj = Max #. (Just :: a -> Maybe a)
-- | The least element of a non-empty structure.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> biminimum (42, 17)
-- 17
--
-- >>> biminimum (Right 42)
-- 42
--
-- >>> biminimum (BiList [13, 29, 4] [18, 1, 7])
-- 1
--
-- >>> biminimum (BiList [13, 29, 4] [])
-- 4
--
-- On empty structures, this function throws an exception:
--
-- >>> biminimum (BiList [] [])
-- *** Exception: biminimum: empty structure
-- ...
--
-- @since 4.10.0.0
biminimum :: forall t a. (Bifoldable t, Ord a) => t a a -> a
biminimum = fromMaybe (error "biminimum: empty structure") .
getMin . bifoldMap mj mj
where mj = Min #. (Just :: a -> Maybe a)
-- | The 'bisum' function computes the sum of the numbers of a structure.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> bisum (42, 17)
-- 59
--
-- >>> bisum (Right 42)
-- 42
--
-- >>> bisum (BiList [13, 29, 4] [18, 1, 7])
-- 72
--
-- >>> bisum (BiList [13, 29, 4] [])
-- 46
--
-- >>> bisum (BiList [] [])
-- 0
--
-- @since 4.10.0.0
bisum :: (Bifoldable t, Num a) => t a a -> a
bisum = getSum #. bifoldMap Sum Sum
-- | The 'biproduct' function computes the product of the numbers of a
-- structure.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> biproduct (42, 17)
-- 714
--
-- >>> biproduct (Right 42)
-- 42
--
-- >>> biproduct (BiList [13, 29, 4] [18, 1, 7])
-- 190008
--
-- >>> biproduct (BiList [13, 29, 4] [])
-- 1508
--
-- >>> biproduct (BiList [] [])
-- 1
--
-- @since 4.10.0.0
biproduct :: (Bifoldable t, Num a) => t a a -> a
biproduct = getProduct #. bifoldMap Product Product
-- | Given a means of mapping the elements of a structure to lists, computes the
-- concatenation of all such lists in order.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> biconcatMap (take 3) (fmap digitToInt) ([1..], "89")
-- [1,2,3,8,9]
--
-- >>> biconcatMap (take 3) (fmap digitToInt) (Left [1..])
-- [1,2,3]
--
-- >>> biconcatMap (take 3) (fmap digitToInt) (Right "89")
-- [8,9]
--
-- @since 4.10.0.0
biconcatMap :: Bifoldable t => (a -> [c]) -> (b -> [c]) -> t a b -> [c]
biconcatMap = bifoldMap
-- | 'biand' returns the conjunction of a container of Bools. For the
-- result to be 'True', the container must be finite; 'False', however,
-- results from a 'False' value finitely far from the left end.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> biand (True, False)
-- False
--
-- >>> biand (True, True)
-- True
--
-- >>> biand (Left True)
-- True
--
-- Empty structures yield 'True':
--
-- >>> biand (BiList [] [])
-- True
--
-- A 'False' value finitely far from the left end yields 'False' (short circuit):
--
-- >>> biand (BiList [True, True, False, True] (repeat True))
-- False
--
-- A 'False' value infinitely far from the left end hangs:
--
-- @
-- > biand (BiList (repeat True) [False])
-- * Hangs forever *
-- @
--
-- An infinitely 'True' value hangs:
--
-- @
-- > biand (BiList (repeat True) [])
-- * Hangs forever *
-- @
--
-- @since 4.10.0.0
biand :: Bifoldable t => t Bool Bool -> Bool
biand = getAll #. bifoldMap All All
-- | 'bior' returns the disjunction of a container of Bools. For the
-- result to be 'False', the container must be finite; 'True', however,
-- results from a 'True' value finitely far from the left end.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> bior (True, False)
-- True
--
-- >>> bior (False, False)
-- False
--
-- >>> bior (Left True)
-- True
--
-- Empty structures yield 'False':
--
-- >>> bior (BiList [] [])
-- False
--
-- A 'True' value finitely far from the left end yields 'True' (short circuit):
--
-- >>> bior (BiList [False, False, True, False] (repeat False))
-- True
--
-- A 'True' value infinitely far from the left end hangs:
--
-- @
-- > bior (BiList (repeat False) [True])
-- * Hangs forever *
-- @
--
-- An infinitely 'False' value hangs:
--
-- @
-- > bior (BiList (repeat False) [])
-- * Hangs forever *
