1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
|
/* ----------------------------------------------------------------------------
*
* (c) The GHC Team, 1998-2001
*
* API for invoking Haskell functions via the RTS
*
* --------------------------------------------------------------------------*/
#include "rts/PosixSource.h"
#include "Rts.h"
#include "RtsAPI.h"
#include "HsFFI.h"
#include "RtsUtils.h"
#include "Prelude.h"
#include "Schedule.h"
#include "Capability.h"
#include "StableName.h"
#include "StablePtr.h"
#include "Threads.h"
#include "Weak.h"
#include "sm/NonMoving.h"
/* ----------------------------------------------------------------------------
Building Haskell objects from C datatypes.
------------------------------------------------------------------------- */
HaskellObj
rts_mkChar (Capability *cap, HsChar c)
{
StgClosure *p;
// See Note [Precomputed static closures]
if (c <= MAX_CHARLIKE) {
p = (StgClosure *)CHARLIKE_CLOSURE(c);
} else {
p = (StgClosure *)allocate(cap, CONSTR_sizeW(0,1));
SET_HDR(p, Czh_con_info, CCS_SYSTEM);
p->payload[0] = (StgClosure *)(StgWord)(StgChar)c;
}
return TAG_CLOSURE(1, p);
}
HaskellObj
rts_mkInt (Capability *cap, HsInt i)
{
StgClosure *p;
// See Note [Precomputed static closures]
if (i >= MIN_INTLIKE && i <= MAX_INTLIKE) {
p = (StgClosure *)INTLIKE_CLOSURE(i);
} else {
p = (StgClosure *)allocate(cap,CONSTR_sizeW(0,1));
SET_HDR(p, Izh_con_info, CCS_SYSTEM);
*(StgInt *)p->payload = i;
}
return TAG_CLOSURE(1, p);
}
HaskellObj
rts_mkInt8 (Capability *cap, HsInt8 i)
{
StgClosure *p = (StgClosure *)allocate(cap,CONSTR_sizeW(0,1));
SET_HDR(p, I8zh_con_info, CCS_SYSTEM);
*(StgInt8 *)p->payload = i;
return TAG_CLOSURE(1, p);
}
HaskellObj
rts_mkInt16 (Capability *cap, HsInt16 i)
{
StgClosure *p = (StgClosure *)allocate(cap,CONSTR_sizeW(0,1));
SET_HDR(p, I16zh_con_info, CCS_SYSTEM);
*(StgInt16 *)p->payload = i;
return TAG_CLOSURE(1, p);
}
HaskellObj
rts_mkInt32 (Capability *cap, HsInt32 i)
{
StgClosure *p = (StgClosure *)allocate(cap,CONSTR_sizeW(0,1));
SET_HDR(p, I32zh_con_info, CCS_SYSTEM);
*(StgInt32 *)p->payload = i;
return TAG_CLOSURE(1, p);
}
HaskellObj
rts_mkInt64 (Capability *cap, HsInt64 i)
{
StgClosure *p = (StgClosure *)allocate(cap,CONSTR_sizeW(0,sizeofW(StgInt64)));
SET_HDR(p, I64zh_con_info, CCS_SYSTEM);
ASSIGN_Int64((P_)&(p->payload[0]), i);
return TAG_CLOSURE(1, p);
}
HaskellObj
rts_mkWord (Capability *cap, HsWord i)
{
StgClosure *p = (StgClosure *)allocate(cap,CONSTR_sizeW(0,1));
SET_HDR(p, Wzh_con_info, CCS_SYSTEM);
*(StgWord *)p->payload = i;
return TAG_CLOSURE(1, p);
}
HaskellObj
rts_mkWord8 (Capability *cap, HsWord8 w)
{
StgClosure *p = (StgClosure *)allocate(cap,CONSTR_sizeW(0,1));
SET_HDR(p, W8zh_con_info, CCS_SYSTEM);
*(StgWord8 *)p->payload = w;
return TAG_CLOSURE(1, p);
}
HaskellObj
rts_mkWord16 (Capability *cap, HsWord16 w)
{
