summaryrefslogtreecommitdiff
path: root/rts/ProfHeap.c
blob: 288c5c8a54184aeaa751796d77023f04b9414f5a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
/* ----------------------------------------------------------------------------
 *
 * (c) The GHC Team, 1998-2003
 *
 * Support for heap profiling
 *
 * --------------------------------------------------------------------------*/

#include "rts/PosixSource.h"
#include "Rts.h"

#include "Capability.h"
#include "RtsFlags.h"
#include "RtsUtils.h"
#include "Profiling.h"
#include "ProfHeap.h"
#include "ProfHeapInternal.h"
#include "Stats.h"
#include "Hash.h"
#include "RetainerProfile.h"
#include "LdvProfile.h"
#include "Arena.h"
#include "Printer.h"
#include "Trace.h"
#include "sm/GCThread.h"

#include <fs_rts.h>
#include <string.h>

#if defined(darwin_HOST_OS)
#include <xlocale.h>
#else
#include <locale.h>
#endif

FILE *hp_file;
static char *hp_filename; /* heap profile (hp2ps style) log file */

/* ------------------------------------------------------------------------
 * Locales
 *
 * The heap profile contains information that is sensitive to the C runtime's
 * LC_NUMERIC locale settings.  By default libc starts in a "C" setting that's
 * the same everywhere, and the one hp2ps expects.  But the program may change
 * that at runtime.  So we change it back when we're writing a sample, and
 * restore it before yielding back.
 *
 * On POSIX.1-2008 systems, this is done with the locale_t opaque type, created
 * with newlocale() at profiler init, switched to with uselocale() and freed at
 * exit with freelocale().
 *
 * As an exception for Darwin, this comes through the <xlocale.h> header instead
 * of <locale.h>.
 *
 * On platforms which don't have uselocale(3), we fall back to setlocale() which
 * mutates the global state. This is of course not thread-safe but is better
 * than nothing.
 *
 * On Windows, a different _locale_t opaque type does exist, but isn't directly
 * usable without special-casing all printf() and related calls, which I'm not
 * motivated to trawl through as I don't even have a Windows box to test on.
 * (But if you do and are so inclined, be my guest!)
 * So we just call setlocale(), making it thread-local and restoring the
 * locale and its thread-locality state on yield.
 * --------------------------------------------------------------------- */

#if defined(mingw32_HOST_OS)
static int prof_locale_per_thread = -1;
static const char *saved_locale = NULL;
#elif defined(HAVE_USELOCALE)
static locale_t prof_locale = 0, saved_locale = 0;
#else
static char *saved_locale = NULL;
#endif

STATIC_INLINE void
init_prof_locale( void )
{
#if defined(HAVE_USELOCALE)
    if (! prof_locale) {
        prof_locale = newlocale(LC_NUMERIC_MASK, "POSIX", 0);
        if (! prof_locale) {
            sysErrorBelch("Couldn't allocate heap profiler locale");
            /* non-fatal: risk using an unknown locale, but won't crash */
        }
    }
#endif
}

STATIC_INLINE void
free_prof_locale( void )
{
#if defined(HAVE_USELOCALE)
    if (prof_locale) {
        freelocale(prof_locale);
        prof_locale = 0;
    }
#endif
}

STATIC_INLINE void
set_prof_locale( void )
{
#if defined(mingw32_HOST_OS)
    prof_locale_per_thread = _configthreadlocale(_ENABLE_PER_THREAD_LOCALE);
    saved_locale = setlocale(LC_NUMERIC, NULL);
    setlocale(LC_NUMERIC, "C");
#elif defined(HAVE_USELOCALE)
    saved_locale = uselocale(prof_locale);
#else
    saved_locale = setlocale(LC_NUMERIC, NULL);
    setlocale(LC_NUMERIC, "C");
#endif
}

STATIC_INLINE void
restore_locale( void )
{
#if defined(mingw32_HOST_OS)
    _configthreadlocale(prof_locale_per_thread);
    setlocale(LC_NUMERIC, saved_locale);
#elif defined(HAVE_USELOCALE)
    uselocale(saved_locale);
#else
    setlocale(LC_NUMERIC, saved_locale);
#endif
}

/* -----------------------------------------------------------------------------
 * era stores the current time period.  It is the same as the
 * number of censuses that have been performed.
 *
 * RESTRICTION:
 *   era must be no longer than LDV_SHIFT (15 or 30) bits.
 * Invariants:
 *   era is initialized to 1 in initHeapProfiling().
 *
 * max_era is initialized to 2^LDV_SHIFT in initHeapProfiling().
 * When era reaches max_era, the profiling stops because a closure can
 * store only up to (max_era - 1) as its creation or last use time.
 * -------------------------------------------------------------------------- */
unsigned int era;
static uint32_t max_era;

inline void
initLDVCtr( counter *ctr )
{
    ctr->c.ldv.prim = 0;
    ctr->c.ldv.not_used = 0;
    ctr->c.ldv.used = 0;
    ctr->c.ldv.void_total = 0;
    ctr->c.ldv.drag_total = 0;
}

static Census *censuses = NULL;
static uint32_t n_censuses = 0;

#if defined(PROFILING)
static void aggregateCensusInfo( void );
#endif

static void dumpCensus( Census *census );

static bool closureSatisfiesConstraints( const StgClosure* p );

