1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
|
-----------------------------------------------------------------------------
-- |
-- Module : Data.Tree
-- Copyright : (c) The University of Glasgow 2002
-- License : BSD-style (see the file libraries/base/LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : experimental
-- Portability : portable
--
-- Multi-way trees (/aka/ rose trees) and forests.
--
-----------------------------------------------------------------------------
module Data.Tree(
Tree(..), Forest,
-- * Two-dimensional drawing
drawTree, drawForest,
-- * Extraction
flatten, levels,
-- * Building trees
unfoldTree, unfoldForest,
unfoldTreeM, unfoldForestM,
unfoldTreeM_BF, unfoldForestM_BF,
) where
#ifdef __HADDOCK__
import Prelude
#endif
import Control.Applicative (Applicative(..))
import Control.Monad
import Data.Monoid (Monoid(..))
import Data.Sequence (Seq, empty, singleton, (<|), (|>), fromList,
ViewL(..), ViewR(..), viewl, viewr)
import Data.Foldable (Foldable(foldMap), toList)
import Data.Traversable (Traversable(traverse))
import Data.Typeable
#ifdef __GLASGOW_HASKELL__
import Data.Generics.Basics (Data)
#endif
-- | Multi-way trees, also known as /rose trees/.
data Tree a = Node {
rootLabel :: a, -- ^ label value
subForest :: Forest a -- ^ zero or more child trees
}
#ifndef __HADDOCK__
# ifdef __GLASGOW_HASKELL__
deriving (Eq, Read, Show, Data)
# else
deriving (Eq, Read, Show)
# endif
#else /* __HADDOCK__ (which can't figure these out by itself) */
instance Eq a => Eq (Tree a)
instance Read a => Read (Tree a)
instance Show a => Show (Tree a)
instance Data a => Data (Tree a)
#endif
type Forest a = [Tree a]
#include "Typeable.h"
INSTANCE_TYPEABLE1(Tree,treeTc,"Tree")
instance Functor Tree where
fmap f (Node x ts) = Node (f x) (map (fmap f) ts)
instance Traversable Tree where
traverse f (Node x ts) = Node <$> f x <*> traverse (traverse f) ts
instance Foldable Tree where
foldMap f (Node x ts) = f x `mappend` foldMap (foldMap f) ts
-- | Neat 2-dimensional drawing of a tree.
drawTree :: Tree String -> String
drawTree = unlines . draw
-- | Neat 2-dimensional drawing of a forest.
drawForest :: Forest String -> String
drawForest = unlines . map drawTree
draw :: Tree String -> [String]
draw (Node x ts0) = x : drawSubTrees ts0
where drawSubTrees [] = []
drawSubTrees [t] =
"|" : shift "`- " " " (draw t)
drawSubTrees (t:ts) =
"|" : shift "+- " "| " (draw t) ++ drawSubTrees ts
shift first other = zipWith (++) (first : repeat other)
-- | The elements of a tree in pre-order.
flatten :: Tree a -> [a]
flatten t = squish t []
where squish (Node x ts) xs = x:foldr squish xs ts
-- | Lists of nodes at each level of the tree.
levels :: Tree a -> [[a]]
levels t = map (map rootLabel) $
takeWhile (not . null) $
iterate (concatMap subForest) [t]
-- | Build a tree from a seed value
unfoldTree :: (b -> (a, [b])) -> b -> Tree a
unfoldTree f b = let (a, bs) = f b in Node a (unfoldForest f bs)
-- | Build a forest from a list of seed values
unfoldForest :: (b -> (a, [b])) -> [b] -> Forest a
unfoldForest f = map (unfoldTree f)
-- | Monadic tree builder, in depth-first order
unfoldTreeM :: Monad m => (b -> m (a, [b])) -> b -> m (Tree a)
unfoldTreeM f b = do
(a, bs) <- f b
ts <- unfoldForestM f bs
return (Node a ts)
-- | Monadic forest builder, in depth-first order
#ifndef __NHC__
unfoldForestM :: Monad m => (b -> m (a, [b])) -> [b] -> m (Forest a)
#endif
unfoldForestM f = mapM (unfoldTreeM f)
-- | Monadic tree builder, in breadth-first order,
-- using an algorithm adapted from
-- /Breadth-First Numbering: Lessons from a Small Exercise in Algorithm Design/,
-- by Chris Okasaki, /ICFP'00/.
unfoldTreeM_BF :: Monad m => (b -> m (a, [b])) -> b -> m (Tree a)
unfoldTreeM_BF f b = liftM getElement $ unfoldForestQ f (singleton b)
where getElement xs = case viewl xs of
x :< _ -> x
EmptyL -> error "unfoldTreeM_BF"
-- | Monadic forest builder, in breadth-first order,
-- using an algorithm adapted from
-- /Breadth-First Numbering: Lessons from a Small Exercise in Algorithm Design/,
-- by Chris Okasaki, /ICFP'00/.
unfoldForestM_BF :: Monad m => (b -> m (a, [b])) -> [b] -> m (Forest a)
unfoldForestM_BF f = liftM toList . unfoldForestQ f . fromList
-- takes a sequence (queue) of seeds
-- produces a sequence (reversed queue) of trees of the same length
unfoldForestQ :: Monad m => (b -> m (a, [b])) -> Seq b -> m (Seq (Tree a))
unfoldForestQ f aQ = case viewl aQ of
EmptyL -> return empty
a :< aQ -> do
(b, as) <- f a
tQ <- unfoldForestQ f (foldl (|>) aQ as)
let (tQ', ts) = splitOnto [] as tQ
return (Node b ts <| tQ')
where splitOnto :: [a'] -> [b'] -> Seq a' -> (Seq a', [a'])
splitOnto as [] q = (q, as)
splitOnto as (_:bs) q = case viewr q of
q' :> a -> splitOnto (a:as) bs q'
EmptyR -> error "unfoldForestQ"
|