StgClosure *p = (StgClosure *)allocate(cap,CONSTR_sizeW(0,1));
SET_HDR(p, W16zh_con_info, CCS_SYSTEM);
*(StgWord16 *)p->payload = w;
return TAG_CLOSURE(1, p);
}
HaskellObj
rts_mkWord32 (Capability *cap, HsWord32 w)
{
StgClosure *p = (StgClosure *)allocate(cap,CONSTR_sizeW(0,1));
SET_HDR(p, W32zh_con_info, CCS_SYSTEM);
*(StgWord32 *)p->payload = w;
return TAG_CLOSURE(1, p);
}
HaskellObj
rts_mkWord64 (Capability *cap, HsWord64 w)
{
StgClosure *p = (StgClosure *)allocate(cap,CONSTR_sizeW(0,sizeofW(StgWord64)));
SET_HDR(p, W64zh_con_info, CCS_SYSTEM);
ASSIGN_Word64((P_)&(p->payload[0]), w);
return TAG_CLOSURE(1, p);
}
HaskellObj
rts_mkFloat (Capability *cap, HsFloat f)
{
StgClosure *p = (StgClosure *)allocate(cap,CONSTR_sizeW(0,1));
SET_HDR(p, Fzh_con_info, CCS_SYSTEM);
ASSIGN_FLT((P_)p->payload, (StgFloat)f);
return TAG_CLOSURE(1, p);
}
HaskellObj
rts_mkDouble (Capability *cap, HsDouble d)
{
StgClosure *p = (StgClosure *)allocate(cap,CONSTR_sizeW(0,sizeofW(StgDouble)));
SET_HDR(p, Dzh_con_info, CCS_SYSTEM);
ASSIGN_DBL((P_)p->payload, (StgDouble)d);
return TAG_CLOSURE(1, p);
}
HaskellObj
rts_mkStablePtr (Capability *cap, HsStablePtr s)
{
StgClosure *p = (StgClosure *)allocate(cap,sizeofW(StgHeader)+1);
SET_HDR(p, StablePtr_con_info, CCS_SYSTEM);
p->payload[0] = (StgClosure *)s;
return TAG_CLOSURE(1, p);
}
HaskellObj
rts_mkPtr (Capability *cap, HsPtr a)
{
StgClosure *p = (StgClosure *)allocate(cap,sizeofW(StgHeader)+1);
SET_HDR(p, Ptr_con_info, CCS_SYSTEM);
p->payload[0] = (StgClosure *)a;
return TAG_CLOSURE(1, p);
}
HaskellObj
rts_mkFunPtr (Capability *cap, HsFunPtr a)
{
StgClosure *p = (StgClosure *)allocate(cap,sizeofW(StgHeader)+1);
SET_HDR(p, FunPtr_con_info, CCS_SYSTEM);
p->payload[0] = (StgClosure *)a;
return TAG_CLOSURE(1, p);
}
HaskellObj
rts_mkBool (Capability *cap STG_UNUSED, HsBool b)
{
if (b) {
return TAG_CLOSURE(2, (StgClosure *)True_closure);
} else {
return TAG_CLOSURE(1, (StgClosure *)False_closure);
}
}
HaskellObj
rts_mkString (Capability *cap, char *s)
{
return rts_apply(cap, (StgClosure *)unpackCString_closure, rts_mkPtr(cap,s));
}
HaskellObj
rts_apply (Capability *cap, HaskellObj f, HaskellObj arg)
{
StgThunk *ap;
ap = (StgThunk *)allocate(cap,sizeofW(StgThunk) + 2);
// Here we don't want to use CCS_SYSTEM, because it's a hidden cost centre,
// and evaluating Haskell code under a hidden cost centre leads to
// confusing profiling output. (#7753)
SET_HDR(ap, (StgInfoTable *)&stg_ap_2_upd_info, CCS_MAIN);
ap->payload[0] = f;
ap->payload[1] = arg;
return (StgClosure *)ap;
}
/* ----------------------------------------------------------------------------
Deconstructing Haskell objects
We would like to assert that we have the right kind of object in
each case, but this is problematic because in GHCi the info table
for the D# constructor (say) might be dynamically loaded. Hence we
omit these assertions for now.