/* ----------------------------------------------------------------------------
 * Find the "closure identity", which is a unique pointer representing
 * the band to which this closure's heap space is attributed in the
 * heap profile.
 * ------------------------------------------------------------------------- */
static const void *
closureIdentity( const StgClosure *p )
{
    switch (RtsFlags.ProfFlags.doHeapProfile) {

#if defined(PROFILING)
    case HEAP_BY_CCS:
        return p->header.prof.ccs;
    case HEAP_BY_MOD:
        return p->header.prof.ccs->cc->module;
    case HEAP_BY_DESCR:
        return GET_PROF_DESC(get_itbl(p));
    case HEAP_BY_TYPE:
        return GET_PROF_TYPE(get_itbl(p));
    case HEAP_BY_RETAINER:
        // AFAIK, the only closures in the heap which might not have a
        // valid retainer set are DEAD_WEAK closures.
        if (isRetainerSetValid(p))
            return retainerSetOf(p);
        else
            return NULL;
#endif

    case HEAP_BY_CLOSURE_TYPE:
    {
        const StgInfoTable *info;
        info = get_itbl(p);
        switch (info->type) {
        case CONSTR:
        case CONSTR_1_0:
        case CONSTR_0_1:
        case CONSTR_2_0:
        case CONSTR_1_1:
        case CONSTR_0_2:
        case CONSTR_NOCAF:
            return GET_CON_DESC(itbl_to_con_itbl(info));
        default:
            return closure_type_names[info->type];
        }
    }
    case HEAP_BY_INFO_TABLE: {
        return get_itbl(p);
        }

    default:
        barf("closureIdentity");
    }
}

/* --------------------------------------------------------------------------
 * Profiling type predicates
 * ----------------------------------------------------------------------- */
#if defined(PROFILING)
STATIC_INLINE bool
doingLDVProfiling( void )
{
    return (RtsFlags.ProfFlags.doHeapProfile == HEAP_BY_LDV
            || RtsFlags.ProfFlags.bioSelector != NULL);
}

bool
doingRetainerProfiling( void )
{
    return (RtsFlags.ProfFlags.doHeapProfile == HEAP_BY_RETAINER
            || RtsFlags.ProfFlags.retainerSelector != NULL);
}
#endif /* PROFILING */

// Processes a closure 'c' being destroyed whose size is 'size'.
// Make sure that LDV_recordDead() is not invoked on 'inherently used' closures
// such as TSO; they should not be involved in computing dragNew or voidNew.
//
// Even though era is checked in both LdvCensusForDead() and
// LdvCensusKillAll(), we still need to make sure that era is > 0 because
// LDV_recordDead() may be called from elsewhere in the runtime system. E.g.,
// when a thunk is replaced by an indirection object.

#if defined(PROFILING)
void
LDV_recordDead( const StgClosure *c, uint32_t size )
{
    const void *id;
    uint32_t t;
    counter *ctr;

    ASSERT(!isInherentlyUsed(get_itbl(c)->type));

    if (era > 0 && closureSatisfiesConstraints(c)) {
        size -= sizeofW(StgProfHeader);
        ASSERT(LDVW(c) != 0);
        if ((LDVW((c)) & LDV_STATE_MASK) == LDV_STATE_CREATE) {
            t = (LDVW((c)) & LDV_CREATE_MASK) >> LDV_SHIFT;
            if (t < era) {
                if (RtsFlags.ProfFlags.bioSelector == NULL) {
                    censuses[t].void_total   += size;
                    censuses[era].void_total -= size;
                    ASSERT(censuses[t].void_total <= censuses[t].not_used);
                } else {
                    id = closureIdentity(c);
                    ctr = lookupHashTable(censuses[t].hash, (StgWord)id);
                    if (ctr == NULL)
                        barf("LDV_recordDead: Failed to find counter for closure %p", c);

                    ctr->c.ldv.void_total += size;
                    ctr = lookupHashTable(censuses[era].hash, (StgWord)id);
                    if (ctr == NULL) {
                        ctr = arenaAlloc(censuses[era].arena, sizeof(counter));
                        initLDVCtr(ctr);
                        insertHashTable(censuses[era].hash, (StgWord)id, ctr);
                        ctr->identity = id;
                        ctr->next = censuses[era].ctrs;
                        censuses[era].ctrs = ctr;
                    }
                    ctr->c.ldv.void_total -= size;
                }
            }
        } else {
            t = LDVW((c)) & LDV_LAST_MASK;
            if (t + 1 < era) {
                if (RtsFlags.ProfFlags.bioSelector == NULL) {
                    censuses[t+1].drag_total += size;
                    censuses[era].drag_total -= size;
                } else {
                    const void *id;
                    id = closureIdentity(c);
                    ctr = lookupHashTable(censuses[t+1].hash, (StgWord)id);
                    ASSERT( ctr != NULL );
                    ctr->c.ldv.drag_total += size;
                    ctr = lookupHashTable(censuses[era].hash, (StgWord)id);
                    if (ctr == NULL) {
                        ctr = arenaAlloc(censuses[era].arena, sizeof(counter));
                        initLDVCtr(ctr);
                        insertHashTable(censuses[era].hash, (StgWord)id, ctr);
                        ctr->identity = id;
                        ctr->next = censuses[era].ctrs;
                        censuses[era].ctrs = ctr;
                    }
                    ctr->c.ldv.drag_total -= size;
                }
            }
        }
    }
}
#endif

