1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
|
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE CPP, NoImplicitPrelude, ScopedTypeVariables,
MagicHash, BangPatterns #-}
-----------------------------------------------------------------------------
-- |
-- Module : Data.List
-- Copyright : (c) The University of Glasgow 2001
-- License : BSD-style (see the file libraries/base/LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : stable
-- Portability : portable
--
-- Operations on lists.
--
-----------------------------------------------------------------------------
module Data.OldList
(
-- * Basic functions
(++)
, head
, last
, tail
, init
, uncons
, singleton
, null
, length
-- * List transformations
, map
, reverse
, intersperse
, intercalate
, transpose
, subsequences
, permutations
-- * Reducing lists (folds)
, foldl
, foldl'
, foldl1
, foldl1'
, foldr
, foldr1
-- ** Special folds
, concat
, concatMap
, and
, or
, any
, all
, sum
, product
, maximum
, minimum
-- * Building lists
-- ** Scans
, scanl
, scanl'
, scanl1
, scanr
, scanr1
-- ** Accumulating maps
, mapAccumL
, mapAccumR
-- ** Infinite lists
, iterate
, iterate'
, repeat
, replicate
, cycle
-- ** Unfolding
, unfoldr
-- * Sublists
-- ** Extracting sublists
, take
, drop
, splitAt
, takeWhile
, dropWhile
, dropWhileEnd
, span
, break
, stripPrefix
, group
, inits
, tails
-- ** Predicates
, isPrefixOf
, isSuffixOf
, isInfixOf
-- * Searching lists
-- ** Searching by equality
, elem
, notElem
, lookup
-- ** Searching with a predicate
, find
, filter
, partition
-- * Indexing lists
-- | These functions treat a list @xs@ as an indexed collection,
-- with indices ranging from 0 to @'length' xs - 1@.
, (!?)
, (!!)
, elemIndex
, elemIndices
, findIndex
, findIndices
-- * Zipping and unzipping lists
, zip
, zip3
, zip4, zip5, zip6, zip7
, zipWith
, zipWith3
, zipWith4, zipWith5, zipWith6, zipWith7
, unzip
, unzip3
, unzip4, unzip5, unzip6, unzip7
-- * Special lists
-- ** Functions on strings
, lines
, words
, unlines
, unwords
-- ** \"Set\" operations
, nub
, delete
, (\\)
, union
, intersect
-- ** Ordered lists
, sort
, sortOn
, insert
-- * Generalized functions
-- ** The \"@By@\" operations
-- | By convention, overloaded functions have a non-overloaded
-- counterpart whose name is suffixed with \`@By@\'.
--
-- It is often convenient to use these functions together with
-- 'Data.Function.on', for instance @'sortBy' ('compare'
-- \`on\` 'fst')@.
-- *** User-supplied equality (replacing an @Eq@ context)
-- | The predicate is assumed to define an equivalence.
, nubBy
, deleteBy
, deleteFirstsBy
, unionBy
, intersectBy
, groupBy
-- *** User-supplied comparison (replacing an @Ord@ context)
-- | The function is assumed to define a total ordering.
, sortBy
, insertBy
, maximumBy
, minimumBy
-- ** The \"@generic@\" operations
-- | The prefix \`@generic@\' indicates an overloaded function that
-- is a generalized version of a "Prelude" function.
, genericLength
, genericTake
, genericDrop
, genericSplitAt
, genericIndex
, genericReplicate
) where
import Data.Maybe
import Data.Bits ( (.&.) )
import Data.Char ( isSpace )
import Data.Ord ( comparing )
import Data.Tuple ( fst, snd )
import GHC.Num
import GHC.Real
import GHC.List
import GHC.Base
infix 5 \\ -- comment to fool cpp: https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/phases.html#cpp-and-string-gaps
-- -----------------------------------------------------------------------------
-- List functions
-- | The 'dropWhileEnd' function drops the largest suffix of a list
-- in which the given predicate holds for all elements. For example:
--
-- >>> dropWhileEnd isSpace "foo\n"
-- "foo"
-- >>> dropWhileEnd isSpace "foo bar"
-- "foo bar"
-- > dropWhileEnd isSpace ("foo\n" ++ undefined) == "foo" ++ undefined
--
-- This function is lazy in spine, but strict in elements,
-- which makes it different from 'reverse' '.' 'dropWhile' @p@ '.' 'reverse',
-- which is strict in spine, but lazy in elements. For instance:
--
-- >>> take 1 (dropWhileEnd (< 0) (1 : undefined))
-- [1]
-- >>> take 1 (reverse $ dropWhile (< 0) $ reverse (1 : undefined))
-- *** Exception: Prelude.undefined
--
-- but on the other hand
--
-- >>> last (dropWhileEnd (< 0) [undefined, 1])
-- *** Exception: Prelude.undefined
-- >>> last (reverse $ dropWhile (< 0) $ reverse [undefined, 1])
-- 1
--
-- @since 4.5.0.0
dropWhileEnd :: (a -> Bool) -> [a] -> [a]
dropWhileEnd p = foldr (\x xs -> if p x && null xs then [] else x : xs) []
-- | \(\mathcal{O}(\min(m,n))\). The 'stripPrefix' function drops the given
-- prefix from a list. It returns 'Nothing' if the list did not start with the
-- prefix given, or 'Just' the list after the prefix, if it does.
--
-- >>> stripPrefix "foo" "foobar"
-- Just "bar"
--
-- >>> stripPrefix "foo" "foo"
-- Just ""
--
-- >>> stripPrefix "foo" "barfoo"
-- Nothing
--
-- >>> stripPrefix "foo" "barfoobaz"
-- Nothing
stripPrefix :: Eq a => [a] -> [a] -> Maybe [a]
stripPrefix [] ys = Just ys
stripPrefix (x:xs) (y:ys)
| x == y = stripPrefix xs ys
stripPrefix _ _ = Nothing
-- | The 'elemIndex' function returns the index of the first element
-- in the given list which is equal (by '==') to the query element,
-- or 'Nothing' if there is no such element.
-- For the result to be 'Nothing', the list must be finite.
--
-- >>> elemIndex 4 [0..]
-- Just 4
elemIndex :: Eq a => a -> [a] -> Maybe Int
elemIndex x xs = findIndex (x==) xs -- arity 2 so that we don't get a PAP; #21345
-- | The 'elemIndices' function extends 'elemIndex', by returning the
-- indices of all elements equal to the query element, in ascending order.
--
-- >>> elemIndices 'o' "Hello World"
-- [4,7]
elemIndices :: Eq a => a -> [a] -> [Int]
elemIndices x xs = findIndices (x==) xs -- arity 2 so that we don't get a PAP; #21345
-- | The 'find' function takes a predicate and a list and returns the
-- first element in the list matching the predicate, or 'Nothing' if
-- there is no such element.
-- For the result to be 'Nothing', the list must be finite.
--
-- >>> find (> 4) [1..]
-- Just 5
--
-- >>> find (< 0) [1..10]
-- Nothing
find :: (a -> Bool) -> [a] -> Maybe a
find p = listToMaybe . filter p
-- | The 'findIndex' function takes a predicate and a list and returns
-- the index of the first element in the list satisfying the predicate,
-- or 'Nothing' if there is no such element.
-- For the result to be 'Nothing', the list must be finite.
--
-- >>> findIndex isSpace "Hello World!"
-- Just 5
findIndex :: (a -> Bool) -> [a] -> Maybe Int
findIndex p = listToMaybe . findIndices p
-- | The 'findIndices' function extends 'findIndex', by returning the
-- indices of all elements satisfying the predicate, in ascending order.
--
-- >>> findIndices (`elem` "aeiou") "Hello World!"
-- [1,4,7]
findIndices :: (a -> Bool) -> [a] -> [Int]
#if defined(USE_REPORT_PRELUDE)
findIndices p xs = [ i | (x,i) <- zip xs [0..], p x]
#else
-- Efficient definition, adapted from Data.Sequence
-- (Note that making this INLINABLE instead of INLINE allows
-- 'findIndex' to fuse, fixing #15426.)
{-# INLINABLE findIndices #-}
findIndices p ls = build $ \c n ->
let go x r k | p x = I# k `c` r (k +# 1#)
| otherwise = r (k +# 1#)
in foldr go (\_ -> n) ls 0#
#endif /* USE_REPORT_PRELUDE */
-- | \(\mathcal{O}(\min(m,n))\). The 'isPrefixOf' function takes two lists and
-- returns 'True' iff the first list is a prefix of the second.
--
-- >>> "Hello" `isPrefixOf` "Hello World!"
-- True
-- >>> "Hello" `isPrefixOf` "Wello Horld!"
-- False
--
-- For the result to be 'True', the first list must be finite;
-- 'False', however, results from any mismatch:
--
-- >>> [0..] `isPrefixOf` [1..]