------------------------------------------------------------------------- */
HsChar
rts_getChar (HaskellObj p)
{
// See comment above:
// ASSERT(p->header.info == Czh_con_info ||
// p->header.info == Czh_static_info);
return (StgChar)(StgWord)(UNTAG_CLOSURE(p)->payload[0]);
}
HsInt
rts_getInt (HaskellObj p)
{
// See comment above:
// ASSERT(p->header.info == Izh_con_info ||
// p->header.info == Izh_static_info);
return *(HsInt *)(UNTAG_CLOSURE(p)->payload);
}
HsInt8
rts_getInt8 (HaskellObj p)
{
// See comment above:
// ASSERT(p->header.info == I8zh_con_info ||
// p->header.info == I8zh_static_info);
return *(HsInt8 *)(UNTAG_CLOSURE(p)->payload);
}
HsInt16
rts_getInt16 (HaskellObj p)
{
// See comment above:
// ASSERT(p->header.info == I16zh_con_info ||
// p->header.info == I16zh_static_info);
return *(HsInt16 *)(UNTAG_CLOSURE(p)->payload);
}
HsInt32
rts_getInt32 (HaskellObj p)
{
// See comment above:
// ASSERT(p->header.info == I32zh_con_info ||
// p->header.info == I32zh_static_info);
return *(HsInt32 *)(UNTAG_CLOSURE(p)->payload);
}
HsInt64
rts_getInt64 (HaskellObj p)
{
// See comment above:
// ASSERT(p->header.info == I64zh_con_info ||
// p->header.info == I64zh_static_info);
return PK_Int64((P_)&(UNTAG_CLOSURE(p)->payload[0]));
}
HsWord
rts_getWord (HaskellObj p)
{
// See comment above:
// ASSERT(p->header.info == Wzh_con_info ||
// p->header.info == Wzh_static_info);
return *(HsWord *)(UNTAG_CLOSURE(p)->payload);
}
HsWord8
rts_getWord8 (HaskellObj p)
{
// See comment above:
// ASSERT(p->header.info == W8zh_con_info ||
// p->header.info == W8zh_static_info);
return *(HsWord8 *)(UNTAG_CLOSURE(p)->payload);
}
HsWord16
rts_getWord16 (HaskellObj p)
{
// See comment above:
// ASSERT(p->header.info == W16zh_con_info ||
// p->header.info == W16zh_static_info);
return *(HsWord16 *)(UNTAG_CLOSURE(p)->payload);
}
HsWord32
rts_getWord32 (HaskellObj p)
{
// See comment above:
// ASSERT(p->header.info == W32zh_con_info ||
// p->header.info == W32zh_static_info);
return *(HsWord32 *)(UNTAG_CLOSURE(p)->payload);
}
HsWord64
rts_getWord64 (HaskellObj p)
{
// See comment above:
// ASSERT(p->header.info == W64zh_con_info ||
// p->header.info == W64zh_static_info);
return PK_Word64((P_)&(UNTAG_CLOSURE(p)->payload[0]));
}
HsFloat
rts_getFloat (HaskellObj p)
{
// See comment above:
// ASSERT(p->header.info == Fzh_con_info ||
// p->header.info == Fzh_static_info);
return (float)(PK_FLT((P_)UNTAG_CLOSURE(p)->payload));
}
HsDouble
rts_getDouble (HaskellObj p)
{
// See comment above:
// ASSERT(p->header.info == Dzh_con_info ||
// p->header.info == Dzh_static_info);
return (double)(PK_DBL((P_)UNTAG_CLOSURE(p)->payload));
}
HsStablePtr
rts_getStablePtr (HaskellObj p)
{
// See comment above:
// ASSERT(p->header.info == StablePtr_con_info ||
// p->header.info == StablePtr_static_info);
return (StgStablePtr)(UNTAG_CLOSURE(p)->payload[0]);
}
HsPtr
rts_getPtr (HaskellObj p)
{
// See comment above:
// ASSERT(p->header.info == Ptr_con_info ||
