1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
|
-----------------------------------------------------------------------------
-- |
-- Module : System.Random
-- Copyright : (c) The University of Glasgow 2001
-- License : BSD-style (see the file libraries/base/LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : provisional
-- Portability : portable
--
-- Random numbers.
--
-----------------------------------------------------------------------------
module System.Random
(
RandomGen(next, split, genRange)
, StdGen
, mkStdGen
, Random ( random, randomR,
randoms, randomRs,
randomIO, randomRIO )
, getStdRandom
, getStdGen
, setStdGen
, newStdGen
) where
-- The June 1988 (v31 #6) issue of the Communications of the ACM has an
-- article by Pierre L'Ecuyer called, "Efficient and Portable Combined
-- Random Number Generators". Here is the Portable Combined Generator of
-- L'Ecuyer for 32-bit computers. It has a period of roughly 2.30584e18.
-- Transliterator: Lennart Augustsson
-- sof 1/99 - code brought (kicking and screaming) into the new Random
-- world..
import Prelude
import System.CPUTime ( getCPUTime )
import Data.Char ( isSpace, chr, ord )
import System.IO.Unsafe ( unsafePerformIO )
import Data.IORef
#ifdef __GLASGOW_HASKELL__
import GHC.Show ( showSignedInt, showSpace )
import Numeric ( readDec )
import GHC.IOBase ( unsafePerformIO, stToIO )
import System.Time ( getClockTime, ClockTime(..) )
#endif
class RandomGen g where
next :: g -> (Int, g)
split :: g -> (g, g)
genRange :: g -> (Int,Int)
-- default mathod
genRange g = (minBound,maxBound)
data StdGen
= StdGen Int Int
instance RandomGen StdGen where
next = stdNext
split = stdSplit
#ifdef __GLASGOW_HASKELL__
instance Show StdGen where
showsPrec p (StdGen s1 s2) =
showSignedInt p s1 .
showSpace .
showSignedInt p s2
#endif
#ifdef __HUGS__
instance Show StdGen where
showsPrec p (StdGen s1 s2) =
showsPrec p s1 .
showChar ' ' .
showsPrec p s2
#endif
instance Read StdGen where
readsPrec _p = \ r ->
case try_read r of
r@[_] -> r
_ -> [stdFromString r] -- because it shouldn't ever fail.
where
try_read r = do
(s1, r1) <- readDec (dropWhile isSpace r)
(s2, r2) <- readDec (dropWhile isSpace r1)
return (StdGen s1 s2, r2)
{-
If we cannot unravel the StdGen from a string, create
one based on the string given.
-}
stdFromString :: String -> (StdGen, String)
stdFromString s = (mkStdGen num, rest)
where (cs, rest) = splitAt 6 s
num = foldl (\a x -> x + 3 * a) 1 (map ord cs)
mkStdGen :: Int -> StdGen -- why not Integer ?
mkStdGen s
| s < 0 = mkStdGen (-s)
| otherwise = StdGen (s1+1) (s2+1)
where
(q, s1) = s `divMod` 2147483562
s2 = q `mod` 2147483398
createStdGen :: Integer -> StdGen
createStdGen s
| s < 0 = createStdGen (-s)
| otherwise = StdGen (fromInteger (s1+1)) (fromInteger (s2+1))
where
(q, s1) = s `divMod` 2147483562
s2 = q `mod` 2147483398
-- The class definition - see library report for details.
class Random a where
-- Minimal complete definition: random and randomR
random :: RandomGen g => g -> (a, g)
randomR :: RandomGen g => (a,a) -> g -> (a,g)
randoms :: RandomGen g => g -> [a]
randoms g = x : randoms g' where (x,g') = random g
randomRs :: RandomGen g => (a,a) -> g -> [a]
randomRs ival g = x : randomRs ival g' where (x,g') = randomR ival g
randomIO :: IO a
randomIO = getStdRandom random
randomRIO :: (a,a) -> IO a
randomRIO range = getStdRandom (randomR range)
instance Random Int where
randomR (a,b) g = randomIvalInteger (toInteger a, toInteger b) g
random g = randomR (minBound,maxBound) g
instance Random Char where
randomR (a,b) g =
case (randomIvalInteger (toInteger (ord a), toInteger (ord b)) g) of
(x,g) -> (chr x, g)
random g = randomR (minBound,maxBound) g
instance Random Bool where
randomR (a,b) g =
case (randomIvalInteger (toInteger (bool2Int a), toInteger (bool2Int b)) g) of
(x, g) -> (int2Bool x, g)
where
bool2Int False = 0
bool2Int True = 1
int2Bool 0 = False
int2Bool _ = True
random g = randomR (minBound,maxBound) g
instance Random Integer where
randomR ival g = randomIvalInteger ival g
random g = randomR (toInteger (minBound::Int), toInteger (maxBound::Int)) g
instance Random Double where
randomR ival g = randomIvalDouble ival id g
random g = randomR (0::Double,1) g
-- hah, so you thought you were saving cycles by using Float?