-- False
-- >>> [0..] `isPrefixOf` [0..99]
-- False
-- >>> [0..99] `isPrefixOf` [0..]
-- True
-- >>> [0..] `isPrefixOf` [0..]
-- * Hangs forever *
--
-- 'isPrefixOf' shortcuts when the first argument is empty:
--
-- >>> isPrefixOf [] undefined
-- True
--
isPrefixOf :: (Eq a) => [a] -> [a] -> Bool
isPrefixOf [] _ = True
isPrefixOf _ [] = False
isPrefixOf (x:xs) (y:ys)= x == y && isPrefixOf xs ys
-- | The 'isSuffixOf' function takes two lists and returns 'True' iff
-- the first list is a suffix of the second.
--
-- >>> "ld!" `isSuffixOf` "Hello World!"
-- True
-- >>> "World" `isSuffixOf` "Hello World!"
-- False
--
-- The second list must be finite; however the first list may be infinite:
--
-- >>> [0..] `isSuffixOf` [0..99]
-- False
-- >>> [0..99] `isSuffixOf` [0..]
-- * Hangs forever *
--
isSuffixOf :: (Eq a) => [a] -> [a] -> Bool
ns `isSuffixOf` hs = maybe False id $ do
delta <- dropLengthMaybe ns hs
return $ ns == dropLength delta hs
-- Since dropLengthMaybe ns hs succeeded, we know that (if hs is finite)
-- length ns + length delta = length hs
-- so dropping the length of delta from hs will yield a suffix exactly
-- the length of ns.
-- A version of drop that drops the length of the first argument from the
-- second argument. If xs is longer than ys, xs will not be traversed in its
-- entirety. dropLength is also generally faster than (drop . length)
-- Both this and dropLengthMaybe could be written as folds over their first
-- arguments, but this reduces clarity with no benefit to isSuffixOf.
--
-- >>> dropLength "Hello" "Holla world"
-- " world"
--
-- >>> dropLength [1..] [1,2,3]
-- []
dropLength :: [a] -> [b] -> [b]
dropLength [] y = y
dropLength _ [] = []
dropLength (_:x') (_:y') = dropLength x' y'
-- A version of dropLength that returns Nothing if the second list runs out of
-- elements before the first.
--
-- >>> dropLengthMaybe [1..] [1,2,3]
-- Nothing
dropLengthMaybe :: [a] -> [b] -> Maybe [b]
dropLengthMaybe [] y = Just y
dropLengthMaybe _ [] = Nothing
dropLengthMaybe (_:x') (_:y') = dropLengthMaybe x' y'
-- | The 'isInfixOf' function takes two lists and returns 'True'
-- iff the first list is contained, wholly and intact,
-- anywhere within the second.
--
-- >>> isInfixOf "Haskell" "I really like Haskell."
-- True
-- >>> isInfixOf "Ial" "I really like Haskell."
-- False
--
-- For the result to be 'True', the first list must be finite;
-- for the result to be 'False', the second list must be finite:
--
-- >>> [20..50] `isInfixOf` [0..]
-- True
-- >>> [0..] `isInfixOf` [20..50]
-- False
-- >>> [0..] `isInfixOf` [0..]
-- * Hangs forever *
--
isInfixOf :: (Eq a) => [a] -> [a] -> Bool
isInfixOf needle haystack = any (isPrefixOf needle) (tails haystack)
-- | \(\mathcal{O}(n^2)\). The 'nub' function removes duplicate elements from a
-- list. In particular, it keeps only the first occurrence of each element. (The
-- name 'nub' means \`essence\'.) It is a special case of 'nubBy', which allows
-- the programmer to supply their own equality test.
--
-- >>> nub [1,2,3,4,3,2,1,2,4,3,5]
-- [1,2,3,4,5]
--
-- If there exists @instance Ord a@, it's faster to use `nubOrd` from the `containers` package
-- ([link to the latest online documentation](https://hackage.haskell.org/package/containers/docs/Data-Containers-ListUtils.html#v:nubOrd)),
-- which takes only \(\mathcal{O}(n \log d)\) time where `d` is the number of
-- distinct elements in the list.
--
-- Another approach to speed up 'nub' is to use
-- 'map' @Data.List.NonEmpty.@'Data.List.NonEmpty.head' . @Data.List.NonEmpty.@'Data.List.NonEmpty.group' . 'sort',
-- which takes \(\mathcal{O}(n \log n)\) time, requires @instance Ord a@ and doesn't
-- preserve the order.
--
nub :: (Eq a) => [a] -> [a]
nub = nubBy (==)
-- | The 'nubBy' function behaves just like 'nub', except it uses a
-- user-supplied equality predicate instead of the overloaded '=='
-- function.
--
-- >>> nubBy (\x y -> mod x 3 == mod y 3) [1,2,4,5,6]
-- [1,2,6]
nubBy :: (a -> a -> Bool) -> [a] -> [a]
#if defined(USE_REPORT_PRELUDE)
nubBy eq [] = []
nubBy eq (x:xs) = x : nubBy eq (filter (\ y -> not (eq x y)) xs)
#else
-- stolen from HBC
nubBy eq l = nubBy' l []
where
nubBy' [] _ = []
nubBy' (y:ys) xs
| elem_by eq y xs = nubBy' ys xs
| otherwise = y : nubBy' ys (y:xs)
-- Not exported:
-- Note that we keep the call to `eq` with arguments in the
-- same order as in the reference (prelude) implementation,
-- and that this order is different from how `elem` calls (==).
-- See #2528, #3280 and #7913.
-- 'xs' is the list of things we've seen so far,
-- 'y' is the potential new element
elem_by :: (a -> a -> Bool) -> a -> [a] -> Bool
elem_by _ _ [] = False
elem_by eq y (x:xs) = x `eq` y || elem_by eq y xs
#endif
-- | \(\mathcal{O}(n)\). 'delete' @x@ removes the first occurrence of @x@ from
-- its list argument. For example,
--
-- >>> delete 'a' "banana"
-- "bnana"
--
-- It is a special case of 'deleteBy', which allows the programmer to
-- supply their own equality test.
delete :: (Eq a) => a -> [a] -> [a]
delete = deleteBy (==)
-- | \(\mathcal{O}(n)\). The 'deleteBy' function behaves like 'delete', but
-- takes a user-supplied equality predicate.
--
-- >>> deleteBy (<=) 4 [1..10]
-- [1,2,3,5,6,7,8,9,10]
deleteBy :: (a -> a -> Bool) -> a -> [a] -> [a]
deleteBy _ _ [] = []
deleteBy eq x (y:ys) = if x `eq` y then ys else y : deleteBy eq x ys
-- | The '\\' function is list difference (non-associative).
-- In the result of @xs@ '\\' @ys@, the first occurrence of each element of
-- @ys@ in turn (if any) has been removed from @xs@. Thus
-- @(xs ++ ys) \\\\ xs == ys@.
--
-- >>> "Hello World!" \\ "ell W"
-- "Hoorld!"
--
-- It is a special case of 'deleteFirstsBy', which allows the programmer
-- to supply their own equality test.
--
-- The second list must be finite, but the first may be infinite.
--
-- >>> take 5 ([0..] \\ [2..4])
-- [0,1,5,6,7]
-- >>> take 5 ([0..] \\ [2..])
-- * Hangs forever *
--
(\\) :: (Eq a) => [a] -> [a] -> [a]
(\\) = foldl (flip delete)
-- | The 'union' function returns the list union of the two lists.
-- It is a special case of 'unionBy', which allows the programmer to supply
-- their own equality test.
-- For example,
--
-- >>> "dog" `union` "cow"
-- "dogcw"
--
-- If equal elements are present in both lists, an element from the first list
-- will be used. If the second list contains equal elements, only the first one
-- will be retained:
--
-- >>> import Data.Semigroup
-- >>> union [Arg () "dog"] [Arg () "cow"]
-- [Arg () "dog"]
-- >>> union [] [Arg () "dog", Arg () "cow"]
-- [Arg () "dog"]
--
-- However if the first list contains duplicates, so will
-- the result:
--
-- >>> "coot" `union` "duck"
-- "cootduk"
-- >>> "duck" `union` "coot"
-- "duckot"
--
-- 'union' is productive even if both arguments are infinite.
--
union :: (Eq a) => [a] -> [a] -> [a]
union = unionBy (==)
-- | The 'unionBy' function is the non-overloaded version of 'union'.
-- Both arguments may be infinite.
--
unionBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]
unionBy eq xs ys = xs ++ foldl (flip (deleteBy eq)) (nubBy eq ys) xs
-- | The 'intersect' function takes the list intersection of two lists.
-- It is a special case of 'intersectBy', which allows the programmer to
-- supply their own equality test.
