1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
|
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE FlexibleInstances #-}
-----------------------------------------------------------------------------
-- |
-- Module : Data.Fixed
-- Copyright : (c) Ashley Yakeley 2005, 2006, 2009
-- License : BSD-style (see the file libraries/base/LICENSE)
--
-- Maintainer : Ashley Yakeley <ashley@semantic.org>
-- Stability : stable
-- Portability : portable
--
-- This module defines a \"Fixed\" type for fixed-precision arithmetic.
-- The parameter to 'Fixed' is any type that's an instance of 'HasResolution'.
-- 'HasResolution' has a single method that gives the resolution of the 'Fixed'
-- type.
--
-- This module also contains generalisations of 'div', 'mod', and 'divMod' to
-- work with any 'Real' instance.
--
-----------------------------------------------------------------------------
module Data.Fixed
(
div',mod',divMod',
Fixed(..), HasResolution(..),
showFixed,
E0,Uni,
E1,Deci,
E2,Centi,
E3,Milli,
E6,Micro,
E9,Nano,
E12,Pico
) where
import Data.Data
import GHC.TypeLits (KnownNat, natVal)
import GHC.Read
import Text.ParserCombinators.ReadPrec
import Text.Read.Lex
default () -- avoid any defaulting shenanigans
-- | Generalisation of 'div' to any instance of 'Real'
div' :: (Real a,Integral b) => a -> a -> b
div' n d = floor ((toRational n) / (toRational d))
-- | Generalisation of 'divMod' to any instance of 'Real'
divMod' :: (Real a,Integral b) => a -> a -> (b,a)
divMod' n d = (f,n - (fromIntegral f) * d) where
f = div' n d
-- | Generalisation of 'mod' to any instance of 'Real'
mod' :: (Real a) => a -> a -> a
mod' n d = n - (fromInteger f) * d where
f = div' n d
-- | The type parameter should be an instance of 'HasResolution'.
newtype Fixed (a :: k) = MkFixed Integer
deriving ( Eq -- ^ @since 2.01
, Ord -- ^ @since 2.01
)
-- We do this because the automatically derived Data instance requires (Data a) context.
-- Our manual instance has the more general (Typeable a) context.
tyFixed :: DataType
tyFixed = mkDataType "Data.Fixed.Fixed" [conMkFixed]
conMkFixed :: Constr
conMkFixed = mkConstr tyFixed "MkFixed" [] Prefix
-- | @since 4.1.0.0
instance (Typeable k,Typeable a) => Data (Fixed (a :: k)) where
gfoldl k z (MkFixed a) = k (z MkFixed) a
gunfold k z _ = k (z MkFixed)
dataTypeOf _ = tyFixed
toConstr _ = conMkFixed
class HasResolution (a :: k) where
resolution :: p a -> Integer
-- | For example, @Fixed 1000@ will give you a 'Fixed' with a resolution of 1000.
instance KnownNat n => HasResolution n where
resolution _ = natVal (Proxy :: Proxy n)
withType :: (Proxy a -> f a) -> f a
withType foo = foo Proxy
withResolution :: (HasResolution a) => (Integer -> f a) -> f a
withResolution foo = withType (foo . resolution)
-- | @since 2.01
--
-- Recall that, for numeric types, 'succ' and 'pred' typically add and subtract
-- @1@, respectively. This is not true in the case of 'Fixed', whose successor
-- and predecessor functions intuitively return the "next" and "previous" values
-- in the enumeration. The results of these functions thus depend on the
-- resolution of the 'Fixed' value. For example, when enumerating values of
-- resolution @10^-3@ of @type Milli = Fixed E3@,
--
-- @
-- succ (0.000 :: Milli) == 0.001
-- @
--
--
-- and likewise
--
-- @
-- pred (0.000 :: Milli) == -0.001
-- @
--
--
-- In other words, 'succ' and 'pred' increment and decrement a fixed-precision
-- value by the least amount such that the value's resolution is unchanged.
-- For example, @10^-12@ is the smallest (positive) amount that can be added to
-- a value of @type Pico = Fixed E12@ without changing its resolution, and so
--
-- @
-- succ (0.000000000000 :: Pico) == 0.000000000001
-- @
--
--
-- and similarly
--
-- @
-- pred (0.000000000000 :: Pico) == -0.000000000001
-- @
--
--
-- This is worth bearing in mind when defining 'Fixed' arithmetic sequences. In
-- particular, you may be forgiven for thinking the sequence
--
-- @
-- [1..10] :: [Pico]
-- @
--
--
-- evaluates to @[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] :: [Pico]@.