instance Random Float where
random g = randomIvalDouble (0::Double,1) realToFrac g
randomR (a,b) g = randomIvalDouble (realToFrac a, realToFrac b) realToFrac g
#ifdef __GLASGOW_HASKELL__
mkStdRNG :: Integer -> IO StdGen
mkStdRNG o = do
ct <- getCPUTime
(TOD sec _) <- getClockTime
return (createStdGen (sec * 12345 + ct + o))
#endif
#ifdef __HUGS__
mkStdRNG :: Integer -> IO StdGen
mkStdRNG o = do
ct <- getCPUTime
return (createStdGen (ct + o))
#endif
randomIvalInteger :: (RandomGen g, Num a) => (Integer, Integer) -> g -> (a, g)
randomIvalInteger (l,h) rng
| l > h = randomIvalInteger (h,l) rng
| otherwise = case (f n 1 rng) of (v, rng') -> (fromInteger (l + v `mod` k), rng')
where
k = h - l + 1
b = 2147483561
n = iLogBase b k
f 0 acc g = (acc, g)
f n acc g =
let
(x,g') = next g
in
f (n-1) (fromIntegral x + acc * b) g'
randomIvalDouble :: (RandomGen g, Fractional a) => (Double, Double) -> (Double -> a) -> g -> (a, g)
randomIvalDouble (l,h) fromDouble rng
| l > h = randomIvalDouble (h,l) fromDouble rng
| otherwise =
case (randomIvalInteger (toInteger (minBound::Int), toInteger (maxBound::Int)) rng) of
(x, rng') ->
let
scaled_x =
fromDouble ((l+h)/2) +
fromDouble ((h-l) / realToFrac intRange) *
fromIntegral (x::Int)
in
(scaled_x, rng')
intRange :: Integer
intRange = toInteger (maxBound::Int) - toInteger (minBound::Int)
iLogBase :: Integer -> Integer -> Integer
iLogBase b i = if i < b then 1 else 1 + iLogBase b (i `div` b)
stdNext :: StdGen -> (Int, StdGen)
stdNext (StdGen s1 s2) = (z', StdGen s1'' s2'')
where z' = if z < 1 then z + 2147483562 else z
z = s1'' - s2''
k = s1 `quot` 53668
s1' = 40014 * (s1 - k * 53668) - k * 12211
s1'' = if s1' < 0 then s1' + 2147483563 else s1'
k' = s2 `quot` 52774
s2' = 40692 * (s2 - k' * 52774) - k' * 3791
s2'' = if s2' < 0 then s2' + 2147483399 else s2'
stdSplit :: StdGen -> (StdGen, StdGen)
stdSplit std@(StdGen s1 s2)
= (left, right)
where
-- no statistical foundation for this!
left = StdGen new_s1 t2
right = StdGen t1 new_s2
new_s1 | s1 == 2147483562 = 1
| otherwise = s1 + 1
new_s2 | s2 == 1 = 2147483398
| otherwise = s2 - 1
StdGen t1 t2 = snd (next std)
setStdGen :: StdGen -> IO ()
setStdGen sgen = writeIORef theStdGen sgen
getStdGen :: IO StdGen
getStdGen = readIORef theStdGen
theStdGen :: IORef StdGen
theStdGen = unsafePerformIO (newIORef (createStdGen 0))
newStdGen :: IO StdGen
newStdGen = do
rng <- getStdGen
let (a,b) = split rng
setStdGen a
return b
getStdRandom :: (StdGen -> (a,StdGen)) -> IO a
getStdRandom f = do
rng <- getStdGen
let (v, new_rng) = f rng
setStdGen new_rng
return v
|