-- For example,
--
-- >>> [1,2,3,4] `intersect` [2,4,6,8]
-- [2,4]
--
-- If equal elements are present in both lists, an element from the first list
-- will be used, and all duplicates from the second list quashed:
--
-- >>> import Data.Semigroup
-- >>> intersect [Arg () "dog"] [Arg () "cow", Arg () "cat"]
-- [Arg () "dog"]
--
-- However if the first list contains duplicates, so will the result.
--
-- >>> "coot" `intersect` "heron"
-- "oo"
-- >>> "heron" `intersect` "coot"
-- "o"
--
-- If the second list is infinite, 'intersect' either hangs
-- or returns its first argument in full. Otherwise if the first list
-- is infinite, 'intersect' might be productive:
--
-- >>> intersect [100..] [0..]
-- [100,101,102,103...
-- >>> intersect [0] [1..]
-- * Hangs forever *
-- >>> intersect [1..] [0]
-- * Hangs forever *
-- >>> intersect (cycle [1..3]) [2]
-- [2,2,2,2...
--
intersect :: (Eq a) => [a] -> [a] -> [a]
intersect = intersectBy (==)
-- | The 'intersectBy' function is the non-overloaded version of 'intersect'.
-- It is productive for infinite arguments only if the first one
-- is a subset of the second.
--
intersectBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]
intersectBy _ [] _ = []
intersectBy _ _ [] = []
intersectBy eq xs ys = [x | x <- xs, any (eq x) ys]
-- | \(\mathcal{O}(n)\). The 'intersperse' function takes an element and a list
-- and \`intersperses\' that element between the elements of the list. For
-- example,
--
-- >>> intersperse ',' "abcde"
-- "a,b,c,d,e"
--
-- 'intersperse' has the following laziness properties:
--
-- >>> take 1 (intersperse undefined ('a' : undefined))
-- "a"
-- >>> take 2 (intersperse ',' ('a' : undefined))
-- "a*** Exception: Prelude.undefined
--
intersperse :: a -> [a] -> [a]
intersperse _ [] = []
intersperse sep (x:xs) = x : prependToAll sep xs
-- Not exported:
-- We want to make every element in the 'intersperse'd list available
-- as soon as possible to avoid space leaks. Experiments suggested that
-- a separate top-level helper is more efficient than a local worker.
prependToAll :: a -> [a] -> [a]
prependToAll _ [] = []
prependToAll sep (x:xs) = sep : x : prependToAll sep xs
-- | 'intercalate' @xs xss@ is equivalent to @('concat' ('intersperse' xs xss))@.
-- It inserts the list @xs@ in between the lists in @xss@ and concatenates the
-- result.
--
-- >>> intercalate ", " ["Lorem", "ipsum", "dolor"]
-- "Lorem, ipsum, dolor"
--
-- 'intercalate' has the following laziness properties:
--
-- >>> take 5 (intercalate undefined ("Lorem" : undefined))
-- "Lorem"
-- >>> take 6 (intercalate ", " ("Lorem" : undefined))
-- "Lorem*** Exception: Prelude.undefined
--
intercalate :: [a] -> [[a]] -> [a]
intercalate xs xss = concat (intersperse xs xss)
-- | The 'transpose' function transposes the rows and columns of its argument.
-- For example,
--
-- >>> transpose [[1,2,3],[4,5,6]]
-- [[1,4],[2,5],[3,6]]
--
-- If some of the rows are shorter than the following rows, their elements are skipped:
--
-- >>> transpose [[10,11],[20],[],[30,31,32]]
-- [[10,20,30],[11,31],[32]]
--
-- For this reason the outer list must be finite; otherwise 'transpose' hangs:
--
-- >>> transpose (repeat [])
-- * Hangs forever *
--
-- 'transpose' is lazy:
--
-- >>> take 1 (transpose ['a' : undefined, 'b' : undefined])
-- ["ab"]
--
transpose :: [[a]] -> [[a]]
transpose [] = []
transpose ([] : xss) = transpose xss
transpose ((x : xs) : xss) = combine x hds xs tls
where
-- We tie the calculations of heads and tails together
-- to prevent heads from leaking into tails and vice versa.
-- unzip makes the selector thunk arrangements we need to
-- ensure everything gets cleaned up properly.
(hds, tls) = unzip [(hd, tl) | hd : tl <- xss]
combine y h ys t = (y:h) : transpose (ys:t)
{-# NOINLINE combine #-}
{- Implementation note:
If the bottom part of the function was written as such:
```
transpose ((x : xs) : xss) = (x:hds) : transpose (xs:tls)
where
(hds,tls) = hdstls
hdstls = unzip [(hd, tl) | hd : tl <- xss]
{-# NOINLINE hdstls #-}
```
Here are the steps that would take place:
1. We allocate a thunk, `hdstls`, representing the result of unzipping.
2. We allocate selector thunks, `hds` and `tls`, that deconstruct `hdstls`.
3. Install `hds` as the tail of the result head and pass `xs:tls` to
the recursive call in the result tail.
Once optimised, this code would amount to:
```
transpose ((x : xs) : xss) = (x:hds) : (let tls = snd hdstls in transpose (xs:tls))
where
hds = fst hdstls
hdstls = unzip [(hd, tl) | hd : tl <- xss]
{-# NOINLINE hdstls #-}
```
In particular, GHC does not produce the `tls` selector thunk immediately;
rather, it waits to do so until the tail of the result is actually demanded.
So when `hds` is demanded, that does not resolve `snd hdstls`; the tail of the
result keeps `hdstls` alive.
By writing `combine` and making it NOINLINE, we prevent GHC from delaying
the selector thunk allocation, requiring that `hds` and `tls` are actually
allocated to be passed to `combine`.
-}
-- | The 'partition' function takes a predicate and a list, and returns
-- the pair of lists of elements which do and do not satisfy the
-- predicate, respectively; i.e.,
--
-- > partition p xs == (filter p xs, filter (not . p) xs)
--
-- >>> partition (`elem` "aeiou") "Hello World!"
-- ("eoo","Hll Wrld!")
partition :: (a -> Bool) -> [a] -> ([a],[a])
{-# INLINE partition #-}
partition p xs = foldr (select p) ([],[]) xs
select :: (a -> Bool) -> a -> ([a], [a]) -> ([a], [a])
select p x ~(ts,fs) | p x = (x:ts,fs)
| otherwise = (ts, x:fs)
-- | The 'mapAccumL' function behaves like a combination of 'map' and
-- 'foldl'; it applies a function to each element of a list, passing
-- an accumulating parameter from left to right, and returning a final
-- value of this accumulator together with the new list.
--
-- 'mapAccumL' does not force accumulator if it is unused:
--
-- >>> take 1 (snd (mapAccumL (\_ x -> (undefined, x)) undefined ('a' : undefined)))
-- "a"
--
mapAccumL :: (acc -> x -> (acc, y)) -- Function of elt of input list
-- and accumulator, returning new
-- accumulator and elt of result list
-> acc -- Initial accumulator
-> [x] -- Input list
-> (acc, [y]) -- Final accumulator and result list
{-# NOINLINE [1] mapAccumL #-}
mapAccumL _ s [] = (s, [])
mapAccumL f s (x:xs) = (s'',y:ys)
where (s', y ) = f s x
(s'',ys) = mapAccumL f s' xs
{-# RULES
"mapAccumL" [~1] forall f s xs . mapAccumL f s xs = foldr (mapAccumLF f) pairWithNil xs s
"mapAccumLList" [1] forall f s xs . foldr (mapAccumLF f) pairWithNil xs s = mapAccumL f s xs
#-}
pairWithNil :: acc -> (acc, [y])
{-# INLINE [0] pairWithNil #-}
pairWithNil x = (x, [])
mapAccumLF :: (acc -> x -> (acc, y)) -> x -> (acc -> (acc, [y])) -> acc -> (acc, [y])
{-# INLINE [0] mapAccumLF #-}
mapAccumLF f = \x r -> oneShot (\s ->
let (s', y) = f s x
(s'', ys) = r s'
in (s'', y:ys))
-- See Note [Left folds via right fold]
-- | The 'mapAccumR' function behaves like a combination of 'map' and
-- 'foldr'; it applies a function to each element of a list, passing
-- an accumulating parameter from right to left, and returning a final
-- value of this accumulator together with the new list.
mapAccumR :: (acc -> x -> (acc, y)) -- Function of elt of input list
-- and accumulator, returning new
-- accumulator and elt of result list
-> acc -- Initial accumulator
-> [x] -- Input list
-> (acc, [y]) -- Final accumulator and result list
mapAccumR _ s [] = (s, [])
mapAccumR f s (x:xs) = (s'', y:ys)
where (s'',y ) = f s' x
(s', ys) = mapAccumR f s xs
-- | \(\mathcal{O}(n)\). The 'insert' function takes an element and a list and
-- inserts the element into the list at the first position where it is less than
-- or equal to the next element. In particular, if the list is sorted before the
-- call, the result will also be sorted. It is a special case of 'insertBy',
-- which allows the programmer to supply their own comparison function.