/* --------------------------------------------------------------------------
 * Initialize censuses[era];
 * ----------------------------------------------------------------------- */

STATIC_INLINE void
initEra(Census *census)
{
    // N.B. When not LDV profiling we reinitialise the same Census over
    // and over again. Consequently, we need to ensure that we free the
    // resources from the previous census.
    if (census->hash) {
        freeHashTable(census->hash, NULL);
    }
    if (census->arena) {
        arenaFree(census->arena);
    }

    census->hash  = allocHashTable();
    census->ctrs  = NULL;
    census->arena = newArena();

    census->not_used   = 0;
    census->used       = 0;
    census->prim       = 0;
    census->void_total = 0;
    census->drag_total = 0;
}

STATIC_INLINE void
freeEra(Census *census)
{
    arenaFree(census->arena);
    freeHashTable(census->hash, NULL);
}

/* --------------------------------------------------------------------------
 * Increases era by 1 and initialize census[era].
 * Reallocates gi[] and increases its size if needed.
 * ----------------------------------------------------------------------- */

static void
nextEra( void )
{
#if defined(PROFILING)
    if (doingLDVProfiling()) {
        era++;

        if (era == max_era) {
            errorBelch("Maximum number of censuses reached.");
            if (rtsConfig.rts_opts_suggestions == true) {
                if (rtsConfig.rts_opts_enabled == RtsOptsAll)  {
                    errorBelch("Use `+RTS -i' to reduce censuses.");
                } else  {
                    errorBelch("Relink with -rtsopts and "
                               "use `+RTS -i' to reduce censuses.");
                }
            }
            stg_exit(EXIT_FAILURE);
        }

        if (era == n_censuses) {
            n_censuses *= 2;
            censuses = stgReallocBytes(censuses, sizeof(Census) * n_censuses,
                                       "nextEra");
            memset(&censuses[era], 0, sizeof(Census) * n_censuses / 2);
        }
    }
#endif /* PROFILING */

    initEra( &censuses[era] );
}

/* ----------------------------------------------------------------------------
 * Heap profiling by info table
 * ------------------------------------------------------------------------- */

static void
printEscapedString(const char* string)
{
    for (const char* p = string; *p != '\0'; ++p) {
        if (*p == '\"') {
            // Escape every " as ""
            fputc('"', hp_file);
        }
        fputc(*p, hp_file);
    }
}

static void
printSample(bool beginSample, StgDouble sampleValue)
{
    fprintf(hp_file, "%s %f\n",
            (beginSample ? "BEGIN_SAMPLE" : "END_SAMPLE"),
            sampleValue);
    if (!beginSample) {
        fflush(hp_file);
    }
}


void freeHeapProfiling (void)
{
    free_prof_locale();
}

/* --------------------------------------------------------------------------
 * Initialize the heap profiler
 * ----------------------------------------------------------------------- */
void
initHeapProfiling(void)
{
    if (! RtsFlags.ProfFlags.doHeapProfile) {
        return;
    }

    init_prof_locale();
    set_prof_locale();

    char *stem;

    if (RtsFlags.CcFlags.outputFileNameStem) {
        stem = stgMallocBytes(strlen(RtsFlags.CcFlags.outputFileNameStem) + 1, "initHeapProfiling");
        strcpy(stem, RtsFlags.CcFlags.outputFileNameStem);
    } else {

        stem = stgMallocBytes(strlen(prog_name) + 1, "initHeapProfiling");
        strcpy(stem, prog_name);
#if defined(mingw32_HOST_OS)
            // on Windows, drop the .exe suffix if there is one
            {
                char *suff;
                suff = strrchr(stem,'.');
                if (suff != NULL && !strcmp(suff,".exe")) {
                    *suff = '\0';
                }
            }
#endif
    }

  if (RtsFlags.ProfFlags.doHeapProfile) {
    /* Initialise the log file name */
    hp_filename = stgMallocBytes(strlen(stem) + 6, "hpFileName");
    sprintf(hp_filename, "%s.hp", stem);

    /* open the log file */
    if ((hp_file = __rts_fopen(hp_filename, "w+")) == NULL) {
      debugBelch("Can't open profiling report file %s\n",
              hp_filename);
      RtsFlags.ProfFlags.doHeapProfile = 0;
      stgFree(stem);
      return;
    }
  }

  stgFree(stem);

#if defined(PROFILING)
    if (doingLDVProfiling() && doingRetainerProfiling()) {
        errorBelch("cannot mix -hb and -hr");
        stg_exit(EXIT_FAILURE);
    }
#if defined(THREADED_RTS)
    // See #12019.
    if (doingLDVProfiling() && RtsFlags.ParFlags.nCapabilities > 1) {
        errorBelch("-hb cannot be used with multiple capabilities");
        stg_exit(EXIT_FAILURE);
    }
#endif
#endif

    // we only count eras if we're doing LDV profiling.  Otherwise era
    // is fixed at zero.
#if defined(PROFILING)
    if (doingLDVProfiling()) {
        era = 1;
        n_censuses = 32;
    } else
#endif
    {
        era = 0;
        n_censuses = 1;
    }

    // max_era = 2^LDV_SHIFT
    max_era = 1 << LDV_SHIFT;

    censuses = stgMallocBytes(sizeof(Census) * n_censuses, "initHeapProfiling");