// p->header.info == Ptr_static_info);
return (Capability *)(UNTAG_CLOSURE(p)->payload[0]);
}
HsFunPtr
rts_getFunPtr (HaskellObj p)
{
// See comment above:
// ASSERT(p->header.info == FunPtr_con_info ||
// p->header.info == FunPtr_static_info);
return (void *)(UNTAG_CLOSURE(p)->payload[0]);
}
HsBool
rts_getBool (HaskellObj p)
{
const StgWord tag = GET_CLOSURE_TAG(p);
if (tag > 0) {
return tag - 1;
}
const StgInfoTable *info;
info = get_itbl((const StgClosure *)UNTAG_CONST_CLOSURE(p));
if (info->srt == 0) { // srt is the constructor tag
return 0;
} else {
return 1;
}
}
/* -----------------------------------------------------------------------------
Creating threads
-------------------------------------------------------------------------- */
INLINE_HEADER void pushClosure (StgTSO *tso, StgWord c) {
tso->stackobj->sp--;
tso->stackobj->sp[0] = (W_) c;
}
StgTSO *
createGenThread (Capability *cap, W_ stack_size, StgClosure *closure)
{
StgTSO *t;
t = createThread (cap, stack_size);
pushClosure(t, (W_)closure);
pushClosure(t, (W_)&stg_enter_info);
return t;
}
StgTSO *
createIOThread (Capability *cap, W_ stack_size, StgClosure *closure)
{
StgTSO *t;
t = createThread (cap, stack_size);
pushClosure(t, (W_)&stg_ap_v_info);
pushClosure(t, (W_)closure);
pushClosure(t, (W_)&stg_enter_info);
return t;
}
/*
* Same as above, but also evaluate the result of the IO action
* to whnf while we're at it.
*/
StgTSO *
createStrictIOThread(Capability *cap, W_ stack_size, StgClosure *closure)
{
StgTSO *t;
t = createThread(cap, stack_size);
pushClosure(t, (W_)&stg_forceIO_info);
pushClosure(t, (W_)&stg_ap_v_info);
pushClosure(t, (W_)closure);
pushClosure(t, (W_)&stg_enter_info);
return t;
}
/* ----------------------------------------------------------------------------
Evaluating Haskell expressions
The running task (capability->running_task) must be bounded i.e. you must
call newBoundTask() before calling these functions. Note that rts_lock() and
rts_pause() both call newBoundTask().
------------------------------------------------------------------------- */
void rts_eval (/* inout */ Capability **cap,
/* in */ HaskellObj p,
/* out */ HaskellObj *ret)
{
StgTSO *tso;
tso = createGenThread(*cap, RtsFlags.GcFlags.initialStkSize, p);
scheduleWaitThread(tso,ret,cap);
}
void rts_eval_ (/* inout */ Capability **cap,
/* in */ HaskellObj p,
/* in */ unsigned int stack_size,
/* out */ HaskellObj *ret)
{
StgTSO *tso;
tso = createGenThread(*cap, stack_size, p);
scheduleWaitThread(tso,ret,cap);
}
/*
* rts_evalIO() evaluates a value of the form (IO a), forcing the action's
* result to WHNF before returning.
*/
void rts_evalIO (/* inout */ Capability **cap,
/* in */ HaskellObj p,
/* out */ HaskellObj *ret)
{
StgTSO* tso;
tso = createStrictIOThread(*cap, RtsFlags.GcFlags.initialStkSize, p);
scheduleWaitThread(tso,ret,cap);
}
/*
* rts_inCall() is similar to rts_evalIO, but expects to be called as an incall,
* and is not expected to be called by user code directly.