--
-- >>> insert 4 [1,2,3,5,6,7]
-- [1,2,3,4,5,6,7]
insert :: Ord a => a -> [a] -> [a]
insert e ls = insertBy (compare) e ls
-- | \(\mathcal{O}(n)\). The non-overloaded version of 'insert'.
insertBy :: (a -> a -> Ordering) -> a -> [a] -> [a]
insertBy _ x [] = [x]
insertBy cmp x ys@(y:ys')
= case cmp x y of
GT -> y : insertBy cmp x ys'
_ -> x : ys
-- | The 'maximumBy' function is the non-overloaded version of 'maximum',
-- which takes a comparison function and a list
-- and returns the greatest element of the list by the comparison function.
-- The list must be finite and non-empty.
--
-- We can use this to find the longest entry of a list:
--
-- >>> maximumBy (\x y -> compare (length x) (length y)) ["Hello", "World", "!", "Longest", "bar"]
-- "Longest"
maximumBy :: (a -> a -> Ordering) -> [a] -> a
maximumBy _ [] = errorWithoutStackTrace "List.maximumBy: empty list"
maximumBy cmp xs = foldl1 maxBy xs
where
maxBy x y = case cmp x y of
GT -> x
_ -> y
-- | The 'minimumBy' function is the non-overloaded version of 'minimum',
-- which takes a comparison function and a list
-- and returns the least element of the list by the comparison function.
-- The list must be finite and non-empty.
--
-- We can use this to find the shortest entry of a list:
--
-- >>> minimumBy (\x y -> compare (length x) (length y)) ["Hello", "World", "!", "Longest", "bar"]
-- "!"
minimumBy :: (a -> a -> Ordering) -> [a] -> a
minimumBy _ [] = errorWithoutStackTrace "List.minimumBy: empty list"
minimumBy cmp xs = foldl1 minBy xs
where
minBy x y = case cmp x y of
GT -> y
_ -> x
-- | \(\mathcal{O}(n)\). The 'genericLength' function is an overloaded version
-- of 'length'. In particular, instead of returning an 'Int', it returns any
-- type which is an instance of 'Num'. It is, however, less efficient than
-- 'length'.
--
-- >>> genericLength [1, 2, 3] :: Int
-- 3
-- >>> genericLength [1, 2, 3] :: Float
-- 3.0
--
-- Users should take care to pick a return type that is wide enough to contain
-- the full length of the list. If the width is insufficient, the overflow
-- behaviour will depend on the @(+)@ implementation in the selected 'Num'
-- instance. The following example overflows because the actual list length
-- of 200 lies outside of the 'Int8' range of @-128..127@.
--
-- >>> genericLength [1..200] :: Int8
-- -56
genericLength :: (Num i) => [a] -> i
{-# NOINLINE [2] genericLength #-}
-- Give time for the RULEs for (++) to fire in InitialPhase
-- It's recursive, so won't inline anyway,
-- but saying so is more explicit
genericLength [] = 0
genericLength (_:l) = 1 + genericLength l
{-# RULES
"genericLengthInt" genericLength = (strictGenericLength :: [a] -> Int);
"genericLengthInteger" genericLength = (strictGenericLength :: [a] -> Integer);
#-}
strictGenericLength :: (Num i) => [b] -> i
strictGenericLength l = gl l 0
where
gl [] a = a
gl (_:xs) a = let a' = a + 1 in a' `seq` gl xs a'
{-# INLINABLE strictGenericLength #-}
-- | The 'genericTake' function is an overloaded version of 'take', which
-- accepts any 'Integral' value as the number of elements to take.
genericTake :: (Integral i) => i -> [a] -> [a]
genericTake n _ | n <= 0 = []
genericTake _ [] = []
genericTake n (x:xs) = x : genericTake (n-1) xs
{-# INLINABLE genericTake #-}
-- | The 'genericDrop' function is an overloaded version of 'drop', which
-- accepts any 'Integral' value as the number of elements to drop.
genericDrop :: (Integral i) => i -> [a] -> [a]
genericDrop n xs | n <= 0 = xs
genericDrop _ [] = []
genericDrop n (_:xs) = genericDrop (n-1) xs
{-# INLINABLE genericDrop #-}
-- | The 'genericSplitAt' function is an overloaded version of 'splitAt', which
-- accepts any 'Integral' value as the position at which to split.
genericSplitAt :: (Integral i) => i -> [a] -> ([a], [a])
genericSplitAt n xs | n <= 0 = ([],xs)
genericSplitAt _ [] = ([],[])
genericSplitAt n (x:xs) = (x:xs',xs'') where
(xs',xs'') = genericSplitAt (n-1) xs
{-# INLINABLE genericSplitAt #-}
-- | The 'genericIndex' function is an overloaded version of '!!', which
-- accepts any 'Integral' value as the index.
genericIndex :: (Integral i) => [a] -> i -> a
genericIndex (x:_) 0 = x
genericIndex (_:xs) n
| n > 0 = genericIndex xs (n-1)
| otherwise = errorWithoutStackTrace "List.genericIndex: negative argument."
genericIndex _ _ = errorWithoutStackTrace "List.genericIndex: index too large."
{-# INLINABLE genericIndex #-}
-- | The 'genericReplicate' function is an overloaded version of 'replicate',
-- which accepts any 'Integral' value as the number of repetitions to make.
genericReplicate :: (Integral i) => i -> a -> [a]
genericReplicate n x = genericTake n (repeat x)
{-# INLINABLE genericReplicate #-}
-- | The 'zip4' function takes four lists and returns a list of
-- quadruples, analogous to 'zip'.
-- It is capable of list fusion, but it is restricted to its
-- first list argument and its resulting list.
{-# INLINE zip4 #-}
zip4 :: [a] -> [b] -> [c] -> [d] -> [(a,b,c,d)]
zip4 = zipWith4 (,,,)
-- | The 'zip5' function takes five lists and returns a list of
-- five-tuples, analogous to 'zip'.
-- It is capable of list fusion, but it is restricted to its
-- first list argument and its resulting list.
{-# INLINE zip5 #-}
zip5 :: [a] -> [b] -> [c] -> [d] -> [e] -> [(a,b,c,d,e)]
zip5 = zipWith5 (,,,,)
-- | The 'zip6' function takes six lists and returns a list of six-tuples,
-- analogous to 'zip'.
-- It is capable of list fusion, but it is restricted to its
-- first list argument and its resulting list.
{-# INLINE zip6 #-}
zip6 :: [a] -> [b] -> [c] -> [d] -> [e] -> [f] ->
[(a,b,c,d,e,f)]
zip6 = zipWith6 (,,,,,)
-- | The 'zip7' function takes seven lists and returns a list of
-- seven-tuples, analogous to 'zip'.
-- It is capable of list fusion, but it is restricted to its
-- first list argument and its resulting list.
{-# INLINE zip7 #-}
zip7 :: [a] -> [b] -> [c] -> [d] -> [e] -> [f] ->
[g] -> [(a,b,c,d,e,f,g)]
zip7 = zipWith7 (,,,,,,)
-- | The 'zipWith4' function takes a function which combines four
-- elements, as well as four lists and returns a list of their point-wise
-- combination, analogous to 'zipWith'.
-- It is capable of list fusion, but it is restricted to its
-- first list argument and its resulting list.
{-# NOINLINE [1] zipWith4 #-}
zipWith4 :: (a->b->c->d->e) -> [a]->[b]->[c]->[d]->[e]
zipWith4 z (a:as) (b:bs) (c:cs) (d:ds)
= z a b c d : zipWith4 z as bs cs ds
zipWith4 _ _ _ _ _ = []
-- | The 'zipWith5' function takes a function which combines five
-- elements, as well as five lists and returns a list of their point-wise
-- combination, analogous to 'zipWith'.
-- It is capable of list fusion, but it is restricted to its
-- first list argument and its resulting list.
{-# NOINLINE [1] zipWith5 #-}
zipWith5 :: (a->b->c->d->e->f) ->
[a]->[b]->[c]->[d]->[e]->[f]
zipWith5 z (a:as) (b:bs) (c:cs) (d:ds) (e:es)
= z a b c d e : zipWith5 z as bs cs ds es
zipWith5 _ _ _ _ _ _ = []
-- | The 'zipWith6' function takes a function which combines six
-- elements, as well as six lists and returns a list of their point-wise
-- combination, analogous to 'zipWith'.
-- It is capable of list fusion, but it is restricted to its
-- first list argument and its resulting list.