    // Ensure that arena and hash are NULL since otherwise initEra will attempt to free them.
    for (unsigned int i=0; i < n_censuses; i++) {
        censuses[i].arena = NULL;
        censuses[i].hash = NULL;
    }
    initEra( &censuses[era] );

    /* initProfilingLogFile(); */
    fprintf(hp_file, "JOB \"");
    printEscapedString(prog_name);

#if defined(PROFILING)
    for (int i = 1; i < prog_argc; ++i) {
        fputc(' ', hp_file);
        printEscapedString(prog_argv[i]);
    }
    fprintf(hp_file, " +RTS");
    for (int i = 0; i < rts_argc; ++i) {
        fputc(' ', hp_file);
        printEscapedString(rts_argv[i]);
    }
#endif /* PROFILING */

    fprintf(hp_file, "\"\n" );

    fprintf(hp_file, "DATE \"%s\"\n", time_str());

    fprintf(hp_file, "SAMPLE_UNIT \"seconds\"\n");
    fprintf(hp_file, "VALUE_UNIT \"bytes\"\n");

    printSample(true, 0);
    printSample(false, 0);

#if defined(PROFILING)
    if (doingRetainerProfiling()) {
        initRetainerProfiling();
    }
#endif

    restore_locale();

    traceHeapProfBegin(0);
}

void
endHeapProfiling(void)
{
    if (! RtsFlags.ProfFlags.doHeapProfile) {
        return;
    }

    set_prof_locale();

#if defined(PROFILING)
    if (doingRetainerProfiling()) {
        endRetainerProfiling();
    } else if (doingLDVProfiling()) {
        uint32_t t;
        LdvCensusKillAll();
        aggregateCensusInfo();
        for (t = 1; t < era; t++) {
            dumpCensus( &censuses[t] );
        }

        if (RtsFlags.ProfFlags.bioSelector != NULL) {
            for (t = 1; t <= era; t++) {
                freeEra( &censuses[t] );
            }
        } else {
            freeEra( &censuses[era] );
        }
    } else {
        freeEra( &censuses[0] );
    }
#else
    freeEra( &censuses[0] );
#endif

    stgFree(censuses);

    RTSStats stats;
    getRTSStats(&stats);
    Time mut_time = stats.mutator_cpu_ns;
    StgDouble seconds = TimeToSecondsDbl(mut_time);
    printSample(true, seconds);
    printSample(false, seconds);
    fclose(hp_file);

    restore_locale();
}



#if defined(PROFILING)
static size_t
buf_append(char *p, const char *q, char *end)
{
    int m;

    for (m = 0; p < end; p++, q++, m++) {
        *p = *q;
        if (*q == '\0') { break; }
    }
    return m;
}

static void
fprint_ccs(FILE *fp, CostCentreStack *ccs, uint32_t max_length)
{
    char buf[max_length+1], *p, *buf_end;

    // MAIN on its own gets printed as "MAIN", otherwise we ignore MAIN.
    if (ccs == CCS_MAIN) {
        fprintf(fp, "MAIN");
        return;
    }

    fprintf(fp, "(%" FMT_Int ")", ccs->ccsID);

    p = buf;
    buf_end = buf + max_length + 1;

    // keep printing components of the stack until we run out of space
    // in the buffer.  If we run out of space, end with "...".
    for (; ccs != NULL && ccs != CCS_MAIN; ccs = ccs->prevStack) {

        // CAF cost centres print as M.CAF, but we leave the module
        // name out of all the others to save space.
        if (!strcmp(ccs->cc->label,"CAF")) {
            p += buf_append(p, ccs->cc->module, buf_end);
            p += buf_append(p, ".CAF", buf_end);
        } else {
            p += buf_append(p, ccs->cc->label, buf_end);
            if (ccs->prevStack != NULL && ccs->prevStack != CCS_MAIN) {
                p += buf_append(p, "/", buf_end);
            }
        }

        if (p >= buf_end) {
            sprintf(buf+max_length-4, "...");
            break;
        }
    }
    fprintf(fp, "%s", buf);
}

bool
strMatchesSelector( const char* str, const char* sel )
{
   const char* p;
   // debugBelch("str_matches_selector %s %s\n", str, sel);
   while (1) {
       // Compare str against wherever we've got to in sel.
       p = str;
       while (*p != '\0' && *sel != ',' && *sel != '\0' && *p == *sel) {
           p++; sel++;
       }
       // Match if all of str used and have reached the end of a sel fragment.
       if (*p == '\0' && (*sel == ',' || *sel == '\0'))
           return true;

       // No match.  Advance sel to the start of the next elem.
       while (*sel != ',' && *sel != '\0') sel++;
       if (*sel == ',') sel++;

       /* Run out of sel ?? */
       if (*sel == '\0') return false;
   }
}

#endif /* PROFILING */

/* -----------------------------------------------------------------------------
 * Figure out whether a closure should be counted in this census, by
 * testing against all the specified constraints.
 * -------------------------------------------------------------------------- */
static bool
closureSatisfiesConstraints( const StgClosure* p )
{
#if !defined(PROFILING)
    (void)p;   /* keep gcc -Wall happy */
    return true;
#else
   bool b;