*/
void rts_inCall (/* inout */ Capability **cap,
/* in */ HaskellObj p,
/* out */ HaskellObj *ret)
{
StgTSO* tso;
tso = createStrictIOThread(*cap, RtsFlags.GcFlags.initialStkSize, p);
if ((*cap)->running_task->preferred_capability != -1) {
// enabled_capabilities should not change between here and waitCapability()
ASSERT((*cap)->no == ((*cap)->running_task->preferred_capability % enabled_capabilities));
// we requested explicit affinity; don't move this thread from now on.
tso->flags |= TSO_LOCKED;
}
scheduleWaitThread(tso,ret,cap);
}
/*
* rts_evalStableIOMain() is suitable for calling main Haskell thread
* stored in (StablePtr (IO a)) it calls rts_evalStableIO but wraps
* function in GHC.TopHandler.runMainIO that installs top_handlers.
* See #12903.
*/
void rts_evalStableIOMain(/* inout */ Capability **cap,
/* in */ HsStablePtr s,
/* out */ HsStablePtr *ret)
{
StgTSO* tso;
StgClosure *p, *r, *w;
SchedulerStatus stat;
p = (StgClosure *)deRefStablePtr(s);
w = rts_apply(*cap, &base_GHCziTopHandler_runMainIO_closure, p);
tso = createStrictIOThread(*cap, RtsFlags.GcFlags.initialStkSize, w);
// async exceptions are always blocked by default in the created
// thread. See #1048.
tso->flags |= TSO_BLOCKEX | TSO_INTERRUPTIBLE;
scheduleWaitThread(tso,&r,cap);
stat = rts_getSchedStatus(*cap);
if (stat == Success && ret != NULL) {
ASSERT(r != NULL);
*ret = getStablePtr((StgPtr)r);
}
}
/*
* rts_evalStableIO() is suitable for calling from Haskell. It
* evaluates a value of the form (StablePtr (IO a)), forcing the
* action's result to WHNF before returning. The result is returned
* in a StablePtr.
*/
void rts_evalStableIO (/* inout */ Capability **cap,
/* in */ HsStablePtr s,
/* out */ HsStablePtr *ret)
{
StgTSO* tso;
StgClosure *p, *r;
SchedulerStatus stat;
p = (StgClosure *)deRefStablePtr(s);
tso = createStrictIOThread(*cap, RtsFlags.GcFlags.initialStkSize, p);
// async exceptions are always blocked by default in the created
// thread. See #1048.
tso->flags |= TSO_BLOCKEX | TSO_INTERRUPTIBLE;
scheduleWaitThread(tso,&r,cap);
stat = rts_getSchedStatus(*cap);
if (stat == Success && ret != NULL) {
ASSERT(r != NULL);
*ret = getStablePtr((StgPtr)r);
}
}
/*
* Like rts_evalIO(), but doesn't force the action's result.
*/
void rts_evalLazyIO (/* inout */ Capability **cap,
/* in */ HaskellObj p,
/* out */ HaskellObj *ret)
{
StgTSO *tso;
tso = createIOThread(*cap, RtsFlags.GcFlags.initialStkSize, p);
scheduleWaitThread(tso,ret,cap);
}
void rts_evalLazyIO_ (/* inout */ Capability **cap,
/* in */ HaskellObj p,
/* in */ unsigned int stack_size,
/* out */ HaskellObj *ret)
{
StgTSO *tso;
tso = createIOThread(*cap, stack_size, p);
scheduleWaitThread(tso,ret,cap);
}
/* Convenience function for decoding the returned status. */
void
rts_checkSchedStatus (char* site, Capability *cap)
{
SchedulerStatus rc = cap->running_task->incall->rstat;
switch (rc) {
case Success:
return;
case Killed:
errorBelch("%s: uncaught exception",site);
stg_exit(EXIT_FAILURE);
case Interrupted:
errorBelch("%s: interrupted", site);
#if defined(THREADED_RTS)
// The RTS is shutting down, and the process will probably
// soon exit. We don't want to preempt the shutdown
// by exiting the whole process here, so we just terminate the
// current thread. Don't forget to release the cap first though.
rts_unlock(cap);
shutdownThread();
#else
stg_exit(EXIT_FAILURE);
#endif
default:
errorBelch("%s: Return code (%d) not ok",(site),(rc));
stg_exit(EXIT_FAILURE);
}
}
SchedulerStatus
rts_getSchedStatus (Capability *cap)
{
return cap->running_task->incall->rstat;
}
#if defined(THREADED_RTS)
// The task that paused the RTS. The rts_pausing_task variable is owned by the
// task that owns all capabilities (there is at most one such task).