{-# NOINLINE [1] zipWith6 #-}
zipWith6 :: (a->b->c->d->e->f->g) ->
[a]->[b]->[c]->[d]->[e]->[f]->[g]
zipWith6 z (a:as) (b:bs) (c:cs) (d:ds) (e:es) (f:fs)
= z a b c d e f : zipWith6 z as bs cs ds es fs
zipWith6 _ _ _ _ _ _ _ = []
-- | The 'zipWith7' function takes a function which combines seven
-- elements, as well as seven lists and returns a list of their point-wise
-- combination, analogous to 'zipWith'.
-- It is capable of list fusion, but it is restricted to its
-- first list argument and its resulting list.
{-# NOINLINE [1] zipWith7 #-}
zipWith7 :: (a->b->c->d->e->f->g->h) ->
[a]->[b]->[c]->[d]->[e]->[f]->[g]->[h]
zipWith7 z (a:as) (b:bs) (c:cs) (d:ds) (e:es) (f:fs) (g:gs)
= z a b c d e f g : zipWith7 z as bs cs ds es fs gs
zipWith7 _ _ _ _ _ _ _ _ = []
{-
Functions and rules for fusion of zipWith4, zipWith5, zipWith6 and zipWith7.
The principle is the same as for zip and zipWith in GHC.List:
Turn zipWithX into a version in which the first argument and the result
can be fused. Turn it back into the original function if no fusion happens.
-}
{-# INLINE [0] zipWith4FB #-} -- See Note [Inline FB functions]
zipWith4FB :: (e->xs->xs') -> (a->b->c->d->e) ->
a->b->c->d->xs->xs'
zipWith4FB cons func = \a b c d r -> (func a b c d) `cons` r
{-# INLINE [0] zipWith5FB #-} -- See Note [Inline FB functions]
zipWith5FB :: (f->xs->xs') -> (a->b->c->d->e->f) ->
a->b->c->d->e->xs->xs'
zipWith5FB cons func = \a b c d e r -> (func a b c d e) `cons` r
{-# INLINE [0] zipWith6FB #-} -- See Note [Inline FB functions]
zipWith6FB :: (g->xs->xs') -> (a->b->c->d->e->f->g) ->
a->b->c->d->e->f->xs->xs'
zipWith6FB cons func = \a b c d e f r -> (func a b c d e f) `cons` r
{-# INLINE [0] zipWith7FB #-} -- See Note [Inline FB functions]
zipWith7FB :: (h->xs->xs') -> (a->b->c->d->e->f->g->h) ->
a->b->c->d->e->f->g->xs->xs'
zipWith7FB cons func = \a b c d e f g r -> (func a b c d e f g) `cons` r
{-# INLINE [0] foldr4 #-}
foldr4 :: (a->b->c->d->e->e) ->
e->[a]->[b]->[c]->[d]->e
foldr4 k z = go
where
go (a:as) (b:bs) (c:cs) (d:ds) = k a b c d (go as bs cs ds)
go _ _ _ _ = z
{-# INLINE [0] foldr5 #-}
foldr5 :: (a->b->c->d->e->f->f) ->
f->[a]->[b]->[c]->[d]->[e]->f
foldr5 k z = go
where
go (a:as) (b:bs) (c:cs) (d:ds) (e:es) = k a b c d e (go as bs cs ds es)
go _ _ _ _ _ = z
{-# INLINE [0] foldr6 #-}
foldr6 :: (a->b->c->d->e->f->g->g) ->
g->[a]->[b]->[c]->[d]->[e]->[f]->g
foldr6 k z = go
where
go (a:as) (b:bs) (c:cs) (d:ds) (e:es) (f:fs) = k a b c d e f (
go as bs cs ds es fs)
go _ _ _ _ _ _ = z
{-# INLINE [0] foldr7 #-}
foldr7 :: (a->b->c->d->e->f->g->h->h) ->
h->[a]->[b]->[c]->[d]->[e]->[f]->[g]->h
foldr7 k z = go
where
go (a:as) (b:bs) (c:cs) (d:ds) (e:es) (f:fs) (g:gs) = k a b c d e f g (
go as bs cs ds es fs gs)
go _ _ _ _ _ _ _ = z
foldr4_left :: (a->b->c->d->e->f)->
f->a->([b]->[c]->[d]->e)->
[b]->[c]->[d]->f
foldr4_left k _z a r (b:bs) (c:cs) (d:ds) = k a b c d (r bs cs ds)
foldr4_left _ z _ _ _ _ _ = z
foldr5_left :: (a->b->c->d->e->f->g)->
g->a->([b]->[c]->[d]->[e]->f)->
[b]->[c]->[d]->[e]->g
foldr5_left k _z a r (b:bs) (c:cs) (d:ds) (e:es) = k a b c d e (r bs cs ds es)
foldr5_left _ z _ _ _ _ _ _ = z
foldr6_left :: (a->b->c->d->e->f->g->h)->
h->a->([b]->[c]->[d]->[e]->[f]->g)->
[b]->[c]->[d]->[e]->[f]->h
foldr6_left k _z a r (b:bs) (c:cs) (d:ds) (e:es) (f:fs) =
k a b c d e f (r bs cs ds es fs)
foldr6_left _ z _ _ _ _ _ _ _ = z
foldr7_left :: (a->b->c->d->e->f->g->h->i)->
i->a->([b]->[c]->[d]->[e]->[f]->[g]->h)->
[b]->[c]->[d]->[e]->[f]->[g]->i
foldr7_left k _z a r (b:bs) (c:cs) (d:ds) (e:es) (f:fs) (g:gs) =
k a b c d e f g (r bs cs ds es fs gs)
foldr7_left _ z _ _ _ _ _ _ _ _ = z
{-# RULES
"foldr4/left" forall k z (g::forall b.(a->b->b)->b->b).
foldr4 k z (build g) = g (foldr4_left k z) (\_ _ _ -> z)
"foldr5/left" forall k z (g::forall b.(a->b->b)->b->b).
foldr5 k z (build g) = g (foldr5_left k z) (\_ _ _ _ -> z)
"foldr6/left" forall k z (g::forall b.(a->b->b)->b->b).
foldr6 k z (build g) = g (foldr6_left k z) (\_ _ _ _ _ -> z)
"foldr7/left" forall k z (g::forall b.(a->b->b)->b->b).
foldr7 k z (build g) = g (foldr7_left k z) (\_ _ _ _ _ _ -> z)
"zipWith4" [~1] forall f as bs cs ds.
zipWith4 f as bs cs ds = build (\c n ->
foldr4 (zipWith4FB c f) n as bs cs ds)
"zipWith5" [~1] forall f as bs cs ds es.
zipWith5 f as bs cs ds es = build (\c n ->
foldr5 (zipWith5FB c f) n as bs cs ds es)
"zipWith6" [~1] forall f as bs cs ds es fs.
zipWith6 f as bs cs ds es fs = build (\c n ->
foldr6 (zipWith6FB c f) n as bs cs ds es fs)
"zipWith7" [~1] forall f as bs cs ds es fs gs.
zipWith7 f as bs cs ds es fs gs = build (\c n ->
foldr7 (zipWith7FB c f) n as bs cs ds es fs gs)
"zipWith4List" [1] forall f. foldr4 (zipWith4FB (:) f) [] = zipWith4 f
"zipWith5List" [1] forall f. foldr5 (zipWith5FB (:) f) [] = zipWith5 f
"zipWith6List" [1] forall f. foldr6 (zipWith6FB (:) f) [] = zipWith6 f
"zipWith7List" [1] forall f. foldr7 (zipWith7FB (:) f) [] = zipWith7 f
#-}
{-
Note [Inline @unzipN@ functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The inline principle for @unzip{4,5,6,7}@ is the same as 'unzip'/'unzip3' in
"GHC.List".
The 'unzip'/'unzip3' functions are inlined so that the `foldr` with which they
are defined has an opportunity to fuse.
As such, since there are not any differences between 2/3-ary 'unzip' and its
n-ary counterparts below aside from the number of arguments, the `INLINE`
pragma should be replicated in the @unzipN@ functions below as well.
-}
-- | The 'unzip4' function takes a list of quadruples and returns four
-- lists, analogous to 'unzip'.
{-# INLINE unzip4 #-}
-- Inline so that fusion with `foldr` has an opportunity to fire.
-- See Note [Inline @unzipN@ functions] above.
unzip4 :: [(a,b,c,d)] -> ([a],[b],[c],[d])
unzip4 = foldr (\(a,b,c,d) ~(as,bs,cs,ds) ->
(a:as,b:bs,c:cs,d:ds))
([],[],[],[])
-- | The 'unzip5' function takes a list of five-tuples and returns five
-- lists, analogous to 'unzip'.
{-# INLINE unzip5 #-}
-- Inline so that fusion with `foldr` has an opportunity to fire.