   // The CCS has a selected field to indicate whether this closure is
   // deselected by not being mentioned in the module, CC, or CCS
   // selectors.
   if (!p->header.prof.ccs->selected) {
       return false;
   }

   if (RtsFlags.ProfFlags.descrSelector) {
       b = strMatchesSelector( (GET_PROF_DESC(get_itbl((StgClosure *)p))),
                                 RtsFlags.ProfFlags.descrSelector );
       if (!b) return false;
   }
   if (RtsFlags.ProfFlags.typeSelector) {
       b = strMatchesSelector( (GET_PROF_TYPE(get_itbl((StgClosure *)p))),
                                RtsFlags.ProfFlags.typeSelector );
       if (!b) return false;
   }
   if (RtsFlags.ProfFlags.retainerSelector) {
       RetainerSet *rs;
       uint32_t i;
       // We must check that the retainer set is valid here.  One
       // reason it might not be valid is if this closure is a
       // a newly deceased weak pointer (i.e. a DEAD_WEAK), since
       // these aren't reached by the retainer profiler's traversal.
       if (isRetainerSetValid((StgClosure *)p)) {
           rs = retainerSetOf((StgClosure *)p);
           if (rs != NULL) {
               for (i = 0; i < rs->num; i++) {
                   b = strMatchesSelector( rs->element[i]->cc->label,
                                           RtsFlags.ProfFlags.retainerSelector );
                   if (b) return true;
               }
           }
       }
       return false;
   }
   return true;
#endif /* PROFILING */
}

/* -----------------------------------------------------------------------------
 * Aggregate the heap census info for biographical profiling
 * -------------------------------------------------------------------------- */
#if defined(PROFILING)
static void
aggregateCensusInfo( void )
{
    HashTable *acc;
    uint32_t t;
    counter *c, *d, *ctrs;
    Arena *arena;

    if (!doingLDVProfiling()) return;

    // Aggregate the LDV counters when displaying by biography.
    if (RtsFlags.ProfFlags.doHeapProfile == HEAP_BY_LDV) {
        long void_total, drag_total;

        // Now we compute void_total and drag_total for each census
        // After the program has finished, the void_total field of
        // each census contains the count of words that were *created*
        // in this era and were eventually void.  Conversely, if a
        // void closure was destroyed in this era, it will be
        // represented by a negative count of words in void_total.
        //
        // To get the count of live words that are void at each
        // census, just propagate the void_total count forwards:

        void_total = 0;
        drag_total = 0;
        for (t = 1; t < era; t++) { // note: start at 1, not 0
            void_total += censuses[t].void_total;
            drag_total += censuses[t].drag_total;
            censuses[t].void_total = void_total;
            censuses[t].drag_total = drag_total;

            ASSERT( censuses[t].void_total <= censuses[t].not_used );
            // should be true because: void_total is the count of
            // live words that are void at this census, which *must*
            // be less than the number of live words that have not
            // been used yet.

            ASSERT( censuses[t].drag_total <= censuses[t].used );
            // similar reasoning as above.
        }

        return;
    }

    // otherwise... we're doing a heap profile that is restricted to
    // some combination of lag, drag, void or use.  We've kept all the
    // census info for all censuses so far, but we still need to
    // aggregate the counters forwards.

    arena = newArena();
    acc = allocHashTable();
    ctrs = NULL;

    for (t = 1; t < era; t++) {

        // first look through all the counters we're aggregating
        for (c = ctrs; c != NULL; c = c->next) {
            // if one of the totals is non-zero, then this closure
            // type must be present in the heap at this census time...
            d = lookupHashTable(censuses[t].hash, (StgWord)c->identity);

            if (d == NULL) {
                // if this closure identity isn't present in the
                // census for this time period, then our running
                // totals *must* be zero.
                ASSERT(c->c.ldv.void_total == 0 && c->c.ldv.drag_total == 0);

                // debugCCS(c->identity);
                // debugBelch(" census=%d void_total=%d drag_total=%d\n",
                //         t, c->c.ldv.void_total, c->c.ldv.drag_total);
            } else {
                d->c.ldv.void_total += c->c.ldv.void_total;
                d->c.ldv.drag_total += c->c.ldv.drag_total;
                c->c.ldv.void_total =  d->c.ldv.void_total;
                c->c.ldv.drag_total =  d->c.ldv.drag_total;

                ASSERT( c->c.ldv.void_total >= 0 );
                ASSERT( c->c.ldv.drag_total >= 0 );
            }
        }

        // now look through the counters in this census to find new ones
        for (c = censuses[t].ctrs; c != NULL; c = c->next) {
            d = lookupHashTable(acc, (StgWord)c->identity);
            if (d == NULL) {
                d = arenaAlloc( arena, sizeof(counter) );
                initLDVCtr(d);
                insertHashTable( acc, (StgWord)c->identity, d );
                d->identity = c->identity;
                d->next = ctrs;
                ctrs = d;
                d->c.ldv.void_total = c->c.ldv.void_total;
                d->c.ldv.drag_total = c->c.ldv.drag_total;
            }
            ASSERT( c->c.ldv.void_total >= 0 );
            ASSERT( c->c.ldv.drag_total >= 0 );
        }
    }

    freeHashTable(acc, NULL);
    arenaFree(arena);
}
#endif

/* -----------------------------------------------------------------------------
 * Print out the results of a heap census.
 * -------------------------------------------------------------------------- */
static void
dumpCensus( Census *census )
{
    counter *ctr;
    ssize_t count;

    set_prof_locale();

    printSample(true, census->time);


    if (RtsFlags.ProfFlags.doHeapProfile == HEAP_BY_LDV) {
      traceHeapBioProfSampleBegin(era, census->rtime);
    } else {
      traceHeapProfSampleBegin(era);
    }



