summaryrefslogtreecommitdiff
path: root/libraries/base/cbits/primFloat.c
blob: f0746775d34ef924d2b873825b58db712e2b5b04 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
/* -----------------------------------------------------------------------------
 *
 * (c) Lennart Augustsson
 * (c) The GHC Team, 1998-2000
 *
 * Miscellaneous support for floating-point primitives
 *
 * ---------------------------------------------------------------------------*/

#include "HsFFI.h"
#include "Rts.h" // XXX wrong (for IEEE_FLOATING_POINT and WORDS_BIGENDIAN)

#define IEEE_FLOATING_POINT 1

union stg_ieee754_flt
{
   float f;
   struct {

#if WORDS_BIGENDIAN
	unsigned int negative:1;
	unsigned int exponent:8;
	unsigned int mantissa:23;
#else
	unsigned int mantissa:23;
	unsigned int exponent:8;
	unsigned int negative:1;
#endif
   } ieee;
   struct {

#if WORDS_BIGENDIAN
	unsigned int negative:1;
	unsigned int exponent:8;
	unsigned int quiet_nan:1;
	unsigned int mantissa:22;
#else
	unsigned int mantissa:22;
	unsigned int quiet_nan:1;
	unsigned int exponent:8;
	unsigned int negative:1;
#endif
   } ieee_nan;
};

/*

 To recap, here's the representation of a double precision
 IEEE floating point number:

 sign         63           sign bit (0==positive, 1==negative)
 exponent     62-52        exponent (biased by 1023)
 fraction     51-0         fraction (bits to right of binary point)
*/

union stg_ieee754_dbl
{
   double d;
   struct {

#if WORDS_BIGENDIAN
	unsigned int negative:1;
	unsigned int exponent:11;
	unsigned int mantissa0:20;
	unsigned int mantissa1:32;
#else
#if FLOAT_WORDS_BIGENDIAN
	unsigned int mantissa0:20;
	unsigned int exponent:11;
	unsigned int negative:1;
	unsigned int mantissa1:32;
#else
	unsigned int mantissa1:32;
	unsigned int mantissa0:20;
	unsigned int exponent:11;
	unsigned int negative:1;
#endif
#endif
   } ieee;
    /* This format makes it easier to see if a NaN is a signalling NaN.  */
   struct {

#if WORDS_BIGENDIAN
	unsigned int negative:1;
	unsigned int exponent:11;
	unsigned int quiet_nan:1;
	unsigned int mantissa0:19;
	unsigned int mantissa1:32;
#else
#if FLOAT_WORDS_BIGENDIAN
	unsigned int mantissa0:19;
	unsigned int quiet_nan:1;
	unsigned int exponent:11;
	unsigned int negative:1;
	unsigned int mantissa1:32;
#else
	unsigned int mantissa1:32;
	unsigned int mantissa0:19;
	unsigned int quiet_nan:1;
	unsigned int exponent:11;
	unsigned int negative:1;
#endif
#endif
   } ieee_nan;
};

/*
 * Predicates for testing for extreme IEEE fp values.
 */

/* In case you don't support IEEE, you'll just get dummy defs.. */
#if defined(IEEE_FLOATING_POINT)

HsInt
isDoubleFinite(HsDouble d)
{
  union stg_ieee754_dbl u;

  u.d = d;

  return u.ieee.exponent != 2047;
}

HsInt
isDoubleNaN(HsDouble d)
{
  union stg_ieee754_dbl u;

  u.d = d;

  return (
    u.ieee.exponent  == 2047 /* 2^11 - 1 */ &&  /* Is the exponent all ones? */
    (u.ieee.mantissa0 != 0 || u.ieee.mantissa1 != 0)
    	/* and the mantissa non-zero? */
    );
}

HsInt
isDoubleInfinite(HsDouble d)
{
    union stg_ieee754_dbl u;

    u.d = d;

    /* Inf iff exponent is all ones, mantissa all zeros */
    return (
        u.ieee.exponent  == 2047 /* 2^11 - 1 */ &&
	u.ieee.mantissa0 == 0 		        &&
	u.ieee.mantissa1 == 0
      );
}

HsInt
isDoubleDenormalized(HsDouble d)
{
    union stg_ieee754_dbl u;

    u.d = d;

    /* A (single/double/quad) precision floating point number
       is denormalised iff:
        - exponent is zero
	- mantissa is non-zero.
        - (don't care about setting of sign bit.)