-- See Note [Inline @unzipN@ functions] above.
unzip5 :: [(a,b,c,d,e)] -> ([a],[b],[c],[d],[e])
unzip5 = foldr (\(a,b,c,d,e) ~(as,bs,cs,ds,es) ->
(a:as,b:bs,c:cs,d:ds,e:es))
([],[],[],[],[])
-- | The 'unzip6' function takes a list of six-tuples and returns six
-- lists, analogous to 'unzip'.
{-# INLINE unzip6 #-}
-- Inline so that fusion with `foldr` has an opportunity to fire.
-- See Note [Inline @unzipN@ functions] above.
unzip6 :: [(a,b,c,d,e,f)] -> ([a],[b],[c],[d],[e],[f])
unzip6 = foldr (\(a,b,c,d,e,f) ~(as,bs,cs,ds,es,fs) ->
(a:as,b:bs,c:cs,d:ds,e:es,f:fs))
([],[],[],[],[],[])
-- | The 'unzip7' function takes a list of seven-tuples and returns
-- seven lists, analogous to 'unzip'.
{-# INLINE unzip7 #-}
-- Inline so that fusion with `foldr` has an opportunity to fire.
-- See Note [Inline @unzipN@ functions] above.
unzip7 :: [(a,b,c,d,e,f,g)] -> ([a],[b],[c],[d],[e],[f],[g])
unzip7 = foldr (\(a,b,c,d,e,f,g) ~(as,bs,cs,ds,es,fs,gs) ->
(a:as,b:bs,c:cs,d:ds,e:es,f:fs,g:gs))
([],[],[],[],[],[],[])
-- | The 'deleteFirstsBy' function takes a predicate and two lists and
-- returns the first list with the first occurrence of each element of
-- the second list removed. This is the non-overloaded version of '(\\)'.
--
-- The second list must be finite, but the first may be infinite.
--
deleteFirstsBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]
deleteFirstsBy eq = foldl (flip (deleteBy eq))
-- | The 'group' function takes a list and returns a list of lists such
-- that the concatenation of the result is equal to the argument. Moreover,
-- each sublist in the result is non-empty and all elements are equal
-- to the first one. For example,
--
-- >>> group "Mississippi"
-- ["M","i","ss","i","ss","i","pp","i"]
--
-- 'group' is a special case of 'groupBy', which allows the programmer to supply
-- their own equality test.
--
-- It's often preferable to use @Data.List.NonEmpty.@'Data.List.NonEmpty.group',
-- which provides type-level guarantees of non-emptiness of inner lists.
--
group :: Eq a => [a] -> [[a]]
group = groupBy (==)
-- | The 'groupBy' function is the non-overloaded version of 'group'.
--
-- When a supplied relation is not transitive, it is important
-- to remember that equality is checked against the first element in the group,
-- not against the nearest neighbour:
--
-- >>> groupBy (\a b -> b - a < 5) [0..19]
-- [[0,1,2,3,4],[5,6,7,8,9],[10,11,12,13,14],[15,16,17,18,19]]
--
-- It's often preferable to use @Data.List.NonEmpty.@'Data.List.NonEmpty.groupBy',
-- which provides type-level guarantees of non-emptiness of inner lists.
--
groupBy :: (a -> a -> Bool) -> [a] -> [[a]]
groupBy _ [] = []
groupBy eq (x:xs) = (x:ys) : groupBy eq zs
where (ys,zs) = span (eq x) xs
-- | The 'inits' function returns all initial segments of the argument,
-- shortest first. For example,
--
-- >>> inits "abc"
-- ["","a","ab","abc"]
--
-- Note that 'inits' has the following strictness property:
-- @inits (xs ++ _|_) = inits xs ++ _|_@
--
-- In particular,
-- @inits _|_ = [] : _|_@
--
-- 'inits' is semantically equivalent to @'map' 'reverse' . 'scanl' ('flip' (:)) []@,
-- but under the hood uses a queue to amortize costs of 'reverse'.
--
inits :: [a] -> [[a]]
inits = map toListSB . scanl' snocSB emptySB
{-# NOINLINE inits #-}
-- We do not allow inits to inline, because it plays havoc with Call Arity
-- if it fuses with a consumer, and it would generally lead to serious
-- loss of sharing if allowed to fuse with a producer.
-- | \(\mathcal{O}(n)\). The 'tails' function returns all final segments of the
-- argument, longest first. For example,
--
-- >>> tails "abc"
-- ["abc","bc","c",""]
--
-- Note that 'tails' has the following strictness property:
-- @tails _|_ = _|_ : _|_@
tails :: [a] -> [[a]]
{-# INLINABLE tails #-}
tails lst = build (\c n ->
let tailsGo xs = xs `c` case xs of
[] -> n
_ : xs' -> tailsGo xs'
in tailsGo lst)
-- | The 'subsequences' function returns the list of all subsequences of the argument.
--
-- >>> subsequences "abc"
-- ["","a","b","ab","c","ac","bc","abc"]
--
-- This function is productive on infinite inputs:
--
-- >>> take 8 $ subsequences ['a'..]
-- ["","a","b","ab","c","ac","bc","abc"]
--
-- 'subsequences' does not look ahead unless it must:
--
-- >>> take 1 (subsequences undefined)
-- [[]]
-- >>> take 2 (subsequences ('a' : undefined))
-- ["","a"]
--
subsequences :: [a] -> [[a]]
subsequences xs = [] : nonEmptySubsequences xs
-- | The 'nonEmptySubsequences' function returns the list of all subsequences of the argument,
-- except for the empty list.
--
-- >>> nonEmptySubsequences "abc"
-- ["a","b","ab","c","ac","bc","abc"]
nonEmptySubsequences :: [a] -> [[a]]
nonEmptySubsequences [] = []
nonEmptySubsequences (x:xs) = [x] : foldr f [] (nonEmptySubsequences xs)
where f ys r = ys : (x : ys) : r
-- | The 'permutations' function returns the list of all permutations of the argument.
--
-- >>> permutations "abc"
-- ["abc","bac","cba","bca","cab","acb"]
--
-- The 'permutations' function is maximally lazy:
-- for each @n@, the value of @'permutations' xs@ starts with those permutations
-- that permute @'take' n xs@ and keep @'drop' n xs@.
--
-- This function is productive on infinite inputs:
--
-- >>> take 6 $ map (take 3) $ permutations ['a'..]
-- ["abc","bac","cba","bca","cab","acb"]
--
-- Note that the order of permutations is not lexicographic.
-- It satisfies the following property:
--
-- > map (take n) (take (product [1..n]) (permutations ([1..n] ++ undefined))) == permutations [1..n]
--
permutations :: [a] -> [[a]]
-- See https://stackoverflow.com/questions/24484348/what-does-this-list-permutations-implementation-in-haskell-exactly-do/24564307#24564307
-- for the analysis of this rather cryptic implementation.
-- Related discussions:
-- * https://mail.haskell.org/pipermail/haskell-cafe/2021-December/134920.html
-- * https://mail.haskell.org/pipermail/libraries/2007-December/008788.html
--
-- Verification of the equivalences of the auxiliary functions with Liquid Haskell:
-- https://github.com/ucsd-progsys/liquidhaskell/blob/b86fb5b/tests/ple/pos/Permutations.hs
permutations xs0 = xs0 : perms xs0 []
where
-- | @perms ts is@ is equivalent to
--
-- > concat
-- > [ interleave {(ts!!n)} {(drop (n+1)} ts) xs []
-- > | n <- [0..length ts - 1]
-- > , xs <- permutations (reverse (take n ts) ++ is)
-- > ]
--
-- @{(ts!!n)}@ and @{(drop (n+1)}@ denote the values of variables @t@ and @ts@ which
-- appear free in the definition of @interleave@ and @interleave'@.
perms :: forall a. [a] -> [a] -> [[a]]
perms [] _ = []
perms (t:ts) is = foldr interleave (perms ts (t:is)) (permutations is)
where
-- @interleave {t} {ts} xs r@ is equivalent to
--
-- > [ insertAt n t xs ++ ts | n <- [0..length xs - 1] ] ++ r
--
-- where
--
-- > insertAt n y xs = take n xs ++ y : drop n xs
--
interleave :: [a] -> [[a]] -> [[a]]
interleave xs r = let (_,zs) = interleave' id xs r in zs
-- @interleave' f ys r@ is equivalent to
--
-- > ( ys ++ ts
-- > , [ f (insertAt n t ys ++ ts) | n <- [0..length ys - 1] ] ++ r
-- > )
--
interleave' :: ([a] -> b) -> [a] -> [b] -> ([a], [b])
interleave' _ [] r = (ts, r)
interleave' f (y:ys) r = let (us,zs) = interleave' (f . (y:)) ys r
in (y:us, f (t:y:us) : zs)
------------------------------------------------------------------------------
-- Quick Sort algorithm taken from HBC's QSort library.
-- | The 'sort' function implements a stable sorting algorithm.