#if defined(PROFILING)

    /* change typecast to uint64_t to remove
     * print formatting warning. See #12636 */
    if (RtsFlags.ProfFlags.doHeapProfile == HEAP_BY_LDV) {
        fprintf(hp_file, "VOID\t%" FMT_Word64 "\n",
                (uint64_t)(census->void_total *
                                     sizeof(W_)));
        fprintf(hp_file, "LAG\t%" FMT_Word64 "\n",
                (uint64_t)((census->not_used - census->void_total) *
                                     sizeof(W_)));
        fprintf(hp_file, "USE\t%" FMT_Word64 "\n",
                (uint64_t)((census->used - census->drag_total) *
                                     sizeof(W_)));
        fprintf(hp_file, "INHERENT_USE\t%" FMT_Word64 "\n",
                (uint64_t)(census->prim * sizeof(W_)));
        fprintf(hp_file, "DRAG\t%" FMT_Word64 "\n",
                (uint64_t)(census->drag_total * sizeof(W_)));


        // Eventlog
        traceHeapProfSampleString(0, "VOID",
                (census->void_total * sizeof(W_)));
        traceHeapProfSampleString(0, "LAG",
                ((census->not_used - census->void_total) *
                                     sizeof(W_)));
        traceHeapProfSampleString(0, "USE",
                ((census->used - census->drag_total) *
                                     sizeof(W_)));
        traceHeapProfSampleString(0, "INHERENT_USE",
                (census->prim * sizeof(W_)));
        traceHeapProfSampleString(0, "DRAG",
                (census->drag_total * sizeof(W_)));

        traceHeapProfSampleEnd(era);
        printSample(false, census->time);
        return;
    }
#endif

    for (ctr = census->ctrs; ctr != NULL; ctr = ctr->next) {

#if defined(PROFILING)
        if (RtsFlags.ProfFlags.bioSelector != NULL) {
            count = 0;
            if (strMatchesSelector("lag", RtsFlags.ProfFlags.bioSelector))
                count += ctr->c.ldv.not_used - ctr->c.ldv.void_total;
            if (strMatchesSelector("drag", RtsFlags.ProfFlags.bioSelector))
                count += ctr->c.ldv.drag_total;
            if (strMatchesSelector("void", RtsFlags.ProfFlags.bioSelector))
                count += ctr->c.ldv.void_total;
            if (strMatchesSelector("use", RtsFlags.ProfFlags.bioSelector))
                count += ctr->c.ldv.used - ctr->c.ldv.drag_total;
        } else
#endif
        {
            count = ctr->c.resid;
        }

        ASSERT( count >= 0 );

        if (count == 0) continue;

        switch (RtsFlags.ProfFlags.doHeapProfile) {
        case HEAP_BY_CLOSURE_TYPE:
            fprintf(hp_file, "%s", (char *)ctr->identity);
            traceHeapProfSampleString(0, (char *)ctr->identity,
                                      count * sizeof(W_));
            break;
        case HEAP_BY_INFO_TABLE:
            fprintf(hp_file, "%p", ctr->identity);
            char str[100];
            sprintf(str, "%p", ctr->identity);
            traceHeapProfSampleString(0, str, count * sizeof(W_));
            break;
#if defined(PROFILING)
        case HEAP_BY_CCS:
            fprint_ccs(hp_file, (CostCentreStack *)ctr->identity,
                       RtsFlags.ProfFlags.ccsLength);
            traceHeapProfSampleCostCentre(0, (CostCentreStack *)ctr->identity,
                                          count * sizeof(W_));
            break;
        case HEAP_BY_MOD:
        case HEAP_BY_DESCR:
        case HEAP_BY_TYPE:
            fprintf(hp_file, "%s", (char *)ctr->identity);
            traceHeapProfSampleString(0, (char *)ctr->identity,
                                      count * sizeof(W_));
            break;
        case HEAP_BY_RETAINER:
        {
            RetainerSet *rs = (RetainerSet *)ctr->identity;

            // it might be the distinguished retainer set rs_MANY:
            if (rs == &rs_MANY) {
                fprintf(hp_file, "MANY");
                break;
            }

            // Mark this retainer set by negating its id, because it
            // has appeared in at least one census.  We print the
            // values of all such retainer sets into the log file at
            // the end.  A retainer set may exist but not feature in
            // any censuses if it arose as the intermediate retainer
            // set for some closure during retainer set calculation.
            if (rs->id > 0)
                rs->id = -(rs->id);

            // report in the unit of bytes: * sizeof(StgWord)
            printRetainerSetShort(hp_file, rs, (W_)count * sizeof(W_)
                                             , RtsFlags.ProfFlags.ccsLength);
            break;
        }
#endif
        default:
            barf("dumpCensus; doHeapProfile");
        }

        fprintf(hp_file, "\t%" FMT_Word "\n", (W_)count * sizeof(W_));
    }

    traceHeapProfSampleEnd(era);
    printSample(false, census->time);

    restore_locale();
}

inline counter*
heapInsertNewCounter(Census *census, StgWord identity)
{
    counter *ctr = arenaAlloc(census->arena, sizeof(counter));

    initLDVCtr(ctr);
    insertHashTable( census->hash, identity, ctr );
    ctr->identity = (void*)identity;
    ctr->next = census->ctrs;
    census->ctrs = ctr;

    return ctr;
}

static void heapProfObject(Census *census, StgClosure *p, size_t size,
                           bool prim
#if !defined(PROFILING)
                           STG_UNUSED
#endif
                           )
{
    const void *identity;
    size_t real_size;
    counter *ctr;

            identity = NULL;