--
-- However, this is not true. On the contrary, similarly to the above
-- implementations of 'succ' and 'pred', @enumFromTo :: Pico -> Pico -> [Pico]@
-- has a "step size" of @10^-12@. Hence, the list @[1..10] :: [Pico]@ has
-- the form
--
-- @
-- [1.000000000000, 1.00000000001, 1.00000000002, ..., 10.000000000000]
-- @
--
--
-- and contains @9 * 10^12 + 1@ values.
instance Enum (Fixed a) where
succ (MkFixed a) = MkFixed (succ a)
pred (MkFixed a) = MkFixed (pred a)
toEnum = MkFixed . toEnum
fromEnum (MkFixed a) = fromEnum a
enumFrom (MkFixed a) = fmap MkFixed (enumFrom a)
enumFromThen (MkFixed a) (MkFixed b) = fmap MkFixed (enumFromThen a b)
enumFromTo (MkFixed a) (MkFixed b) = fmap MkFixed (enumFromTo a b)
enumFromThenTo (MkFixed a) (MkFixed b) (MkFixed c) = fmap MkFixed (enumFromThenTo a b c)
-- | @since 2.01
instance (HasResolution a) => Num (Fixed a) where
(MkFixed a) + (MkFixed b) = MkFixed (a + b)
(MkFixed a) - (MkFixed b) = MkFixed (a - b)
fa@(MkFixed a) * (MkFixed b) = MkFixed (div (a * b) (resolution fa))
negate (MkFixed a) = MkFixed (negate a)
abs (MkFixed a) = MkFixed (abs a)
signum (MkFixed a) = fromInteger (signum a)
fromInteger i = withResolution (\res -> MkFixed (i * res))
-- | @since 2.01
instance (HasResolution a) => Real (Fixed a) where
toRational fa@(MkFixed a) = (toRational a) / (toRational (resolution fa))
-- | @since 2.01
instance (HasResolution a) => Fractional (Fixed a) where
fa@(MkFixed a) / (MkFixed b) = MkFixed (div (a * (resolution fa)) b)
recip fa@(MkFixed a) = MkFixed (div (res * res) a) where
res = resolution fa
fromRational r = withResolution (\res -> MkFixed (floor (r * (toRational res))))
-- | @since 2.01
instance (HasResolution a) => RealFrac (Fixed a) where
properFraction a = (i,a - (fromIntegral i)) where
i = truncate a
truncate f = truncate (toRational f)
round f = round (toRational f)
ceiling f = ceiling (toRational f)
floor f = floor (toRational f)
chopZeros :: Integer -> String
chopZeros 0 = ""
chopZeros a | mod a 10 == 0 = chopZeros (div a 10)
chopZeros a = show a
-- only works for positive a
showIntegerZeros :: Bool -> Int -> Integer -> String
showIntegerZeros True _ 0 = ""
showIntegerZeros chopTrailingZeros digits a = replicate (digits - length s) '0' ++ s' where
s = show a
s' = if chopTrailingZeros then chopZeros a else s
withDot :: String -> String
withDot "" = ""
withDot s = '.':s
-- | First arg is whether to chop off trailing zeros
showFixed :: (HasResolution a) => Bool -> Fixed a -> String
showFixed chopTrailingZeros fa@(MkFixed a) | a < 0 = "-" ++ (showFixed chopTrailingZeros (asTypeOf (MkFixed (negate a)) fa))
showFixed chopTrailingZeros fa@(MkFixed a) = (show i) ++ (withDot (showIntegerZeros chopTrailingZeros digits fracNum)) where
res = resolution fa
(i,d) = divMod a res
-- enough digits to be unambiguous
digits = ceiling (logBase 10 (fromInteger res) :: Double)
maxnum = 10 ^ digits
-- read floors, so show must ceil for `read . show = id` to hold. See #9240
fracNum = divCeil (d * maxnum) res
divCeil x y = (x + y - 1) `div` y
-- | @since 2.01
instance (HasResolution a) => Show (Fixed a) where
showsPrec p n = showParen (p > 6 && n < 0) $ showString $ showFixed False n
-- | @since 4.3.0.0
instance (HasResolution a) => Read (Fixed a) where
readPrec = readNumber convertFixed
readListPrec = readListPrecDefault
readList = readListDefault
convertFixed :: forall a . HasResolution a => Lexeme -> ReadPrec (Fixed a)
convertFixed (Number n)
| Just (i, f) <- numberToFixed e n =
return (fromInteger i + (fromInteger f / (10 ^ e)))
where r = resolution (Proxy :: Proxy a)
-- round 'e' up to help make the 'read . show == id' property
-- possible also for cases where 'resolution' is not a
-- power-of-10, such as e.g. when 'resolution = 128'
e = ceiling (logBase 10 (fromInteger r) :: Double)
convertFixed _ = pfail
data E0
-- | @since 4.1.0.0
instance HasResolution E0 where
resolution _ = 1
-- | resolution of 1, this works the same as Integer
type Uni = Fixed E0
data E1
-- | @since 4.1.0.0
instance HasResolution E1 where
resolution _ = 10
-- | resolution of 10^-1 = .1
type Deci = Fixed E1
data E2
-- | @since 4.1.0.0
instance HasResolution E2 where
resolution _ = 100
-- | resolution of 10^-2 = .01, useful for many monetary currencies
type Centi = Fixed E2
data E3
-- | @since 4.1.0.0
instance HasResolution E3 where
resolution _ = 1000
-- | resolution of 10^-3 = .001
type Milli = Fixed E3
data E6
-- | @since 2.01
instance HasResolution E6 where
resolution _ = 1000000
-- | resolution of 10^-6 = .000001
type Micro = Fixed E6
data E9
-- | @since 4.1.0.0
instance HasResolution E9 where
resolution _ = 1000000000
-- | resolution of 10^-9 = .000000001
type Nano = Fixed E9
data E12
-- | @since 2.01
instance HasResolution E12 where
resolution _ = 1000000000000
-- | resolution of 10^-12 = .000000000001
type Pico = Fixed E12
|