//
// It's possible to remove this and instead define the pausing task as whichever
// task owns all capabilities, but using `rts_pausing_task` leads to marginally
// cleaner code/API and better error messages.
Task * rts_pausing_task = NULL;
#endif
Capability *
rts_lock (void)
{
Capability *cap;
Task *task;
// Bound the current task. This is necessary to support rts_eval* functions.
task = newBoundTask();
if (task->running_finalizers) {
errorBelch("error: a C finalizer called back into Haskell.\n"
" This was previously allowed, but is disallowed in GHC 6.10.2 and later.\n"
" To create finalizers that may call back into Haskell, use\n"
" Foreign.Concurrent.newForeignPtr instead of Foreign.newForeignPtr.");
stg_exit(EXIT_FAILURE);
}
#if defined(THREADED_RTS)
if (rts_pausing_task == task) {
errorBelch("error: rts_lock: The RTS is already paused by this thread.\n"
" There is no need to call rts_lock if you have already called rts_pause.");
stg_exit(EXIT_FAILURE);
}
#endif
cap = NULL;
waitForCapability(&cap, task);
if (task->incall->prev_stack == NULL) {
// This is a new outermost call from C into Haskell land.
// Until the corresponding call to rts_unlock, this task
// is doing work on behalf of the RTS.
traceTaskCreate(task, cap);
}
return (Capability *)cap;
}
// Exiting the RTS: we hold a Capability that is not necessarily the
// same one that was originally returned by rts_lock(), because
// rts_evalIO() etc. may return a new one. Now that we have
// investigated the return value, we can release the Capability,
// and free the Task (in that order).
void
rts_unlock (Capability *cap)
{
Task *task;
task = cap->running_task;
ASSERT_FULL_CAPABILITY_INVARIANTS(cap,task);
// Now release the Capability. With the capability released, GC
// may happen. NB. does not try to put the current Task on the
// worker queue.
// NB. keep cap->lock held while we call exitMyTask(). This
// is necessary during shutdown, where we want the invariant that
// after shutdownCapability(), all the Tasks associated with the
// Capability have completed their shutdown too. Otherwise we
// could have exitMyTask()/workerTaskStop() running at some
// random point in the future, which causes problems for
// freeTaskManager().
ACQUIRE_LOCK(&cap->lock);
releaseCapability_(cap,false);
// Finally, we can release the Task to the free list.
exitMyTask();
RELEASE_LOCK(&cap->lock);
if (task->incall == NULL) {
// This is the end of an outermost call from C into Haskell land.
// From here on, the task goes back to C land and we should not count
// it as doing work on behalf of the RTS.
traceTaskDelete(task);
}
}
struct PauseToken_ {
Capability *capability;
};
Capability *pauseTokenCapability(PauseToken *pauseToken) {
return pauseToken->capability;
}
#if defined(THREADED_RTS)
// See Note [Locking and Pausing the RTS]
PauseToken *rts_pause (void)
{
// Wait for any nonmoving collection to finish before pausing the RTS.
// The nonmoving collector needs to synchronise with the mutator,
// so pausing the mutator while a collection is ongoing might lead to deadlock or
// capabilities being prematurely re-awoken.
if (RtsFlags.GcFlags.useNonmoving) {
ACQUIRE_LOCK(&nonmoving_collection_mutex);
}
// It is an error if this thread already paused the RTS. If another
// thread has paused the RTS, then rts_pause will block until rts_resume is
// called (and compete with other threads calling rts_pause). The blocking
// behavior is implied by the use of `stopAllCapabilities`.