#if defined(PROFILING)
            // subtract the profiling overhead
            real_size = size - sizeofW(StgProfHeader);
#else
            real_size = size;
#endif

            if (closureSatisfiesConstraints((StgClosure*)p)) {
#if defined(PROFILING)
                if (RtsFlags.ProfFlags.doHeapProfile == HEAP_BY_LDV) {
                    if (prim)
                        census->prim += real_size;
                    else if ((LDVW(p) & LDV_STATE_MASK) == LDV_STATE_CREATE)
                        census->not_used += real_size;
                    else
                        census->used += real_size;
                } else
#endif
                {
                    identity = closureIdentity((StgClosure *)p);

                    if (identity != NULL) {
                        ctr = lookupHashTable(census->hash, (StgWord)identity);
                        if (ctr != NULL) {
#if defined(PROFILING)
                            if (RtsFlags.ProfFlags.bioSelector != NULL) {
                                if (prim)
                                    ctr->c.ldv.prim += real_size;
                                else if ((LDVW(p) & LDV_STATE_MASK) == LDV_STATE_CREATE)
                                    ctr->c.ldv.not_used += real_size;
                                else
                                    ctr->c.ldv.used += real_size;
                            } else
#endif
                            {
                                ctr->c.resid += real_size;
                            }
                        } else {
                            ctr = heapInsertNewCounter(census, (StgWord)identity);
#if defined(PROFILING)
                            if (RtsFlags.ProfFlags.bioSelector != NULL) {
                                if (prim)
                                    ctr->c.ldv.prim = real_size;
                                else if ((LDVW(p) & LDV_STATE_MASK) == LDV_STATE_CREATE)
                                    ctr->c.ldv.not_used = real_size;
                                else
                                    ctr->c.ldv.used = real_size;
                            } else
#endif
                            {
                                ctr->c.resid = real_size;
                            }
                        }
                    }
                }
            }
}

// Compact objects require special handling code because they
// are not stored consecutively in memory (rather, each object
// is a list of objects), and that would break the while loop
// below. But we know that each block holds at most one object
// so we don't need the loop.
//
// See Note [Compact Normal Forms] for details.
static void
heapCensusCompactList(Census *census, bdescr *bd)
{
    for (; bd != NULL; bd = bd->link) {
        StgCompactNFDataBlock *block = (StgCompactNFDataBlock*)bd->start;
        StgCompactNFData *str = block->owner;
        heapProfObject(census, (StgClosure*)str,
                       compact_nfdata_full_sizeW(str), true);
    }
}

/*
 * Take a census of the contents of a "normal" (e.g. not large, not compact)
 * heap block. This can, however, handle PINNED blocks.
 */
static void
heapCensusBlock(Census *census, bdescr *bd)
{
    StgPtr p = bd->start;

    // In the case of PINNED blocks there can be (zeroed) slop at the beginning
    // due to object alignment.
    if (bd->flags & BF_PINNED) {
        while (p < bd->free && !*p) p++;
    }

    while (p < bd->free) {
        const StgInfoTable *info = get_itbl((const StgClosure *)p);
        bool prim = false;
        size_t size;

        switch (info->type) {

        case THUNK:
            size = thunk_sizeW_fromITBL(info);
            break;

        case THUNK_1_1:
        case THUNK_0_2:
        case THUNK_2_0:
            size = sizeofW(StgThunkHeader) + 2;
            break;

        case THUNK_1_0:
        case THUNK_0_1:
        case THUNK_SELECTOR:
            size = sizeofW(StgThunkHeader) + 1;
            break;

        case FUN:
        case BLACKHOLE:
        case BLOCKING_QUEUE:
        case FUN_1_0:
        case FUN_0_1:
        case FUN_1_1:
        case FUN_0_2:
        case FUN_2_0:
        case CONSTR:
        case CONSTR_NOCAF:
        case CONSTR_1_0:
        case CONSTR_0_1:
        case CONSTR_1_1:
        case CONSTR_0_2:
        case CONSTR_2_0:
            size = sizeW_fromITBL(info);
            break;

        case IND:
            // Special case/Delicate Hack: INDs don't normally
            // appear, since we're doing this heap census right
            // after GC.  However, GarbageCollect() also does
            // resurrectThreads(), which can update some
            // blackholes when it calls raiseAsync() on the
            // resurrected threads.  So we know that any IND will
            // be the size of a BLACKHOLE.
            size = BLACKHOLE_sizeW();
            break;

        case BCO:
            prim = true;
            size = bco_sizeW((StgBCO *)p);
            break;

        case MVAR_CLEAN:
        case MVAR_DIRTY:
        case TVAR:
        case WEAK:
        case PRIM:
        case MUT_PRIM:
        case MUT_VAR_CLEAN:
        case MUT_VAR_DIRTY:
            prim = true;
            size = sizeW_fromITBL(info);
            break;

        case AP:
            size = ap_sizeW((StgAP *)p);
            break;