    */
    return (
	u.ieee.exponent  == 0 &&
	(u.ieee.mantissa0 != 0 ||
	 u.ieee.mantissa1 != 0)
      );

}

HsInt
isDoubleNegativeZero(HsDouble d)
{
    union stg_ieee754_dbl u;

    u.d = d;
    /* sign (bit 63) set (only) => negative zero */

    return (
    	u.ieee.negative  == 1 &&
	u.ieee.exponent  == 0 &&
	u.ieee.mantissa0 == 0 &&
	u.ieee.mantissa1 == 0);
}

/* Same tests, this time for HsFloats. */

/*
 To recap, here's the representation of a single precision
 IEEE floating point number:

 sign         31           sign bit (0 == positive, 1 == negative)
 exponent     30-23        exponent (biased by 127)
 fraction     22-0         fraction (bits to right of binary point)
*/


HsInt
isFloatFinite(HsFloat f)
{
    union stg_ieee754_flt u;
    u.f = f;
    return u.ieee.exponent != 255;
}

HsInt
isFloatNaN(HsFloat f)
{
    union stg_ieee754_flt u;
    u.f = f;

   /* Floating point NaN iff exponent is all ones, mantissa is
      non-zero (but see below.) */
   return (
   	u.ieee.exponent == 255 /* 2^8 - 1 */ &&
	u.ieee.mantissa != 0);
}

HsInt
isFloatInfinite(HsFloat f)
{
    union stg_ieee754_flt u;
    u.f = f;

    /* A float is Inf iff exponent is max (all ones),
       and mantissa is min(all zeros.) */
    return (
    	u.ieee.exponent == 255 /* 2^8 - 1 */ &&
	u.ieee.mantissa == 0);
}

HsInt
isFloatDenormalized(HsFloat f)
{
    union stg_ieee754_flt u;
    u.f = f;

    /* A (single/double/quad) precision floating point number
       is denormalised iff:
        - exponent is zero
	- mantissa is non-zero.
        - (don't care about setting of sign bit.)

    */
    return (
    	u.ieee.exponent == 0 &&
	u.ieee.mantissa != 0);
}

HsInt
isFloatNegativeZero(HsFloat f)
{
    union stg_ieee754_flt u;
    u.f = f;

    /* sign (bit 31) set (only) => negative zero */
    return (
	u.ieee.negative      &&
	u.ieee.exponent == 0 &&
	u.ieee.mantissa == 0);
}

/*
 There are glibc versions around with buggy rintf or rint, hence we
 provide our own. We always round ties to even, so we can be simpler.
*/

#define FLT_HIDDEN 0x800000
#define FLT_POWER2 0x1000000

HsFloat
rintFloat(HsFloat f)
{
    union stg_ieee754_flt u;
    u.f = f;
    /* if real exponent > 22, it's already integral, infinite or nan */
    if (u.ieee.exponent > 149)  /* 22 + 127 */
    {
        return u.f;
    }
    if (u.ieee.exponent < 126)  /* (-1) + 127, abs(f) < 0.5 */
    {
        /* only used for rounding to Integral a, so don't care about -0.0 */
        return 0.0;
    }
    /* 0.5 <= abs(f) < 2^23 */
    unsigned int half, mask, mant, frac;
    half = 1 << (149 - u.ieee.exponent);    /* bit for 0.5 */
    mask = 2*half - 1;                      /* fraction bits */
    mant = u.ieee.mantissa | FLT_HIDDEN;    /* add hidden bit */
    frac = mant & mask;                     /* get fraction */
    mant ^= frac;                           /* truncate mantissa */
    if ((frac < half) || ((frac == half) && ((mant & (2*half)) == 0)))
    {
        /* this means we have to truncate */
        if (mant == 0)
        {
            /* f == ±0.5, return 0.0 */
            return 0.0;
        }
        else
        {
            /* remove hidden bit and set mantissa */
            u.ieee.mantissa = mant ^ FLT_HIDDEN;
            return u.f;
        }
    }
    else
    {
        /* round away from zero, increment mantissa */
        mant += 2*half;
        if (mant == FLT_POWER2)
        {
            /* next power of 2, increase exponent an set mantissa to 0 */
            u.ieee.mantissa = 0;
            u.ieee.exponent += 1;
            return u.f;
        }
        else
        {
            /* remove hidden bit and set mantissa */
            u.ieee.mantissa = mant ^ FLT_HIDDEN;
            return u.f;
        }
    }
}

#define DBL_HIDDEN 0x100000
#define DBL_POWER2 0x200000
#define LTOP_BIT 0x80000000