Task * task = getMyTask();
if (rts_pausing_task == task)
{
// This task already passed the RTS.
errorBelch("error: rts_pause: This thread has already paused the RTS.");
stg_exit(EXIT_FAILURE);
}
// The current task must not own a capability. This is true for non-worker
// threads e.g. when making a safe FFI call. We allow pausing when
// `task->cap->running_task != task` because the capability can be taken by
// other capabilities. Doing this check is justified because rts_pause is a
// user facing function and we want good error reporting. We also don't
// expect rts_pause to be performance critical.
//
// N.B. we use a relaxed load since there is no easy way to synchronize
// here and this check is ultimately just a convenience for the user..
if (task->cap && RELAXED_LOAD(&task->cap->running_task) == task)
{
// This task owns a capability (and it can't be taken by other capabilities).
errorBelch(task->cap->in_haskell
? ("error: rts_pause: attempting to pause via an unsafe FFI call.\n"
" Perhaps a 'foreign import unsafe' should be 'safe'?")
: ("error: rts_pause: attempting to pause from a Task that owns a capability.\n"
" Have you already acquired a capability e.g. with rts_lock?"));
stg_exit(EXIT_FAILURE);
}
// Bound the current task. This is necessary to support rts_eval* functions.
task = newBoundTask();
stopAllCapabilities(NULL, task);
// Now we own all capabilities so we own rts_pausing_task and may set it.
rts_pausing_task = task;
PauseToken *token = stgMallocBytes(sizeof(PauseToken), "rts_pause");
token->capability = task->cap;
return token;
}
static void assert_isPausedOnMyTask(const char *functionName);
// See Note [Locking and Pausing the RTS]. The pauseToken argument is here just
// for symmetry with rts_pause and to match the pattern of rts_lock/rts_unlock.
void rts_resume (PauseToken *pauseToken)
{
assert_isPausedOnMyTask("rts_resume");
Task * task = getMyTask();
// Now we own all capabilities so we own rts_pausing_task and may write to
// it.
rts_pausing_task = NULL;
// releaseAllCapabilities will not block because the current task owns all
// capabilities.
releaseAllCapabilities(getNumCapabilities(), NULL, task);
exitMyTask();
stgFree(pauseToken);
if (RtsFlags.GcFlags.useNonmoving) {
RELEASE_LOCK(&nonmoving_collection_mutex);
}
}
// See RtsAPI.h
bool rts_isPaused(void)
{
return rts_pausing_task != NULL;
}
// Check that the rts_pause was called on this thread/task and this thread owns
// all capabilities. If not, outputs an error and exits with EXIT_FAILURE.
static void assert_isPausedOnMyTask(const char *functionName)
{
Task * task = getMyTask();
if (rts_pausing_task == NULL)
{
errorBelch (
"error: %s: the rts is not paused. Did you forget to call rts_pause?",
functionName);
stg_exit(EXIT_FAILURE);
}
if (task != rts_pausing_task)
{
// We don't have ownership of rts_pausing_task, so it may have changed
// just after the above read. Still, we are guaranteed that
// rts_pausing_task won't be set to the current task (because the
// current task is here now!), so the error messages are still correct.
errorBelch (
"error: %s: called from a different OS thread than rts_pause.",
functionName);
stg_exit(EXIT_FAILURE);
}
// Check that we own all capabilities.
for (unsigned int i = 0; i < getNumCapabilities(); i++)
{
Capability *cap = getCapability(i);
if (cap->running_task != task)
{
errorBelch (
"error: %s: the pausing thread does not own all capabilities.\n"
" Have you manually released a capability after calling rts_pause?",
functionName);
stg_exit(EXIT_FAILURE);
}
}
}
// See RtsAPI.h
void rts_listThreads(ListThreadsCb cb, void *user)
{
assert_isPausedOnMyTask("rts_listThreads");
// The rts is paused and can only be resumed by the current thread. Hence it
// is safe to read global thread data.
for (uint32_t g=0; g < RtsFlags.GcFlags.generations; g++) {
StgTSO *tso = generations[g].threads;
while (tso != END_TSO_QUEUE) {
cb(user, tso);
tso = tso->global_link;
}
}
}
struct list_roots_ctx {
ListRootsCb cb;
void *user;
};
// This is an evac_fn.