-- It is a special case of 'sortBy', which allows the programmer to supply
-- their own comparison function.
--
-- Elements are arranged from lowest to highest, keeping duplicates in
-- the order they appeared in the input.
--
-- >>> sort [1,6,4,3,2,5]
-- [1,2,3,4,5,6]
--
-- The argument must be finite.
--
sort :: (Ord a) => [a] -> [a]
-- | The 'sortBy' function is the non-overloaded version of 'sort'.
-- The argument must be finite.
--
-- >>> sortBy (\(a,_) (b,_) -> compare a b) [(2, "world"), (4, "!"), (1, "Hello")]
-- [(1,"Hello"),(2,"world"),(4,"!")]
--
-- The supplied comparison relation is supposed to be reflexive and antisymmetric,
-- otherwise, e. g., for @\_ _ -> GT@, the ordered list simply does not exist.
-- The relation is also expected to be transitive: if it is not then 'sortBy'
-- might fail to find an ordered permutation, even if it exists.
--
sortBy :: (a -> a -> Ordering) -> [a] -> [a]
#if defined(USE_REPORT_PRELUDE)
sort = sortBy compare
sortBy cmp = foldr (insertBy cmp) []
#else
{-
GHC's mergesort replaced by a better implementation, 24/12/2009.
This code originally contributed to the nhc12 compiler by Thomas Nordin
in 2002. Rumoured to have been based on code by Lennart Augustsson, e.g.
http://www.mail-archive.com/haskell@haskell.org/msg01822.html
and possibly to bear similarities to a 1982 paper by Richard O'Keefe:
"A smooth applicative merge sort".
Benchmarks show it to be often 2x the speed of the previous implementation.
Fixes ticket https://gitlab.haskell.org/ghc/ghc/issues/2143
-}
sort = sortBy compare
sortBy cmp = mergeAll . sequences
where
sequences (a:b:xs)
| a `cmp` b == GT = descending b [a] xs
| otherwise = ascending b (a:) xs
sequences xs = [xs]
descending a as (b:bs)
| a `cmp` b == GT = descending b (a:as) bs
descending a as bs = (a:as): sequences bs
ascending a as (b:bs)
| a `cmp` b /= GT = ascending b (\ys -> as (a:ys)) bs
ascending a as bs = let !x = as [a]
in x : sequences bs
mergeAll [x] = x
mergeAll xs = mergeAll (mergePairs xs)
mergePairs (a:b:xs) = let !x = merge a b
in x : mergePairs xs
mergePairs xs = xs
merge as@(a:as') bs@(b:bs')
| a `cmp` b == GT = b:merge as bs'
| otherwise = a:merge as' bs
merge [] bs = bs
merge as [] = as
{-
sortBy cmp l = mergesort cmp l
sort l = mergesort compare l
Quicksort replaced by mergesort, 14/5/2002.
From: Ian Lynagh <igloo@earth.li>
I am curious as to why the List.sort implementation in GHC is a
quicksort algorithm rather than an algorithm that guarantees n log n
time in the worst case? I have attached a mergesort implementation along
with a few scripts to time it's performance, the results of which are
shown below (* means it didn't finish successfully - in all cases this
was due to a stack overflow).
If I heap profile the random_list case with only 10000 then I see
random_list peaks at using about 2.5M of memory, whereas in the same
program using List.sort it uses only 100k.
Input style Input length Sort data Sort alg User time
stdin 10000 random_list sort 2.82
stdin 10000 random_list mergesort 2.96
stdin 10000 sorted sort 31.37
stdin 10000 sorted mergesort 1.90
stdin 10000 revsorted sort 31.21
stdin 10000 revsorted mergesort 1.88
stdin 100000 random_list sort *
stdin 100000 random_list mergesort *
stdin 100000 sorted sort *
stdin 100000 sorted mergesort *
stdin 100000 revsorted sort *
stdin 100000 revsorted mergesort *
func 10000 random_list sort 0.31
func 10000 random_list mergesort 0.91
func 10000 sorted sort 19.09
func 10000 sorted mergesort 0.15
func 10000 revsorted sort 19.17
func 10000 revsorted mergesort 0.16
func 100000 random_list sort 3.85
func 100000 random_list mergesort *
func 100000 sorted sort 5831.47
func 100000 sorted mergesort 2.23
func 100000 revsorted sort 5872.34
func 100000 revsorted mergesort 2.24
mergesort :: (a -> a -> Ordering) -> [a] -> [a]
mergesort cmp = mergesort' cmp . map wrap
mergesort' :: (a -> a -> Ordering) -> [[a]] -> [a]
mergesort' _ [] = []
mergesort' _ [xs] = xs
mergesort' cmp xss = mergesort' cmp (merge_pairs cmp xss)
merge_pairs :: (a -> a -> Ordering) -> [[a]] -> [[a]]
merge_pairs _ [] = []
merge_pairs _ [xs] = [xs]
merge_pairs cmp (xs:ys:xss) = merge cmp xs ys : merge_pairs cmp xss
merge :: (a -> a -> Ordering) -> [a] -> [a] -> [a]
merge _ [] ys = ys
merge _ xs [] = xs
merge cmp (x:xs) (y:ys)
= case x `cmp` y of
GT -> y : merge cmp (x:xs) ys
_ -> x : merge cmp xs (y:ys)
wrap :: a -> [a]
wrap x = [x]
OLDER: qsort version
-- qsort is stable and does not concatenate.
qsort :: (a -> a -> Ordering) -> [a] -> [a] -> [a]
qsort _ [] r = r
qsort _ [x] r = x:r
qsort cmp (x:xs) r = qpart cmp x xs [] [] r
-- qpart partitions and sorts the sublists
qpart :: (a -> a -> Ordering) -> a -> [a] -> [a] -> [a] -> [a] -> [a]
qpart cmp x [] rlt rge r =
-- rlt and rge are in reverse order and must be sorted with an
-- anti-stable sorting
rqsort cmp rlt (x:rqsort cmp rge r)
qpart cmp x (y:ys) rlt rge r =
case cmp x y of
GT -> qpart cmp x ys (y:rlt) rge r
_ -> qpart cmp x ys rlt (y:rge) r
-- rqsort is as qsort but anti-stable, i.e. reverses equal elements
rqsort :: (a -> a -> Ordering) -> [a] -> [a] -> [a]
rqsort _ [] r = r
rqsort _ [x] r = x:r
rqsort cmp (x:xs) r = rqpart cmp x xs [] [] r
rqpart :: (a -> a -> Ordering) -> a -> [a] -> [a] -> [a] -> [a] -> [a]
rqpart cmp x [] rle rgt r =
qsort cmp rle (x:qsort cmp rgt r)
rqpart cmp x (y:ys) rle rgt r =
case cmp y x of
GT -> rqpart cmp x ys rle (y:rgt) r
_ -> rqpart cmp x ys (y:rle) rgt r
-}
#endif /* USE_REPORT_PRELUDE */
-- | Sort a list by comparing the results of a key function applied to each
-- element. @'sortOn' f@ is equivalent to @'sortBy' ('comparing' f)@, but has the
-- performance advantage of only evaluating @f@ once for each element in the
-- input list. This is called the decorate-sort-undecorate paradigm, or
-- <https://en.wikipedia.org/wiki/Schwartzian_transform Schwartzian transform>.
--
-- Elements are arranged from lowest to highest, keeping duplicates in
-- the order they appeared in the input.
--
-- >>> sortOn fst [(2, "world"), (4, "!"), (1, "Hello")]
-- [(1,"Hello"),(2,"world"),(4,"!")]
--
-- The argument must be finite.
--
-- @since 4.8.0.0
sortOn :: Ord b => (a -> b) -> [a] -> [a]
sortOn f =
map snd . sortBy (comparing fst) . map (\x -> let y = f x in y `seq` (y, x))
-- | Construct a list from a single element.
--
-- >>> singleton True
-- [True]
--
-- @since 4.15.0.0
--
singleton :: a -> [a]
singleton x = [x]
-- | The 'unfoldr' function is a \`dual\' to 'foldr': while 'foldr'
-- reduces a list to a summary value, 'unfoldr' builds a list from
-- a seed value. The function takes the element and returns 'Nothing'
-- if it is done producing the list or returns 'Just' @(a,b)@, in which
-- case, @a@ is a prepended to the list and @b@ is used as the next
-- element in a recursive call. For example,
--
-- > iterate f == unfoldr (\x -> Just (x, f x))
--
-- In some cases, 'unfoldr' can undo a 'foldr' operation:
--
-- > unfoldr f' (foldr f z xs) == xs
--
-- if the following holds:
--
-- > f' (f x y) = Just (x,y)
-- > f' z = Nothing
--
-- A simple use of unfoldr:
--
-- >>> unfoldr (\b -> if b == 0 then Nothing else Just (b, b-1)) 10
-- [10,9,8,7,6,5,4,3,2,1]
--
-- Laziness:
--
-- >>> take 1 (unfoldr (\x -> Just (x, undefined)) 'a')
-- "a"
--
-- Note [INLINE unfoldr]
-- ~~~~~~~~~~~~~~~~~~~~~
-- We treat unfoldr a little differently from some other forms for list fusion
-- for two reasons:
--
-- 1. We don't want to use a rule to rewrite a basic form to a fusible
-- form because this would inline before constant floating. As Simon Peyton-
-- Jones and others have pointed out, this could reduce sharing in some cases
-- where sharing is beneficial. Thus we simply INLINE it, which is, for
-- example, how enumFromTo::Int becomes eftInt. Unfortunately, we don't seem
-- to get enough of an inlining discount to get a version of eftInt based on
-- unfoldr to inline as readily as the usual one. We know that all the Maybe
-- nonsense will go away, but the compiler does not.
