1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
|
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE AutoDeriveTypeable #-}
{-# LANGUAGE StandaloneDeriving #-}
-----------------------------------------------------------------------------
-- |
-- Module : Data.Complex
-- Copyright : (c) The University of Glasgow 2001
-- License : BSD-style (see the file libraries/base/LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : provisional
-- Portability : portable
--
-- Complex numbers.
--
-----------------------------------------------------------------------------
module Data.Complex
(
-- * Rectangular form
Complex((:+))
, realPart
, imagPart
-- * Polar form
, mkPolar
, cis
, polar
, magnitude
, phase
-- * Conjugate
, conjugate
) where
import Prelude
import Data.Typeable
import Data.Data (Data)
infix 6 :+
-- -----------------------------------------------------------------------------
-- The Complex type
-- | Complex numbers are an algebraic type.
--
-- For a complex number @z@, @'abs' z@ is a number with the magnitude of @z@,
-- but oriented in the positive real direction, whereas @'signum' z@
-- has the phase of @z@, but unit magnitude.
data Complex a
= !a :+ !a -- ^ forms a complex number from its real and imaginary
-- rectangular components.
deriving (Eq, Show, Read, Data, Typeable)
-- -----------------------------------------------------------------------------
-- Functions over Complex
-- | Extracts the real part of a complex number.
realPart :: Complex a -> a
realPart (x :+ _) = x
-- | Extracts the imaginary part of a complex number.
imagPart :: Complex a -> a
imagPart (_ :+ y) = y
-- | The conjugate of a complex number.
{-# SPECIALISE conjugate :: Complex Double -> Complex Double #-}
conjugate :: Num a => Complex a -> Complex a
conjugate (x:+y) = x :+ (-y)
-- | Form a complex number from polar components of magnitude and phase.
{-# SPECIALISE mkPolar :: Double -> Double -> Complex Double #-}
mkPolar :: Floating a => a -> a -> Complex a
mkPolar r theta = r * cos theta :+ r * sin theta
-- | @'cis' t@ is a complex value with magnitude @1@
-- and phase @t@ (modulo @2*'pi'@).
{-# SPECIALISE cis :: Double -> Complex Double #-}
cis :: Floating a => a -> Complex a
cis theta = cos theta :+ sin theta
-- | The function 'polar' takes a complex number and
-- returns a (magnitude, phase) pair in canonical form:
-- the magnitude is nonnegative, and the phase in the range @(-'pi', 'pi']@;
-- if the magnitude is zero, then so is the phase.
{-# SPECIALISE polar :: Complex Double -> (Double,Double) #-}
polar :: (RealFloat a) => Complex a -> (a,a)
polar z = (magnitude z, phase z)
-- | The nonnegative magnitude of a complex number.
{-# SPECIALISE magnitude :: Complex Double -> Double #-}
magnitude :: (RealFloat a) => Complex a -> a
magnitude (x:+y) = scaleFloat k
(sqrt (sqr (scaleFloat mk x) + sqr (scaleFloat mk y)))
where k = max (exponent x) (exponent y)
mk = - k
sqr z = z * z
-- | The phase of a complex number, in the range @(-'pi', 'pi']@.
-- If the magnitude is zero, then so is the phase.
{-# SPECIALISE phase :: Complex Double -> Double #-}
phase :: (RealFloat a) => Complex a -> a
phase (0 :+ 0) = 0 -- SLPJ July 97 from John Peterson
phase (x:+y) = atan2 y x
-- -----------------------------------------------------------------------------
-- Instances of Complex
instance (RealFloat a) => Num (Complex a) where
{-# SPECIALISE instance Num (Complex Float) #-}
{-# SPECIALISE instance Num (Complex Double) #-}
(x:+y) + (x':+y') = (x+x') :+ (y+y')
(x:+y) - (x':+y') = (x-x') :+ (y-y')
(x:+y) * (x':+y') = (x*x'-y*y') :+ (x*y'+y*x')
negate (x:+y) = negate x :+ negate y
abs z = magnitude z :+ 0
signum (0:+0) = 0
signum z@(x:+y) = x/r :+ y/r where r = magnitude z
fromInteger n = fromInteger n :+ 0
instance (RealFloat a) => Fractional (Complex a) where
{-# SPECIALISE instance Fractional (Complex Float) #-}
{-# SPECIALISE instance Fractional (Complex Double) #-}
(x:+y) / (x':+y') = (x*x''+y*y'') / d :+ (y*x''-x*y'') / d
where x'' = scaleFloat k x'
y'' = scaleFloat k y'
k = - max (exponent x') (exponent y')
d = x'*x'' + y'*y''
fromRational a = fromRational a :+ 0
instance (RealFloat a) => Floating (Complex a) where
{-# SPECIALISE instance Floating (Complex Float) #-}
{-# SPECIALISE instance Floating (Complex Double) #-}
pi = pi :+ 0
exp (x:+y) = expx * cos y :+ expx * sin y
where expx = exp x
log z = log (magnitude z) :+ phase z
sqrt (0:+0) = 0
sqrt z@(x:+y) = u :+ (if y < 0 then -v else v)
where (u,v) = if x < 0 then (v',u') else (u',v')
v' = abs y / (u'*2)
u' = sqrt ((magnitude z + abs x) / 2)
sin (x:+y) = sin x * cosh y :+ cos x * sinh y
cos (x:+y) = cos x * cosh y :+ (- sin x * sinh y)
tan (x:+y) = (sinx*coshy:+cosx*sinhy)/(cosx*coshy:+(-sinx*sinhy))
where sinx = sin x
cosx = cos x
sinhy = sinh y
coshy = cosh y
sinh (x:+y) = cos y * sinh x :+ sin y * cosh x
cosh (x:+y) = cos y * cosh x :+ sin y * sinh x
tanh (x:+y) = (cosy*sinhx:+siny*coshx)/(cosy*coshx:+siny*sinhx)
where siny = sin y
cosy = cos y
sinhx = sinh x
coshx = cosh x
asin z@(x:+y) = y':+(-x')
where (x':+y') = log (((-y):+x) + sqrt (1 - z*z))
acos z = y'':+(-x'')
where (x'':+y'') = log (z + ((-y'):+x'))
(x':+y') = sqrt (1 - z*z)
atan z@(x:+y) = y':+(-x')
where (x':+y') = log (((1-y):+x) / sqrt (1+z*z))
asinh z = log (z + sqrt (1+z*z))
acosh z = log (z + (z+1) * sqrt ((z-1)/(z+1)))
atanh z = 0.5 * log ((1.0+z) / (1.0-z))
|