static void list_roots_helper(void *user, StgClosure **p) {
struct list_roots_ctx *ctx = (struct list_roots_ctx *) user;
ctx->cb(ctx->user, *p);
}
// See RtsAPI.h
void rts_listMiscRoots (ListRootsCb cb, void *user)
{
assert_isPausedOnMyTask("rts_listMiscRoots");
struct list_roots_ctx ctx;
ctx.cb = cb;
ctx.user = user;
threadStableNameTable(&list_roots_helper, (void *)&ctx);
threadStablePtrTable(&list_roots_helper, (void *)&ctx);
}
#else
PauseToken STG_NORETURN
*rts_pause (void)
{
errorBelch("Warning: Pausing the RTS is only possible for "
"multithreaded RTS.");
stg_exit(EXIT_FAILURE);
}
void STG_NORETURN
rts_resume (PauseToken *pauseToken STG_UNUSED)
{
errorBelch("Warning: Resuming the RTS is only possible for "
"multithreaded RTS.");
stg_exit(EXIT_FAILURE);
}
bool rts_isPaused()
{
errorBelch("Warning: Pausing/Resuming the RTS is only possible for "
"multithreaded RTS.");
return false;
}
// See RtsAPI.h
void rts_listThreads(ListThreadsCb cb STG_UNUSED, void *user STG_UNUSED)
{
errorBelch("Warning: rts_listThreads is only possible for multithreaded RTS.");
}
// See RtsAPI.h
void rts_listMiscRoots (ListRootsCb cb STG_UNUSED, void *user STG_UNUSED)
{
errorBelch("Warning: rts_listMiscRoots is only possible for multithreaded RTS.");
}
#endif
void rts_done (void)
{
freeMyTask();
}
/* -----------------------------------------------------------------------------
tryPutMVar from outside Haskell
The C call
hs_try_putmvar(cap, mvar)
is equivalent to the Haskell call
tryPutMVar mvar ()
but it is
* non-blocking: takes a bounded, short, amount of time
* asynchronous: the actual putMVar may be performed after the
call returns. That's why hs_try_putmvar() doesn't return a
result to say whether the put succeeded.
NOTE: this call transfers ownership of the StablePtr to the RTS, which will
free it after the tryPutMVar has taken place. The reason is that otherwise,
it would be very difficult for the caller to arrange to free the StablePtr
in all circumstances.
For more details, see the section "Waking up Haskell threads from C" in the
User's Guide.
-------------------------------------------------------------------------- */
void hs_try_putmvar (/* in */ int capability,
/* in */ HsStablePtr mvar)
{
Task *task = getMyTask();
Capability *cap;
Capability *task_old_cap USED_IF_THREADS;
if (capability < 0) {
capability = task->preferred_capability;
if (capability < 0) {
capability = 0;
}
}
cap = getCapability(capability % enabled_capabilities);
#if !defined(THREADED_RTS)
performTryPutMVar(cap, (StgMVar*)deRefStablePtr(mvar), Unit_closure);
freeStablePtr(mvar);
#else
ACQUIRE_LOCK(&cap->lock);
// If the capability is free, we can perform the tryPutMVar immediately
if (cap->running_task == NULL) {
cap->running_task = task;
task_old_cap = task->cap;
task->cap = cap;
RELEASE_LOCK(&cap->lock);
performTryPutMVar(cap, (StgMVar*)deRefStablePtr(mvar), Unit_closure);
freeStablePtr(mvar);
// Wake up the capability, which will start running the thread that we
// just awoke (if there was one).
releaseCapability(cap);
task->cap = task_old_cap;
} else {
PutMVar *p = stgMallocBytes(sizeof(PutMVar),"hs_try_putmvar");
// We cannot deref the StablePtr if we don't have a capability,
// so we have to store it and deref it later.
p->mvar = mvar;
p->link = cap->putMVars;
cap->putMVars = p;
RELEASE_LOCK(&cap->lock);
}
#endif
}
|