--
-- 2. The benefit of inlining unfoldr is likely to be huge in many common cases,
-- even apart from list fusion. In particular, inlining unfoldr often
-- allows GHC to erase all the Maybes. This appears to be critical if unfoldr
-- is to be used in high-performance code. A small increase in code size
-- in the relatively rare cases when this does not happen looks like a very
-- small price to pay.
--
-- Doing a back-and-forth dance doesn't seem to accomplish anything if the
-- final form has to be inlined in any case.
unfoldr :: (b -> Maybe (a, b)) -> b -> [a]
{-# INLINE unfoldr #-} -- See Note [INLINE unfoldr]
unfoldr f b0 = build (\c n ->
let go b = case f b of
Just (a, new_b) -> a `c` go new_b
Nothing -> n
in go b0)
-- -----------------------------------------------------------------------------
-- Functions on strings
-- | Splits the argument into a list of /lines/ stripped of their terminating
-- @\\n@ characters. The @\\n@ terminator is optional in a final non-empty
-- line of the argument string.
--
-- For example:
--
-- >>> lines "" -- empty input contains no lines
-- []
-- >>> lines "\n" -- single empty line
-- [""]
-- >>> lines "one" -- single unterminated line
-- ["one"]
-- >>> lines "one\n" -- single non-empty line
-- ["one"]
-- >>> lines "one\n\n" -- second line is empty
-- ["one",""]
-- >>> lines "one\ntwo" -- second line is unterminated
-- ["one","two"]
-- >>> lines "one\ntwo\n" -- two non-empty lines
-- ["one","two"]
--
-- When the argument string is empty, or ends in a @\\n@ character, it can be
-- recovered by passing the result of 'lines' to the 'unlines' function.
-- Otherwise, 'unlines' appends the missing terminating @\\n@. This makes
-- @unlines . lines@ /idempotent/:
--
-- > (unlines . lines) . (unlines . lines) = (unlines . lines)
--
lines :: String -> [String]
lines "" = []
-- Somehow GHC doesn't detect the selector thunks in the below code,
-- so s' keeps a reference to the first line via the pair and we have
-- a space leak (cf. #4334).
-- So we need to make GHC see the selector thunks with a trick.
lines s = cons (case break (== '\n') s of
(l, s') -> (l, case s' of
[] -> []
_:s'' -> lines s''))
where
cons ~(h, t) = h : t
-- | Appends a @\\n@ character to each input string, then concatenates the
-- results. Equivalent to @'foldMap' (\s -> s '++' "\\n")@.
--
-- >>> unlines ["Hello", "World", "!"]
-- "Hello\nWorld\n!\n"
--
-- Note that @'unlines' '.' 'lines' '/=' 'id'@ when the input is not @\\n@-terminated:
--
-- >>> unlines . lines $ "foo\nbar"
-- "foo\nbar\n"
unlines :: [String] -> String
#if defined(USE_REPORT_PRELUDE)
unlines = concatMap (++ "\n")
#else
-- HBC version (stolen)
-- here's a more efficient version
unlines [] = []
unlines (l:ls) = l ++ '\n' : unlines ls
#endif
-- | 'words' breaks a string up into a list of words, which were delimited
-- by white space (as defined by 'isSpace'). This function trims any white spaces
-- at the beginning and at the end.
--
-- >>> words "Lorem ipsum\ndolor"
-- ["Lorem","ipsum","dolor"]
-- >>> words " foo bar "
-- ["foo","bar"]
--
words :: String -> [String]
{-# NOINLINE [1] words #-}
words s = case dropWhile {-partain:Char.-}isSpace s of
"" -> []
s' -> w : words s''
where (w, s'') =
break {-partain:Char.-}isSpace s'
{-# RULES
"words" [~1] forall s . words s = build (\c n -> wordsFB c n s)
"wordsList" [1] wordsFB (:) [] = words
#-}
wordsFB :: ([Char] -> b -> b) -> b -> String -> b
{-# INLINE [0] wordsFB #-} -- See Note [Inline FB functions] in GHC.List
wordsFB c n = go
where
go s = case dropWhile isSpace s of
"" -> n
s' -> w `c` go s''
where (w, s'') = break isSpace s'
-- | 'unwords' joins words with separating spaces (U+0020 SPACE).
--
-- >>> unwords ["Lorem", "ipsum", "dolor"]
-- "Lorem ipsum dolor"
--
-- 'unwords' is neither left nor right inverse of 'words':
--
-- >>> words (unwords [" "])
-- []
-- >>> unwords (words "foo\nbar")
-- "foo bar"
--
unwords :: [String] -> String
#if defined(USE_REPORT_PRELUDE)
unwords [] = ""
unwords ws = foldr1 (\w s -> w ++ ' ':s) ws
#else
-- Here's a lazier version that can get the last element of a
-- _|_-terminated list.
{-# NOINLINE [1] unwords #-}
unwords [] = ""
unwords (w:ws) = w ++ go ws
where
go [] = ""
go (v:vs) = ' ' : (v ++ go vs)
-- In general, the foldr-based version is probably slightly worse
-- than the HBC version, because it adds an extra space and then takes
-- it back off again. But when it fuses, it reduces allocation. How much
-- depends entirely on the average word length--it's most effective when
-- the words are on the short side.
{-# RULES
"unwords" [~1] forall ws .
unwords ws = tailUnwords (foldr unwordsFB "" ws)
"unwordsList" [1] forall ws .
tailUnwords (foldr unwordsFB "" ws) = unwords ws
#-}
{-# INLINE [0] tailUnwords #-}
tailUnwords :: String -> String
tailUnwords [] = []
tailUnwords (_:xs) = xs
{-# INLINE [0] unwordsFB #-}
unwordsFB :: String -> String -> String
unwordsFB w r = ' ' : w ++ r
#endif
{- A "SnocBuilder" is a version of Chris Okasaki's banker's queue that supports
toListSB instead of uncons. In single-threaded use, its performance
characteristics are similar to John Hughes's functional difference lists, but
likely somewhat worse. In heavily persistent settings, however, it does much
better, because it takes advantage of sharing. The banker's queue guarantees
(amortized) O(1) snoc and O(1) uncons, meaning that we can think of toListSB as
an O(1) conversion to a list-like structure a constant factor slower than
normal lists--we pay the O(n) cost incrementally as we consume the list. Using
functional difference lists, on the other hand, we would have to pay the whole
cost up front for each output list. -}
{- We store a front list, a rear list, and the length of the queue. Because we
only snoc onto the queue and never uncons, we know it's time to rotate when the
length of the queue plus 1 is a power of 2. Note that we rely on the value of
the length field only for performance. In the unlikely event of overflow, the
performance will suffer but the semantics will remain correct. -}
data SnocBuilder a = SnocBuilder {-# UNPACK #-} !Word [a] [a]
{- Smart constructor that rotates the builder when lp is one minus a power of
2. Does not rotate very small builders because doing so is not worth the
trouble. The lp < 255 test goes first because the power-of-2 test gives awful
branch prediction for very small n (there are 5 powers of 2 between 1 and
16). Putting the well-predicted lp < 255 test first avoids branching on the
power-of-2 test until powers of 2 have become sufficiently rare to be predicted
well. -}
{-# INLINE sb #-}
sb :: Word -> [a] -> [a] -> SnocBuilder a
sb lp f r
| lp < 255 || (lp .&. (lp + 1)) /= 0 = SnocBuilder lp f r
| otherwise = SnocBuilder lp (f ++ reverse r) []
-- The empty builder
emptySB :: SnocBuilder a
emptySB = SnocBuilder 0 [] []
-- Add an element to the end of a queue.
snocSB :: SnocBuilder a -> a -> SnocBuilder a
snocSB (SnocBuilder lp f r) x = sb (lp + 1) f (x:r)
-- Convert a builder to a list
toListSB :: SnocBuilder a -> [a]
toListSB (SnocBuilder _ f r) = f ++ reverse r
|