HsDouble
rintDouble(HsDouble d)
{
    union stg_ieee754_dbl u;
    u.d = d;
    /* if real exponent > 51, it's already integral, infinite or nan */
    if (u.ieee.exponent > 1074) /* 51 + 1023 */
    {
        return u.d;
    }
    if (u.ieee.exponent < 1022)  /* (-1) + 1023, abs(d) < 0.5 */
    {
        /* only used for rounding to Integral a, so don't care about -0.0 */
        return 0.0;
    }
    unsigned int half, mask, mant, frac;
    if (u.ieee.exponent < 1043) /* 20 + 1023, real exponent < 20 */
    {
        /* the fractional part meets the higher part of the mantissa */
        half = 1 << (1042 - u.ieee.exponent);   /* bit for 0.5 */
        mask = 2*half - 1;                      /* fraction bits */
        mant = u.ieee.mantissa0 | DBL_HIDDEN;   /* add hidden bit */
        frac = mant & mask;                     /* get fraction */
        mant ^= frac;                           /* truncate mantissa */
        if ((frac < half) ||
            ((frac == half) && (u.ieee.mantissa1 == 0)  /* a tie */
                && ((mant & (2*half)) == 0)))
        {
            /* truncate */
            if (mant == 0)
            {
                /* d = ±0.5, return 0.0 */
                return 0.0;
            }
            /* remove hidden bit and set mantissa */
            u.ieee.mantissa0 = mant ^ DBL_HIDDEN;
            u.ieee.mantissa1 = 0;
            return u.d;
        }
        else    /* round away from zero */
        {
            /* zero low mantissa bits */
            u.ieee.mantissa1 = 0;
            /* increment integer part of mantissa */
            mant += 2*half;
            if (mant == DBL_POWER2)
            {
                /* power of 2, increment exponent and zero mantissa */
                u.ieee.mantissa0 = 0;
                u.ieee.exponent += 1;
                return u.d;
            }
            /* remove hidden bit */
            u.ieee.mantissa0 = mant ^ DBL_HIDDEN;
            return u.d;
        }
    }
    else
    {
        /* 20 <= real exponent < 52, fractional part entirely in mantissa1 */
        half = 1 << (1074 - u.ieee.exponent);   /* bit for 0.5 */
        mask = 2*half - 1;                      /* fraction bits */
        mant = u.ieee.mantissa1;                /* no hidden bit here */
        frac = mant & mask;                     /* get fraction */
        mant ^= frac;                           /* truncate mantissa */
        if ((frac < half) ||
            ((frac == half) &&                  /* tie */
            (((half == LTOP_BIT) ? (u.ieee.mantissa0 & 1)  /* yuck */
                                : (mant & (2*half)))
                                        == 0)))
        {
            /* truncate */
            u.ieee.mantissa1 = mant;
            return u.d;
        }
        else
        {
            /* round away from zero */
            /* increment mantissa */
            mant += 2*half;
            u.ieee.mantissa1 = mant;
            if (mant == 0)
            {
                /* low part of mantissa overflowed */
                /* increment high part of mantissa */
                mant = u.ieee.mantissa0 + 1;
                if (mant == DBL_HIDDEN)
                {
                    /* hit power of 2 */
                    /* zero mantissa */
                    u.ieee.mantissa0 = 0;
                    /* and increment exponent */
                    u.ieee.exponent += 1;
                    return u.d;
                }
                else
                {
                    u.ieee.mantissa0 = mant;
                    return u.d;
                }
            }
            else
            {
                return u.d;
            }
        }
    }
}

#else /* ! IEEE_FLOATING_POINT */

/* Dummy definitions of predicates - they all return "normal" values */
HsInt isDoubleFinite(HsDouble d) { return 1;}
HsInt isDoubleNaN(HsDouble d) { return 0; }
HsInt isDoubleInfinite(HsDouble d) { return 0; }
HsInt isDoubleDenormalized(HsDouble d) { return 0; }
HsInt isDoubleNegativeZero(HsDouble d) { return 0; }
HsInt isFloatFinite(HsFloat f) { return 1; }
HsInt isFloatNaN(HsFloat f) { return 0; }
HsInt isFloatInfinite(HsFloat f) { return 0; }
HsInt isFloatDenormalized(HsFloat f) { return 0; }
HsInt isFloatNegativeZero(HsFloat f) { return 0; }


/* For exotic floating point formats, we can't do much */
/* We suppose the format has not too many bits */
/* I hope nobody tries to build GHC where this is wrong */

#define FLT_UPP 536870912.0

HsFloat
rintFloat(HsFloat f)
{
    if ((f > FLT_UPP) || (f < (-FLT_UPP)))
    {
        return f;
    }
    else
    {
        int i = (int)f;
        float g = i;
        float d = f - g;
        if (d > 0.5)
        {
            return g + 1.0;
        }
        if (d == 0.5)
        {
            return (i & 1) ? (g + 1.0) : g;
        }
        if (d == -0.5)
        {
            return (i & 1) ? (g - 1.0) : g;
        }
        if (d < -0.5)
        {
            return g - 1.0;
        }
        return g;
    }
}

#define DBL_UPP 2305843009213693952.0

HsDouble
rintDouble(HsDouble d)
{
    if ((d > DBL_UPP) || (d < (-DBL_UPP)))
    {
        return d;
    }
    else
    {
        HsInt64 i = (HsInt64)d;
        double e = i;
        double r = d - e;
        if (r > 0.5)
        {
            return e + 1.0;
        }
        if (r == 0.5)
        {
            return (i & 1) ? (e + 1.0) : e;
        }
        if (r == -0.5)
        {
            return (i & 1) ? (e - 1.0) : e;
        }
        if (r < -0.5)
        {
            return e - 1.0;
        }
        return e;
    }
}

#endif /* ! IEEE_FLOATING_POINT */