        case PAP:
            size = pap_sizeW((StgPAP *)p);
            break;

        case AP_STACK:
            size = ap_stack_sizeW((StgAP_STACK *)p);
            break;

        case ARR_WORDS:
            prim = true;
            size = arr_words_sizeW((StgArrBytes*)p);
            break;

        case MUT_ARR_PTRS_CLEAN:
        case MUT_ARR_PTRS_DIRTY:
        case MUT_ARR_PTRS_FROZEN_CLEAN:
        case MUT_ARR_PTRS_FROZEN_DIRTY:
            prim = true;
            size = mut_arr_ptrs_sizeW((StgMutArrPtrs *)p);
            break;

        case SMALL_MUT_ARR_PTRS_CLEAN:
        case SMALL_MUT_ARR_PTRS_DIRTY:
        case SMALL_MUT_ARR_PTRS_FROZEN_CLEAN:
        case SMALL_MUT_ARR_PTRS_FROZEN_DIRTY:
            prim = true;
            size = small_mut_arr_ptrs_sizeW((StgSmallMutArrPtrs *)p);
            break;

        case TSO:
            prim = true;
            size = sizeofW(StgTSO);
            break;

        case STACK:
            prim = true;
            size = stack_sizeW((StgStack*)p);
            break;

        case TREC_CHUNK:
            prim = true;
            size = sizeofW(StgTRecChunk);
            break;

        case CONTINUATION:
            size = continuation_sizeW((StgContinuation *)p);
            break;

        case COMPACT_NFDATA:
            barf("heapCensus, found compact object in the wrong list");
            break;

        default:
            barf("heapCensus, unknown object: %d", info->type);
        }

        heapProfObject(census,(StgClosure*)p,size,prim);

        p += size;

        /* skip over slop, see Note [slop on the heap] */
        while (p < bd->free && !*p) p++;
        /* Note [skipping slop in the heap profiler]
         * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
         * We make sure to zero slop that can remain after a major GC so
         * here we can assume any slop words we see until the block's free
         * pointer are zero. Since info pointers are always nonzero we can
         * use this to scan for the next valid heap closure.
         *
         * Note that not all types of slop are relevant here, only the ones
         * that can remain after major GC. So essentially just large objects
         * and pinned objects. All other closures will have been packed nice
         * and tight into fresh blocks.
         */
    }
}

/* -----------------------------------------------------------------------------
 * Code to perform a heap census.
 * -------------------------------------------------------------------------- */
static void
heapCensusChain( Census *census, bdescr *bd )
{
    for (; bd != NULL; bd = bd->link) {
        // When we shrink a large ARR_WORDS, we do not adjust the free pointer
        // of the associated block descriptor, thus introducing slop at the end
        // of the object.  This slop remains after GC, violating the assumption
        // of the loop below that all slop has been eliminated (#11627).
        // The slop isn't always zeroed (e.g. in non-profiling mode, cf
        // OVERWRITING_CLOSURE_OFS).
        // Consequently, we handle large ARR_WORDS objects as a special case.
        if (bd->flags & BF_LARGE) {
            StgPtr p = bd->start;
            // There may be some initial zeros due to object alignment.
            while (p < bd->free && !*p) p++;
            if (get_itbl((StgClosure *)p)->type == ARR_WORDS) {
                size_t size = arr_words_sizeW((StgArrBytes *)p);
                bool prim = true;
                heapProfObject(census, (StgClosure *)p, size, prim);
                continue;
            }
        }

        heapCensusBlock(census, bd);
    }
}

// Time is process CPU time of beginning of current GC and is used as
// the mutator CPU time reported as the census timestamp.
void heapCensus (Time t)
{
  uint32_t g, n;
  Census *census;
  gen_workspace *ws;

  census = &censuses[era];
  census->time  = TimeToSecondsDbl(t);
  census->rtime = TimeToNS(stat_getElapsedTime());


  // calculate retainer sets if necessary
#if defined(PROFILING)
  if (doingRetainerProfiling()) {
      retainerProfile();
  }
#endif

#if defined(PROFILING)
  stat_startHeapCensus();
#endif

  // Traverse the heap, collecting the census info
  for (g = 0; g < RtsFlags.GcFlags.generations; g++) {
      heapCensusChain( census, generations[g].blocks );
      // Are we interested in large objects?  might be
      // confusing to include the stack in a heap profile.
      heapCensusChain( census, generations[g].large_objects );
      heapCensusCompactList ( census, generations[g].compact_objects );

      for (n = 0; n < getNumCapabilities(); n++) {
          ws = &gc_threads[n]->gens[g];
          heapCensusChain(census, ws->todo_bd);
          heapCensusChain(census, ws->part_list);
          heapCensusChain(census, ws->scavd_list);
      }
  }

  // dump out the census info
#if defined(PROFILING)
    // We can't generate any info for LDV profiling until
    // the end of the run...
    if (!doingLDVProfiling())
        dumpCensus( census );
#else
    dumpCensus( census );
#endif


  // free our storage, unless we're keeping all the census info for
  // future restriction by biography.
#if defined(PROFILING)
  if (RtsFlags.ProfFlags.bioSelector == NULL)
#endif
  {
      freeEra(census);
      census->hash = NULL;
      census->arena = NULL;
  }

  // we're into the next time period now
  nextEra();

#if defined(PROFILING)
  stat_endHeapCensus();
#endif
}