-- @
--
-- @since 4.10.0.0
bior :: Bifoldable t => t Bool Bool -> Bool
bior = getAny #. bifoldMap Any Any
-- | Determines whether any element of the structure satisfies its appropriate
-- predicate argument. Empty structures yield 'False'.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> biany even isDigit (27, 't')
-- False
--
-- >>> biany even isDigit (27, '8')
-- True
--
-- >>> biany even isDigit (26, 't')
-- True
--
-- >>> biany even isDigit (Left 27)
-- False
--
-- >>> biany even isDigit (Left 26)
-- True
--
-- >>> biany even isDigit (BiList [27, 53] ['t', '8'])
-- True
--
-- Empty structures yield 'False':
--
-- >>> biany even isDigit (BiList [] [])
-- False
--
-- @since 4.10.0.0
biany :: Bifoldable t => (a -> Bool) -> (b -> Bool) -> t a b -> Bool
biany p q = getAny #. bifoldMap (Any . p) (Any . q)
-- | Determines whether all elements of the structure satisfy their appropriate
-- predicate argument. Empty structures yield 'True'.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> biall even isDigit (27, 't')
-- False
--
-- >>> biall even isDigit (26, '8')
-- True
--
-- >>> biall even isDigit (Left 27)
-- False
--
-- >>> biall even isDigit (Left 26)
-- True
--
-- >>> biall even isDigit (BiList [26, 52] ['3', '8'])
-- True
--
-- Empty structures yield 'True':
--
-- >>> biall even isDigit (BiList [] [])
-- True
--
-- @since 4.10.0.0
biall :: Bifoldable t => (a -> Bool) -> (b -> Bool) -> t a b -> Bool
biall p q = getAll #. bifoldMap (All . p) (All . q)
-- | The largest element of a non-empty structure with respect to the
-- given comparison function.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> bimaximumBy compare (42, 17)
-- 42
--
-- >>> bimaximumBy compare (Left 17)
-- 17
--
-- >>> bimaximumBy compare (BiList [42, 17, 23] [-5, 18])
-- 42
--
-- On empty structures, this function throws an exception:
--
-- >>> bimaximumBy compare (BiList [] [])
-- *** Exception: bifoldr1: empty structure
-- ...
--
-- @since 4.10.0.0
bimaximumBy :: Bifoldable t => (a -> a -> Ordering) -> t a a -> a
bimaximumBy cmp = bifoldr1 max'
where max' x y = case cmp x y of
GT -> x
_ -> y
-- | The least element of a non-empty structure with respect to the
-- given comparison function.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> biminimumBy compare (42, 17)
-- 17
--
-- >>> biminimumBy compare (Left 17)
-- 17
--
-- >>> biminimumBy compare (BiList [42, 17, 23] [-5, 18])
-- -5
--
-- On empty structures, this function throws an exception:
--
-- >>> biminimumBy compare (BiList [] [])
-- *** Exception: bifoldr1: empty structure
-- ...
--
-- @since 4.10.0.0
biminimumBy :: Bifoldable t => (a -> a -> Ordering) -> t a a -> a
biminimumBy cmp = bifoldr1 min'
where min' x y = case cmp x y of
GT -> y
_ -> x
-- | 'binotElem' is the negation of 'bielem'.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> binotElem 42 (17, 42)
-- False
--
-- >>> binotElem 42 (17, 43)
-- True
--
-- >>> binotElem 42 (Left 42)
-- False
--
-- >>> binotElem 42 (Right 13)
-- True
--
-- >>> binotElem 42 (BiList [1..5] [1..100])
-- False
--
-- >>> binotElem 42 (BiList [1..5] [1..41])
-- True
--
-- @since 4.10.0.0
binotElem :: (Bifoldable t, Eq a) => a -> t a a-> Bool
binotElem x = not . bielem x
-- | The 'bifind' function takes a predicate and a structure and returns
-- the leftmost element of the structure matching the predicate, or
-- 'Nothing' if there is no such element.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> bifind even (27, 53)
-- Nothing
--
-- >>> bifind even (27, 52)
-- Just 52
--
-- >>> bifind even (26, 52)
-- Just 26
--
-- Empty structures always yield 'Nothing':
--
-- >>> bifind even (BiList [] [])
-- Nothing
--
-- @since 4.10.0.0
bifind :: Bifoldable t => (a -> Bool) -> t a a -> Maybe a
bifind p = getFirst . bifoldMap finder finder
where finder x = First (if p x then Just x else Nothing)
|